
Utah State University Utah State University 

DigitalCommons@USU DigitalCommons@USU 

Space Dynamics Lab Publications Space Dynamics Lab 

10-22-2012 

Linear Covariance Techniques for Closed-Loop Guidance Linear Covariance Techniques for Closed-Loop Guidance 

Navigation and Control System Design and Analysis Navigation and Control System Design and Analysis 

Randall S. Christensen 

David Geller 

Follow this and additional works at: https://digitalcommons.usu.edu/sdl_pubs 

Recommended Citation Recommended Citation 
Christensen, Randall S. and Geller, David, "Linear Covariance Techniques for Closed-Loop Guidance 
Navigation and Control System Design and Analysis" (2012). Space Dynamics Lab Publications. Paper 29. 
https://digitalcommons.usu.edu/sdl_pubs/29 

This Article is brought to you for free and open access by 
the Space Dynamics Lab at DigitalCommons@USU. It has 
been accepted for inclusion in Space Dynamics Lab 
Publications by an authorized administrator of 
DigitalCommons@USU. For more information, please 
contact digitalcommons@usu.edu. 

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/sdl_pubs
https://digitalcommons.usu.edu/sdl
https://digitalcommons.usu.edu/sdl_pubs?utm_source=digitalcommons.usu.edu%2Fsdl_pubs%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/sdl_pubs/29?utm_source=digitalcommons.usu.edu%2Fsdl_pubs%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/


Original Article

Linear covariance techniques
for closed-loop guidance navigation and
control system design and analysis

Randall S Christensen1 and David Geller2

Abstract

While linear covariance analysis is widely used for navigation system design and analysis, it is often overlooked as a tool for

closed-loop guidance navigation and control (GN&C) system design and analysis. This article presents an overview of the

techniques and methods required to develop a linear covariance analysis tool for a close-loop GN&C system. Then, using

a simple nonlinear closed-loop GN&C problem as a guide, the capabilities of linear covariance analysis for the design and

analysis of closed-loop systems are demonstrated. It is shown that linear covariance can be accurately applied to a closed-

loop system with time-to-go guidance, dead-reckoning navigation, and a Kalman filter for state estimation. The accuracy

and efficiency of linear covariance analysis is shown by direct comparison to Monte Carlo analysis results, and the value of

linear covariance analysis is highlighted by presenting several analysis capabilities that are often required in the design and

analysis of closed-loop GN&C systems. It is also shown how the efficiency of linear covariance enables new design

methodologies, one of which is presented in this article, that would otherwise be prohibitive with Monte Carlo analysis.
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Introduction

Monte Carlo analysis is commonly the tool of choice
for closed-loop GN&C system design and analysis.
However, Monte Carlo analysis may require several
hundreds to thousands of simulation runs, depending
on the desired probability levels and confidence inter-
vals of the results. Another option for closed-loop
GN&C system design and analysis is linear covariance
analysis. Linear covariance can provide the same stat-
istical information as a Monte Carlo analysis, but
avoids the computational burden associated with the
Monte Carlo approach.

Historically, linear covariance theory has been
applied to general estimation theory problems,1–3 as
well as in the design and analysis of orbit determin-
ation algorithms,4–7 inertial navigation systems,8–11

and attitude determination systems.12–14 These ana-
lysis approaches are more commonly known as con-
sider analysis,4,15,16 true covariance analysis,12 or
generalized covariance analysis.13,17 In all of these
examples, the effects of closed-loop guidance and con-
trol on the overall performance of the system is not
considered.

Recent developments in linear covariance theory
have combined the developments of Battin18 and

Maybeck3 with continuous feedback control and
model replacement19 (i.e. state propagation using
gyro or accelerometer measurements) to produce
linear covariance tools that can be applied to many
different types of closed-loop GN&C problems.20

Specific applications include autonomous rendez-
vous,20,21 powered lunar descent,22 and launch vehicle
ascent trajectory analysis.23

While the linear covariance theory for closed-loop
GN&C systems has been successfully applied to these
applications, the complexity of the applications has
often masked the underlying theory and over-
shadowed the real value of the linear covariance ana-
lysis. Thus, a clear demonstration of its value and
usefulness in the context of a simpler closed-loop
GN&C problem is warranted.
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The objectives of this article are three-fold: first is
to demonstrate the usefulness of linear covariance
analysis in closed-loop system design and analysis;
second is to demonstrate the accuracy and efficiency
of linear covariance analysis by direct comparison to
Monte Carlo analysis using a simple nonlinear closed-
loop GN&C problem as a guide; third is to serve as a
tutorial on linear covariance analysis for the uniniti-
ated. The value of linear covariance analysis is high-
lighted by presenting several capabilities that are often
required in the design and analysis of closed-loop
GN&C systems. It is also shown that the efficiency
of linear covariance enables large trade studies
that are often prohibitive with Monte Carlo-based
approaches.

The remainder of this article is organized into five
sections. The ‘Methods’ section discusses the generic
architecture of a GN&C simulation and the key met-
rics used in GN&C analysis. It also provides an over-
view of the mathematical models required for both
Monte Carlo and linear covariance analysis. The
‘Illustration’ section defines a particular nonlinear
closed-loop GN&C problem to be studied in this
article. The problem contains a time-to-go guidance
law, a simple dead-reckoning navigation system, and
a Kalman filter state estimator. Linear covariance
analysis is then applied to this problem, and a dem-
onstration of several linear covariance analysis cap-
abilities are presented in the ‘Capabilities’ section.
Finally, the contents of the study are summarized in
the ‘Conclusions’ section.

Methods

Figure 1 describes the overall setup of a Monte Carlo
analysis for a generic GN&C system.20 The variables

w, g, and tk (to be discussed below) are white random
noise processes that, along with actuator commands,
û, drive the dynamics of the truth model. The truth
models as developed in Geller20 account for the envir-
onmental models, sensors error models, and actuator
error models. The output from the truth model is the
true state x, and the simulated sensor data ~zk, ~y (also
to be discussed below). The navigation algorithm pro-
cesses the measurements and produces an estimate of
the state x̂, upon which the control algorithm operates
and produces the actuator command, thus closing the
loop. Quantities important to the GN&C analysis, �x,
�x̂, and �e, are also illustrated in Figure 1. The true
state dispersion, �x, is the deviation of the true state
from the reference trajectory. This state is absent in
traditional linear covariance applications such as con-
sider analysis, true covariance analysis, and general-
ized covariance analysis. The navigation dispersion �x̂
is the deviation of the navigation state from the same
reference trajectory, and the true navigation error �e is
the difference between the estimated navigation state
and the corresponding true navigation state.

