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Test validated alignment and stability performance of the JMAPS 
program focal plane array assembly in a cryogenic vacuum 

environment 
Brian C. Thompson, Pedro Sevilla, Mike Watson, Trent Newswander, Duane Miles, James Peterson 

Space Dynamics Laboratory, 1695 North Research Park Way, North Logan, UT, USA 84335 

ABSTRACT  

Focal Plane Arrays (FPA) consisting of multiple Sensor Chip Assemblies (SCA) in a precision aligned mosaic are being 
increasingly used in optical instruments requiring large format detectors. The Joint Milli-Arcsecond Pathfinder Survey 
Mission (JMAPS) requires very precise positional alignment and stability of its 2 x 2 SCA mosaic at operational 
temperatures to meet its precision sky mapping mission requirements. Key performance requirements include: detector 
active area co-planarity, in-plane alignment, and thermal stability. This paper presents an overview of the JMAPS Focal 
Plane Array Assembly, its alignment and thermal-mechanical stability requirements, and associated test-validated 
performance in a cryogenic vacuum environment. 

Keywords: JMAPS, focal plane, sensor chip, mosaic, stability, thermal 

1. INTRODUCTION 

1.1. JMAPS status and mission overview 
The JMAPS mission was a Department of Navy space-based, all-sky astrometric bright star survey, originally scheduled 
for launch in 2012. The primary goal of the JMAPS mission was to completely update the bright star astrometric, 
photometric, and spectroscopic catalogs covering a magnitude range of 1-12 with extended results through 15th 
magnitude1. The planned orbit for the satellite was a 900 km sun-synchronous earth orbit. 

The JMAPS program was re-baselined in October 2012, with development of major components of the JMAPS sensor 
moving forward under a technology demonstration effort. The Space Dynamics Laboratory (SDL) is currently 
integrating the JMAPS FPA assembly and optical telescope assembly. Electro-optical characterization testing of the 
integrated assembly is planned for completion during the summer of 2013. 

1.2.  FPA assembly overview and driving requirements 
The FPA assembly (see Figure 1) consists of a 2 x 2 mosaic of Teledyne imaging sensor (TIS) H4RG-10 sensor chip 
assemblies mounted to a thermally and structurally stable mount2. The H4RG-10 is a 10-micron pixel CMOS-Hybrid 
SCA2,3. The FPA assembly was designed, built, and tested by SDL. 

Figure 1. JMAPS FPA assembly. 
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Precise thermal control of the FPA assembly is required to meet mission accuracy requirements. The assembly is cooled 
to an operational temperature of 193 K via a thermal sink to a space radiator. Trim heating/cooling via thermo-electric 
coolers (TEC) provides thermal conditioning to a 0.010 K stability requirement over 45 minutes. The FPA assembly 
interfaces to three separate thermal zones which vary by up to 10 K over the stability time period. 

Mission accuracy requirements also mandate precision alignment and mechanical stability of the SCA active areas at 
operational temperatures. The SCA active areas are aligned to: an out-of-plane co-planarity of < 10 microns, in-plane 
adjacent SCA pixel spacing of < 2 mm, differential SCA rotation of +/- 2 milliradians, and opto-mechanical differential 
in-plane SCA closest edge approach stability of < 1.9 nm. 

The FPA assembly has a mass of 1.8 kg and it passed structural environmental tests which consisted of 45 g of quasi-
static input and 9 grms of random-base input.  

2. TEST VALIDATED PERFORMANCE 
Performance of the FPA assembly driving requirements were validated via test in an operational environment. 

2.1. Co-planarity 

2.1.1. Co-planarity test setup 
The co-planarity measurement test setup consists of a laser displacement meter mounted onto a three-axis stage. The test 
surfaces are scanned by moving the stages in plane and combining the displacement meter results into a 3D surface scan. 
Reference surface measurements are made continuously during a measurement and used to compensate for stage errors. 
The relatively long working distance of the laser displacement meter allows measurement of test surfaces through a 
vacuum window while at operational temperatures. Figure 2 shows a graphical depiction of the test setup. 

 
Figure 2. Co-planarity test setup. 

2.1.2. Co-planarity measurement uncertainty 
The co-planarity test setup measurement uncertainty was determined by scanning both flat and curved reference surfaces 
with known profiles at ambient and FPA assembly operational temperatures.  

