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ABSTRACT 

Financial Feasibility of High Performance Low Rise Steel Buildings 

by 

Yolanda M. Baez Batista, Master of Science 

Utah State University, 2010 

Major Professor: Dr. Keri Ryan 

Department : Civil and Environmental Engineering 

Comparative performance evaluation including life cycle cost is currently being 

conducted on a series of conventional and base-isolated case study buildings. 

Alternative design approaches and their influence in cost were to be evaluated . This 

investigation is intended to contribute in the development of isolated structures by 

allowing engineers to communicate the cost of higher performance systems to their 

clients. The reported effort is part of a larger cost-benefit study for isolated steel 

buildings, and the purpose of thi s thesis is to compare initial investment of 3-story 

conventional and isolated steel buildings and determine how isolation affects the cost of 

the structure. 

The relative cost of seismic isolation, as a percentage of the total cost, may be 

higher in this study than for typical U.S. isolation applications because the relative 

premium is greater for a short building than a tall building. The cost of isolation layer for 

this building is in the order of 11.7% to 12.4% of the total cost. Such a large cost 
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premium may be a huge restraint for most owners; therefore, strategies to reduce the 

isolation premium cost need to be investigated in detail. 

(95 pages) 
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INTRODUCTION 

Background information 

Each year, natural hazards are responsible for tremendous damage around the 

world. These events, including earthquakes, are capable of causing deaths, injuries and 

property damage. Earthquakes have occurred for millions of years and will continue to 

occur in the future as they have in the past . However, the worst aspect of these natural 

phenomena is the impossibility to predict them . For this reason, earthquakes are a 

serious natural hazard of unpredictable intensity that defy human understanding. 

Nevertheless, it is sti ll possi ble to mitigate the effects of strong earthquakes to reduce 

the number of lives lost and the dollar amount of injuries and damage. 

Earthquakes represent a global problem. Nowadays, people in many areas of the 

world live with a significant risk to their lives and property from earthquakes. The most 

memorable and dramatic images of earthquake damage are those of structural collapse 

(Kramer, 1996). Billions of dollars of public infrastructure are continuously at risk of 

earthquake damage. 

There is a minimum level of protection demanded by design building codes to 

ensure life safety such as prevent falling hazards on structures that endanger human 

lives. However, even though current seismic design codes appear to provide adequate 

life safety in structures, the public deems this requirement alone as no longer sufficient 

(Kawashima and Miyaji, 2006). Due to the value of the technology inside the buildings, 

the socio-economic impact of business damage may far offset the cost of the structural 



system (Gupta, 1999). For example, if a hospital has to be closed due to lack of 

functionality, even for a couple of hours, this means that many lives that could have 

been saved are now at risk. Alternatively, corporate owners whose livelihood may 

depend on the resumption of operation soon after an earthquake might want options 

for investing beyond the minimum code requirements . As a result, the economic and 

social implications of poor performance of a structure during an earthquake need to be 

incorporated in future seismic design and evaluation methodologies. This means that 

the structure performance has to be related to the functional objectives of the structure 

considering both risk and cost-benefit tradeoffs (Gupta, 1999). 

Performance-based earthquake engineering (PBEE) implies design, evaluation, 

construction, monitoring the function and maintenance of facilities whose performance 

under common and extreme loads responds to the diverse needs and objectives of 

owners and society. It is based on the premise that performance can be predicted and 

evaluated to help the client make, intelligent and informed decisions based on life-cycle 

considerations and trade-offs rather than construction costs alone (Bozorginia and 

Bertero, 2004). 

Under this new performance-based approach, we want to consider alternative 

structural systems that can provide better performance economically. Seismic base 

isolation is a newer technology that is frequently considered for bui ldings that must 

remain operational in the design earthquake. The goal of base isolation is to reduce 

both drifts and accelerations which together can reduce structural and nonstructural 



damage and costs associated with earthquakes (Jangid, 2007). By shifting the natural 

period away from the dominant period of the ground shaking, the isolation system 

decouples the structure from the horizontal components of the earthquake ground 

motion. The isolators are much more flexible than the superstructure so the building 

behaves as a rigid structure during an earthquake as the isolators endure the large 

deformations. However, an owner is generally motivated by cost rather than 

performance, and the high cost of constructing a se ismic isolated building has prevented 

this mechanism from being widely used in the United States (Bozorgnia and Bertero, 

2004). For this reason we need to evaluate alternative and conventional approaches 

from a life cycle cost perspective. 

The Network for Earthquake Engineering Simulation (NEES) Tools for Isolation 

and Protective System (TIPS) project is intended to contribute to development of 

performance-based evaluation and demonstrate whether an owner can expect to 

recover his investment in high performance isolation over the lifetime of the building. 

As a result, comparative performance evaluation including life cycle cost evaluation is 

currently being conducted on a series of conventional and base-isolated case study 

buildings. However, even if alternative approaches are proven to be wise from a life 

cycle perspective, owners are slow to accept this and will always be concerned about 

initial cost. Thus, we need to carefully evaluate initial cost of protective technologies 

and find ways to minimize them. 
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Objective 

The primary objective of this work is compare initial investment of three story 

isolated and conventional steel buildings, each considering both braced and moment 

resistant frames for lateral resistance. The emphasis of this project is to determine the 

initial cost increase for se ismic isolation relative to the convent ional structure. In 

addition, alternative design approaches and their influence on cost will be evaluated. 

This invest igation is intended to contribute in the development of isolated structures by 

allowing engineers to communicate the cost of higher performance systems to their 

clients. 



COMPARATIVE LATERAL SYSTEMS 

In every structure, some members must be designed to resist and protect the 

structure against lateral wind and seismic forces. Shear walls, braced frames, and 

moment-resisting frames are the principal types of lateral-force-resisting elements (ATC, 

2010). The purpose of this section is to introduce the different types of lateral systems 

used in the project . 

The cost of the same building, configured as conventional or isolated, with 

different lateral systems will be compared. Steel braced and moment-resisting frames 

are the lateral system used in the design of theme buildings of this project . In most 

cases, these lateral systems were designed to satisfy minimum code requirements. 

Moment Resisting Frame Systems 

In moment frames, the bending of beams and columns provides the resistance 

to lateral forces (ATC, 2010). According to Hamburger et al (2009). "the principal 

advantage of moment frame structures is that they do not have structural walls or 

vertically oriented diagonal braces." As a result, they are more laterally flexible than 

shear wall and braced frames. In addition, moment resisting frames are preferred by 

architects for their freedom in design, since they allow open bays and unobstructed 

view lines. 

Due to the flexibility of a moment frame, member selection is typically drift 

controlled and follows strong-column/weak-beam provisions. As a result, member sizes 
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have to be increased over the strength requirement to satisfy maximum drift limits, 

requiring labor intensive connections. For this reason, moment frame structures can be 

more expensive to construct than braced frame or shear wall structures. However, 

moment frames usually impose smaller forces on foundations than do other structural 

systems, resulting in somewhat more economical foundation systems (Hamburger et al, 

2009). 

There are three primary types of moment frames: ordinary, intermediate and 

special. An intermediate moment resisting frame (IMRF) is used in low to mid-seismic 

areas. They are intended to withstand limited inelastic deformations in their members 

and connections when subjected to the forces resulting from the motions of the design 

earthquake (AISC, 2005) . On the other hand, special moment-resisting frames (SMRF) 

are detailed to ensure ductile behavior of the beam-to-column joints and are normally 

used in zones of higher seismicity. Special detailing requirements are essential in 

resisting strong earthquake shaking with substantial inelastic behavior. 

The following background information explains the provisions differentiating 

SMRF and IMRF lateral systems. Over the past 14 years, many methods have been 

proposed to improve the ductility of steel moment resisting frames following the 

unexpected brittle failures of steel moment frame connections in the Northridge 

Earthquake. In an SMRF building it is expected that most of the inelastic deformation 

will take place as rotation in beam "hinges," with some inelastic deformation in the 



panel zone of the column. The inelastic deformation capacity depends on the 

connection types used. 

Beams, columns, and beam-column connections in SMRFs are proportioned and 

detailed to resist flexural, axial, and shearing actions that result as a building sways 

through multiple inelastic displacement cycles during strong earthquake ground shaking 

(Hamburger et al, 2009). Because of these additional requirements, SMRFs improve the 

inelastic response characteristics of moment frames in comparison with less st ringently 

detailed intermediate and ordinary moment frames. 

Fully restrained beam-column connections should be configured both using 

welded joint design and quality assurance measures, or by forcing the plastic hinge away 

from the column face (FEMA, 2000). According to AISC-358-Suplement 1, the latest can 

be done either by local reinforcement of the connection, or by loca lly reducing the cross 

section of the beam at a distance away from the connection (AISC, 2009). An effective 

method to improve the behavior in steel moment resisting frames is the reduced beam 

section (RBS) approach (FEMA, 2000). 

In the RBS configuration, portions of the beam flanges at a section away from 

the beam end are narrowed, transferring the zone of plasticity away from the column 

while improving the overall ductility capacity of the beam-to-co lumn assembly (Lee and 

Foutch, 2000). The typical geometry of a circular RBS is depicted in Figure 1. The flange 

is tapered start ing at of 3/4 of the beam flange width from the face of the column over a 

length of :Y. of the beam depth, with a peak reduction of 50% of the flange width in the 
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middle of the taper (Sayani et al, 2009). These connections are expected to be capable 

of sustaining an interstory drift angle of at least 0.04 radians. For thi s study, 

conventional moment frames are detailed as SMRFs with RBS connections. 

In seismically isolated buildings, the structure above the isolation system are 

expected to remain essentially elastic during design level earthquakes and, therefore, 

the special detailing requirements of a SMRF are not required. For this study, isolated 

moment frames are detailed as IMRFs. The IMRF uses "welded unreinforced flange, 

welded web (WUF-W)" beam-column connections. These connections are expected to 

demonstrate an interstory drift angle of at least 0.02 radians. As shown in Figure 2, only 

weld metal is used to join the flanges. In addition, web joints for these connections are 

made with slip-critical, high-strength bolts connecting the beam web to a shear tab that 

is welded to the column flange (FEMA, 2000). 



Figure 1. RBS connection sample (Reproduced from Hamburger, 2009) . 