A Monte Carlo analysis computes the covariance
of the true dispersion and error states by simply gen-
erating N samples of each state as a function of time,
and then estimating the covariances as

DtrueðtÞ �
1

N� 1

XN
i¼1

�xðtÞ�xTðtÞ ð1Þ

DnavðtÞ �
1

N� 1

XN
i¼1

�x̂ðtÞ�x̂TðtÞ ð2Þ

PtrueðtÞ �
1

N� 1

XN
i¼1

�eðtÞ�eTðtÞ ð3Þ

Figure 1. Generic Monte Carlo simulation for GN&C analysis.
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When estimating the covariances using equations
1–3, one must consider the uncertainty in the esti-
mates. This is done using confidence intervals given
a chosen probability. Figure 2 shows that given a
desired confidence interval of �10% of the computed
standard deviation, the number of Monte Carlo runs
required for 90%, 95%, and 99% confidence, is
approximately 600, 850, and 1500, respectively. In
large simulations, even with the computational
power of modern computers, the time required to per-
form the Monte Carlo analysis often becomes pro-
hibitory, making large trade studies costly and
impractical.

Conceptually, linear covariance analysis is a linear-
ized version of the nonlinear Monte Carlo analysis.
The nonlinear functions describing the truth models,
navigation algorithms, and control blocks of Figure 1
must be linearized about a mean reference trajectory.
This is often a laborious and time-consuming process,
but the return on investment is large when there is a
need to perform a large number of trade studies or
error budget analysis. Given the validity of the linear-
ization, linear covariance analysis produces the same
statistical information as Monte Carlo analysis, but in
a single run.

For a linear system, the linear covariance approach
is analytical and exact. Care must be taken, however,
when applying linear system analysis to a nonlinear
system. Many nonlinearities are sufficiently smooth,
such that in a localized region about the reference
trajectory, the state dynamics can be approximated
as linear. This is often true for the case of orbital
dynamics, attitude dynamics, structural dynamics, as
well as navigation, guidance, and control algorithms.
When this condition is not true, however, good engin-
eering judgment, or tools such as statistical lineariza-
tion24 need to be considered.

To develop a linear covariance simulation, the fol-
lowing steps must be taken. First, the truth models for

the dynamics, sensors, and actuators are defined. The
true state vector, x, must be clearly identified, as well
as the actuator commands, û, process noise w, meas-
urements, ~zk and ~y, and the associated sensor noise, g

and tk. Biases, scale-factors, misalignment, etc., and
other colored noise processes are incorporated into
the truth models as additional true states. Next, the
navigation state vector, x̂, and the associated naviga-
tion algorithms are defined. This step first requires the
definition of a navigation design model, which is later
discarded after the navigation algorithms are devel-
oped. Note that the navigation design model and
the truth models are generally similar, but not identi-
cal. Next, the guidance and control laws are defined.
Here again, the guidance and control laws are derived
from a design model that is discarded once the algo-
rithms are developed. The output of the guidance and
control laws, along with compensation for actuator
modeling errors, represents the actuator command
defined in the truth model. Once the truth models,
navigation algorithms, and guidance and control
algorithms are fully developed, all the models and
algorithms are linearized about the mean or nominal
state time-history. Since the dynamics of the true
states and the dynamics of the navigation states are
coupled, an augmented state vector is created by
appending the navigation state vector to the true
state vector. This results in a large linear time-varying
model of the entire closed-loop system. The mathem-
atical details of this process20 are summarized in the
following section.

Nonlinear modeling

The general expression for the dynamics of the true
state vector can be expressed by the following non-
linear vector differential equation.

_x ¼ f x, ûð Þ þ Bw ð4Þ

where, x2R
n is the true state vector, û2R

nû is the
actuator command vector as calculated by the flight
computer, and w2R

nw is the process noise in the truth
state dynamics to account for small modeling
uncertainties.

E w tð Þ½ � ¼ 0, E w tð ÞwT t0ð Þ
� �

¼ Sw� t� t0ð Þ ð5Þ

where E[�] corresponds to the expected value, or mean
of the quantity. Note that explicit dependencies on
time can be included, but have been omitted here to
simplify the notation. Continuing the development of
the truth models, the inertial measurements, ~y 2 R

n ~y ,
(e.g. accelerometer or gyro data) are expressed as a
function of the true state vector and the actuator
commands

~y ¼ c x, ûð Þ þ g ð6Þ
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where g 2 R
n ~y is the measurement noise vector.

E g tð Þ½ � ¼ 0, E g tð ÞgT t0ð Þ
� �

¼ S�� t� t0ð Þ ð7Þ

The noninertial measurements, ~zk 2 R
nz , (e.g. discrete

Doppler data or altimeter data) are expressed as a
function of the true state vector

~zk ¼ h xkð Þ þ mk ð8Þ

where mk2R
nzis the measurement noise.

E mk½ � ¼ 0, E mkm
T
k0

� �
¼ R��kk0 ð9Þ

This completes the truth models for the dynamics,
sensors, and actuators.

Next, the navigation algorithms and guidance and
control algorithms are defined. Note that all elements
of the flight algorithms are decorated with a ‘ ˆ ’.

