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ABSTRACT 
 
 

A linear mathematical error model for the assessment of validation activity of atmospheric retrievals is presented. The 
purpose of the validation activity is to assess the actual performance of the remote sensing validated system while in 
orbit by comparing its measurements to some relevant—validating—data sets.  

The validating system samples volumes of the atmosphere at times and locations that are different from the ones when 
and where the validated system makes its own observations. The location of the validating system can be either 
stationary, e.g. a ground ARM site, or movable, e.g. an aircraft or some other satellites. The true states may be 
correlated or not. The sampled volumes differ from each other by their location, timing, and size. The validated and 
validating systems have different vertical resolution and grid, absolute accuracy, and noise level. All the above factors 
cause apparent differences between the data to be compared.  

The validation assessment model makes the comparison accurate by allowing for the differences. The model can be 
used for assessment and interpretation of the validation results when the above mentioned sources of discrepancies are 
significant, as well as for evaluation of a particular validating data source. 

Keywords: atmospheric, validation, remote sensing, retrieval 

1. INTRODUCTION 
The purpose of validation is to assess actual performance of the validated system while in orbit, in other words, to 
establish how well the theoretical characterization and error analysis actually represent the properties of the real data. 
The validated system performs a set of measurements x̂  on an ensemble of true states x ;  

x̂ = r(x) + e  

where r(x) is a nominal retrieval with the absence of any errors in the measured signal and in the forward model, and e 
represents retrieval errors caused by the factors mentioned above. The error term can be characterized by its mean value 

{e} = ∆E  (bias) and covariance eS  (retrieval noise). From the error analysis we have a priori eSa , and we presume 

that for a nominally performing system ∆ 0= . In the process of validation we want to estimate the actual value of 
and e∆  S :  

ˆ ˆ∆ {x - r(x)}E=  and e
ˆ ˆ ˆˆ ˆS {(∆ - (x - r(x))(∆ - (x - r(x)) }TE= . 
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Validation is accomplished through a comparison with a set of profiles of a known quality and known relation to the 
nominal retrieval r and/or the true state of the atmosphere x at the moment of observation by the validated system. The 
validation data set can be based on real measurements by other (validating) systems or modeling.  

For accurate comparison of any data sets, one needs to know the errors of the compared quantities. This inarguable 
general statement in the case of comparison of atmospheric profiles obtained by different techniques translates into 
some specific methodological issues to be resolved. Some of the problems are related to the physical principles of 
satellite measurement techniques; others reflect the spatial nonuniformity and temporal variations of the atmosphere. 
Satellite instrument and reference measurements sample the atmosphere with different vertical resolution, accuracy and 
noise level. The time and location of the compared data do not coincide. All the above mentioned factors cause 
inevitable differences between the compared profiles and their statistics.  

The effect of different vertical resolutions was addressed by using averaging kernel formalism in application to CO and 
ozone retrieval validation1, 2, 3, 4, but the error caused by non-collocation was left out of the scope of the studies. In 
practice two approaches are used to handle the issue of non-collocation5. Thus, in the work of Tobin et al.6 the “best 
estimate” radiosonde data set for the Southern Great Plains ARM site has been created. In this work the ground-based 
remote sensing and GOES satellite data were used to interpolate the original radiosonde measurements to correct for 
time and space differences between sondes and AIRS overpasses. In another study7 no particular site adjustments were 
made, but global averages were compared. The first approach gives high accuracy data for comparison but is limited to 
the sites equipped by the ground-based remote sensors and requires dedicated sonde launches. The second approach 
provides global coverage but is not capable of providing measurement uncertainties indicated as a function of time and 
location for all of the data. 

The goal of this work is to develop a linear mathematical error model for the assessment of validation activity of 
atmospheric profile retrievals. The validation assessment model makes the comparison accurate by estimating the 
difference. The model can be used for assessment and interpretation of the validation results when the above mentioned 
sources of discrepancy are significant, as well as for evaluation of a particular validating data source. 

In Section 2 we present theoretical basis of the VAM mostly following the methodology, terminology, and notations 
developed by C. D. Rodgers2, 8, 9, 10. In Section 3 we substantiate it by presenting the results of a case study of the 
application of the VAM to a set of radiosonde profiles taken at a Southern Great Plains ARM site and simulated AIRS 
retrievals. 

