# The University of Wisconsin Space Science and Engineering Center Absolute Radiance Interferometer (ARI): Instrument Overview and Radiometric Performance

<u>Joe K. Taylor</u><sup>1</sup>, Henry E. Revercomb<sup>1</sup>, Henry Buijs<sup>2</sup>, Frederic J Grandmont<sup>2</sup>, P. Jonathan Gero<sup>1</sup>, Fred A. Best<sup>1</sup>, David C. Tobin<sup>1</sup>, Robert O. Knuteson<sup>1</sup>

<sup>1</sup> Space Science and Engineering Center, University of Wisconsin-Madison, <sup>2</sup> ABB-Bomem

CALCON 2012 Logan, UT, USA





SSEC Engineering Research and Development Building for Space, the Planets, and the Earth

Four decades of successful spaceflight, airborne, and ground-based instrument development



#### Summary

- The University of Wisconsin-Madison Space Science and Engineering Center (UW-SSEC) and Harvard University (HU) submitted a successful joint proposal entitled "A New Class of Advanced Accuracy Satellite Instrumentation (AASI) for the CLARREO Mission" to the NASA Instrument Incubator Program (IIP). The UW-SSEC / HU team has a long history with the scientific and measurement concepts that have formed the foundation for climate benchmark measurements from space
- The objective of this effort is to advance the technological development of advanced accuracy instrumentation for the measurement of absolute spectrally resolved infrared radiances (5 50 µm) with high accuracy (< 0.1 K, k = 3, brightness temperature at scene temperature) for climate benchmark measurements from space</li>
- The UW-SSEC, developed a demonstration test bed which includes an FTS instrument and calibration and validation system to demonstrate the feasibility of the far and mid infrared instrumentation for a Climate Benchmark Mission.



- 1. Introduction
- 2. The UW-SSEC Absolute Radiance Interferometer (ARI)
- 3. Radiometric Performance
- 4. Conclusion

- 1. Introduction
- 2. The UW-SSEC Absolute Radiance Interferometer (ARI)
- 3. Radiometric Performance
- 4. Conclusion

#### Climate Benchmark Measurements

- Satellite Instrument Calibration for Measuring Global Climate Change (NIST Publication NISTIR 7047, 2003)
- ASIC<sup>3</sup> Report: Achieving Satellite Instrument Calibration for Climate Change (2007)
- US NRC Decadal Survey (NRCDS, 2007): Earth science and applications from space: national imperatives for the next decade and beyond
  - Climate Absolute Radiance and Refractivity Observatory (CLARREO): Tier
    1 (highest priority) mission
- NASA Implementation of CLARREO
  - Selected for development/implementation by NASA (lead: NASA LaRC)
  - Successful MCR (November 2010)
  - Guidance received in the President's FY 2012 budget removed \$1.24B from the \$2.08B FY'11 proposed Climate Initiative ... directed cuts include CLARREO
- Zeus

#### Capability of Current Systems

- Current generation of high resolution IR sounders: AIRS, IASI, CrIS...
  - Tremendous advance in information content & accuracy
  - Huge advance for climate process studies
- Provide a solid foundation for IR Climate Benchmark Measurement feasibility
- But, not optimized for unequivocal decadal trending of climate change, and for the most part, are not designed to provide:
  - The <u>radiometric accuracy and sampling</u> required to detect the small trends associated with global climate change
  - On-orbit calibration traceability to absolute standards
  - Far infrared (FIR) coverage beyond the normal IR sounding region (typically some part or all of the 3-15  $\mu$  m region)

#### Requirements for IR Climate Benchmark Measurements

- Absolute Accuracy: < 0.1 K, k = 2, brightness temperature <u>for combined</u> <u>measurement and sampling uncertainty</u> for annual averages of 15° zones to approach goal of resolving a climate change signal in the decadal time frame
  - Measurement uncertainty: < 0.1 K, k = 3
  - Sampling uncertainty: < 0.1 K, k = 3
- On-orbit Verification and Test: Provide an On-orbit Absolute Radiance/Brightness Temperature Standard with an accuracy of < 0.1 K, k = 3, to provide SI traceability of on-orbit measurements
- Spectral Coverage and Resolution: 200 2000 (goal: 3000) cm<sup>-1</sup>; ~0.5 cm<sup>-1</sup> (±1 cm MOPD)
- Spatial Footprint & Angular Sampling: Order 100 km or less, nadir only
- Coverage: Contiguous coverage *not* required

- 1. Introduction
- 2. The UW-SSEC Absolute Radiance Interferometer (ARI)
- 3. Radiometric Performance
- 4. Conclusion

#### Technology Developments Under NASA IIP



Fred Best: "On-Orbit Absolute Radiance Standard for the Next Generation of IR Remote Sensing Instruments (Monday, 13:35 – 13:55) Jon Gero: "The Heated Halo for Space-Based Blackbody Emissivity Measurement" (Tuesday, 16:30 – 16:50)

#### UW-SSEC Spectrometer, Blackbody Heritage & Ties to NIST



#### **UW-SSEC Absolute Radiance Interferometer**

- The UW-SSEC Absolute Radiance Interferometer includes:
  - A scene selection mirror assembly;
  - Fore optics designed specifically for high radiometric accuracy;
  - A 4-port cube corner, rocking arm interferometer with a diode laser based metrology system;
  - Two aft optics assemblies, 1 at each output port of the interferometer;
  - A 77 K multiple semi-conductor detector (400 3000 cm<sup>-1</sup>) and dewar assembly, and associated mechanical cooler;
  - A DTGS pyroelectric detector (200 1800 cm<sup>-1</sup>) assembly.