The navigation state vector, x̂ 2 R
n̂, is propagated

and updated according to

_̂x ¼ f̂ x̂, ~yð Þ ð10Þ

x̂þk ¼ x̂�k þ K̂k ~zk � ~̂zk

h i
ð11Þ

where ~̂zk 2 R
nz is the estimated value of the

measurement

~̂zk ¼ ĥ x̂kð Þ ð12Þ

The Kalman gain is determined by

K̂k ¼ P̂�k Ĥ
T
k ĤkP̂

�
k Ĥ

T
k þ R̂�

� ��1
ð13Þ

where the filter state covariance matrix, P̂k, is propa-
gated and updated according to

_̂
P ¼ F̂P̂þ P̂F̂T þ Q̂ ð14Þ

P̂þk ¼ I� K̂kĤk

� �
P̂�k I� K̂kĤk

� �T
þK̂kR̂�K̂

T
k ð15Þ

Note that f̂ and ĥ, F̂, Ĥ, Q̂, and R̂ are all determined
by the navigation design model. The true values of the
navigation state vector can be derived from the true
state vector via the mapping

xn ¼ m xð Þ ð16Þ

where xn 2 R
n̂ are the true value of the navigation

states.
Lastly, the actuator commands, û2R

nû, are repre-
sented as a function of the navigation state vector

û ¼ ĝ x̂ð Þ ð17Þ

Linear modeling

For linear covariance analysis, the equations in the
preceding section are linearized about the mean refer-
ence trajectory defined by x to produce a set of equa-
tions that describe the time evolution of the true state
dispersions, �x, and the navigation state dispersions,
�x̂. The state propagation equations (4) and (10) are
linearized along with equations (6) and (17) to
produce

� _x ¼ Fx�xþ FûĜx̂�x̂þ Bw ð18Þ

� _̂x ¼ F̂x̂ þ F̂~yCûĜx̂

� �
�x̂þ F̂~yCx�xþ F̂~yg ð19Þ

where uppercase characters denote partial derivatives
taken with respect to the variable indicated by the
subscript and evaluated along the reference trajectory
(e.g. Fx ¼ @f=@xjx or Ĝx̂ ¼ @ĝ=@x̂jm xð Þ).

The navigation state update described by equation
(11) is also linearized along with the measurement
equations (8) and (12) to yield

�xþk ¼ �x
�
k ¼ �xk ð20Þ

�x̂þk ¼ I� K̂kĤk

h i
�x̂�k þ K̂kHk�x

�
k þ K̂kmk ð21Þ

where the Kalman gain, K̂k, is determined from equa-
tions (13) to (15).

Next the navigation state vector is appended to the
true state vector to form the augmented state vector
X 2 R

nþn̂.

X ¼
�x
�x̂

� �
ð22Þ

The dynamics and update equation for the augmented
state vector are defined as

_X ¼ FXþ GgþWw ð23Þ

Xþk ¼ AkX
�
k þDkmk ð24Þ

where

F ¼
Fx FûĜx̂

F̂~yCx F̂x̂ þ F̂~yCûĜx̂

" #
, G ¼

0n�1

F̂~y

� �
,

W ¼
B

0n̂�nw

� �
ð25Þ

Ak ¼
In�n 0n�n̂
K̂kHk In̂�n̂ � K̂kĤk

� �
, Dk ¼

0n�nz
K̂k

� �
ð26Þ

Thus, the entire closed-loop system is represented
by the linear time-varying differential equation in
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equation (23), and the linear difference equation in
equation (24). A variety of linear system analyses
can now be applied, including covariance analysis.

Note that because E x tð Þ½ � ¼ E �xðtÞ½ � and E x̂ tð Þ½ � ¼

E �xn tð Þ½ � the following relationships hold

E �x tð Þ½ � ¼ E x� �x½ � ¼ 0 ð27Þ

E �x̂ tð Þ½ � ¼ E x̂� �xn½ � ¼ 0 ð28Þ

This implies that the mean of the augmented state
vector is E[X]¼ 0 and the covariance of the aug-
mented system can be calculated as

CA ¼ E X tð ÞXT tð Þ
� �

ð29Þ

with the following propagation and update equations

_CA ¼ FCA þ CAF
T þ GS�G

T
þWSwW

T ð30Þ

CA tþk
� 	
¼ AkCA t�k

� 	
A

T
k þDkR�D

T
k ð31Þ

where it is assumed that g and w are mutually uncor-
related. Given appropriate initial conditions for CA,
equations (30) and (31) are used to propagate and
update the augmented state covariance, where the
Kalman gain K̂k in Dk is determined by equation
(13) and the filter state covariance P̂k is determined
by equations (14) and (15).

Performance evaluation

The overall closed-loop performance of the GN&C
system is evaluated by examining the covariance
matrix of the true state dispersions. This matrix is
easily extracted from the augmented state covariance
matrix.

Dtrue ¼ E �x tð Þ�xT tð Þ
� �

¼ In�n 0n�n̂
� 	

� CA In�n 0n�n̂
� 	T

ð32Þ

The covariance of the true state dispersion accounts
for navigation errors, guidance/control execution
errors, and all external disturbances/noise sources.

In a similar manner, the covariance matrix of the
navigation state dispersion can also be extracted from
the augmented covariance matrix.

Dnav ¼ E �x̂ tð Þ�x̂T tð Þ
� �

¼ 0n̂�n In̂�n̂
� 	

� CA 0n̂�n In̂�n̂
� 	T

ð33Þ

Finally, since the true filter error is the difference
between the navigation state vector and the corres-
ponding true state vector, the covariance matrix of

the true filter error can also be extracted from the
augmented covariance matrix

Ptrue ¼ �Mx In̂�n̂
� �

CA �Mx In̂�n̂
� �T

ð34Þ

where Mx is the partial derivative of the mapping
m(x) evaluated along the reference trajectory
(Mx ¼ @m xð Þ=@xjx¼x).

Illustration

To demonstrate the capabilities of linear covariance
analysis, a simple one-dimensional rocket-sled prob-
lem is examined. In this problem, the objective of the
closed-loop control system is to achieve a desired final
velocity at a specified final time. System performance
is measured by the final velocity error and propellant
usage.

The rocket-sled is modeled as a single rigid body
constrained to travel perpendicular to gravity. The
rocket-sled dynamics include an acceleration actuator,
a nonlinear drag term, and a random acceleration dis-
turbance. Accelerometer measurements are used for
dead-reckoning, and Doppler velocimeter measure-
ments are processed by a suboptimal Kalman filter
for state estimation. A time-to-go guidance and con-
trol law is used to compute acceleration commands
that are issued and sent to the acceleration actuator.
A �v state associated with propellent usage is
included in the truth models to track total �v.