2. MODEL FOR VALIDATION OF PROFILE RETRIEVAL – THEORETICAL BASIS 
Consider a validation scenario that consists of some elementary validation acts as shown in Figure 1. The validating 
system samples the volume of the atmosphere characterized by its true state x2 at the time and location that are different 
from when and where the validated system makes its own observation of x1. Location of the validating system can be 
either stationary, e.g. a ground ARM site, or it can be movable, e.g. an aircraft or other satellites. The true states may be 
correlated or not, e.g. validation against historical records. The sampled volumes differ from each other by their 
location, timing, and size. The validated and validating systems have different characteristics, including vertical 
resolution and grid, absolute accuracy, and noise level. All the above factors cause an apparent difference between the 
data to be compared.  
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Fig. 1. Validation scenario: The rectangular encompasses the validation area; x1 is the state of the atmosphere 
sampled by the validated system, 2x is the one sampled by the validating system; states x1 and 2x are 
separated by time interval τ and space vector d. 

 

In linear approximation the retrieved profiles can be presented as follows10: 

1 2i ai i i ai iˆ ˆx = x + A (x - x ) +∆x ε ,i i+ =    (1) 

where ix  and ix̂  are true and retrieved profiles at the validation and observation sites and iA , aix , iˆ∆x , and εi  are 
corresponding averaging kernel, a priori profile, measurement bias, and retrieval noise, respectively. Index 1 is assigned 
to the terms related to the validated system and index 2 to the validating one. Different iA , aix , iˆ∆x , and εi  account 
for differences in the characteristics of the measurement systems. Equation (1) can represent both remote sensing and 
direct measurements; in the latter case 2A = I , where I is an identity matrix. 

 

For the proper comparison of the measurements, we must ensure that we compare like with like, in other words that 
profiles and1 2ˆ ˆx x are on the same grid. In further theoretical consideration we assume that the compared profiles and 
their characteristics are on the same vertical grid. We will address the issue of different grids in Section 3. 

 

The true states x1 and 2x  are functions of coordinate z and time t where 1 21 1 2 2x x(z , ) x = x(z , )t t= . The separation 

between the measurements in space is 2 1d = z - z  and in time is 2 1t tτ = − . The true mean value of the ensemble of 

states is 11 1 1x {x (z , )}E t=  and 22 2 2x {x (z , )}E t= . The variations of the states about their means and1 2x x  are 

characterized by their covariances and
1 2x 1 1 1 1 x 2 2 2 2S {(x - x )(x - x ) } S {(x - x )(x - x ) }T TE E= = .   

 

Correlation between the true states x1 and 2x  can be characterized by covariances 12 1 1 2 2S {(x - x )(x - x ) }TE=  and 

21 2 2 1 1S {(x - x )(x - x ) }TE=  for the covariances T
12 21S = S  and 

1 212 21 x xS S S S= = =  when 0 and d = 0τ = .  

 

Because correlation measures only linear relationships, in the following consideration we assume that the variation of 
the true states about their means and1 2x x  - and1 2δx δx  are correlated so that 

1 2δx Bδx + ξ=       (2) 
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where ξ is random with 0ξ =  and covariance ξS . The relation (2) can be interpreted in terms of conditional 

probability density function (pdf) 1 2(δx |δx )P  of 1δx  given 2δx , i.e. 2Bδx  is the expected value of 1δx  given 

2δx  

2 1 1 2 1Bδx δx (δx | δx ) (δx )P d= ∫      (3) 

For covariances and
1 2x x ξS , S , S  the following relations are true:  

2cov(x ,ξ) = 0       (4) 

1 2

T
x x ξS = BS B + S       (5) 

212 xS = BS        (6) 

2

T
21 xS = S B        (7) 

The function B I=  when 0 and d = 0τ =  and when 12 21B = 0 S = S = 0 . 

 

We assume that the validating system is free from bias 2
a ˆ∆x = 0  to the accuracy characterized by 

2

a
ˆ∆xS  and that its 

retrieval noise covariance is 
2ε

S ; the a priori bias of the validated system is a
1ˆ∆x = 0  with uncertainty represented by 

1

a
ˆ∆xS  and retrieval noise covariance 

1

a
εS . The purpose of validation is to estimate the actual values of 

and
11 εˆ∆x S .  

