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2Agricultural Research Service, National Soil Tilth Laboratory, 2110 University Blvd., Ames, 

IA 50011-4420, jerry.hatfield@ars.usda.gov
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Abstract. Lidar (LIght Detection And Ranging) provides the means to quantitatively evaluate 
the spatial and temporal variability of particulate emissions from agricultural activities. 
AGLITE is a three-wavelength portable scanning lidar system built at the Space Dynamic 
Laboratory (SDL) to measure the spatial and temporal distribution of particulate 
concentrations around an agricultural facility. The retrieval algorithm takes advantage of 
measurements taken simultaneously at three laser wavelengths (355, 532, and 1064 nm) to 
extract particulate optical parameters, convert these parameters to volume concentration, and 
estimate the particulate mass concentration of a particulate plume.  

The quantitative evaluation of particulate optical and physical properties from the lidar 
signal is complicated by the complexity of particle composition, particle size distribution, and 
environmental conditions such as heterogeneity of the ambient air conditions and atmospheric 
aerosol loading. Additional independent measurements of particulate physical and chemical 
properties are needed to unambiguously calibrate and validate the particulate physical 
properties retrieved from the lidar measurements. The calibration procedure utilizes point 
measurements of the particle size distribution and mass concentration to characterize the 
aerosol and calculate the aerosol parameters. Once calibrated, the Aglite system is able to 
map the spatial distribution and temporal variation of the particulate mass concentrations of 
aerosol fractions such as TSP, PM10, PM2.5, and PM1. This ability is of particular importance 
in the characterization of agricultural operations being evaluated to minimize emissions and 
improve efficiency, especially for mobile source activities. 

Keywords: remote sensing, lidar, aerosols, emission rate, agricultural operations  

1 INTRODUCTION 
Agricultural facilities and operations are sources of emissions of gases and particulates in the 
atmosphere. Quantifying those emissions has proven to be difficult because of the variation 
among facilities, the spatial arrangement of the emission sources, and the temporal variation 
in emissions caused by variations in management, biological systems, and weather. Typical 
designs of monitoring systems for agricultural systems have employed instrumentation 
designed to evaluate the concentrations of gases or particulates at a specific location around 
the facility or within the operation. Observations reported by Bingham et al. show the 
dynamics of air flow and particulate movement around facilities and raise the question of how 
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improved methods of measuring particulate and gas emission and movement might aid in our 
understanding of emissions from agricultural facilities and in the long-term provide a method 
of comparing systems or management practices [1]. 

Lidar technology has been successfully applied to qualitatively characterize particulate 
emissions from agricultural sources [2][3]. The lidar measures the laser light return signal 
scattered by the atmosphere. This is determined by an integral of the backscatter cross section 
of the aerosols, with the particle size distribution as a weighting function. As a result, the 
aerosol backscatter as a function of wavelength is a unique signature of the aerosol size 
distribution and refractive index of the particles. The physical properties of an aerosol can be 
retrieved from lidar data using the measured backscatter coefficients and the known 
relationship between aerosol physical properties and backscatter, as described by Mie 
scattering theory [4]. Typical lidar systems employed for agricultural applications are based 
on single wavelength lasers and have limited abilities to quantitatively characterize particulate 
emission parameters. 

Aerosol retrieval techniques for determining physical aerosol parameters (size 
distribution and concentration) from multi-wavelength lidar have been utilized since the 
1980s, and major improvements have been made in the past several years 
[5][6][7][8][9][10][11]. Unambiguous and stable retrieval of the aerosol physical parameters 
using only a lidar requires measurements of backscatter coefficients for at least three 
wavelengths and the aerosol extinction coefficient for at least two wavelengths using 
additional Raman channels [8][10]; however, there are significant design challenges with 
building lidars with Raman channels [11]. 