Figure 2. WUF-B connection : 1) flange weld, 2) bolted shear tab, and 3) continuity 

plates. 
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Braced frame systems 

Braced frames are vertical, cantilevered trusses that are provided to a building 

system to resist lateral forces. They may be either concentric or eccentric in 

configuration. Concentric braced frames have diagonal braces located so that the 

centerlines of members that meet at a joint intersect at a point to form a vertical truss 

system that resists lateral loads along the direction of their longitudinal axis. Because of 

their configuration, members are mostly subjected to axial forces in the elastic range 

but, during a moderate to severe earthquake, these members and their connections 

should experience significant inelastic deformations into the post-buckling range. As a 

result, reversed cyclic rotations occur at plastic hinges in the same way as they do in 

beams and columns in moment frames (AISC, 2005). 

Bracing members of this type of system can be expected to yield and buckle at 

story drifts of about 0.3 to 0.5 percent (AISC, 2005). In a severe earthquake, the braces 

could undergo post-buckling axial deformations 10 to 20 times their yield deformation. 

In order to minimize inelastic demands, recent seismic codes require the use of higher 

design loads to increase the strength and stiffness of the braces. In addition, 

requirements for ductility and energy dissi pation capability have also been added. 

According to the ASCE-07 (2005) there are two types of concentrically braced 

frame systems: Ordinary Concentric Braced Frames (OCBF), and Special Concentric 

Braced Frames (SCBF). In addition to SCBF and OCBF systems, an advanced braced frame 

system is used for high seismic performance, buckling restrained braced frames (BRBF). 
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Seismic design codes distinguished between OCBF and SCBF based on design 

forces and detai ling requirements such as slenderness and compactness limits, brace 

capacity, stitch and column requirements. 

Building codes have reduced the design load level for SCBF below that required 

for OCBF due to their strict design and detailing requirements. SCBF were developed to 

exhibit stable and ductile behavior when subjected to high energy demands imposed by 

a major earthquake. They have lower required base-shear capacity and are expected to 

achieve stable hysteretic behavior in the post buckling range to accommodate cyclic 

excu rsions with resisting forces near yield capacity of the braces {SEAOC, 2008). 

Code regulations introducing SCBFs order to improve the post-buckling behavior 

of concentric braced frames, required braces to be selected from seism ically compact 

section s, closer spacing between stitches, and special design and detailing of 

connections (Goel, 1992). According to AISC 341-05, to improve the out-of-plane 

st ability of the SCBF bracing system, the brace connections should be designed such that 

the bea ms or columns of the frame are not interrupted "to allow for a continuous brace 

element". In addition, to avoid fracture due to brace rotations, these connections 

should have either sufficient ductility to accommodate brace-end rotations or enough 

strength to restrain inelastic rotation of the bracing member. In the newest seismic 

provisions (AI5C, 2005) the slenderness {KI/r) limit for SCBF has been increased 

significantly relative to previous codes. 
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For this study, isolated braced frames are detailed as OCBFs. As mentioned 

earlier, since the structure above the isolation system is expected to remain elastic, 

provisions that are intended to accommodate significant inelastic response are not 

required for their design. As result, regular provisions for OCBF are considered to be 

excessive since the forces on the isolated system are limited and buckling of braces is 

not anticipated. For instance, slenderness limitation of less than or equal to 4 v(E/Fv) is 

applied to all type of braces and beams are not required to be seismically compact. 

Buckling restrained braced frames are a special class of concentrically braced 

frames in which overall brace buckling is precluded at expected force demands of the 

brace (SEAOC, 2008b). Buckling-restrained braced frames are expected to withstand 

significant inelastic deformations when subjected to the forces resulting from the 

motions of the design earthquake. 

Bracing members are composed of a structural steel core and a casing system 

that restrains the steel core from buckling (see Figure 3). The steel core is designed to 

resist the entire axial force in the brace and the use of splices is prohibited. Plates used 

in the steel core are usually at least 2 inches thick (AISC, 2005). 



encasihg 
morts¥ 

yieldng steel core 

·unbending·· natenaJ between 
steel core stlj mottst 

Figure 3. BRBF brace sample (Reproduced from Sabelli et al, 2003). 
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According to SEAOC (2008b). some of the characteristics of BRBF system include 

braces with positive post-yield stiffness, lack of strength degradation, and large 

repeatable hysteretic loops. The buckling-restraining system must prevent buckling of 

the steel core in BRBF for deformations corresponding to at least 2.0 times the design 

story drift (ASCE, 2005). 

Beca use of their efficiency in compress ion, BRBs are generally not designed with 

inherent overstrength (SEAOC, 2008b). At interstory drifts of less than 0.50%, BRBs will 

experience axial yielding either in tension or in compression. In a study made by Sa belli 

Mahin, and Chang (2003). researchers concluded that "the behavior of the frames with 

the buckling-restrained braces is comparable and often better than that associated with 
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conventional concentric braced frames and moment frames," because once BRBF's 

braces yield they will dissipate energy and not experience strength degradation. This 

means that their inelastic drifts are lower th an those in a SCBF since HSS are susceptible 

to fracture under inelastic cycles from a design earthquake. 
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DESCRIPTION OF BUILDINGS 

For this study, several alternative lateral systems were design for a 3-story steel 

building subjected to high seismicity. The building was assumed to be located in 

downtown Los Angeles, CA (Lat: 34:50 N, Long: 118:2 W) on stiff soil. In addition, it was 

designed for office occupancy based on the provisions of ASCE 7-05, AISC 341-05 and 

the 2006 IBC using the equivalent /otero/ force method. 

The building has dimensions of 120 feet by 180 feet in plan, with 15 feet floor 

heights and 30 feet bays in each direction . A penthouse with dimensions of 60 feet by 

30 feet is located on the roof. When the building is isolated, 6 feet of additional 

excavation is required to house the isolation layer. A 3-D view of the building is shown in 

Figure 4. 

l • J, 

Figure 4. View in 3-D of the conventional and isolated building. 
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Structural systems 

The structural systems for the building were designed by Foreii/Eisesser 

Engineers in collaboration with Troy Morgan. The conventional lateral systems were 

designed for high ductility demands while the lateral systems of the isolated building 

were designed for less stringent detailing as they are expected to sustain lower ductility 

demands. In order to ensure proper design, the relevant code requirements for gravity, 

wind, and seismic demands were considered . Both minimum code complaint and higher 

performing lateral systems were developed for both conventional and isolated 

buildings. 

Lateral resistance is provided by either braced frames or moment resisting 

fram es over part of the building. Beams/girders and columns were se lected from 

standard W-shaped sections of A992 steel. Braces were selected from HSS sections 

made of A46 steel. These sections are consistent with the assumption of design yield 

strength of 50 and 46 ksi for frame members and braces, respectively. 

The floor slabs consist of 2 inch steel metal deck with 3.25 inches light concrete 

at all levels. The steel deck and concrete slab is assumed to provide a rigid diaphragm 

condition. The stiff slab attracts and distributes seismic forces uniformly to lateral 

support. Fireproofing is applied to steel members, and retaining walls and slab of the 

isolation layer. 
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Moment resisting frame. 

Three moment resisting frame lateral systems were designed for this study: two 

conventional and one isolated. Recall that SMRF detailing is used for conventional 

buildings while IMRF detailing is used for isolated superstructures. A fourth design was 

added by putting the code complaint SMRF on isolators and assuming IMRF 

connections. The following nomenclature is used through this study to identify each 

building. Numbers 1 through 3 designate which lateral system was used . 

MRF 1: code compliant SMRF. 

MRF;,0 2: code compliant isolated IMRF. 

HPMRF 3: high performance SMRF 

HPMRF;,0 1: high performance isolated IMRF (code compliant SMRF on 

isolators. ) 

The gravity members for all moment frame buildings are the same while the 

lateral-force resisting elements vary for each lateral system designed . The configuration 

of the latera l systems is the same for all building is indicated by bold lines in Figure 5. 

The latera l system consist s of two 5-bay perimeter moment frames in the longitudinal, 

and two 3-bay perimeter and two 2-bay interior moment frames in the transverse. 

Table 1 list s the structural components with their respective quantities for each 

building based on the lateral system. The member sizes in Table 1 are an indication of 

se lf weight of the members, which is directly proportional to the construction cost of 

these buildings (see methodology section) . 
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Figure 5. Moment resisting frame lateral syst em for conventional and isolat ed build ings. 

Table l.Fra me members for moment resisti ng frame lat eral systems 

Component 
Span 

Section/ Type 
Quantity 

1111 MRF 1 MRF..., l HPMRF 3 HPMRF .. 1 

10 W14X22 72 72 72 72 

30 W16X3 1 59 59 59 59 

30 W21XSO 12 12 12 12 

30 W1SX35 139 187 139 187 

30 W18XSO 4 4 4 4 

30 W18X60 20 

3 W18X71 4 4 • 4 

Beams and 3 W24XSS 24 24 24 24 

Girders 30 W24X76 16 36 16 16 

30 W24X84 20 

30 W24X94 58 58 

30 W27X102 20 20 

30 W30X99 

30 W33Xll0 20 20 20 

30 W33X141 20 20 

30 W36X182 40 

--- --- - ---- ----- - --- -- ---- - -- -- -- - --- - ------
45 W10Xll 9 9 9 9 

11 W14X109 26 

34 W14X176 26 
Columns 11 W14X211 26 26 

34 W14Xl70 26 26 

11 W14Xl70 26 

34 W14XSOO 26 

- ------ ---- --- - ------- --- -- -- --- - ----- - -----
Connections Moment 120 236 120 236 
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Braced frame . 

Four braced frame lateral systems were designed for this study: two 

conventional and two isolated . The conventional buildings include an SCBF and a BRBF. 

Based on the building's height, the code prescribes that an isolated OCBF be designed 

with a reduction factor of R=l. However, an R=2 design was also considered to assess 

the impact of relaxing code requirements to cut costs . In addition, a fifth design was 

added by putting the code complaint SCBF conventional building on top of isolators but 

using OCBF connections. The following nomenclature is used through this study to 

identify each building: 

CBF 1: code compliant SCBF. 

CBF;so 2 :code compliant base isolated OCBF with R=1 

CBF;50 3 : base isolated OCBF with R=2 

HPCBF;,0 1: high performance isolated OCBF (code compliant SCBF on 

isolators). 