The team used optical flats with measured flatness much less than the co-planarity measurement resolution. These flats 
were scanned at both ambient and operational temperatures using the same test Dewar window used in the FPA assembly 
testing. No difference in flatness between ambient and operational temperature was observed. Typical measurement 
uncertainties of +/- 0.3 to +/- 0.7 microns were measured for flat profiles. 

Proc. of SPIE Vol. 8836  88360S-2

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 04/29/2015 Terms of Use: http://spiedl.org/terms



resid;
0

I n
000

0.936 µm RMS
o

13 °> 0° b c°
A

0 8 0 ó 0 8 ó 8 0
0o

C 8 ®
C o° 0 á

9
0

fi 0 0
R o 8 @ I
ó o

8
ii

ó 8 o

8 o o ° °
O

c> 8 8
g

-4
- io o 1 o _o

Eü _EEEli._=MM._
EENEEEEEEERT._
EEEEEENEEMEEE
EEEEEEEEEEEEE
EEEEEEEEEEEEE
EEEEEEEEEEEEE

ïfiT._
EEEMMERr..-
EEEEEEEEEERrr
EEEEEEEEEEEEE

RERRRMEEEEMR
EEEEEEEEEEEE

MA

=WERNER
lEEEEEEEE[
EEMEEENEEI=MEW
MEElNENEE.ElEEElElC
EEEEEEEE[
EEEENEM!'
EMME!!EE=WM
MENEEEE[
EEEEEEE'=MEEK

-01

wr1 66 = A}ueueld-co

 

 

The convex surface of a plano-convex lens with 5.002 m radius of curvature was also scanned at ambient temperatures. 
The convex surface provided a known surface measurement with departures from planarity at 340 microns compared to 
the 10 micron co-planarity requirement. The known surface profile was subtracted from the measured data. Figure 3 
shows the resulting residual scatter plot with a measurement uncertainty of +/- 0.94 microns. This magnitude is 
considered a worst-case bounding uncertainty for the co-planarity test setup. 

Figure 3. Worst-case co-planarity measurement uncertainty. 

2.1.3. Co-planarity results 
The FPA assembly showed excellent out-of-plane opto-mechanical stability throughout the test sequence. SCA co-
planarity was measured following assembly and then at several test points throughout environmental testing (see Figures 
4 through 6). Since the JMAPS FPA assembly co-planarity requirement applied only to the individual SCA active area 
best-fit planes, residuals (typically less than a few microns) from the best-fit planes were subtracted during post-
processing. Post-processed co-planarity measurements are reported as maximum minus minimum (peak-to-peak) profile 
values based on the individual SCA best fit planes. Figure 4 shows a 3D contour plot of the ambient temperature SCA 
co-planarity of 9.9 microns at the beginning of the test sequences. 

Figure 4. Measured pre-vibration SCA co-planarity at ambient temperature. 
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After completion of vibration testing, the FPA assembly was cooled to operational temperatures resulting in a co-
planarity of 9.8 microns (see Figure 5). At the conclusion of the testing, the co-planarity was measured at 10.3 microns 
(see Figure 6). 

Figure 5. Measured post-vibration SCA co-planarity at 193 K. 

In addition to the results shown in this paper, other co-planarity measurements were performed during the testing and all 
results fell within the test setup measurement uncertainty of +/- 0.9 microns. 

Figure 6. Measured post-vibration SCA co-planarity after returning to ambient temperature. 

Due to funding limitations, schedule was not available to further improve the FPA assembly co-planarity performance. 
Additional iterations, using the SDL measurement and placement methods, could have produced co-planarity of less than 
5 micrometers. However, since the FPA assembly met the co-planarity performance requirement, the use of additional 
funding and schedule resource to the incremental improvement was not justified. 

2.2. Thermal stability 
Thermal stability of the FPA assembly was test validated at operational conditions by simulating expected on-orbit 
transient thermal boundary conditions and measuring the controlled temperature stability of the test unit. The JMAPS 
mission thermal stability requirement was < 0.010 K over a 45 minute time frame. Worst-case transient fluctuations of 
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the FPA assembly thermal interfaces were extracted from the system level thermal model. The following figures show 
the temporal variation in the FPA assembly radiator, telescope mount, and electronics thermal interfaces. 

Figure 7. Radiator thermal interface temperature variation vs. time (K vs. hr.). 

 
Figure 8. Telescope mount thermal interface temperature variation vs. time (K vs. hr.). 