To date, a significant database of atmospheric aerosol characteristics has been obtained 
by the combination of satellite and ground based observations [5][12]. These databases can be 
used to make assumptions on the aerosol properties from each particular source. Using these 
assumptions, the physical properties of assumed aerosols can be retrieved from measurements 
of backscatter coefficients of an elastic lidar with three wavelengths [5][13]. In most cases, 
the accuracy of the retrievals strongly depends on a priori assumptions of the aerosol 
refractive index and of the type and shape of its size distribution [14].  

To quantify emissions from a wide range of variable agricultural sources, a relatively 
inexpensive, robust, and easily operated lidar system was needed to provide particulate 
emission measurements in a matter of a few minutes under a wide range of meteorological 
and operational conditions. Aglite is a three-wavelength elastic lidar system with a 12 m 
range resolution and 450 r telescope designed to meet these requirements [15]. The lidar is 
calibrated using additional aerosol characteristic point measurements to enable the 
characterization and retrieval of aerosol fractions needed for these evaluations. Converting the 
lidar returns to aerosol concentration is a complex process requiring significant additional 
input. This paper presents the approach used in the Aglite lidar calibration and aerosol 
retrieval process and demonstrates the ability of the lidar system to characterize particulate 
mass concentration emissions. 

2 METHOD AND INSTRUMENTATION EMPLOYED  
Adequately describing the aerosols encountered at agricultural facilities is a complex 
process. Particle size distributions are often described using a bimodal log-normal 
distribution with six independent parameters. In addition, calculating the backscatter 
properties of an aerosol requires three more variables for complex index of refraction at 
each wavelength, resulting in as many as nine independent parameters needed to describe 
an aerosol. Moreover, in most cases the fine and coarse particle modes have different 
sources and chemical compositions, which can lead to size-dependent complex refractive 
indices [10]. This may require a total of twelve independent parameters to describe the 
aerosol, while Aglite has three simultaneous lidar channels available for inversion. 
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Furthermore, uncertainties in aerosol chemical composition, non-spherical particle shape, 
and the variety of environmental conditions combine to make it unfeasible to measure mass 
concentration purely optically. 

In the approach described here, the particulate chemical and physical properties are 
measured in situ using point sensors that measure the particle size distribution of both 
particulates emitted at the experiment site and background aerosols. In summary, these point 
measurements are used to establish the parameters required to invert the lidar equation and 
retrieve the aerosol concentration as described in section 3. Point measurements are also used 
to calibrate and validate the results of the lidar retrievals. These measurements are made by
MetOne 9722 Optical Particle Counters (OPCs) and AirMetric MiniVol Portable Air 
Samplers (Filter Particulate Samplers or FPS) aerodynamic particle sampler instruments. (The 
instruments and manufacturers named herein were used in the research experiments 
described; however, their use does not constitute an endorsement or preferential treatment by 
the researchers or the project sponsors.)  

The calibration process consists of two major steps. First, the lidar line of site is 
placed next to the OPC used for calibration to establish a reference calibration point that 
will be used to convert the lidar return signal to aerosol optical parameters as described 
in section 3.3. This calibration step is typically performed every 2-5 min to account for 
variability of the background aerosols. Secondly, the relationship between aerosol data 
acquired optically (OPC and lidar) and aerodynamically (FPS) is derived for each 
experiment setup as a mass calibration parameter. This relationship is described by the 
mass conversion factor (MCF) [16].  

MCF is derived using collocated OPC and clusters of FPS samplers, and the MCF is used 
to make the conversion from particle volume concentration to mass concentration units (see 
section 3.2). In the data published here, the MCF was derived from data averaged over one or 
more days using several collocated OPC and FPS clusters strategically arrayed around the 
experimental site. The FPS samplers represent a USEPA-approved method of measuring 
particulate mass concentrations and were used in this study to validate OPC and lidar derived 
PM concentrations. FPS clusters are located on the upwind side to collect background 
aerosols and downwind (emission and background aerosols) to provide a truth data set for 
validation as is discussed in section 6. 