BRBF: high performance buckling resi sting braced frame. 

The gravity members for the braced frame buildings are mostly the same in all 

building; however some beams and columns were designed to be collectors since they 

carry axial loads transferred from the braces, and thus are different from standard 

gravity members. In addition, the lateral-force resisting elements vary for each braced 

frame system designed . 
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The configuration of the lateral system for the CBF 1 and BRBF buildings is shown 

in Figure 6; where the bracing system consists of two single bay chevron braced 

perimeter frames in the longitudinal and transverse direction. In order to distribute 

overturning forces more evenly at the isolation level, the bracing in the CBF;,0 2 and 

CBF;,0 3 is fanned outward from the top down to the base of a 3-bay perimeter frame as 

shown in Figure 7. 

A list of the structural components with their respective quantities for the five 

braced frame buildings can be found on Table 2. This table indicates a significant 

number of moment connections are included in the isolated buildings. The reason 

behind this is that an extra floor layer was added at ground level due to the isolation 

layer and moment connections for all members at base level were used to rigidly tie it 

together directly above the isolation system. 
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-

Figure 6. Braced frame lateral system for CBF 1, HPCBF,,0 1 and BRBF. 

-

Figure 7. Braced frame lateral system CBF;so 2 and CBF;so 3. 
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Table 2. Frame members for braced frame lateral systems 

Span 
Section/ Type 

Quantity 
Component 

[It] CBf 1 CBf.., 2 CBf.., 3 HPCBf .., 1 BRBf 

10 W14X22 30 JO 

30 W16X31 65 59 59 65 65 

30 WllXS 12 12 12 12 12 

30 W18Xl5 139 187 187 187 139 

30 W18XS 2 16 16 

JO W18X60 

W18X71 

Beams and W18X76 12 

Gird ers JO W18X97 16 16 16 

30 W2<XS5 2• 24 24 24 24 

30 W24X76 40 48 48 0 

30 W24X84 8 

30 W24X94 58 58 58 

30 W27XSA 
W30X99 

30 W36X1 50 

-- -- - -- -- -- -- -- -- - -- -- -- -r- --- - --
21.21 BRB-<OOK 

21 .21 BRB·SOOK 

21 .21 BRB·SSOK 

21 .21 HSS 6x6x0.25 

21 .21 HSS 6•6x0.J125 

21 .21 HS5 7X7XO.S 

Braces 21.21 HS58XBX0.3125 

21 21 HSSBXSX0.375 

21 .21 HSSSXSX .5 

21 .21 HSSBXBX .625 

21 .21 HS56X6X0.375 

21.21 HSS10X10X .625 

21.21 H5512X12X0.625 8 

- ----- - --- - -- ---- - --- - -- -1- ---- --
-"5 W10X33 27 35 35 27 27 

11 W12X65 

Column s 34 W12X120 

11 W14X109 

34 W14X176 B 
------- ----------- --- - --- -------

Connections 
Braced 48 64 64 48 48 

t ... 1oment 116 116 116 
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Foundation 

The foundation system consisted of concrete spread footin gs designed for each 

building. Footing dimensions ranged in size from 12'X12'X2.5' to 6'X6'X2.5'. Footings 

were designed against "punching" shear, "beam" shear, and bending forces according to 

the ASCE 07. Steel reinforcement was placed accordingly to strengthen the footings 

against these undesired effects. Details of the foundation system for each lateral system 

are list ed below: 

Table 3. Footing dimensions 

Quantity 
Re inforcement 

Footing Type Section 

Conventional 

Moment Frame Braced Frame 
llb/ CY] 

Conventional Isolated Isolated 

Inter. or 
100 10'X10'X2 .5' 15 15 15 

100 8'X8 'X2' 15 

-- - -- - --- -- -- ---- -- ----- -- -- --- -- --- - - --- --- --

100 8'XS'X2.5' 16 15 

Corner 100 10'X10'X2.5' 15 

150 12'X12'ns· 

--------- ------ -- -- - - - -- - --- --- - - ---- ------ - --

100 8'X8'X2.5' 

Edge 100 10'X10'X2 .5' 

100 6' X5'X2' 

---- ----- --- ------- ------- -- - - ------- ---------

Grade beam 
2' X20'X2 ' 20 

1.5'X22'X2 .5' 20 20 
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As can be seen, both the moment resisting and braced frame isolated buildings 

use with the same foundation system. A 4 inch thick slab on grade (concrete) with #4 

bar located at 18 inches of center is placed at grade level. 

Isolation system 

The isolation devices have not been designed in detail so as to keep the study 

neutral with respect to isolation system. One isolator is located beneath each column 

for a total of 35 isolators, which rest on 3.5'X3.5'X2' pedestals. A moat cover and an 8 

inch retaining wall provide an enclosed area for the isolators and other mechanical 

equipment and "seal" the basement section of the structure (see Figure 8). 

ground level --- lJJ I 

base iso lator -------7 

moat cover 

II . -- flex ible util ity connection 

--- reta ining vvall 

Figure 8. Foundation view of isolated structure (schematic). 
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Non-structural and utilities components 

Non-structural components and utilities are essentially the same in every 

building, except for special details across the isolation interface. For this project these 

components were not designed in detail; and the cost estimation was based on 

representative quantities. 

Cost estimates for the three stories builaings consider 4 entry doors to th e 

structure, 2 circulation stairs, 4 exit stairs and 2 elevators. As an interior finish to 

ext erior wall s, gypsum board (tapped and sanded) is used while a single ply roof with 

insulation is used as roofing. Exterior wall framing uses 6 inch metal stud with batt 

insulation . Al so, exterior finish consist ed of metal panel with rain screen with 

intermittent aluminum framed windows. The interior partitions are made of metal stud 

and dig wall framing. Interiors doors are located every 30ft according to code. 

Fully automatic fire sprinklers and drainage systems are provided in the roof or 

in the isolation crawlspace. In addition, standard variable air volume (VAV) ventilation 

system and a cooling tower are used across the buildings. 
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DESIGN INFORMATION 

As mention before, the buildings were designed for a high seismicity region on 

site class D. The design spectral accelerations are 505= 1.47g at short period and 501= 

0.74g at a 1.0 second period, respectively. All buildings were designed for occupancy 

category II with importance factor /=1 with the exception of the high performance 

lateral systems (HPMRF 3 and BRBF) which were designed for 1=1.5. 

Seismic masses were calculated from unfactored gravity loads on the floors and 

roof excluding live loads. Superimposed dead load includes roofing, ceilings, flooring, 

mechanica l and electrical equipment, and partitions. A summary of the loading 

information provided is described below: 

Steel framing: as des igned. 

Decking: 42 psf . 

Superimposed dead load : 23 psf per floor and 25 psf at roof. 

Exterior cladding load : 20 psf (including 4ft parapet at roof level). 

Live Load : 50 psf . 

The total se ismic weight of the buildings, which varied for each lateral system design, is 

on the order of 5600 kips for conventional buildings and 7000 kips for isolated buildings. 

Th e design displacement 0 0 and maximum displacement OM of the isolators in 

the design and maximum considered earthquake (MCE), respectively, at the center of 

ri gidity are computed as (ASCE, 2005): 
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(1) 

(2) 

where T 0 and T M are effective isolation periods, 80 and BM are coefficients that modify 

the spectrum for damping, and 50 1 and SM1 are 1 second spectral accelerations for the 

corresponding events. 

Target values ofT M= 3.07 sec and effective damping ratio ~M= 16% were chosen 

for the MCE, while design values T 0 and ~ 0 were determined by iteration . Based on the 

design spectral accelerations, the design displacement Do= 12.7 in for the design 

earthquake at an effective period To= 2.77 sec and an effective damping ratio 80 = 

24.2%, and MCE displacement DM= 24.3 in. The total isolator displacement in the MCE 

(including amplification due to torsion) is 29.4 in. 

The period of the conventional buildings, upon which design forces were based, 

were estimated using equation 12.8-7 of ASCE-7. The force reduction factor and drift 

limits of each building were taken from table 12.2-1 and 12.12-1 of ASCE 7-05, 

respectively. A summary of the design information can be found in Table 4. 

As seen from Table 4, the force reduction factor (R) varies depending on the 

lateral system . Isolated buildings are generally designed for 3/8 of the prescribed R of 

the lateral system with an upper bound of 2. In addition, conventional buildings were 

designed for drift limits of!'. = 2.5%, while the isolated bui ldings and high performance 
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buildings were designed for a drift limit of 1'. = 1.5%. Complete characterization data for 

HPMFiso 1, CBFiso 3, and HPCBFiso 1 is not available . 

Table 4. Design information for each building 

Desi~n Information 
Component 

T,ode Tmodet R I V/Weff Drift Limit 

MRF1 0.59 0.88 8 1 0.157 2.5% 

Moment MRF""2 2.77 3.23 1.67 1 0.106 1.5% 

Frame HPMRF•o 1 2.77 1 1.5% 

HPMRF3 0.59 0.72 8 1.5 0.236 1.5% 

CBF 1 0.35 0.43 6 1 0.244 2.5% 

CBF.0 2 2.77 3.12 1 1 0.173 1.5% 
Braced 

Frame CBF•o 3 2.77 2 1 0.087 1.5% 

HPCBF•o 1 2.77 1 1.5% 

BRBF 0.35 7 1.5 0.314 1.5% 
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COST ESTIMATING 

Cost estimating is the process of developing a "well-formulated prediction" of 

quantities, price of resources, and probable construction cost required by the scope of 

an asset investment of a specific project . Unit rates are based on historical data and 

discussions with contractors and subcontractors. As a prediction, an estimate must 

address ri sks and uncertainties. 

Cost estimates are prepared by professionals known as costs estimators and 

they usually have an engineering or architectural background (Butcher, 2003). An 

estimator should be qualified based on his/her experience. Cost estimating can be a 

laborious process and is often weighed down when important cost considerations are 

missed (SPAR Associates, 2002). Even though the theory of estimating is important, a 

good cost estimator also requires experience with the construction industry and actually 

quantifying the effort required to produce work (Butcher, 2003). Detailed information 

about a project is not always available, and in this case greater experience is needed . 