 

Following the approach from Rodgers and Connor2 and Equations (2) and (3) we simulate retrieval 1x̂ with 2x̂ : 

212 1 2 1 2 a 1 2 2 1 2ˆ ˆx = A Bx = A B(I - A )x + A BA x + A Bε     (8) 

For estimation of the bias 1ˆ∆x , consider the difference ˆδx : 

1

2

1 2 1 a1 1 2 a2 1 1 1 2 2 1 1 1 2

1 a1 1 2 a2 1 1 1 2 2 1 1 1 2 2 1 1 1 2

1 a1 1 2 a2 1 1 1 2 2 1 1 2 2 1

ˆ ˆ ˆ ˆδx x - x = [(I - A )x - A B(I - A )x ]+ A x - A BA x +∆x + (ε - A Bε ) =
ˆ= [(I - A )x - A B(I - A )x ]+ A x - A BA x + A δx - A BA δx +∆x + (ε - A Bε )

ˆ= [(I - A )x - A B(I - A )x ]+ A x - A BA x + A (Bδx + ξ) - A BA δx +∆x +

≡

1 1 2(ε - A Bε )
 

and its mean ˆδx   

 

  
1 1 2 11 2 1 a1 1 2 a2 1 1 2ˆ ˆ ˆ ˆδx x - x [(I - A )x - A B(I - A )x ]+ A x A BA x ∆x≡ = − +

  (9) 

Then, 

e
1ˆ ˆ ˆ∆x δx δx= −             (10) 
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where  

1 2
e

1 a1 1 2 a2 1 1 2ˆδx [(I - A )x - A B(I - A )x ]+ A x A BA x≡ −                (11) 

 

Covariance of ˆδx about the mean - ˆδxS  is: 

1 2 2 1 1 2 2 1

1 12 1 2

T
ˆδx

T
1 1 1 2 1 1 1 2

T T T
1 2 x 1 2 ξ ε 1 ε 1

ˆ ˆ ˆ ˆS {(δx -δx)(δx -δx) }

{[(A B A BA )δx A ξ + (ε - A Bε )][(A B A BA )δx A ξ + (ε - A Bε )] }

= (A B(I - A ))S (A B(I - A )) + A S A + S + (A B)S (A B)

E

E

≡ =

= − − − − =   (12) 

where 
1ε

S and 
2ε

S are characteristics of the retrieval noise.  

 

It is important to notice that in this context, e ˆδx  is not the error but represents the expected difference between 
nominally performing measurement systems instead.  The purpose of the validation is to determine the deviation from 
the expected difference and the statistical significance of the deviation.  

 

Attainable accuracy of 1ˆ∆x  in Equation (10) is limited by the accuracy of our a priori knowledge and the bias of the 
reference system. In practice we know the mean of the states with some uncertainties characterized by the covariances. 
The uncertainty of the assumption characterized by the covariance results in an additional error with covariance S% : 

1 2

T T
1 x 1 1 2 x 1 2S = A S A + (A BA )S (A BA )% % %                  (13) 

 

Finite accuracy of the assumption 2
a ˆ∆x = 0  is characterized by covariance 

2

a
ˆ∆xS  and results in additional error in 

the bias of validated system  

2 2

a T
ˆ ˆ∆x 1 2 ∆x 1 2S (A BA ) S (A BA )=%                  (14) 

In the process of validation a set of 1 2i ˆ{δ x} , , ...,i N=  is measured. We assume that the measurements are made 

such that all iˆδx  are statistically independent. The mean of the sample s ˆδx  relates to the mean of the ensemble ˆδx  as 
s

sˆ ˆδx = δx + ε  where sε  represents the error due to the difference between the mean of the sample and the mean of 

the ensemble. It is a random vector with covariance 1
s ˆε δxS SN −=   

Then the estimation of the bias of the validated system is  

s s e
1ˆ ˆ ˆ∆x = δx - δx                   (15) 

The covariance of the estimate is  

s
s 2ˆε ∆xˆ∆x

S = S + S S+% %                   (16) 
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The retrieval noise 
1ε

S  of the validated system can be estimated based on analysis of the measurements by the 

validated system on the ensemble of states x1 with 
1xS  such that 

1 1

T a
1 x 1 εA S A S� .  

 

For validation planning and evaluating of a particular validation data source one can use the following relations: 

1 12 1 2

a T T a T
ˆδx 1 2 x 1 2 ξ ε 1 ε 1S = (A B(I - A ))S (A B(I - A )) + A S A + S + (A B)S (A B)               (17) 

s

a
ˆε δxS S / N≈                   (18) 

s
2

a
ˆ ˆδx ∆xˆˆ δx∆x

S = S / + S SN +%
% %                  (19) 

Equation (19) gives us an estimate of the validation accuracy attainable given the accuracy of our knowledge of the 
characteristics of the measurement systems and the true states, and the size of data sample used for the validation.  