The Aglite lidar system utilized in this work is described in detail by Marchant et al. [15]. 
It is a single diode-pumped 10 kHz Nd:YAG laser co-aligned with a Newtonian telescope 
with a 28-cm diameter primary mirror. The laser operates simultaneously at 1.064 m (IR), 
0.532 m (VIS), and 0.355 m (UV) wavelengths with pulse energies of 435, 50, and 93 J,
respectively. To measure the background and emission aerosol properties, OPCs and FPS are 
mounted on the array of towers around the facility under study. The OPC sensors have the 
ability to count and size airborne particles into eight size ranges from 0.3 to greater than 10 

m in diameter with a selectable sample averaging time between 2 and 60 s. Clusters of filter-
based portable FPS are collocated with the OPCs. Each sampler in the cluster has a different 
impaction head that aerodynamically separates the aerosol into the mass fraction of TSP 
(Total Suspended Particulate), PM10, PM2.5 or PM1. This allows simultaneous measurement of 
each mass fraction concentration at the cluster location. The sampling period varies from 4 to 
24 hours, based on the estimated background aerosol and emitted concentrations. Each 
sampler is fitted with a conditioned, pre-weighed Teflon filter and operates at a flow of 
approximately five liters per minute. Following sampling, the filters are recovered, 
conditioned, and reweighed for filter catch and determination of each location’s mass 
concentrations. 

Meteorological measurements are also made on site to record wind speed and direction, 
air pressure, temperature, and humidity. Additionally, an Aerodyne Research Inc. Aerosol 
Mass Spectrometer (AMS) is installed in the auxiliary trailer. This provides high resolution 
information on the ionic composition and fine particle size distribution of the aerosol. A 
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detailed description of the instrumentation and the results of the point measurements are 
reported by Martin et al. [17]. 

3 AEROSOL MASS CONCENTRATION RETRIEVAL 
The process of retrieving aerosol mass concentration from lidar data is illustrated in Fig. 1. 
The retrieval is outlined as follows. First, the lidar data are preprocessed. The relationships 
between backscatter, extinction, volume concentration, and mass concentration of the aerosol 
components are established. Then, the inversion of the lidar equation for backscatter is 
performed using the form of Klett’s [18] solution including background where extinction is 
proportional to backscatter. Finally, a least-squares method is used to convert backscatter 
values to aerosol mass concentration using the previously established relationships. 

Fig. 1. The Aglite retrieval algorithm flow chart, showing the input locations for the in situ data. 

Under this procedure, it is assumed that the aerosol particles are spherical and have a 
constant index of refraction and density with respect to size. Values of refractive index m for 
assumed aerosol type are selected from the Handbook of Geophysics and the Space 
Environment [19] and the OPAC database [20]. As a result, the backscatter and extinction 
parameters of a particle can be calculated using Mie theory for spherical particles.  

Therefore,  

0

2

0

2
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,,

drrnmrQr

drrnmrQr ext

 (1) 

where r is the particle radius, n(r) is the particle size distribution, and Qext and Q  are the 
extinction and backscatter efficiency functions, which depend on particle radius, wavelength 
, and complex index of refraction m. It is also assumed that the aerosol is divided into two 

component scatterers, a homogeneous background component and a varying emission aerosol 
component. Furthermore, it is assumed that the emission aerosol is well mixed, i.e. only the 
concentration of the emission aerosol varies with space and time, not the shape of the aerosol 
size distribution, and that multiple scattering effects can be neglected. The following sub-
sections describe the elements of the flow chart in Fig. 1. 
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3.1 Preprocessing 
The lidar equation can be expressed as: 

NzdzzzGFFCP(z)
z

0
2exp , (2) 

where P(z) is the measured power at range z, and C is the lidar coefficient representing the 
cumulative effect of lidar output power, receiver area, optics and detector efficiencies. In eq. 
(2), the wavelength dependence is implicit. The factor GFF(z) is the geometric form factor of 
the lidar, (z) is the backscatter coefficient at range z, (z) is the extinction coefficient at 
range z, and N represents the solar background noise component of the signal. Its mean and 
variance are assumed to be constant.  