A project budget generally includes the total construction cost as well as the 

"soft costs" and non-construction related fees that are estimated as a percentage of the 

construction cost. Cost estimates are project and owner specific and usually involve the 

various design stages of the project. There are two types of cost estimates: conceptual 

and detailed estimates. 

A conceptual estimate is often completed before the actual design of a facility 

has been developed. According to Butcher (2003), the conceptual cost estimate is a tool 
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for determining required initial capital or funding and to weigh the need s of a project . 

Since the owner is interested in achieving the lowest possible overall project cost that is 

consistent with his/her investment objectives, this type of estimate is very important to 

him/her. 

In the detailed cost estimate, the cost estimator works together with the design 

team to evaluate decisions made throughout the design phases against the conceptual 

model. Here the est imate is prepared by breaking down the components of the building 

or work at hand in an orderly and logical basis, determining the cost of each item from 

experience, and summing to arrive at a total (Butcher, 2003). 

Methodology 

The initial cost of these buildings was computed with the help of Mr. Peter 

Morris, a professional cost estimator. A detailed estimation approach was used to 

determine the budget and predict the initial cost of each theme building in this project. 

The cost est imates produced for this study represent probable construction cost based 

on Morris' best judgment and experience in the construction industry. The estimates 

are developed with reference to fair market prices for mid-2008. As a resu lt, the cost 

estimator has no control over the cost of labor, material, equipment, market conditions 

at the time of bid, among others conditions. The accuracy of the estimates depend on 

various external factors, but are in general expected to be within 5% of the average bid 

(Butcher, 2003; Popescu, 2003). The estimates are expected to capture the relative cost 

differences between different design options to greater accuracy than the absolute cost. 
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The cost estimate of structural components is generally based on quantities 

provided in the drawings or specifications. To complete the estimate, all dimensions and 

quantities of the materials used (such as steel, concrete, and building area) were taken 

from the drawings (see appendix A), and the perimeter and areas of the buildings were 

ca lculated . The cost of moment and brace connections were estimated from 

representative connection details since the connections were not designed in detail. 

The cost of non-structural items could not be determined from the design drawings 

because architectural details were not provided. Quantities of such components were 

estimated based on Morris' experience. 

Morris provided the prices of the components/materials used. Such prices are 

based on unit volume, area or weight of raw materials (Table 5). Pricing units include 

cubic yard (CY), square feet (SF), linear feet (LF), tons (TN), each (EA), and lump sum (LS). 

Cubic yard units are primarily used for items in the foundation system based on volume 

such as excavation. Square ft units are used for items based on area such as partition 

walls, floors, and ceilings. Linear feet apply to items that were measured in a line such as 

moat cover. The cost of beams and columns were computed using unit weight cost s. 

Some items, such as isolators, were based on a cost per individual item. Finally, a 

composite rate or LS applies when the entire cost of implementing the item is based on 

a fi xed cost rather than a unit rate . Certain costs related to seismic isolation were 

represented as LS premiums. 



Table 5. Cost estimate unit rate 

Descri~tion I rnit I Rate (S) I Omri~tion I rnit I Roto(S) I Des.:ription I l"nit I Rat• (S) 
Foundations [mrior Cladding Function [quipment & Spedalrie~ 

~fa:,~ m.axation CY l~ .OO '!"~ ;rod. 6" ~~ 6.00 Built in iltting~ I SF 
Shoring S'" l5 00 Battinsubtion ~~ uo Stairs & \'mica! Tran1ponation 
Structun! b!Ck!ill cr ~000 }.!ml pmtl rain~m=n s~ "j 00 ?rimary ci.r.:ula!ion min, fully :·uushed ~0.000.00 

D!s~se off mt. l\·~ :o mil~s CY li.OO c" psum board. taptd and ;anded s;: 1.00 Exustain ~i.OOO.OO 

Exca\'ation for spmd footing cr 30.00 .lJuminum fram~d ~lndc\\'5 SF ·o.oo PHI~ss traction elentors EA !~0.000.00 

Formwork s~ :~ oo Enuydol'f~ H 3.00000 Premium fer m!P---ttded sni"t at iso!.a.tor pian~ (e!e•·ator) E.'. iO.OOO.OO 
Concrm cr 3i0.00 Roofing, Waterproofing & Sl,·Iigbtl Plum bin; S~·stems 

Rtinforcmg LB 1. ~0 Wmrproofmg at bls..."1I!rot for Retaining walls and slab SF 500 DomeHicftxrures L\ 6.50000 
ho!ator~ E.\ li.OOO.OO Smglt p~· rooi •ith in;uhtion s;: !3.00 Rooidrair.agt SF 5.00 
Slab on gndt (mud ;lab) SF t50 Interior Panirions: Doors & Gluing Bmm"'' drunag. SF 300 
'loatcoYer (\acriitcial) Lf "i OO ""al stud and dr)wall framing SF li.OO ?rffilium for tlt:tiblt connoctions at isolator plane LS ~i .OOO.OO 

Yenical/Floorand Roof Structure !ntffiordoors EA ~ .000.00 Heuin~ Yentilarion & _-\ir Conditioning 
1\'FHSSStl<im!lllber; I:\ J.OOO.OO .~owanct for interior g!!zing (? ") SF ~i.OO !:'\'.l.C '""tm. mndard \'.\ \', Chill<r Cooling'""'" I SF I .i) 

BRB brace; !;:ip 8.00 floor, Wall & Ceiling fini1h" He<tricalLighring, Poll'er & Communication 
Braced connections Floor Ei~trica! symms I SF I 3i .OO 

OCBF E.\ "60.00 Lobb\· & primlJy circulauon s~ ~0.00 Prmllum for t1Wble connections ;u isolarm- plant L! iO.:moo 
scar E.'. 893.33 C<nmic td< SF li.OO Lt~luing for isolator crawl ~plCt s, .. 00 
BRBF EA 60i .OO Carp<t \'CT SF i .OO Fire Prott<:tion Srstem5 

~!oment conntctions Wall; Fully automatic ftre sprinklt>r symm I ~~ I 6.00 Wt;f.\\'orconY!t!tional E.\ 350.00 Lobb,· .1: prunary rnrulauon LS 10.000.00 Spnnk!-ers :n iiolaror crt\\·{ :ipac-e SF 6.00 
RES conn~tion~ H JOOOO Ceramic tile SF li.OO Prtmium for fltxib!e connections at isolator plane LS ~0 000.00 

Fireproofing to mel I:\ JiOOO ?aint SF l.: 
}.fo.a[rmirun.!u·ill:S~ SF .!5 .00 Ceiling 
~~"~ rl'<k •ith concrm till SF S.OO LobbY & primal)· circulauon I SF I ~i OO Fireproofmg to mel at ba~ le\·el I:\ 600.00 G'pum board, taped and ;andtd SF ~000 

Lay in acoustic til: SF i.OO 

w 
N 
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Components of a cost estimate 

A cost estimate is generally expressed in different formats depending on the fees 

that have been included. 

The "Total Building and Site Cost" (TBSC) is the sum total of the raw building 

construction cost and site cost . These costs are expressed in a direct or absolute cost 

format. Total building construction cost includes parts of building systems that have a 

specific function like the shell, interiors, equipment and vertical transportation, and 

mechanical and electrica l systems. The building shell is composed of the following 

items: 

Foundation : Basement excavation and disposal material or backfill, 

supporting members driven into or resting on ground such as spread 

footin gs, slabs, and tie beams. 

Vertical, floor and roof structure: All columns, beams, girders and trusses, 

connections, unfinished floor or roof decks, and necessary fireproofing. 

Exterior cladding: Any non-structural member, finish color or curtain wall 

added to enclose the building; insulation and waterproofing of the enclosing 

wall s; all glazing, windows and doors in exterior walls. 

Roofing and waterproofing: Exterior or interior roofing insulation, skylights 

and roof glazing. Waterproof membranes on floors or walls and skylighting. 

The building interior consist s of interior partitions, doors, gypsum board and 

glazing, and floor/wall/ceiling finishes. Finishes include ceramic tile, carpets, paint and 
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any decorations. Equipment and vertical transportation contains built-in fixed shelving, 

cabinetry and appliances, stairs and elevators. Finally, mechanical and electrical systems 

consist of plumbing, heating, and electrical and fire systems. 

The contribution of site cost to TBSC includes the following subcomponents: site 

preparation and demolition, paving, structures and landscaping, and utilities on site. For 

the purpose of this study, the buildings are assumed to be located on a clean site with 

no acquisition cost. The costs for site paving, structures and landscaping (such as 

sidewalks curb and gutter) were disregarded (assumed to be zero) since they are 

common to all buildings. In addition, the cost of bringing utilities within 5 foot of the 

perimeter of the building was also assumed to be zero. 

For the purpose of cost estimation the remaining cost of the building that are 

not a direct part of the construction and site costs are generally estimated as a 

percentage of the TBSC. 

"Planned Construction Cost" (PCC) includes the TBSC and surcharges, such as 

general conditions and contractor's overhead and profit, estimated as a percentage of 

TBSC. "Total Cost Estimate" (TCE) includes PCC and surcharges, such as contingency for 

development of design and escalation, estimated as a percentage of PCC. Finally, the 

"Recommended budget" includes TCE and soft costs estimated as a percentage of TCE. 

The following table shows the surcharge rates and base cost used in calculating 

surcharges that were assumed for each of these items in this project. 
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Table 6. Surcharge percentage and based line 

Components Description Cost % Base for surcharge 

General Condit ions Costs incurred by contractor not included 9% TBSC 

in building cost 

Contractor's Overhead & Profit or Fee Contractor revenue (except labor fee 5% TBSC 

which is mduded m unit price} 
Contingency for Development of Design Accounts for uncertainty that represents 10% PCC 

a risk to the project 

Escalation is excluded Change 1n price of a specific good in a 0% PCC 

gtven economy 
Soft Cost Package Items not cons1dered in d1rect cost such 20%-21% TCE 

des1gn team fee 

As explain in Table 6, "General conditions", taken as 9% of TBSC, refers to the 

costs incurred by contractor that are not a direct result of or not included in the building 

cost. For example, temporary equipment or special staff that the contractor would need 

to do the construction. The "Contractor's overhead and profit or fee" (5% of TBSC), as its 

name indicates, is the contractor revenue or income beyond the cost of labor, which is 

included in the unit price. 