 
Figure 9. Electronics thermal interface temperature variation vs. time (K vs. hr.). 

2.2.1. Thermal stability test setup 
The thermal test setup included three independently controlled thermal zones to simulate the three thermal interfaces. 
The three zones were cold biased/cooled via flexible thermal links and heater controlled. Prior to conducting the tests, 
the controller for each zone was tuned to allow precise control of the thermal interface to the specified profile. The 
resulting thermal interface transients during test matched the specified profiles with no observable error.  

2.2.2. Thermal stability test results 

Figure 10 shows the test-validated thermal stability results for the FPA assembly. The four colored solid lines show the 
individual temperature responses of the four SCAs. The solid black is the average SCA temperature which served as the 
control input. Calculated thermal stability of the individual and average SCA responses over a 45 minute time frame are 
shown by the dashed lines. The temperature responses (solid lines) correspond to the left ordinate of the graph, and the 
stability results (dashed lines) correspond to the right ordinate. 
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Figure 10. Thermal stability results (temperature and stability vs. time / date). 

The FPA assembly showed excellent thermal stability results with worst-case performance of < 0.016 K, which occurred 
only for a relatively short time during the eleven hour stability run. The majority of the time, the stability performance 
was < 0.010 K. 

A post-test assessment of the thermal stability results suggests that if a higher order controller was implemented, stability 
performance could be increased even further. 

2.3. In-plane alignment and stability 
The JMAPS mission requirements included many in-plane alignment and stability requirements which were all met by 
the FPA assembly. This publication focuses on three of the most challenging requirements: adjacent SCA pixel spacing 
of < 2 mm, differential SCA rotation of +/- 2 milliradians, and opto-mechanical differential in-plane SCA closest edge 
approach stability of < 1.9 nm. 

2.3.1. Adjacent SCA pixel spacing and rotation 

To support a < 2 mm active area pixel spacing, the SCA packages were required to be placed within 0.1 mm of each 
other. After locating the SCAs, the resulting positions of the SCA pixels were measured at ambient and operational 
temperatures. The resulting ambient temperature adjacent SCA pixel spacing and rotation results are shown in Figure 11. 
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Figure 11. Ambient temperature measured adjacent SCA pixel space and rotations (not to scale). 

Calculated adjacent SCA active area spacings are shown in red in both inches and millimeters with the maximum 
spacing at 1.8 mm versus the 2 mm requirement. Calculated relative SCA rotations are shown in blue with worst-case 
results of 0.4 milliradians versus the 2 milliradian requirement. 

Ambient temperature spacing and rotation measurements were taken prior to and after completion of the test program 
(i.e. before and after vibration and thermal vacuum testing). The pre- and post-test SCA pixel spacings were with the 
measurement uncertainty of 0.005 mm indicating that the in-plane alignment did not change over the course of the 
testing. 

SCA pixel spacing was also measured at operational temperatures by illuminating the focal planes with point sources of 
known spacing and back calculating the adjacent SCA pixel spacings and rotations. The results matched the ambient 
temperature results. 

2.3.2. Differential SCA closest edge approach stability 

The closest edge approach stability requirements specifies that the edges of the SCA packages cannot translate in-plane 
more than 1.9 nanometers over a 45 minute time frame. While directly measuring these small movements was not 
attempted, this requirement was verified via analysis and substantiated via the co-planarity measurements performed 
under operational conditions. 

Verification by analysis was accomplished by performing a detailed structural optical thermal (STOP) analysis. A 
detailed thermal finite element model (FEM) of the FPA assembly was developed (see Figure 12). The same transient 
thermal inputs used for the thermal stability testing were applied to the thermal interface boundaries and the resulting 
transient gradients were calculated.  
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performance for similar applications. Worst-case co-planarity measurement uncertainty was determined to be 0.94 
micrometers with typical uncertainty estimated at 0.5 micrometers. 

The FPA assembly thermal stability performance of 0.016 K over a 45 minute period applying transient thermal 
boundary inputs on the order of 10 K can readily be improved to < 0.010 K stability with potentially enhanced 
performance down to 0.005 K by applying a higher order controller. 

In-plane alignment and stability also showed excellent performance. No changes in SCA locations to a 0.005 millimeter 
measurement uncertainty were observed from pre to post environmental testing. Differential SCA edge stability 
performance of 1.5 nanometers was verified by a high fidelity STOP analysis and correlated via the ambient and 
operational co-planarity measurements. 
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