The mean of N is estimated and subtracted from the data. The shape of the geometric 
form factor (GFF) is modeled based on the physical parameters of the lidar optics, and the 
data are normalized by this estimate of the GFF. The difficulty in correctly modeling the GFF 
is well known. The expected attenuation due the GFF is 80% at 650 m, so measurements were 
made at this range or further in order to insure minimal error due to incorrect GFF estimation 
[15]. Finally, the lidar data are converted to a logarithmic range-corrected form convenient 
for inversion by Klett’s method, expressed as S(z):

zGFF
NzPzzS

2

ln  (3) 

3.2 Point Sensor Data 
Point-sensor instruments are used to determine the relationships between backscatter, 
extinction, volume concentration, and mass concentration of the aerosol components. The 
OPC instruments are strategically placed around the research site and measure the particle 
size distributions of both the background and emission aerosol components. Using (1), 
backscatter and extinction coefficients for each wavelength are calculated from these data. 
The relationship between the backscatter coefficients and cumulative volume concentration 
of the emission aerosol component is established. Additionally, backscatter coefficients 
from these instruments are used as boundary conditions during the inversion step of the 
retrieval.  

The channel counts of an OPC instrument represent the particle size distribution of the 
atmospheric aerosols at a single point as a function of time. This in turn gives the backscatter 
and extinction at that point as a function of time using (1). The cumulative volume 
concentration as a function of time is also calculated using 

kri

i
iik nrV

2

0

3

3
4

, (4) 

where ni is the particle density in size bin i. 
In this case, cumulative volume concentration is defined similarly to PM concentration: 

the fraction of the total volume of particles, whose diameter is less than k microns, where k = 
1, 2.5, 10, or infinity in the case of TSP. 

Dividing the extinction coefficients by the backscatter coefficients establishes the ratio of 
extinction to backscatter, or lidar ratio. Particle normalized values for backscatter ( ) and 

cumulative volume concentration (V~ ) are then calculated. This establishes the following 
relationship between backscatter and volume concentration: 
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where n is the particle concentration.
Aerodynamic fractioning FPS samplers are also placed around the research site, co-

located with the OPC instruments. These measure the aerosol mass concentration, integrated 
over a period of time determined by their sample time. A relationship between aerosol mass 
concentration and aerosol volume concentration, or MCF, is established by dividing the 
average aerosol mass concentration by the average cumulative volume concentration from the 
co-located OPCs. 

Theoretically, the conversion from particulate cumulative volume concentration to 
mass concentration is complex, and several simplifying assumptions have to be made, 
namely that the particles are spherical, have constant density, and have negligible multiple 
scattering effects. Using co-located OPCs and FPS allows direct calibration of optical 
instruments (OPC and lidar) by establishing the MCF corresponding to each PMk fraction. 
The calibration parameters are derived from OPC and AirMetric portable PMk samplers 
placed in clusters at the same location. OPC data are averaged over the same period as the 
sampling time of the co-located FPS, and then Vk for each mass fraction is calculated 
according to (4).  

An estimate of the MCF is calculated by dividing the PMk mass concentration values 
from the FPS by the value for Vk measured by the co-located OPC. These data are averaged 
over one or more days in several locations, and a mean value of MCFk for the experiment is 
calculated for each PMk fraction: 

N

i ki

ki
k V

PM
N

MCF
1 ,

,1
 (6) 

Molecular Rayleigh scattering makes up an important part of the homogeneous 
background scattering component. A weather station is deployed at the site to record 
temperature, pressure, and humidity with time, which are then used to model the expected 
backscatter and extinction contributions due to Rayleigh scattering. 

3.3 Klett Inversion 
Using (4), the lidar equation for two scatterers may be written in the form [18]: 

z

EBEB zdzzCS(z)
0

2lnln , (7) 

where the subscript B represents the homogeneous background component, and the subscript 
E represents the varying emission component. 

The standard solution of this equation involves two a priori assumptions. The first 
assumption is that the relationship between aerosol extinction and backscatter or lidar ratio, 
here defined as L= / , is known. 