"Contingency for development of design" makes an allowance for uncertainty 

that represents a ri sk to the project . Since the estimators are familiar with these risks, 

they can estimate the cost based on past experience, which is referred to as 

contingency cost. In this project, the contingency for development of design 

subcategory accounts for things that have been missed, such as design mistakes and 

changes within the scope. For this reason, the owner is recommended to budget 

additional funds up-front instead of scrambling for funds later. Contingency is assumed 

to be 10% of the PCC in this study. 
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Escalation is the change in price of specific goods in a given economy over a 

period of time. Similar to inflation, escalation is driven by changes in technology and 

especially in supply-demand that are specific to a service in a given economy (Hollmann, 

2007). For example, the price of steel increased around 50% during 2003-2007 due to 

supply and demand inequity. However, since this is a comparative ana lysis, this risk fund 

is not included in the cost estimate. 

Soft Costs are the items not considered in direct construction cost s such as 

architectural, engineering, and legal fees. Soft cost s are usually around 20% and no 

lower th an 18% of the total cost estimat e. The design team fee, including the architect 

and structural engineer, ranges from 8 to 10% of the TCE. For thi s study, the following 

percentages were assumed to calculate the soft cost s. 

Table 7. Soft cost items and their percentage 

Components Description Cost % 

Architect Fee design team fee 8% 

Structural Engineer Fee design t eam fee 1%-2% 

Conve nti anal 1% 
Base Isolated 2% 

Change Order Contingency Acco unts for big changes that th e own er mi ght make 5% 

Testing and Inspection Weld and concrete testing, fi eld inspecti on, et c 2% 

Owner's Project Management Owner's representation tea m during th e design and 2% 

constructio n orocess 
Move In and Commission Tea m that ensures that systems are des igned, 2% 

install ed and operat ing as planned. 
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COMPARATIVE ANALYSIS OF INITIAL INVESTMENTS 

The results of the cost estimation, using the methodology previously described 

are now presented. The total project costs for each building are presented in Figure 9 

for moment frames and Figure 10 for braced frames. In addition, these figures illustrate 

the relative percent change in the total recommended budget with respect to the code 

compliant SMRF for moment frames (MRF 1) and SCBF for braced frames (CBF 1), which 

are considered to be standard or default options for a typical project. 

For moment frame buildings, the MRF;,0 2 has an 8.3% premium relative to the 

MRF 1 . Moreover, HPMRF;,0 1 and HPMRF 3 experience a 12.2% and 2.8% relative cost 

increase, respectively. As can be seen in Figure 10, the cost of isolated code complaint 

braced frame buildings (CBF;50 2 and CBF;50 3) increases by about 12.6% relative to CBF 1. 

Modifying the strength of the frame by changing the design strength from R=2 to R=1 

has almost no influence on its cost. Only the R=1 design is code compliant. In addition, 

the cost of HPCBF 1 increases by 13.7% while the BRBF experiences a cost decrease of 

0.24%. 



Recommended Budget for Moment Frame Buildings and 

Percent Change based on SMRF Code Compliant 

$28,545,563 

$25,450,171 
$27,553,863 

~ 8.27% 

$26, 258,171 
,..... 12.16% 

- 3.17% 

MRF 1 MRFiso 2 HPMRFiso 1 HPMRF 3 

Figure 9. Budget for MRF buildings and percent change relati ve to MRF 1. 

Recommended Budget for Braced Frame Buildings and 

Percent Change based on SCBF Code Compliant 

$27, 103,903 $27,091,003 $27,355,743 

$24,069,195 13.65% 
$23,967,355 

CBF 1 CBFiso 2 CBFiso 3 HPCBFiso 1 BRBF 

Figure 10. Budget for BF buildings and percent change relative to CBF 1. 
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All of these percentages are quite substantial with the exception of 0.24% 

decrease in BRBF. This is consistent with the prediction made by Sabelli (2007), that as 

the building height increases "BRBF can yield significant cost savings over conventional 

SCBF systems." The fact that owners can get a high performance BRBF building at no 

cost premium relative to an SCBF, or a high performance moment frame with only 3% 

cost premium relative to a conventional SMRF can be very attractive to them. However, 

the increase in member sizes indicates an increase in the seismic mass which results in 

higher acceleration and nonstructural damage. 

A more detailed summary of the cost for each building is provided in Table 8. 

Due to the general conditions, contractor's overhead and profit, contingency for 

development of design, and soft cost package surcharges, the recommended budget for 

each project is about SO% higher than the total building and site cost (see Table 8). The 

only difference in the assumed surcharges is an increased design fee for the isolated 

building (2% versus 1% for the conventional building), which is reflected in the soft cost 

package. Table 9 shows the cost breakdown of the total soft cost surcharges for each 

building. 

The costs are broken down by the categories contributing to "Total Construction 

and Site Cost" in Table 10. Items 1-5 contribute to the Shell, 6-7 to the Interiors, 8-9 to 

Equipment and Vertical Transportation, and 10-13 to Mechanical and Electrical Systems. 



Table 8. Contributions to recommended budget 

Moment Resistant frame Braced frame 
Components 

MRF 1 MRF, 2 HPMRF., 1 HPMRF 3 CBF 1 CBF., 2 CBF, 3 HPCBF • ., 1 

TOTAL BUILDING & SITE 516,847 K 518,089 K 518,739 K 517,381 K 515,932 K 517,793 K 517,784 K 517,959 K 

Genera l Cond t on s 51.516 K 51,628 K S1,686 K S1.56-' K 51 .<3~ K S1,601 K 51,601 K S1 .616 K 

Contractor's Overhe ad & Prof tor Fe e 5918 K S9S6 K S1.02l K 59~7 K SS6SK S970 K 5969 K 5979 K 

PLANNED CONSTRUCTION COST 519,281 K 520,703 K 52L 446 K 519,892 K 518,234 K 520,384 K 520,354 K 520,554 K 

Conttngencv for Deve lopm e nt of Oes tgn S1.928 K 52.070 K 52,145 K 51.939 K 51.823 K 52.036 K S2.035 K 52.055 K 

Es-c alation IS el(c luded so so so so so so so so 
TOTAL COST ESTIMATE S21,209 K 522.773 K 523,591 K 521,881 K 520,057 K 52L400 K 522,389 K 52L609 K 

Total Soft Co st Pa-ck age 54.241 K 54.781 K 54.955 K 54.377 K $.4,012 K 54.704 K 54,702 K 54.747 K 

RECOMMENDED BUDGET 525.450 K 527554 K 528,546 K 526,258 K 524,069 K 527,104 K 527,091 K 527,356 K 

Table 9. Breakdown of soft cost package 

Moment Resistant Frame Braced Frame 
Components 

MRF 1 MRF., 2 HPMRF, 1 HPMRF 3 CBF 1 CBF., 2 CBF.., 3 HPCBF., 1 

Architect fee 51,697 K 51,822 K 51,887 K S1 .750 K S1 .605 K S1,792 K S1,791 K S1,809 K 

Structural Engineer Fee S21 2 K 5455 K 5472K 5219 K S201 K $448 K $448 K 5452 K 

Change Order Contingency S1,060 K S1. 139 K S1,1SO K S1,094 K S1.003 K S1.120 K S1.119 K 51,130 K 

Testing and Inspection 5424 K 5455 K S472K 5438 K 5401 K ~K ~K 5452 K 

Owner Project Management 5424 K 5455 K S472K 5438 K 5401 K $448 K ~K ~52 K 

Move In and Commission $4241( 5455 K 5472 K 5438 K 5401 K ~K ~K 5452 K 

TOTAL SOFT COST PACKAGE $4.241 K $4,781 K 54,955 K 54,.377 K $4,012 K 54,704 K 54.702 K 54.747 K 

BRBF 

515,884 K 

S1 .~ 23 K 

5865 K 

518,157 K 

S1 .816 K 

so 
519,973 K 

S3.994 K 

523,967 K 

BRBF 

S1. 59S K 

5200 K 

5999 K 

S399 K 

5399 K 

S399 K 

53,994 K 

"' 0 



Table 10. Contribution of individual components to TBSC 

Moment Resistant Frame Braced Frame I 

Components 
MRF1 HPMRF 3 CBF 1 BRBF I MRF· 2 HPMRF· 1 CBF· 2 CBF· 3 HPCBF 1 

Shell $6,357 K $7,264 K $7,913 K $6,891 K $5,442 K $6,968 K $6,959 K $7,133 K $5,374K I 

1. Foundations $363 K $1,088 K $1,088K $363 K $272K $1,088 K $1,088 K $1,088 K $272 K 

2. Vertical Structure $983 K $698 K $1,143 K $1,356 K $341 K $451 K $442 K $546K $300 K 

3. Floor & Roof Structures $1,757 K $2,222 K $2,426 K $1,917 K $1,574 K $2,173 K $2,173 K $2,244 K $1,547 K 

4. Exte rior Cladding $2,942 K $2,942 K $2,942 K $2,942 K $2,942 K $2,942 K $2,942 K $2,942 K $2,942 K 

5. Roofing, Waterproofing & Skylights $313 K $313K $313K $313 K $313K $313 K $313K $313 K $313 K 

Interiors $3,005 K $3,005 K $3,005K $3,005 K $3,005 K $3,005 K $3,005 K $3,005K $3,005 K 

6. Interior Partitions, Doors & Glazing $1,876 K $1,876 K $1,876 K $1,876 K $1,876 K $1,876 K $1,876 K $1,876 K $1,876 K 

7. Floor, Wall & Ceiling Finishes $1,128 K $1,128 K $1,128 K $1,128 K $1,128 K $1,128 K $1,128 K $1,128 K $1,128 K 

Equipment and Vertical Transportation $637 K $737K $737K $637 K $637K $737K $737K $737 K $637K 

8. Function Equipment & Specialties $217 K $217K $217 K $217 K $217 K $217 K $217 K $217 K $217 K 

9. Stairs & Vertical Transportation $420 K $520 K $520 K $420 K $420 K $S20K $S20K $S20 K $420 K 

Mechanical and Electrical Systems $6,849 K $7,084K $7,084 K $6,849 K $6,849 K $7,084K $7,084 K $7,084K $6,849 K 

10. Plumbing Systems $640K $758K $758 K $640K $640K $758K $758K $758 K $640K 

11. Heating, Ventilating & Ai r Conditioning $3,249 K $3,249 K $3,249 K $3,249 K $3,249 K $3,249 K $3,249 K $3,249 K $3,249 K 

12. Electric lighting, Power & Communications $2,S27 K $2,625 K $2,62S K $2,S27 K $2,S27 K $2,62S K $2,62S K $2,62S K $2,S27 K 

13. Fire Protect ion Systems $433 K $4S3K $453 K $433 K $433 K $453 K $453K $453 K $433 K 

Site Construction $0 $0 $0 $0 $0 $0 $0 $0 $0 
14. Site Preparation & Demolition $0 $0 $0 $0 $0 $0 $0 $0 $0 

1S. Site Paving, Structures & landscaping $0 $0 $0 $0 $0 $0 $0 $0 $0 

16. Utilities on Site $0 $0 $0 $0 $0 $0 $0 $0 $0 

e 
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Appendix B contains more detailed information about these cost estimates 

shown in two parts: a detail sheet and a summary page. In the detail sheets, the 

contributions of individual line items to TBSC (Table 10) are provided in more depth. On 

the other hand, the summary page provides an overview ofthe total cost summary with 

a cost per square foot for each building component. 