Remark  

Two sources of different natures contribute to the total covariance in Equation (12), namely, natural variation of the true 
states and retrieval noise. Most probably, the variations have different correlation times. Therefore, it is important to 
ensure that the sampling preserves the statistical independence to make Equation (18) applicable. For example, assume 
that the noise is independent between single measurements, that we can take K measurements during a correlation time 
of the natural variation - tc, and that the validation lasted M tc; Equation (14) then takes the form 

1 1s
2 1 2

T T a T
1 2 x 1 2 ξ ε 1 ε 1ˆδx

S [(A B(I - A ))S (A B(I - A )) + A S A ( S + (A B)S (A B) / ]/K M= +           (20) 

2.1. Model for validation of profile retrieval – particular cases 
(i) Consider the case when the vertical resolution of the validating system is high enough to assume that A2=I, for 
example, in situ air-borne sensors, lidars, etc. Then Equations (11) and (12) take the forms 

1 2
e

1 a1 1 1ˆδx (I - A )x + A x A Bx= −                  (21) 

and  

1 1 1 2

T T
ˆδx ξ ε 1 ε 1S = A S A + S + (A B)S (A B)                  (22) 

The term 1 1
T

ξA S A  in Equation (22) represents the residual variations of x1 that cannot be inferred from the correlative 
validation data set.  

 

(ii) The validation scenario discussed above is the generalization of the scenario that was analyzed by Rodgers and 
Connor2. They examined the case when two remote sounders with different characteristics sample the same true state. 
That corresponds to and

1 21 2 x x x ξx = x = x; S = S = S , S = 0 B = I , and the equation (12) takes form  

                
1 2

ˆδx

T T
1 1 2 x 1 1 2 ε 1 ε 1

ˆ ˆ ˆ ˆS {(δx -δx)(δx -δx) }

(A - A A )S (A - A A ) + S + A S A

TE≡ =

=
                (23) 

which is identical to Equation (30) in their work. The estimated bias is 

s s
1 1 a1 1 2 a2 1 1 2ˆ ˆ∆x = δx [(I - A )x - A (I - A )x ]+ (A A A )x− −                (24) 

<<

Proc. of SPIE Vol. 6301  63010M-6

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 03/25/2015 Terms of Use: http://spiedl.org/terms



with covariance  

     s
s 2ˆε ∆xˆ∆x

S = S S+ %                   (25) 

 

(iii) One of the approaches to the validation is validation against a priori/historical data records11. In this case the only 
information about 1x  is and 

1 11 x xx , S , S% , i.e. B = 0 , 1ˆ ˆδx x= , and Equations (11), (12), and (16) take the forms 

1
e

1 a1 1ˆδx (I - A )x + A x=                   (26) 

   
1 1

T
ˆδx 1 x 1 εˆ ˆ ˆ ˆS {(δx -δx)(δx -δx) } A S A + STE≡ =                  (27) 

s
s 1

T
ε 1 x 1ˆ∆x

S = S A S A+ %                   (28) 

 

3. RESULTS OF CASE STUDY 
This section demonstrates the practicability of the theoretical basis presented in Section 2. We applied the VAM to a set 
of radiosonde profiles taken at the ARM Southern Great Plains site from July to December of 2002. These are the same 
data that have been used to build the “best estimate data set” in Tobin et al.6. In particular, we analyzed the impact of 
the time difference between satellite and radiosonde measurements on the assessment of accuracy of the AVTP 
retrieval. In the following case study we take the radiosonde profiles for accurate representation of the true states of the 
atmosphere. 

To remove seasonal cycle variation from the analyzed data, we de-seasonalized the whole set; for each month we 
calculated the monthly mean profile and extracted it from each particular profile pertaining to the month. Then out of 
the full set of 424 de-seasonalized profiles, we constructed two ensembles so that each sonde in the first ensemble (x1) 
had at least one reciprocal sonde in the second ensemble (x2) with a launch time difference less than or equal to τ  
hours, where τ =3, 6, 12, 24, 48, and 72 hours. For every τ ≥ 6 hours the size of the ensemble was greater than 100. 
Then we calculated auto-covariances 

1 2x xS ,S  and cross-covariance S12. The results are presented in Figure 2.  
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Fig. 2. Auto-covariance and selected cross-covariance matrices. 