The design space for this problem includes three
distinct system design options. The nominal design,
Option 1, utilizes the nominal time-to-go guidance
law, a Kalman filter to process the Doppler velocim-
eter measurements, and accelerometer measurements
to propagate the navigation states between velocity
measurements. Option 2, is the same as Option 1,
except the Kalman filter and the velocimeter measure-
ments are removed, and only accelerometer measure-
ments are used to maintain the navigation states, thus
becoming a dead-reckoning navigation system. The
final design option, Option 3, is also the same as
Option 1, except that the nominal time-to-go guidance
law is modified to include drag compensation. The
navigation and guidance algorithms for these design
options are carefully described in the sections below.

The design space also includes the level of acceler-
ation disturbances, and all sensor and actuator per-
formance specifications. The nominal values of these
parameters are presented in Table 1. A list of other
parameters that are assumed to be fixed for this prob-
lem are shown in Table 2.

Next, the truth models, navigation algorithms, and
control algorithms for the rocket-sled problem are
defined. For conciseness, the final partial derivatives
associated with the propagation and update of the
augmented system in equations (25) and (26) are pre-
sented in Appendix 2.
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Truth models

The truth model for the rocket-sled problem consists
of 6 states

x ¼ v d b s e z
� �T

ð35Þ

where v is the vehicle velocity, d is the disturbance
acceleration on the vehicle, b is the accelerometer
bias, s is the accelerometer scale factor, e is actuator
bias, and z is �v used by the propulsion system.

The dynamics of each element of the truth vector
are as follows

_v ¼ dþ aact � �v
2 ð36Þ

_d ¼ �
d

�d
þ wd ð37Þ

_b ¼ �
b

�b
þ wb ð38Þ

_s ¼ �
s

�s
þ ws ð39Þ

_e ¼ �
e

�e
þ we ð40Þ

_z ¼jaact j ð41Þ

where, aact is the true or actual continuous thrust
acceleration from the actuator, and � is the drag
coefficient.

It is important to note that the four parameters
states, d, b, s, and e are defined as first-order
Markov processes or exponentially correlated
random variables (ECRV) where the driving noise is
assumed to be Gaussian

E wd tð Þ½ � ¼ 0, E wd tð Þwd t0ð Þ½ � ¼
2�2d,ss
�d

� t� t0ð Þ

ð42Þ

E wb tð Þ½ � ¼ 0, E wb tð Þwb t0ð Þ½ � ¼
2�2b,ss
�b

� t� t0ð Þ ð43Þ

E ws tð Þ½ � ¼ 0, E ws tð Þws t
0ð Þ½ � ¼

2�2s,ss
�s

� t� t0ð Þ ð44Þ

E we tð Þ½ � ¼ 0, E we tð Þwe t
0ð Þ½ � ¼

2�2e,ss
�e

� t� t0ð Þ ð45Þ

and where �2d,ss �
2
b,ss , �

2
s,ss, and �

2
e,ss are the steady-state

variance of the disturbance accelerations, accelerom-
eter bias, accelerometer scale factor, and actuator
bias, respectively. The parameters �d, �b, � s, and �e
correspond to the associated ECRV time constants.

The thruster acceleration model is define as a com-
manded thrust plus a random bias.

aact ¼ âcom þ e ð46Þ

where, âcom is the actuator thrust command as calcu-
lated by the flight computer.

There are two measurements available in this prob-
lem. The first is a measurement of the acceleration of
the vehicle corrupted by scale factor, bias, and noise.
The accelerometer model is described as

~a ¼ 1þ sð Þ aþ bþ �að Þ ð47Þ

where, a is the true acceleration of the vehicle and �a is
the accelerometer noise.

The accelerometer noise �a is assumed to be a
Gaussian random process with

E �a tð Þ½ � ¼ 0, E �a tð Þ�a t0ð Þ½ � ¼ �2a� t� t0ð Þ ð48Þ

where �2a is the power spectral density of the acceler-
ometer measurement noise.

Note that the true acceleration can be expressed as

a ¼ dþ aact � �v
2 ð49Þ

Table 1. Design parameters: acceleration disturbance level

and sensor/actuator specifications.

Symbol

Nominal

value Units Description

�d,ss 0.01 m/s2 Disturbance accelerations 3-�

�d 20 s Disturbance acceleration

time constant

�b,ss 900 mg Accelerometer bias 3-�

�b 60 s Accelerometer bias time constant

�s,ss 900 ppm Accelerometer scale factor 3-�

�s 60 s Accelerometer scale factor

time constant

�e,ss 0.03 m/s2 Actuator bias 3-�

�e 60 s Actuator bias time constant

�a 150 mg
ffiffi
s
p

Accelerometer measurement

noise 3-�

R� 0.01 m/s Velocity measurement noise 3-�

Table 2. Fixed design parameters.

Symbol Value Units Description

k 1 s Controller gain

vt,12 1039.65 m/s Pseudo target for Options 1 and 2

vt,3 1010.00 m/s Pseudo target for Option 3

�taccel 0.01 s Accelerometer sampling time

tf 100 s Time for the target velocity

�tvel 10 s Velocimeter sampling time

� 0.00001 1/m Drag coefficient
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Substituting equation (46) into equation (49) yields

a ¼ dþ âcom þ e� �v2 ð50Þ

Finally, substituting equation (50) into equation (47)
yields the final form for the output of the accelerom-
eters as a function of the true states and noise sources.

~a ¼ 1þ sð Þ dþ âcom þ e� �v2 þ bþ �a
� 	

ð51Þ

The second measurement is a discrete Doppler vel-
ocity measurement corrupted by noise

~vk ¼ vk þ �k ð52Þ

where the Doppler noise is assumed to be Gaussian
with

E �k½ � ¼ 0, E �k�k0½ � ¼ �2v �kk0 ð53Þ

where �2v is the variance of the velocity measurements.