Analysis Strategy and Discussion 

An objective of this comparison study is to determine how iso lation affects the 

cost of the structure. For convenience, the total building construction cost 

subcategories were rearranged as follows: 

Foundation : Includes reinforced concrete spread footings and slab on grade. 

Structural Elements: Includes frame members, connections and floor slabs 

(with fireproofing and metal deck). The cost of the base layer directly above 

the iso lators is excluded from this subcategory. 

Non-structural elements: Includes cladding and partitions walls, glazing, 

doors, fittings, etc. (Items 4-7 of Table 11) 

Utilities: Consists of function equipment, elevators, mechanical, electrical 

systems and plumbing. (Items 8-13) 

Isolation: Includes all additional components associated with isolation 

system. A key cost is the additional floor level directly above the ground level 

which includes structural framing, moment connections, and floor slabs. 
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Othe r compo nents incl ud e d in this category a re iso latio n d e vi ces, base m e nt 

excavation, moat cover a nd retaining wa ll , base isolator pedest a ls, and 

pre miums for flexi ble connections. 

The cost of the pre vious cat egories is shown below for both latera l syst e ms: 

Tab le 11. Moment resisting fra m e TBSC by rearranged subcategories 

Total 
Components ~ ·- · ·- · ·- · · ··-··-·· - --··-··-·· ·· -··- ·· - -

MRF 1 MRF;,.2 HPMRF;50 1 HPMRF 3 

Foundation $362,908 $331,388 5331,388 $362,908 

Structural Elements $2,739,146 $2,038,946 $2,688,646 $3 ,273,146 

Isolation $1,973,412 $1,973,412 

Nonstructural elements $6,896,285 $6,896,285 $6,896,285 $6,896,285 

Utilities _ }~,~-~,~~-? .. __ ?.?!.~~-'-~-~~-- _}~,~-~,~~-? __ __ ?.?!.~~-'-~-~~- -·--------------------------------------
Total Bui lding cost $16,847,171 $18,088,863 $18,H8,563 $17,381,171 

Recommended Budget $25,450,171 $27,553,863 $28,545,563 $26,258,171 

Ta ble 12. Braced fra me TBSC by rea rra nged subcat egories 

Total 
Components 

CBF 1 CBF~so 2 CBF•• 3 HPCBF .. 1 BRBF 

Foundation $271,852 $331,388 $331,388 $331,388 $271,852 
Structural Elements $1,915,226 $1,742,986 $1,734,086 $1,908,826 $1,847,386 
Isolation $1,973,412 $1,973,412 $1,973,412 
Nonstructural elements $6,896,285 $6,896,285 $6,896,285 $6,896,285 $6,896,285 
Util ities $6,848,832 $6,848,832 $6,848,832 $6,848,832 $6,848,832 
Total Building cost $15,932,195 $17,792,903 $17,784,003 $17,958,743 $15,864,355 
Recomme nded Budget $24,069,195 $27,103,903 $27,091,003 $27,355,743 $23,967,355 
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The nonstructural elements and utilities are observed to be the sa me for all 

buildings in Table 11 and Table 12. This is not surprising given that the buildings have 

identical plan and the price of such items has been based on area and is unaffected by 

the presence of isolation system. For this reason, these subcategories will not be 

discussed thoroughly during this analysis. However, detailed information about the 

costs of the individual components of these subcategories can be found in Appendix C. 

The remaining categories, foundation, structural components and isolation elements are 

discussed in turn in the following section s. 

Foundation 

To determine how isolation affects foundation design cost, the different 

components involve were analyzed and the results are shown in Table 13 and Table 14. 

Additional contributions to foundation cost for isolated buildings that ordinarily need 

not be considered for conventional buildings were omitted from consideration here, 

such as excavation, retaining wall, and moat covers. 

Table 13. Moment Frame foundation cost 

Total 
Components 

MRF 1 MRF;,0 2 HPMRF;,o 1 HPMRF 3 

Reinforced concrete spread footings $254,620 $223,100 $223,100 $254,620 

Excavation $11,490 $9,570 $9,570 $11.490 

Formwork $63,120 $63,600 $63,600 $63,120 

Concrete $134,050 $111 ,650 $111,650 $134,050 

Reinforcing $45,960 $38,280 $38,280 $45,960 

Slab on grade (mud slab) $108,288 $108,288 $108,288 $108,288 
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Table 14. Braced frame found ation cost 

Total 
Components 

CBF 1 CBF0 0 2 CBF •• 3 HPCBF1, 0 1 BRBF 

Reinforced concrete spread footings $163,564 $223,100 $223,100 $223,100 $163,564 
Excavation $7,620 $9,570 $9,570 $9,570 $7,620 
Formwork $30,144 $63,600 $63,600 $63,600 $30,144 
Concrete $88,900 $111,650 $111,650 $111,650 $88,900 
Reinforcing $36,900 $38,280 $38,280 $38,280 $36,900 

Slab on grade (mud slab) $108,288 $108,288 $108,288 $108,288 $108,288 

The cost of the slab on grade is the same for all buildings since its price is based 

on area rather than vo lume. The foundation system of all iso lat ed buildings cost the 

same because the isolation system, which contro ls the forces transmitted to the 

foundation , was assumed to be the sa me for all cases. However, the foundation cost s in 

conventional buildings vary among the different lateral systems. Even though the 

foundation system for CBF 1 and BRBF, and MRF 1 and HPMRF 3 were assumed to be 

same (respectively), foundation systems should probably have been redesigned for the 

high performance buildings since higher forces could be t ransmitted to the foundation. 

The percent change of the total foundation costs for each moment and braced 

frame structures, relative to their respective code compliant conventional building, are 

shown Figure 11. The cost of the foundation system in an isolated moment frame 

building was reduced by 8.7% relative to the conventional moment frames, while the 

foundation costs in isolated braced frame superstructures increased by 21.9% relative to 

conventional braced frames. 



0.00% 

BRBF 

Foundation Cost's Percent Change for BF & MF based on 

SCBF/SMRF Code Compliant 

21.90% 21.90% 21.90% 

0% 
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-8.69% -8.69% 
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Figure 11. Percent increased of foundation system of MF/BF base on MRF 1/CBF 1. 
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The isolation system not only protects the structure and its contents but also 

allows reduced member sizes. As a result, the footing sizes and their cost are expected 

to be reduced . This is especially true for moment frame buildings as predicted by 

Hamburger et al (2009). The reinforced concrete spread footings of the isolated 

moment resisti ng frame superstructure are 12.4% less expensive than the conventional 

moment frame. However, the cost of the spread footing in the isolated braced frame 

buildings is 36.4% more expensive than in the conventional braced frame structure. One 

possible reason might be that MRF,,0 2 has a greater reduction in member sizes than 
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CBF;,0 2 or CBF;,0 3 did. Finally, the foundation system for all conventional moment 

frame ends up being 35.8% more expensive than conventiona l braced frame system. 

Structural Elements 

The structural framing costs vary for conventional and isolated buildings because 

the lateral systems are redesigned for different design forces and deformation limits. In 

this study, the superstructures of the isolated buildings were found to have lighter 

members than the conventional ones for minimal compl iance. The high performance 

isolated structure member sizes were deliberately selected to be larger (the same as the 

code complaint) to lead to improved performance. The cost of structural elements of 

both moment and braced frame buildings are summarized in Table 15 and Table 16, 

respectively. 

Table 15. Cost of moment frame st ructural elements 

Tota l 
Components 

MRF 1 MRF., 2 HPMRF;50 1 HPMRF 3 

Columns $982,500 $487,000 $932,000 $1,356, 300 

WF steel columns $840,000 $400,000 $800,000 $1.176,000 

Moment connections $48,000 $42,000 $42,000 $48,000 

Fi reproofing to stee l $94,500 $45,000 $90,000 $132,300 

Elevated floor structure $1,218,564 $1,071,714 $1,218,564 $1,343,164 

WF Structural steel $776,000 $644,000 $776,000 $888,000 

Meta l deck with concrete fill $355,264 $355,264 $355,264 $355,264 

Fireproofing to stee l $87,300 $72,450 $87,300 $99,900 

Roof structure $538,082 $480,232 $538,082 $573,682 

WF St ructura l steel $324,000 $272,000 $324,000 $356,000 

Metal deck wi th concrete f ill $177,632 $177,632 $177,632 $177,632 

Fr reproofing to stee l $36,450 $30,600 $36,450 $40,050 
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Table 16. Cost of braced frame structural e lements 

Total 
Components 

CBF 1 CBF,. 2 CBF,.3 HPCBF•o 1 BRBF 

Columns $341,030 $239,990 $231,090 $334,630 $299,890 
WF stee l columns $268,000 $172,000 $164,000 $268,000 $156,000 
RB braces $92,800 
Braced co nnect ions $42,880 $48,640 $48,640 $36,480 $29,040 
Fireproofing to steel $30,150 $19,350 $18,450 $30, 150 $22,050 

Elevated floor structure $1,062,814 $1,040,564 $1,040,564 $1,062,814 $1,053,914 
WF Structural steel $636,000 $616,000 $616,000 $636,000 $628,000 
Metal deck with concrete fill $355,264 $355,264 $355,264 $355,264 $355,264 

Fireproofing to steel $71,550 $69,300 $69,300 $71,550 $70,650 
Roof structure $511,382 $462,432 $462,432 $511,382 $493,582 

WF Structural steel $300,000 $256,000 $256,000 $300,000 $284,000 
Metal deck with concrete fill $177,632 $177,632 $177,632 $177,632 $177,632 

Fireproofing to stee l $33,750 $28,800 $28,800 $33,750 $31,950 

The cost of the metal deck with concrete fill in the floors and roof of all buildings 

are the same . 