Each chosen for their strong spaceflight heritage such that detailed performance testing can be conducted on a system with a clear path to space. For compatibility with an IIP budgets, the electronics are not flight designs

#### The Generic Flight Interferometer (GFI)

- The UW ARI is based on ABB's Generic Flight Interferometer (GFI) architecture: a flex blade-based frictionless double pendulum scanning mechanism with 25 years of heritage and a direct evolution of 2 successful spaceborne interferometers:
  - <u>SCISAT / ACE-FTS (2003)</u>: Initial design life of 2 years and still operating in compliance with performance requirements after 9 years
  - GOSAT / TANSO-FTS (2009): Currently meets all performance requirements in flight
- Additionally, the GFI baseline includes:
  - Fiber-linked metrology for reduced heat load on interferometer and simplified alignment / redundancy management
  - Monolithic cube corner mirror for increased robustness to launch vibration



#### The Generic Interferometer for Climate Studies (GICS)

- 4 port
- Different met laser path
- Csl beamsplitter to cover spectral range
- Mounting adapted for Csl
- Self compensated beamsplitter instead of substrate and compensator
- Replicated monolithic cube corner
- Vacuum compatible Interferometer
- Modified COTS electronics and software used for IIP
- Mass: < 7 kg (GICS, Aluminum)
- Power: Avg 18 W / Pk 23 W (flight design)



M4

#### **Optical Design**

Gold coated Aluminum (no AR coating) reflective components



Design goals included:

- Optimize interferometer throughput
- Maximize Stray light control
- Minimize instrument mass and volume
- Optimize heated halo fill factor, f
- Compatible with 1" aperture Blackbody
- Allow 'tuning' of polarization null locations

#### Absolute Radiance Interferometer



#### Viewing configuration providing immunity to polarization effects.

#### Absolute Radiance Interferometer



Solid Model (Solidworks)

#### **Absolute Radiance Interferometer**



Completed Prototype

- 1. Introduction
- 2. The UW-SSEC Absolute Radiance Interferometer (ARI)
- 3. Radiometric Performance
- 4. Conclusion

#### Summary and Outline

#### Instrument Testing

- Near Field Response Mapping
- Detector Performance Testing and Demonstrations
- Interferometric Noise Testing and Analysis
- Spectral Calibration Verification
- Nonlinearity Characterization and Analysis
- Radiometric Calibration Verification: OARS
- Radiometric Calibration Verification: Ice Bath Blackbody
- OCEM Heated Halo

## Radiometric Uncertainty

• Recall the basic calibration expression for the complex calibration method:

$$N = \left(L_H - L_C\right) \operatorname{Re} \left\{\frac{C_S - C_C}{C_H - C_C}\right\} + L_C,$$
$$L = eB(T) + \left(1 - e\right)B(T_R)$$

- Radiometric uncertainty estimate: Differential error analysis (and/or perturbation analysis) of the calibration equation
- The uncertainty in the <u>verification</u> of the calibrated radiance includes a contribution from the uncertainty in the determination of the predicted radiance in addition to the uncertainty in the measured radiance

# Radiometric Uncertainty (Predicted On-orbit)

- On-orbit:
  - Space view for cold calibration reference
  - Onboard ambient calibration blackbody for "hot" calibration reference
  - These values satisfy the Zeus/CLARREO accuracy requirements

| Temperatures                            |                   |             | Associated Uncertainty<br>(3-σ) |         |    |                              |
|-----------------------------------------|-------------------|-------------|---------------------------------|---------|----|------------------------------|
| Cold Cal Ref (Space Target)             |                   | 4 K         | $u(T_c)$                        | 0 К     |    |                              |
| Hot Cal Ref (Internal Cal Target)       | $T_{H}$           | 295 K       | $u(T_H)$                        | 0.045 K |    | Cal BB / OARS                |
| Verification Target (OARS)              | T <sub>OARS</sub> | 220 – 320 K | $u(T_{OARS})$                   | 0.045 K |    | Uncertainty Analysis         |
| Reflected Radiance, Cold Cal Ref        | $T_{R,C}$         | 290 K       | $u(T_{R,C})$                    | 0 К     |    |                              |
| Reflected Radiance, Hot Cal Ref         | $T_{R,H}$         | 290 K       | $u(T_{R,H})$                    | 4 K     |    |                              |
| Reflected Radiance, Verification Target | $T_{R,OARS}$      | 290 K       | $u(T_{R,OARS})$                 | 4 K     |    |                              |
| Emissivities                            | ·                 | ·           |                                 |         |    |                              |
| Cold Cal Ref (Space Target)             | $e_{c}$           | 1           | $u(e_c)$                        | 0.0006  |    |                              |
| Hot Cal Ref (Internal Cal Target)       | e <sub>H</sub>    | 0.999       | $u(e_{_H})$                     | 0.0006  | ┝╺ | Halo Uncertainty<br>Analysis |
| Verification Target (OARS)              | e <sub>oars</sub> | 0.999       | $u(e_{OARS})$                   | 0.0006* |    | 7 (1101) 515                 |