Navigation and control algorithms

The navigation state vector consists of velocity, accel-
erometer bias, and accelerometer scale-factor.

x̂ ¼ v̂ b̂ ŝ
� �T

ð54Þ

For the development of the navigation filter, a
design model (dm) must be defined and subsequently
linearized to define the elements of a Kalman filter.
The state vector of the filter design model can be
defined as

xdm ¼ vdm bdm sdm
� �T

ð55Þ

where

_vdm ¼ adm ð56Þ

_bdm ¼ �
bdm

�dmb
þ wdm

b ð57Þ

_sdm ¼ �
sdm

�dms
þ wdm

s ð58Þ

The discrete Doppler velocity measurements can be
expressed as a function of the state vector plus noise.

~zdmk ¼ ĥ xdmk
� 	

þ �dmk ¼ vdmk þ �
dm
k ð59Þ

where the Doppler noise is assumed to be a Gaussian
random sequence with

E �dmk
� �

¼ 0, E �dmk �
dm
k0

� �
¼ Rdm

� �kk0 ð60Þ

The true acceleration adm in equation (56) is modeled
as a function of measured acceleration, bias, scale
factor, and accelerometer noise, and can be deter-
mined by rearranging equation (47) to yield

adm ¼
~a

1þ sdmð Þ
� bdm � �dma ð61Þ

Substituting equation (61) into equation (56) yields
the final form of the design model.

_vdm ¼
~a

1þ sdmð Þ
� bdm � �dma ð62Þ

_bdm ¼ �
bdm

�dmb
þ wdm

b ð63Þ

_sdm ¼ �
sdm

�dms
þ wdm

s ð64Þ

where the noise in the two ECRV’s are defined similar
to equations (43) and (44).

Equations (62) to (64) can be put in vector format
and expressed as

_xdm ¼ f̂ xdm, ~a
� 	

þ B̂wdm ð65Þ

where

f̂ ¼

~a

1þ sdmð Þ
� bdm

�
bdm

�dmb

�
sdm

�dms

2
6666666664

3
7777777775
, B̂ ¼

�1 0 0

0 1 0

0 0 1

2
664

3
775,

wdm ¼ �dma wdm
b wdm

s

� �T
The system described in equation (65) is then

linearized about the reference trajectory to yield the
following propagation and update equations

_̂x ¼ f̂ x̂, ~að Þ, x̂0 ¼ given ð66Þ

_̂
P ¼ F̂P̂þ P̂F̂T þ B̂Q̂B̂T, P̂0 ¼ given ð67Þ

where,

Q̂ ¼ E wdm wdm
� 	Th i

¼

ð�dma Þ
2 0 0

0
2ð�dmb,ssÞ

2

�b
0

0 0
2ð�dms,ssÞ

2

�s

2
6666664

3
7777775

ð68Þ
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F̂ ¼
@f̂ xdm, ~a
� 	
@xdm

�����
x̂

¼

0 �1
� ~a

1þ ŝð Þ
2

0 �1=�dmb 0

0 0 �1=�dms

2
66664

3
77775

x̂

ð69Þ

Note that in this extended Kalman filter implementa-
tion F̂ is evaluated using the current estimate of the
state. For the linear covariance analysis, it will be
evaluated along the reference trajectory as in a stand-
ard Kalman filter.

To complete the navigation algorithm, it remains
to define the state and state covariance update equa-
tions given the Doppler velocity measurement. The
update equations are detailed below.

x̂þtk ¼ x̂�tk þ K̂k ~zk � ẑk½ � ð70Þ

P̂þk ¼ I� K̂kĤk

� �
P̂�k I� K̂kĤk

� �T
þK̂kR

dm
� K̂T

k

ð71Þ

where

Ĥk ¼
@ĥ xdm
� 	
@xdm

�����
x̂

K̂k ¼ P̂�k Ĥ
T ĤP̂�k Ĥ

T
k þ R̂�

� ��1
The superscripts� and þ denote the state or state
covariance before and after the update, respectively.

For guidance and control, two control laws will be
considered. The nominal control law is a time-to-go
guidance law given by

âcom ¼
vt � v̂

kþ tf � t
� 	 ð72Þ

where, vt is a pseudo target target selected to achieve
the desired velocity, 1000m/s, at specified final time tf,
and k is a positive controller gain to avoid the singu-
larity when t¼ tf.

The second control law considered is identical to
the first, but with the addition of a drag compensation
term

âcom ¼
vt � v̂

kþ tf � t
� 	þ �̂v̂2 ð73Þ

where �̂ is the flight computer’s value for the drag
coefficient. Although it is not required, the accelerom-
eter errors and the velocimeter noise specifications in
equations (60), (68), and (69) as well as the drag coef-
ficient used in equation (73) are assumed to be equal
to the true values.

Initial conditions

Two sets of similar initial conditions are required for
this problem. The first set specifies the initial condi-
tion of the Monte Carlo simulation, while the second
set specifies the initial condition of the linear covari-
ance simulation.

For the Monte Carlo analysis, the initial conditions
for the true states, filter navigation states, and filter
covariance are required. The initial true states are
determined from the initial reference state plus a
random component based upon the covariance of
the initial true state.

x t0ð Þ ¼ 0n�1 ð74Þ

Pxx t0ð Þ ¼

0 0 0 0 0 0

0 �2d,ss 0 0 0 0

0 0 �2b,ss 0 0 0

0 0 0 �2s,ss 0 0

0 0 0 0 �2e,ss 0

0 0 0 0 0 0

2
66666666664

3
77777777775

ð75Þ

The initial filter state is always set equal to the initial
value of the reference navigation state

x̂ t0ð Þ ¼ m x, t0ð Þ ¼ 0n̂�1 ð76Þ

and the initial value of the navigation filter covariance
is set to

P̂ t0ð Þ ¼

0 0 0

0 �2b,ss 0

0 0 �2s,ss

2
664

3
775 ð77Þ

For the linear covariance analysis, the initial aug-
mented covariance matrix must be consistent with the
initial conditions of the Monte Carlo simulation. For
this problem, the initial covariance of the augmented
system can be partitioned as

CA t0ð Þ ¼
E �x0�x

T
0

� �
0n�n̂

0n̂�n E �x̂0�x̂
T
0

� �� �
ð78Þ

here

E �x0�x
T
0

� �
¼ Pxx t0ð Þ ð79Þ

E �x̂0�x̂
T
0

� �
¼ 0n̂�n̂ ð80Þ

where equation (80) is consistent with the fact that the
initial filter state never varies.

