New Capability for Evaluating the Emissivity of Large Aperture Infrared Blackbodies

Jinan Zeng,¹ Sergey Mekhontsev,² and Leonard Hanssen²

¹Space Dynamics Laboratory, North Logan UT ²NIST, Gaithersburg, MD

Outline

- Introduction of CHILR
- New features of CHILR II comparing to CHILR I
- Preliminary evaluation results and comparison of two integrating spheres
- Summary and Future work

Complete Hemispherical Infrared Laser-based Reflectometer (CHILR)

- Integrating sphere → uniformly collecting/averaging reflected light
- Motion stages \rightarrow spatial scan
- Detector → high sensitive Pyrodetector, InSb, MCT

Directional-hemispherical geometry

Directional Hemispherical Reflectance (DHR)

- 1. Spatial map of DHR \rightarrow Averaged DHR
- 2. Angle dependence
- 3. Polarization dependence

Ability to measure DHR less than 0.0001 Spectral range from 1 μm to 10.6 μm

ICT 120 mm × 120 mm > Sphere port 50.8 mm

Importance of CHILR measurement **Reflectance:** ρ **Complementary measurement for FTIS**

Absolute radiometer

Absorptance: $\alpha = 1 - \rho$

Φ13 mm

NIST Primary Optical Watt Radiometer

Blackbody

CrIS ICT cavity

Total solar irradiance measurement

TIM

Technical challenges

Black coating + light trap geometry \rightarrow Tiny signal measurement

Ex: Coating reflectance vs Cavity reflectance 5 % 3 bounces 0.000125

BR Cavity	Reflec	tance	Emissivity			
bb Cavity	1.32 µm	10.6 µm	1.32 µm	10.6 µm		
Water Bath BB		0.00005		0.99995		
Water Heat Pipe		0.00012		0.99988		
Ga FP BB	0.00009	0.00005	0.99991	0.99995		
Cs heat pipe		0.00062		0.99938		
Small cone	0.00047	0.00167	0.99953	0.99833		
Large cone	0.00009	0.00045	0.99991	0.99955		
Vg cavity	0.00014	0.00646	0.99986	0.99354		
HVBB	0.000045	0.00005	0.999955	0.99995		
SSEC	0.00005	0.0001	0.99995	0.9999		
Radiometer cavity	Reflec	tance				
Radiometer cavity	1.32 µm	10.6 µm				
Solar irrad. 1		0.00092				
Solar irrad. 2		0.02549				
ACR 1		0.00075				
ACR 2		0.00038				
ACR 3		0.00055				

Background subtraction needed

Technical challenges

Spatial reflectance measurement is necessary due to non-uniformity

2. Use expanded beam without details

Incomplete collection of reflected light

$$\mathbf{D}_{\text{cavity}} \ge \mathbf{D}_{\text{port}}$$
 I

D_{port}= 2D_{cavity} for full scan without loss

Area correction of results for CrIS ICT

Design of new integrating sphere

Basic parameter	CHILR I	CHILR II
Sphere diameter	8 in dia.	20 in dia.
Input port	6 mm dia.	10 mm imes 4 in slot
Collection port	2 in dia. \times 2	8 in dia.
Detector port	0.5 in/2 in dia.	0.5 in/0.5 in dia.
Coating	Infragold	Infragold
Port fraction	1.7%-3%	4%

The first rule of thumb for integrating sphere design: Port fraction < 5 %

If port fraction > 5%, the advantage of high reflectance coating on integrating sphere starts to lose.

Unique spatial scan method

Reference measurement for CHILR

Π

Reference wheel with 8 ports

Since the edge of each port is functioned as part of the integrating sphere, it is very close to knife-edge port without recess.

Total flux received by detector on integrating sphere

M Sphere multiplier

The radiance of an internally illuminated integrating sphere:

$$L_{s} = \frac{\rho_{i}}{\pi A_{s}} \frac{\rho_{0}}{1 - \rho_{w} \left(1 - \sum_{k}^{n} f_{k}\right) - \sum_{k}^{n} \rho_{k} f_{k}}$$
BRDF

The total flux incident on detector active area:

$$\boldsymbol{\Phi}_{d} = L_{s}A_{d}\boldsymbol{\Omega}_{d} = A_{d}\boldsymbol{\Omega}_{d}\frac{\boldsymbol{\Phi}_{i}}{\pi A_{s}}\frac{\boldsymbol{\rho}_{0}}{1-\boldsymbol{\rho}_{w}\left(1-\sum_{k}^{n}f_{k}\right)-\sum_{k}^{n}\boldsymbol{\rho}_{k}f_{k}}$$

- ρ_0 the initial reflectance for incident flux
- ρ_w the reflectance of the sphere wall
- ρ_k the reflectance of port opening
- f_k the fractional port area of port opening
- Φ_i the incident flux
- A_{d} the detector active area
- Ω_{I} the projected solid angle of detector FOV

FOV

Lambertian

Surface

(Ideal diffuse)

BRDF of gold coating for CHILR II

Preliminary test setup

CHILR I

10.6 µm

CHILR II

Diffuse gold 99 %

Specular black 5 %

Diffuse gold 99 %

Specular black 5 %

Preliminary test results @ 10.6 µm

CHILR				Specular black 5%			19.8			
	мст	SNR _{met}	Pyro	SNR _{pyro}	МСТ	SNR _{met}	Pyro	SNR _{pyro}	D/S _{met}	D/S _{pyro}
I	3.4939	5e-4	0.1824	5e-4	0.1360	1e-2	0.0071	1e-2	25.69	25.69
II	0.1780	9e-4	0.0131	4e-3	0.0087	2e-2	0.0006	8e-2	20.46	20.95
Ratio I/II	20		14		17		12			

The total flux incident on detector active area:

Throughput vs port fraction & sample reflectance

Summary and future work

- CHILR II with new capability for evaluating emissivity of large aperture blackbody was delivered.
- Preliminary tests have been done and the throughput test results agree with calculated results.
- Integration of CHILR I and CHILR II
- Implementation of rotation stages for the input port and the reference wheel
- Installation of references and reducers
- Beam alignment and background measurements
- New laser beam scan system
- DHR measurement for ICT cavity using CHILR II