- \* For the On-orbit uncertainty analysis, it has been assumed that the OARS emissivity and associated uncertainty is determined from prelaunch TVAC testing with a very high emissivity source
  - $e_{OARS} = 0.9990 \pm 0.0006 (200 \text{ cm}^{-1})$
  - $e_{OARS} = 0.9990 \pm 0.0004 \ (800 \ \text{cm}^{-1})$
  - $e_{OARS} = 0.9990 \pm 0.0002 (1400 \text{ cm}^{-1})$
  - $e_{OARS} = 0.9990 \pm 0.0001 \ (2000 \ cm^{-1})$
  - $e_{OARS} = 0.9990 \pm 0.00075 (2600 \text{ cm}^{-1})$

#### Radiometric Uncertainty (Predicted On-orbit)



\* Uncertainty due to residual nonlinearity not shown

#### Radiometric Uncertainty (Predicted <u>On-orbit</u>) Combined UW – ARI Calibration and OARS Uncertainty (k = 3)



\* Uncertainty due to residual nonlinearity not shown

### Radiometric Uncertainty (Laboratory Environment)

- IIP Demonstration (Laboratory Environment):
  - Onboard ambient calibration blackbody for "cold" calibration reference
  - Onboard hot calibration blackbody for "hot" calibration reference

| Temperatures                            |                   |             | Associated Uncertainty<br>(3-σ) |         |      |                              |
|-----------------------------------------|-------------------|-------------|---------------------------------|---------|------|------------------------------|
| Cold Cal Ref (Ambient Blackbody)        | $T_{c}$           | 293 K       | $u(T_c)$                        | 0.045 K |      |                              |
| Hot Cal Ref (Hot Blackbody)             | $T_{H}$           | 333 K       | $u(T_H)$                        | 0.045 K |      | Cal BB / OARS                |
| Verification Target (OARS)              | T <sub>OARS</sub> | 213 – 333 K | $u(T_{OARS})$                   | 0.045 K |      | Uncertainty Analysis         |
| Reflected Radiance, Cold Cal Ref        | $T_{R,C}$         | 290 K       | $u(T_{R,C})$                    | 4 K     |      |                              |
| Reflected Radiance, Hot Cal Ref         | $T_{R,H}$         | 290 K       | $u(T_{R,H})$                    | 4 K     |      |                              |
| Reflected Radiance, Verification Target | $T_{R,OARS}$      | 290 K       | $u(T_{R,OARS})$                 | 4 K     |      |                              |
| Emissivities                            |                   |             |                                 | -       |      |                              |
| Cold Cal Ref (Ambient Blackbody)        | $e_{c}$           | 0.999       | $u(e_c)$                        | 0.0006  |      |                              |
| Hot Cal Ref (Hot Blackbody)             | e <sub>H</sub>    | 0.999       | $u(e_{_H})$                     | 0.0006  | ╽┝╺ᅳ | Haio uncertainty<br>Analysis |
| Verification Target (OARS)              | $e_{OARS}$        | 0.999       | $u(e_{OARS})$                   | 0.0006  |      | ,                            |

#### Radiometric Uncertainty (Laboratory Environment) UW - ARI Calibration and OARS Uncertainty (k = 3)



#### Radiometric Uncertainty (Laboratory Environment) Combined UW – ARI Calibration and OARS Uncertainty (k = 3)



Meeting these uncertainties in the laboratory environment demonstrates the capability to meet the 0.1 K (k = 3) uncertainty requirement on-orbit

# Radiometric Calibration Verification – MCT with NLC



#### Radiometric Calibration Verification – DTGS (800 cm<sup>-1</sup>)





- An excellent, low cost, climate benchmark mission has been defined
- The proposed IR measurement requirements are supported by good technical readiness
- The UW-SSEC ARI (and OT/V)
  - Facilitates the demonstration of the technology necessary to measure IR spectrally resolved radiances (5 – 50 µm) with ultra high accuracy (< 0.1 K, k = 3, brightness temperature at scene temperature) for a benchmark climate mission.
  - Subsystems have been selected and developed to provide a system with a clear path to space.
  - Initial end to end system tests have been completed meets radiometric uncertainty goals
  - Vacuum testing preparation underway
- This technology can form the basis of a future climate benchmark mission, such as CLARREO or Zeus.

# THANK YOU

The UW-SSEC Absolute Radiance Interferometer (ARI): Instrument Overview and Radiometric Performance