Mean reference trajectory

The mean reference velocity and acceleration profiles
for Design Options 1, 2, and 3 are shown in Figure 3.
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The reference trajectories for Options 1 and 2 are
identical, but the inclusion of drag compensation in
the guidance law for Option 3 causes significant dif-
ferences. Since the modified control law can anticipate
accelerations due to drag, Option 3 exhibits a very
constant acceleration profile and a corresponding
linear velocity profile. Options 1 and 2, however, devi-
ate from the linear velocity profile due to the unantici-
pated influence of drag throughout the trajectory and
exhibit a large increase in actuator thrust toward the
end of the trajectory. Although the final reference vel-
ocity for all options is the same (1000m/s), the total
�v for Option 3 is 1333m/s and exceeds the 1297m/s
of Options 1 and 2.

Capabilities

Monte carlo-like results

The first objective of a linear covariance analysis is to
be able to quickly duplicate the results of traditional
Monte Carlo analysis for a nonlinear closed-loop
system with or without a Kalman filter for navigation
state estimation. To illustrate this, Option 1 was ana-
lyzed with both Monte Carlo analysis and linear
covariance analysis. Figure 4 shows the 3-� true vel-
ocity dispersion as a function of time. The light gray
lines represent 500 individual Monte Carlo runs. The
blue solid line shows the 3-� dispersion of all Monte
Carlo runs with the 95% confidence intervals shown
in dashed red. The green dotted line shows the results
of a single linear covariance run, which lies inside the
confidence intervals, thus replicating the information
contained in the Monte Carlo analysis. Since the
linear covariance analysis results replicated all the
Monte Carlo analysis in this article, only the linear
covariance results will be presented from this point
forward.

The difference in efficiency of the two techniques
was also determined by comparing the execution time.
The Monte Carlo analysis took 1914 s to complete,
while the linear covariance analysis took 2.6 s to com-
plete, resulting in a speed-up of over 700. As will be
illustrated later in this section, the efficiency of linear
covariance enables large trade studies that are often
prohibitive in the Monte Carlo world.

Navigation and dispersion error budgets

An important feature of linear covariance analysis is
that it can be used to quickly compute error budgets
for both the true navigation errors and the state dis-
persions. In this type of analysis, the components of
the total navigation error or total state dispersion due
to particular error sources are computed. This is
accomplished by first zeroing out the variances of all
true sources of error, and then rerunning the linear
covariance analysis with the variance of only one true
error source (or variances of one group of true error
sources) turned on at a time. Using this approach, the
total state dispersion or the total navigation error is
always equal to the square-root of the sum of the
individual errors squared (RSS), provided that the
individual sources of error are uncorrelated. The navi-
gation algorithm/filter parameters are not varied in
this analysis, only the variances of true error sources
are turned off and on.

As an example, consider Option 1 in which a
Kalman filter is used to process velocimeter measure-
ments, and accelerometer measurements are used to
propagate the state between velocity measurement
updates. Figure 5 shows the components of velocity
estimation error due to each error source as a function
of time. The sources of error in this problem are dis-
turbance accelerations, accelerometer errors – bias,
scale-factor, and noise – actuator noise, and
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Figure 3. Mean reference velocity (left) and mean reference acceleration (right).
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velocimeter/Doppler noise. Several items are note-
worthy. First, the Kalman filter is clearly in operation
as is evident in the sharp decrease in error following
the measurement update every 10 s. In addition, the

change in the error growth rate after the first meas-
urement at t¼ 10 s shows that the Kalman filter has
successfully estimated the two dominant sources of
error growth, the accelerometer bias and scale
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Figure 4. Comparison of Monte Carlo and linear covariance analysis results.
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Figure 5. Components of the total navigation velocity error for Option 1.
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factor. The rate of error growth increases, however,
toward the end of the trajectory since the large accel-
erations shown in Figure 3 amplify the effect of scale
factor estimation error. The effect of the Doppler
noise does not appear until after the first Doppler
measurement at t¼ 10 s, and the effect of the acceler-
ometer noise is minimal throughout. Finally, as
expected neither the disturbance accelerations nor
actuator bias errors sources contribute to the velocity
estimation error.

The error budget for the dispersion states is deter-
mined in a similar manner. This error budget is gen-
erally much more valuable than the navigation error
budget because the dispersions represent the overall
performance of the closed-loop system accounting for
navigation errors, guidance and control errors, dis-
turbances, and actuators errors.

As an example, consider Option 2 in which the
Kalman filter and velocity measurements are absent,
and only accelerometer measurements are used to
propagate the state. Figures 6 and 7 show how each
source of error contributes to two key metrics, the
true velocity dispersion and the true �v dispersion.
Of note in both plots is the increasing contribution
of accelerometer error parameters which, because of
the absence of a Kalman filter, become the main
sources of error at the end of the trajectory. The actu-
ator bias and the disturbances make significant con-
tributions to the dispersion during the burn, but make
only a small contribution at the end of the burn. The

effect of accelerometer noise is very small throughout,
and the effect of velocimeter noise is zero as expected.

Navigation, guidance, and control law evaluation

Linear covariance analysis is also very useful in eval-
uating the effect of different navigation, guidance, and
control laws on overall system performance. Two
examples will be illustrated. First, the effect of the
navigation system in Option 1 (Kalman filter, acceler-
ometer measurements, and velocimeter measure-
ments) will be compared to the effects of the dead-
reckoning navigation system in Option 2. Then, the
effects of the nominal time-to-go guidance law in
Option 1 will be compared to the time-to-go guidance
law with drag compensation in Option 3.

Figure 8 shows the velocity estimation error as a
function of time for the two different navigation
schemes. In the case of dead-reckoning, the error con-
tinues to grow with time as expected. The Kalman
filter, however, exhibits a sawtooth shape due to the
processing of velocity measurements every 10 s.