The second assumption is that the boundary conditions of (7) must be defined at some 
reference range. This is done by determining either the extinction coefficients or the 
backscatter coefficients at the reference range zR.
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In this specific case, both assumptions are handled using the OPC point sensor data. The 
lidar ratios are calculated using the extinction and backscatter values derived from the OPC 
data as described previously. The value for the boundary condition is obtained by placing the 
lidar beam next to the calibration OPC at some reference range zR during the lidar 
measurement. The boundary condition backscatter values for the lidar data are simply the 
backscatter values derived from the OPCs taken at the same time. The data from a line-of-site 
OPC calibrate the lidar data. By using coincident OPC data to establish the boundary 
condition of (7) and determine the relationships of the aerosol properties, the lidar is 
specifically calibrated for the experiment. 

With these constraints satisfied, (7) can be solved formally. Following Klett’s standard 
solution [18], an expression for the emission component backscatter for a single channel is  

1

exp ( )

2 exp ( ')
R

E BzR

R E Rz

S z S
(z)

L S z S dz
, (8) 

where the term RS  is defined as the value of S  at range zR and variables S  and RS  are 
defined in terms of the S function as follows: 

( ) 2 2
R Rz z

R R B B E B
z z

S z S S S L dz L dz , (9)

where LB and LE represent the lidar ratio for the background and emission components 
respectively. The sign error in Klett’s original equation has been corrected here. 

Klett’s original solution was derived for atmospheric applications when a lidar is looking 
straight up, so that the molecular contribution is significant for altitudes above the aerosol 
boundary layer. For this case, the background lidar ratio LB can be determined from Rayleigh 
theory and is known to be 8 /3. For agricultural applications, all measurements are conducted 
close to ground level, and the main contribution to atmospheric scattering is due to aerosols. 
However, for Aglite measurements, molecular Rayleigh scattering can be comparable with 
Mie background aerosol scattering, especially at shorter (UV) wavelengths. 

The extinction and backscatter values from Rayleigh scattering are modeled using 
measurements of temperature, pressure, and humidity [11][19], and added to the backscatter 
and extinction values of the background aerosol to form the backscatter and extinction values 
of the homogenous background component. 

3.4 Aerosol Concentration Retrieval 
Given the recovered backscatter values as a function of range and wavelength from the Klett 
inversion, they can then be converted to aerosol volume concentration. Expressing the particle 
normalized backscatter values from (5) and the lidar measured backscatter values (8) in 
vector form, and applying the Moore-Penrose weighted minimum least-squares solution, 
results in the value for particle concentration 

E
T
E

E
T
E zzn

W
W

~~
~

,  (10) 

which can be multiplied by the particle normalized cumulative volume concentration vector, 
resulting in the cumulative volume concentration: 
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znz EE VV ~
 (11) 

The term W is a diagonal weighting matrix, whose diagonal elements are the expected 
variance of the particle normalized emission backscatter at the corresponding channel. 

2
,

2
,

2
,

00
00
00

zIR

zVIS

zUV

zW  (12) 

Having retrieved aerosol volume concentration, all that remains is to multiply it by the 
MCF, which was calculated previously. At this point, the kth fraction of the aerosol mass 
concentration of the emission component is known as a function of distance, 

zVMCFzPM KKK .  (13) 

4 Aerosol Model Sensitivity Analysis 
A sensitivity study was conducted to determine how constraining the particulate size 
distribution shape affected the stability and accuracy of the retrieval process. Simulations 
were conducted for monomodal and bimodal log normal distributions with parameters 
covering the range of particulates encountered during the field experiments. Three types of 
aerosols were synthesized, and for each type, the backscatter coefficients i at three 
wavelengths were calculated using Mie theory (1). Type 1 and type 2 aerosols were 
constructed for a monomodal distribution typical for fine (subscript f) and coarse (subscript 
c) modes respectively. The following parameters were chosen: rmf = 0.15 m, rmc = 2.0 m, 

f = c = 1.5; and two values for concentration: Nj=1010 and 1011 #/m3. For type 3 aerosol, a 
bimodal distribution was assumed with the mode radius and distribution width of the fine 
and coarse modes being the same as for type 1 and type 2 distributions respectively. Two 
ratios of particle numbers in fine and coarse modes, Nf/Nc=100 and 1000, were tested. To 
account for the diversity of aerosols present in the field, simulations were performed 
assuming the index of refraction of both water-soluble and dust-like aerosols for each type 
of distribution.  