 

As one can see, there is noticeable decreasing with the τ  correlation between the ensembles. Given and 
2x 12S S  

using Equations (13) and (14) we calculated ξS , which characterizes the uncorrelated temperature difference between 

x1 and x2. For the comparison of two radiosonde profiles, the square root of the diagonal elements of ξS  can be 
interpreted as rms error caused by non-coincidence of launch times. Plots for error are displayed in Figure 3.  
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Fig. 3. The square root of ξS  diagonal elements (rms error for comparison of a single pair of radiosondes) for differentτ . 

The solid line is for 3 h;τ =  the dotted line is for 6 h;τ =  the dashed line is for 12 h;τ =  the dash-dot-dot 

line is for 24 h;τ =  and the solid-with-crosses is for τ = ∞ , i.e. no correlation at all, validation against historical 
records. 

 

One of the interpretations of the results in Figure 3 is that given a particular temperature profile x2 with associated 
statistical characteristics ,   and 

2x 12 2 1S S , x , x , we can estimate profile x1 separated in time by less than τ  with rms 

error indicated by the corresponding curve in Figure 3.  

 

To simulate the smoothing error of the satellite retrieval, we applied AIRS-like averaging kernels (see Figure 4) to 
Equation (20). Each averaging kernel is for the temperature profile retrieval in a 1-km thick layer; spectral resolution 
and noise level are those for the AIRS instrument. Certainly, averaging kernels depend on the state of the atmosphere 
for a particular retrieval, but they are not critical to the error analysis. Thus, we calculated ˆδxS , the covariances of the 
single pair comparison error caused by the time difference in sonde launch and satellite overpass only. Finally, using 
Equation (19) with the assumption xa=0, we estimated the mean expected difference e ˆδx  with the associated error (see 
Equation (25)). The results are presented in Figure 4. 
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Fig. 4. Selected averaging kernels for temperature profile retrieval. 
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Fig. 5. a) Square root of diagonal elements of the covariance matrices: the solid line is a single pair satellite-radiosonde 

comparison error ( ˆδxS  matrix); the dashed line is a single pair radiosonde-radiosonde comparison error ( ξS  matrix); 

the dash-dot-dot line is the rms temperature variation of the analyzed ensembles (
2xS matrix). b) The solid line is the 

estimation of the mean expected difference between the ensembles of satellite and radiosonde observations; the length 
of the error bars is the solid curve from a) divided by the square root of the ensemble sample size (107 profiles).  

 

Looking at the plots in Figure 5 a), we see that in the presented case the effect of the averaging kernels is two fold: (i) 
smoothing per se removes structures of high frequency but small amplitude from the error pattern; (ii) above 
approximately 300 mb the estimated error of the satellite-radiosonde comparison is smaller than the error for the 
radiosonde-radiosonde. This is because we compare the satellite retrieval 1x̂  with its simulation 12x̂  (see Equation (8)). 
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In other words, the corresponding true profiles and 1 2x x  contribute to the comparison with weights determined by 
the averaging kernels. Since the sensitivity of the retrievals (the peak amplitude of the averaging kernels) drops with 
altitude (see Figure 4), so does the ˆδx . 

4. CONCLUSIONS AND DISCUSSION 
From the results of the presented case study, we deduce the following conclusions: (i) A six-hour maximum time 
difference between satellite and radiosonde measurements corresponds to twelve-hour periods in radiosonde launches, a 
realistic scenario for many stations. (ii) The matrix ξS  can be stably inferred from real radiosonde profiles. (iii) For a 
single comparison, rms error caused by non-coincidence in time varies from 0.5 K at the 100 mb level to 2 K at the 
surface. By analyzing a sample of size N , the error can be reduced by a factor of 1/ N ; thus we need 4N >  to 
make the error less than 1 K at all practicable altitudes. For Earth system and climate studies, extended time intervals (a 
season and longer) present the most interest; hence, in the proposed work we can accumulate samples large enough to 
attain the required accuracy of the reference. In practice, the assumption of 1/ N  may not be always valid. Possible 
errors caused by a diurnal cycle and periodicity of the overpasses12, 13 will be addressed in future studies.  
 
The presented Validation Assessment Model is a useful tool for validation planning and the interpretation of the results. 
It also can be used for the evaluation of consistency between the data from different sources that is necessary for 
building coherent and uniform data sets for Earth system and climate studies. 
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