The effect of these two different navigation schemes
on the final velocity dispersion (i.e. the miss velocity)
and total �v is shown Figures 9 and 10. It is clear that
the addition of the velocimeter measurements and the
Kalman filter results in an overall dramatic reduction
in the final velocity and �v dispersions. It is also clear
that this is due to the Kalman filter’s ability to esti-
mate the accelerometer bias and scale factor.
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A similar analysis can be conducted for the two
guidance laws in Options 1 and 3. Figure 11 shows
that the drag compensation has very little impact on
the Kalman filter navigation error. It is only at the very

end of the trajectory that the modified control law has
a slight advantage over the nominal control law.

Figures 12 and 13 illustrate how the error budgets
change due to the addition of the drag model in
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Figure 7. Component of the true �v dispersion for Option 2.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
av

V
el

oc
it
y

E
rr

or
3σ

m s

time(s)

Option 1

Option 2

Figure 8. Navigation velocity error for Options 1 and 2.

Christensen and Geller 55



0 0.5 1 1.5

Total

Disturbance Accels

Accel Bias

Scale Factor

Actuator Bias

Accel Noise

Velocimeter Noise

True Final Δ v Dispersion 3σ m
s

Option 2
Option 1

Figure 10. Components of the total final �v dispersion for Options 1 and 2.

0 0.2 0.4 0.6 0.8 1

Total

Disturbance Accels

Accel Bias

Scale Factor

Actuator Bias

Accel Noise

Velocimeter Noise

True Final Velocity Dispersion 3σ m
s

Option 2
Option 1

Figure 9. Components of the final velocity dispersions for Options 1 and 2.

56 Proc IMechE Part G: J Aerospace Engineering 228(1)



the modified control law. The velocity dispersion con-
tribution from the velocimeter and accelerometer
errors decrease, but the contribution from the actu-
ator bias error and environment disturbances

increase, with a slight increase in the overall final
velocity dispersion.

From a �v perspective, Figure 13 shows that the
modified control law again decreases the contribution
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Figure 11. Comparison of velocity estimation errors for Options 1 and 3. Top: velocity estimation error. Middle: accelerometer bias

estimation error. Bottom: accelerometer scale factor estimation error.
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of the velocimeter and accelerometer error terms, but
also decreases the contribution of the disturbance
environment. Thus the only contribution that
increased upon changing adding drag compensation
is that of the actuator bias. Considering the nominal
trajectory differences discussed in the Mean reference
trajectory subsection, this results in a total fuel usage
of 1333�0.29m/s for Option 3 and 1297�0.25m/s for
Option 1. Thus, there appears to be no benefit in using
the ad hoc modified control law except for a reduction
in the level of applied accelerations.

Sensor/actuator specifications and disturbances

Disturbances and sensor/actuator specifications play
a large role in overall closed-loop system perform-
ance. While an accurate and expensive suite of instru-
ments may improve the performance of the system, a
relatively inaccurate low cost suite of instrument may
be suitable in meeting mission requirements. Linear

covariance analysis is especially suited to conduct
this type of analysis.

Consider the performance of the closed-loop
system in Option 3 for three different instrument
suites: a low-cost/low-accuracy suite of instruments,
a nominal suite of instruments, and a high-cost/high
accuracy suite of instruments. The specifications of
these three instrument suites are shown in Table 3.

Figures 14 and 15 show the associated closed-loop
system performance as measured by the final velocity
and �v dispersions. The results show a strong cou-
pling between sensor/actuator specifications and the
final velocity and �v dispersions, as expected, with the
coupling being especially strong for actuator errors.
Notice that while the sensor and actuator specifica-
tions are varying by an order of magnitude, the final
miss distance and �v dispersion is not varying by an
order of magnitude. This illustrates a nonlinear rela-
tionship between sensor/actuator specifications and
system performance, and can be very useful to the
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Figure 13. Final �v dispersions for design Options 1 and 3.

Table 3. Sensor and actuator specifications: low accuracy, nominal, and high accuracy.

Symbol Low accuracy Nominal value High accuracy Units Description

�b,ss 9000 900 90 mg Accelerometer bias 3-�

�s,ss 9000 900 90 ppm Accelerometer scale factor 3-�

�e,ss 0.3 0.03 0.003 m/s2 Actuator bias 3-�

�a 1500 150 15 mg
ffiffi
s
p

Accelerometer measurement noise 3-�

R� 0.1 0.01 0.001 m/s Velocity measurement noise 3-�
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system designer in determining an optimal design
based on overall performance and cost.

Another important sensor specification is the sta-
bility (or time constant) of the navigation sensor

errors such as the scale factor and bias. Linear covari-
ance analysis can also be used to analyze the effects of
these time constants. To illustrate this capability,
error budgets for Option 2 are created with short,
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Figure 15. Final �v dispersions for 3 different sensor/actuator suites.
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Figure 14. Final velocity dispersions for 3 different sensor/actuator suites.
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nominal, and long time constants of �b¼ 6, 60, 600 s
for the accelerometer bias and � s¼ 6, 60, 600 s for the
accelerometer scale factor. Figures 16 and 17 show
that for the dead-reckoning approach to navigation,

it is advantageous, both from a velocity dispersion
and �v standpoint, to use sensors whose time con-
stants are short, approaching white noise. Without
an external measurement to help estimate these
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Figure 17. Final �v dispersions for varying sensor time constants.
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Figure 16. Final velocity dispersions for varying sensor time constants.
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errors, the best choice is to select errors sources with
short time constants whose effects can be averaged
out. An error budget of this type clarifies the coupling
of time constants to the overall dispersion, and
enables the designer to make critical sensor choices
supported by data.

For a fixed set of sensors and actuators, it is also
important to understand how the closed-loop system
will perform in the presence of varying disturbances.
In this analysis, Option 3 is investigated with a
high, nominal, and low level of acceleration disturb-
ances, �d,ss ¼ 0:1ms2, �d,ss ¼ 0:01ms2, and �d,ss ¼
0:001ms2, respectively. Figures 18 and 19 again
show the associated closed-loop system performance
as measured by the final velocity and �v dispersions.
The results show a strong coupling between the dis-
turbance acceleration and the final velocity and �v
dispersions, as expected. Notice again that the final
velocity and �v dispersions do not vary linearly
with the disturbance level.