Simulations were conducted both on noiseless synthetic data and on synthetic data with 
Gaussian distributed noise added. The backscatter i noise level values were chosen based on 
noise levels that are typical over the range of 600 to 1000 m and for 20% and full (100%) 
laser power. The signal-to-noise ratio and backscatter coefficient noise of the lidar return is 
range dependent [15]. At full transmitted power, the ratio of standard deviation to mean value 
in i retrievals ranged from 8 to 14% for IR, from 5 to 12% for VIS, and from 10 to 18% for 
UV wavelengths. At 20% transmitted power, these errors increase to 15-25% at IR and VIS 
wavelengths and to 20-35% at UV. To cover this range of input noise, two noise ratio values 
of i were used: 10% and 20%. 

The statistical analysis of measurement accuracy (absolute error or bias with respect to 
the true value), measurement uncertainty (root mean square RMS error with respect to the 
true value), and measurement precision (standard deviation estimated with respect to the 
mean sample value) were estimated for 50 runs for each aerosol type and condition. 
Simulations were also conducted with a form of the retrieval algorithm [21] that permitted the 
retrieval of unconstrained solutions. For the single-mode log normal particle size distribution 
under the different scenarios of unconstrained parameters of particle size distribution, fixed 
mode radius (µ-constrained), and fixed width of the distribution ( -constrained), it was found 
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that the unconstrained solution had significantly more error than the fully-constrained 
solution. Noiseless data produce stable retrievals for all cases with absolute errors in the 
number concentration not exceeding 4%. Unconstrained solution on the noisy data can lead to 
40-80% errors in the PM mass concentration estimations. The µ-constrained errors of 
particulate mass fraction for PM2.5 and PM10 retrievals can be reduced to 10-14% at full laser 
power and to 15-20% at 20% power.  

The bimodal particle size distribution simulation results are summarized in Table 1. The 
errors are presented as a ratio of the standard deviation of the cumulative volume 
concentration Vk to its mean value in percent. In this case, the solution of the unconstrained 
bimodal distribution tends to converge to a single mode distribution with mode radius 
between the fine and coarse mode radii resulting in large errors in PM concentration (higher 
than 150%). Better results are achieved when distribution width is fixed for both modes. 
However, while the errors are not as large for smaller PM fractions (20-40%), they reach 
130% for TSP mass concentration. The best results are when constraints are applied to both 
the mode radius and the distribution width for both fine and coarse modes. 

Table 1. Cumulative volume concentration error for the bimodal particle size distribution estimated with 
different constraints derived from in situ data with 10% and 20% uncertainty in the backscatter 

coefficients. Errors are expressed as a ratio of  over the mean cumulative volume concentration (%). 

CVC V1 V2.5 V10 VTSP

 10% 20% 10% 20% 10% 20% 10% 20% 

µ-constr 19% 37% 10.5% 19% 12% 30% 125% 180% 

-constr 32% 41% 27% 36% 45% 58% 87% 130% 

µ, -constr 11% 22% 10% 20% 12% 25% 18% 35% 

The bimodal particle size distributions retrieved from 50 runs are compared for the 
µ-constrained and µ, -constrained solutions in Fig. 2a and Fig. 2b, respectively. For µ, 

- constrained solutions, errors in PM1, PM2.5, and PM10 mass concentration are <12% 
(20% in TSP) for 10% input errors (full laser power). The retrieval errors at 20% laser 
power are <25% for PM1, PM2.5, and PM10 mass concentrations, but increase to 35% for 
TSP.