The percent difference of the structura l components between each moment and 

braced frame stru ctures, re lative to the respective code compliant conve ntiona l 

building, are shown in the Figure 12. The cost of structural elements was reduced by 

0 .33% to 9.46% in the braced frame structures. On the other hand, the cost of structura l 

elements in the HPMRF 3 increased by 19.5% (relaive to MRF 1), while the cost of 

structural elements in MRF;,0 2 and HPMRF;,0 1 reduced by 25.6% and 1.8% respectively. 
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Figure 12. Percent change in structural components of MF/BF base on M RF 1/CBF 1. 
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Relative to MRF 1, the structural framing with fireproofing of the MRF;so 2 and 

HPMRF;,0 1 is $694,200 and $44,500 less expensive respectively. However, the HPMRF 3 

structura l components ended up being $534,000 more expensive. The HPMRF;50 1 ended 

up costing less because of a difference in length of the first floor columns. In addition, 

the moment connection unit cost for isolated moment frame building is $350 while for 

conventional is $400, which led to a $6,000 reduction in connection for isolated IMRF 

buildings. As mentioned earlier, RBS connections require more detailing than WUF-W 

connections for this reason their cost is higher. 
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For the braced frame buildings, relative to CBF 1, the structural framing with 

fireproofing of the CBF;,0 2, CBF;,0 3, and BRBF, is $360,656, $351,756, and $465,056, 

respectively, less expensive than the conventional code compliant structure. The 

moment connection unit cost for CBF 1 is $5,760 cheaper than CBF;,0 2 and CBF;,0 3. This 

is due to the layout of the CBF;,0 2 and CBF;,0 3 which have more braces than CBF 1. Also, 

the HPCBF;,0 1 and BRBF connections cost $6,400 and $13,840 less than those for CBF 1. 

Therefore, there is a significant saving in BRBF connections since they are less expensive 

than those in CBF 1. 

A graphical illustration of the relative costs of structural elements is given in Figure 13. 
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Figure 13. Percent change in structural elements for MF/BF based on MRF 1/CBF 1. 

~ 



52 

The basic cost of the isolation layer, which is essential ly the same for al l isolated 

buildings is determined next. The cost premium seen from Figure 14, was found to be 

$1,973,412 which is about 11.7% and 12.4% of the total for MRF 1 and CBF 1, 

respectively. The majority of thi s cost comes from the extra base layer and the isolators. 

The extra structural steel, metal deck and fireproofing placed at the base/ground level 

costs $669,832 which is 45% of th e isolation layer cost (Figure 14). Moreover, $525,000 

(35%) was expended to buy and test the isolators. The cost of the other components is 

shown in Table 17. 

Cost Distribution of Isolation layer 

2% 

1%-

2% 

• Moat cover I sacrificial) 

• Moat retaining wa ll, 8" 

• Basement drainage 

• Lighting for isolator crawl 

space 

• Floor at lowest level 

• Premiums at isolator plane 

Basement excavation 

Base isolator pedestals 

Figure 14. Cost distribution of isolation layer. 



Table 17. Components of base isolation layer and their cost 

Moment Resistant Frame 
Components Total Unit Cost Unit Cost 

($/SF footprint area) ($/SF total area) 
Moat cover (sacrificial) $47,400 $1.97 $0.66 
Moat retaining wall, 8" $170,640 $7.09 $2.36 
Basement drainage $72,192 $3.00 $1.00 
Lighting for isolator crawl space $48,128 $2.00 $0.67 
Floor at lowest level 669,832 $27.84 $9.28 

WF Structural steel $428,000 $17.79 $5.93 
Metal deck with concrete fill $177,632 $7.38 $2.46 
Fireproofing to steel $64,200 $2.67 $0.89 

Premiums at isolator plane $215,000 $8.93 $2.98 
Suspended shaft (elevator) $100,000 $4.16 $1.39 
Flexible connections (plumbing) $45,000 $1.87 $0.62 
Flexible connections (electric lighting) $50,000 $2.08 $0.69 
Flexible connections (fire prate. syst.) $20,000 $0.83 $0.28 

Basement excavation $155,900 $6.48 $2.16 
Mass excavation $68,400 $2.84 $0.95 
Structural backfi II $8,000 $0.33 $0.11 
Dispose off site, avg 20 miles $79,500 $3.30 $1.10 

Base isolator pedestals $28,720 $1.19 $0.40 
Formwork $11,760 $0.49 $0.16 
Concrete $11,200 $0.47 $0.16 
Reinforcing $5,760 $0.24 $0.08 

Moment connections $40,600 $1.69 $0.56 
Isolators $525,000 $21.82 $7.27 

Braced Frame 

Unit Cost Unit Cost 
($/SF footprint ($/SF total area) 

$1.97 $0.66 
$7.09 $2.36 

$3.00 $1.00 
$2.00 $0.67 

$27.84 $9.28 
$17.79 $5.93 
$7.38 $2.46 
$2.67 $0.89 
$8.93 $2.98 
$4.16 $1.39 
$1.87 $0.62 
$2.08 $0.69 

$0.83 $0.28 
$6.48 $2.16 
$2.84 $0.95 
$0.33 $0.11 
$3.30 $1.10 
$1.19 $0.40 
$0.49 $0.16 
$0.47 $0.16 

$0.24 $0.08 

$1.69 $0.56 
$21.82 $7.27 

"' "' 
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CONCLUSIONS 

Minimum code compliant and higher performing lateral systems (both moment 

resistant and braced frame) were designed for a 3-story low rise steel building 

configured as conventional or isolated . Cost estimates of the buildings were carried out. 

The reported effort is part of a larger cost-benefit study for isolated steel buildings, and 

the purpose of this paper was to compare initial investment of 3-story conventional and 

isolated steel buildings and determined how isolation affected the cost of the structure. 

The analysis of the cost estimate has led to the following conclusions: 

Cost of isolation layer for this building was $1,973,412 which is about 11.7% 

to 12.4% of the tota l cost for conventional code compliant. Because some of 

this cost was affected by reduction in structural framing and foundation s, the 

overall cost premium ended up being 8.3% to 12.2% for a moment frame 

building and 12.6% to 13.7% for a braced frame building. 

Based on the building's height, the code prescribes that an isolated OCBF be 

designed with a reduction factor of R=l. It was found that the strength of 

braced frame, as affected by isolation design requirements (changing from 

R=2 to R=1), had almost no influence on its cost . 

Buckling restrain braced frame buildings are cheaper than the conventional 

code compliant braced frame system. This is consistent with the prediction 

made by Sabelli (2007), in which he stated that as the building height 
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increases "BRBF can yield significant cost savings over conventional SCBF 

systems. " 

Owners can get a higher performance building up to 3% more than the 

relative cost for their respective conventional minimum code complaint. 

However, the increase in member sizes indicated an increase in the seismic 

mass which results in higher acceleration and nonstructural damage. 

The relative cost of seismic isolation, as a percentage of the total cost, may 

be higher in this study than for typical U.S. isolation applications because: the 

relative premium is greater for a short building than a tall building, and the 

relative premium is greater for standard classes of buildings (office, 

residential) than for buildings with expensive contents (hospitals, emergency 

response). A cost premium of 8-14% is a huge constraint for most owners, 

and strategies to reduce this cost should be investigated in detail. 
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High Performance Moment Frame Elevation View: 

Moment Frame Elevation on Line 1 (Sim. on Line 5) 
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Moment Frame Elevation on Line A (Sim. on Line G) 
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Appendix B: IMRF cost estimates sample 
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NEES Base Isolated Intermediate Moment Frame Building Concept Cost Model 

Section 1 Title June 25, 2008 

Los Angeles 0000-0000.000 

Quantity Unft Rate Total 

1. Foundations 

Basement excavation 

Mass excavation 5,700 CY 12 68,400 
Shonng SF 45.00 0 
Strucb.Jral backfill 400 CY 20.00 8,000 

Dispose off site, a"9 20 miles 5,300 CY 15.00 79,500 
Reinforced concrete spread footings 

Excavation 319 CY 30.00 9,570 
Formworl< 5,300 SF 12.00 63,600 
Concrete 319 CY 350.00 111 ,650 
Reinforcing 31,900 LB 1.20 38,280 

Base isolator pedestals 

Form worK 980 SF 12.00 11 ,760 
Concrete 32 CY 350.00 11,200 
Reinforcing 4,800 LB 1.20 5,760 

Base isolator 

Isolators 35 EA 15000 525,000 
Slab on grade (mud slab) 24,064 SF 4.5 108,288 
Moat co~.er (sac nficial) 632 LF 75 47,400 

1,088,408 
2. Vertical Structure 

Columns 

WF steel columns 100 TN 4000 400,000 
Moment connections 236 EA 350 82,600 
Fireproofing to steel 100 TN 450 45,000 

Reinforced concrete walls 

Moat retaining wall, 8" 3,792 SF 45 170,640 

698,240 
3. Floor and Roof Structure 

Floor at lowest le~.el 

WF Strucb.Jral steel 107 TN 4000 428,000 
Metal deck with concrete fill 22,204 SF 8 177,632 
Fireproofi ng to steel 107 TN 600 64 ,200 
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Elel.llted floor structure 

WF Strucb.Jral steel 161 TN 4000 644,000 

Metal deck with concrete fill 44,408 SF 8 355,264 
Fireproofing to steel 161 TN 450 72,450 

Roof structure 

WF Structural steel 68 TN 4000 272,000 
Metal deck with concrete fill 22,204 SF 177,632 