Closed-loop system design

Since linear covariance is very efficient, it can be used
to span all of the different combinations of sensor
specs, actuator specs, control laws, and navigation
schemes described in this article. In this case, it
becomes an excellent preliminary design tool. Using
the linear covariance analysis described in this article,
the total simulation time required to sweep all com-
binations of the design space was 38 h. A Monte Carlo

approach to this analysis would have been extremely
prohibitive, requiring more than 26,000 h or almost
1110 days of simulation time! Thus, the efficiency of
linear covariance analysis becomes very relevant,
enabling very large trade studies that are not feasible
with traditional Monte Carlo methods.

Figures 20 and 21 illustrate the results of spanning
the design space. Each point in the graphs represents a
single linear covariance run with an associated final
velocity dispersion and worst-case �v¼�vnom-

inalþ 3��v. The dashed lines represent arbitrarily
chosen design requirements for the final velocity dis-
persion and worst-case �v of 3m/s and 1335m/s,
respectively. Thus, given design requirements, one is
able to identify all possible designs that meet those
requirements.

While the different designs can be explored in many
ways, one particularly useful way is to color or shape
the points according to a quantity of interest. Figure
20 shows the design space with the color/shape of the
point indicating the navigation and control scheme
(i.e. Option 1, 2, or 3). From this plot it is evident
that the lowest performing designs are associated with
Option 2 (a dead-reckoning approach to navigation)
with a relatively small number of designs meeting the
requirements. Although the majority of the designs
associated with Options 1 and 3 meet the require-
ments, they may also be more costly requiring a
Doppler velocimeter and a Kalman filter.

Figure 21 shows the same plot as 20, but with the
color/shape of the point indicating the actuator bias
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level. In this plot it is apparent that the actuator bias
strongly influences trends in the design space, as
expected given the high contribution evident in the
error budgets mentioned earlier. Thus the designer
can use these plots in conjunction with others to
make trades between sensor and actuator specifica-
tions as well as navigation and control schemes, and
determine the specific design that meets mission
requirements, but minimizes cost and complexity.

Conclusions

The underlying theory and value of linear covariance
is illustrated in the analysis of a closed-loop rocket-
sled navigation and control problem. Using the
rocket-sled GN&C problem as an example, linear
covariance analysis was shown to produce the same
statistical results as Monte Carlo analysis with dras-
tically higher efficiency. The value of linear covariance
analysis was highlighted by presenting several analysis
capabilities that are often required in the design and
analysis of close-loop GN&C systems. The analysis
capabilities include: (1) developing navigation and
true dispersion error budgets, (2) evaluating the
effect of changes to the navigation and control
scheme on the error budgets, and (3) evaluating the
effect of sensor/actuator specifications and disturb-
ance levels on the error budgets. A new design meth-
odology was also presented in which an exhaustive
search of the design space – sensor and actuator spe-
cifications, disturbances, and navigation and control
laws – can be considered. Using the rocket-sled

example, it was shown that linear covariance analysis
makes this new design methodology feasible. A design
approach of this completeness, enables the designer
to identify the system configuration that minimizes
cost and complexity, and yet still meets mission
requirements.
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Appendix 1

Notation

a true acceleration
âcom actuator thrust command
b accelerometer bias
CA covariance of augmented state vector
d disturbance accelerations
Dnav covariance of navigation state

dispersions
Dtrue covariance of true state dispersions
e actuator bias
In�n identity matrix
k controller gain
P̂ flight computer covariance of naviga-

tion state error
Ptrue true covariance of navigation state

error
Pxx true state covariance
s accelerometer scale factor
û continuous actuator commands issued

by the flight computer
v velocity
vt pseudo target velocity
w true state process noise
x true states
x̂ navigation state vector
xn true navigation states
X augmented state vector
~y continuous inertial measurement
z fuel usage state (�v)
~zk discrete noninertial measurements at

time tk

� drag coefficient
�e true navigation error
�x true state dispersions
�x̂ navigation state dispersions
g continuous inertial measurement noise
tk discrete noninertial measurement noise

at time tk
0m�n matrix of zeros

Superscript

dm parameters and states used in the design

model

ˆ parameters, variables, and functions

associated with the flight algorithms
- reference values
� measured values

64 Proc IMechE Part G: J Aerospace Engineering 228(1)



Appendix 2

Matrix partial derivatives

This section documents the matrices required to pro-
pagate and update the covariance of the augmented
system defined in the ‘Linear modeling’ section. Note
that an over bar denotes a quantity along the refer-
ence trajectory. For example, v and âcom denote the
velocity and commanded acceleration at a given time
along the reference trajectory.

Fx ¼

�2� �v 1 0 0 1 0

0 �1=�d 0 0 0 0

0 0 �1=�b 0 0 0

0 0 0 �1=�s 0 0

0 0 0 0 �1=�e 0

0 0 0 0
�̂acom

�̂acom

��� ��� 0

2
66666666666664

3
77777777777775

ð81Þ

Fû ¼

1

0

0

0

0

�̂acom

�̂acom

��� ���

2
66666666666664

3
77777777777775

ð82Þ

Ĝx̂ ¼
�1

kþ tf � t
� 	 0 0

� �
for the nominal controller

ð83Þ

Ĝx̂ ¼
�1

kþ tf � t
� 	þ 2� �v 0 0

� �
for the modified controller

ð84Þ

F̂~y ¼

1
0
0

2
4

3
5 ð85Þ

Cx ¼ �2� �v 1 1 �̂acom � � �v2 1 0 0
� �

ð86Þ

F̂x̂ ¼

0 �1 �~�a
0 �1=�b 0
0 0 �1=�s

2
4

3
5 ð87Þ

Cû ¼ 1½ � ð88Þ

Sw ¼

2�2d,ss
�d

0 0 0

0
2�2b,ss
�b

0 0

0 0
2�2s,ss
�s

0

0 0 0
2�2e,ss
�e

2
666666666664

3
777777777775

ð89Þ

S� ¼ �
2
a ð90Þ

Rv ¼ �
2
v ð91Þ

Hk ¼ 1 0 0 0 0 0
� �

ð92Þ

Ĥk ¼ 1 0 0
� �

ð93Þ
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