Fireproofing to steel 68 TN 450 30,600 

2,221 ,778 
4, Exterior Cladding 

Extenorwall framing 

Metal stud , 6' 27,360 SF 164,160 

Batt insulation 27 ,360 SF 1.1 30,096 
Exlenor finish to extenor wall 

Metal panel/rain screen 27,360 SF 75 2,052,000 

Interior finish to exterior walls 

G)!lsum board, taped and sanded 27,360 SF 109,440 
Glass & gla~ng 

.AJuminum framed windows 8,208 SF 70 574,560 
Doors, frames & hardware 

Entry doors EA 3000 12,000 
Soffits, trim & fascias 

Sun shading 

2,942,256 

5. Roofing , Water:eroofing & Sk~lights 

Roofing 

Single ply roof with insulation 24,064 SF 13 312,832 

312,832 
6. Interior Partitions, Doors & Glazing 

Interior partitions 

Metal stud and drywall framing 86,630 SF 15 1,299,456 

Doors, flames & hardware 

Interior doors 230 EA 2000 460,000 

Gla~ng 

~lowance for interior gla~ng (3%) 2,600 SF 45 117,000 

1,876,456 
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7. Floor, Wall & Ceiling Finishes 

Floor 

Lobby& pnmarycirculation 2,000 SF 20 40,000 
Ceramic tile 1,800 SF 15 27,000 
Carpei!VCT 68,392 SF 341,960 

Walls 

Lobby& pnmarycirculation LS 10000 10,000 
Ceramic tile 2,700 SF 15 40,500 
Paint 200,621 SF 1.2 240,745 

Ceil ing 

Lobby& pnmarycirculation 2.000 SF 25 50,000 
Gypsum board, laped and sanded 1,800 SF 20 36,000 
lay in acoustic tile 68,392 SF 5 341 ,960 

1,128,1 65 
8. Function Egui~ment& Seecialties 

Buill in fillings 72,192 SF 216,576 

216,576 
9. Stairs & Vertical Transeortation 

Slairs 

Primary circulation stairs , fullyfinished FL 40000 80,000 
Exit stairs FL 25000 100,000 

Elevators 

Pitiess traction elevators EA 120000 240.000 
Premium for suspended shaft at isolator plane EA 50000 100,000 

520,000 
10. Plumbing Systems 

Plumbing fixtures, including supply and waste piping 

Domestic fixtures 80 EA 6500 520,000 
Surface water drainage 

Roof drainage 24,064 SF 120,320 
Basement drainage 24,064 SF 72,192 
Premium for flexible connections at isolator plane 1 LS 45000 45,000 

757,512 
11 . Heating, Ventilation & Air Conditioning 

HV!'£: system, slandard VAV, Chiller/Cooling tower 72.192 SF 45 3,248,640 

3,248,640 



12. Electrical Lighting , Power & Communication 

Electrical sy.;tems 

Premium for flexible connections al isolalor plane 

Lighting for isolalor crawl space 

13. Fire Protection Systems 

Fully aulomatic fire sprinkler sy.;tem 

Premium for flexible connections at isolator plane 

14. Site Preparation & Building Demolition 

15. Site Paving , Structures & Landscaping 

16. Utilities on Site 

72,192 

1 

24,064 

72,192 

90 

SF 35 2,526,720 

LS 5()()()() 50,000 

SF 2 48,128 

2,624,848 

SF 433,152 

LS 2()()()() 20,000 

453,152 



NEES Base Isolated Intermediate Moment Frame Build ing 

Section 1 Ti tle 

Los Angeles 

SECTION 1 TITLE COMPONENT SUMMARY 

1. Foundations 

2. Vertical Struclure 

3. Floor & Roof Struclures 

4. Exterior Cladding 

5 Roofing , Waterproofing & Sl<~ighls 

She/1(1 -5) 

6. Interior Partitions, Doors & G la~ng 

7. Floor, Wall & Ceiling Finishes 

Interiors (6-7) 

8. Function Equipment & Specialties 

9. Stairs & Vertical Transportation 

Equipment & Vertical Transporta~on (8-9) 

10 Plumbing S)"tems 

11 . Heating , Ventilating & ,l>j r Conditioning 

12. Electric Lighting, Power & Communications 

13. Fire Protection S)"tems 

Mechanical & Electrical (10-13) 

To tal Building Construction (1·13) 

14. Site Preparation & Demolition 

15. Site Paving, Struclures & Landscaping 

16. Utilities on Site 

Total Sffe Construction (14-16) 

Gross Area : 72,192 SF 

$/SF 

15.08 

9.67 

30.78 

40.76 

4.33 

100.61 

25.99 

15.63 

41 .62 

3.00 

7.20 

10.20 

10.49 

45.00 

36.36 

6.28 

98.13 

250.57 

0.00 

0.00 

0.00 

0.00 
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Concept Cost Model 

June 25, 2008 

0000~000.000 

1,088 

698 

2,222 

2,942 

313 

7,264 

1,876 

1,128 

3,005 

217 

520 

737 

758 

3,249 

2,625 

453 

7,084 

18,089 
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TOTAL BUILDING & SITE(1·16) 250.57 18,089 

General Conditions 9.00% 22.55 1,628 

Contractors Owrhead & Profit or Fee 5.00% 13.66 986 

PLANNED CONSTRUCTION COST June 2008 286.78 20,703 

Contingency for Dewlopment of Design 10.00% 28.67 2,070 

'Escalation is excluded 0.00% 0.00 

RECOMMENDED BUDGET July 1 2008 315.45 22,773 

Architect Fee 8.00% 25.24 1,822 

Structural Engineer Fee 200% 6.30 455 

Change Order Contingency 5.00% 15.78 1,139 

Testing and Inspection 200% 6.30 455 

Owner Project Management 2.00% 6.30 455 
Mow In and Commission 2.00% 6.30 455 

I TOTAL SOFT COST PACKAGE July 12008 66.23 4,781 

!TOTAL BUDGET July 1 2008 381.67 27,554 
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Appendix C: Cost information of non-structural components and utilities 
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Noo-stou:tura l '"miU!:oeou 

1. Exterior Cladding 

-Q~~~-iiW-
~~~~~~~~- - -

·o~~-~-ti~ 
........ ~~~~~-

Unit Rate Total Unit Rate Total 

Exterior wall framing 

Metal stud, 6" 27,360 SF $164,160 27,360 SF $164,160 

Batt insulation 27,360 SF 1.1 $30,096 27,360 SF 1.1 $30,096 

EKterlor finish to exterior wall 

Metal panel/rain screen 27,360 SF 75 $2,052,00J 27, 360 SF 75 $2,052,CXX> 

Interior finish to exterior walls 
Gypsum board, taped and sanded 27,360 SF $109,440 27,360 SF $109,440 

Glass & glazing 

Aluminum framed windows 8,208 SF 70 $574,560 8,208 SF 70 $574,560 

Doors, frames & hardware 

Entry doors EA 3000 $12,0CIO EA 3000 $12,000 

Soffits, trim & fascias 

Sunshading $0 $0 

2. Roofing, Waterproofing & Skylights 

Roofing 
Sin le ply roof with insulation 

3. Interior Partitions, Doors & Glazi ng 

· o~~~titY 
.. . ... --~-~~-Ia~~-~ 

Q~~~i"i"h; 
~_l_x_~-~--

Unit Rate Total Unit Rate Total 

Interior partitions 
Metal stud and drywall framing 86,630 SF 15 $1,299,456 86,630 SF 15 $1,299,456 

Doors, frames & hardware 

Interior doors 230 EA 2000 $460,000 230 EA 2000 $460,000 

Glazing 

Allowance for interior lazing {3%) 2,600 SF 45 $117,0CX) 2,600 SF 45 $117,0CX) 

4. Floor, Wall & Ceiling Finishes 

·Q~~~~i~ .. 
.l.st:?la~~~ ··· 

. Q~~~ii·~ 
........ fi.x.~.~· ·· 

Unit Rate Total Unit Rate Total 

Floor 

lobby & primary circulation 2,000 SF 20 $40,000 2,000 SF 20 $40,000 

Ceramic tile 1,800 SF 15 $27,000 1,800 SF 15 $27,0CX) 

Carpet/VCT 68,392 SF $341,960 68,392 SF 5 $341,960 

Walls 
Lobby & primary circulation l5 10000 $10,000 l5 10000 $10,0CX) 

Ceramic tile 2,700 SF 15 $40,500 2,700 SF IS $40,500 

Paint 200,621 SF 1.2 $240,745 200,621 SF 1.2 $240,745 

Ceiling 

Lobby & primary circulation 2,000 SF 25 $50,000 2,000 SF 25 $50,000 

Gypsum board, taped and sanded 1,800 SF 20 $36,000 1,800 SF 20 $36,000 

Lay in acoustic tile 68,392 SF $341,960 68,392 SF $341,960 



5. Function Equipment & Specialties 

Bulltlnfittin 

6. Stairs & Vertical Transportation 

!~~~~~·~···· 
Unit .. ,. Total 

Stairs 
Primary circulation stairs, fully finished Fl 40000 $BO,<XXl 
Exit stairs Fl 2500) $100,000 

Elevators 
Pitless traction elevators EA 120C0l $240,000 

Isolated building cost for non·structt.Jral elements " $6,896,285 
fixed building cost for non·structt.Jral elements $6,896,285 

1. Plumbing Systems 

!

:Plumbing fixtures, including supply and waste piping 

Domestic fixtures 80 
Surface water drainage 

Roof drainage 24,064 

8. Heating, Ventilation & Air Conditioning 

HVAC system, standard VAV, Chiller/Cooling tower 

9. Electrical lighting, Power& Communication 

Electricals terns 

10. Fire Protection Systems 

isolated building cost for utilities $6,848.832 
Fixed building cost for utilities $6,848,832 

~~~.~~~~ .. 
Unit .. ,. Total 

EA 6500 $520,000 

SF $120,320 

Isolated 

Unit Rate Total 

SF $433,152 

95 

Fixed 
Quanti Unit .. ,. Total 

Fl 40000 $80,000 

Fl 2500l $100,000 

EA 120C0l $240,000 

·u·~~~t·irv· ·· . ~~":ed 
Unit ..,. Total 

80 EA 6500 $520,000 

24,064 SF $120,320 
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