The results of this simulation clearly show that an acceptable level of error in retrievals 
of bimodal particle size distributions can be achieved only by constraining both the mode 
radius and width of both fine and coarse modes. This implies that for high levels of noise, an 
acceptable level of error in particle concentration retrieval can be achieved only if the shape 
of the particle size distribution is already fully characterized. For this reason, the retrieval 
algorithm described in Section 3 uses a priori knowledge of the aerosol distribution shape 
from OPC sensors. 

a b 

Fig. 2. Spread of the retrieved results of 50 runs for bimodal particle size distribution with µ-constrained 
(a) and µ, -constrained (b) solutions with 10% error in .
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5 RETRIEVAL ERROR ESTIMATION  
In this section, the measured data from field measurements are used to develop an estimate of 
the lidar particulate mass measurement error. Optical (lidar and OPC) particulate cumulative 
volume concentration error has been estimated comparing the OPCs with each other and with 
EPA standard instrumentation. The mass concentrations derived from optical measurements 
are not measured directly but calculated from several physical parameters, each of which has 
a mean value and an error. The resulting error can be estimated by a standard error 
propagation method. For a function f derived from several measured variables xi with 
independent measurement precision xi the uncertainty of f can be approximated by [22]: 

n

i
i

i

x
x
ff

1

2
2 . (14)

Using this approach, an expression for measurement uncertainty of lidar mass 
concentration retrievals can be derived from (11) and (13). Assuming independent errors in 
particulate mass concentration measured by FPS and cumulative volume concentration 
measured by OPC and lidar instruments, the relationship is 
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where the uncertainty in the MCF can be estimated from (6) as 
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The parameters PMSM and PML represent uncertainty in PM concentration measured 
by FPS and lidar respectively, while VOPC and VL are errors in cumulative volume 
concentration calculated from OPC and lidar data respectively.  

It is possible to estimate the measurement errors of the parameters in (15) and (16). 
Chow et al. [23] have shown that errors of mass concentrations measured by FPS do not 
exceed 8%. The precision of the OPC sensors was measured by taking measurements for a 
period of time with all of the OPCs collocated. The estimated precision error during this 
experiment did not exceed 10% for PM2.5 and PM10 fractions and is about 15% for PM1 and
TSP mass fractions. These results agree well with independent estimations by Binning et al. 
[16] for a custom-built OPC system. Total errors in MCF calculations were then estimated 
using (16). These errors do not exceed 12% for PM2.5 and PM10 fractions and are about 15-
18% for PM1 and TSP fractions. It is important to note that since the estimated uncertainty of 
cumulative volume concentration represents precision, the MCF can be biased, and the 
uncertainty in the MCF also represents precision, not accuracy. 

During Aglite field experiments, the MCF was estimated for each campaign. The data 
were collected in several locations over a period of several days, and the mean values of MCF 
and its precision were estimated for each PM fraction, for background and emissions 
separately. These values are summarized in Table 2, which shows that the precision of the 
MCF varies in the range of 10-20%, depending on the experimental conditions. In general, 
these data agree well with the error estimations presented previously. Higher values of MCF 
errors are mostly due to influence of fugitive dust on the FPS (swine facility and almond 
orchard) or variable wind direction (cotton gin) during the FPS collection period.  
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Table 2. Comparison of aerosol type and MCF from three campaigns. Measurement precision of 
mean MCF is presented in terms of the 95% confidence interval. 

Swine Facility  Almond Orchard Cotton Gin  

Aerosol type Continental 
clean

Continental 
polluted  

Continental 
clean 

PM2.5 4.7±0.7  6.6±2.8 1.6±0.6 

PM10 1.9±0.2 2.2±0.6 0.9±0.5 

Background 
aerosol

TSP  2.2±0.8  

Aerosol type Water-soluble Mineral Mineral+Organic

PM2.5 4.2±0.75  6.3±2.2 1.25±0.22 

PM10 2.5±0.4 1.8±0.4 0.73±0.18 
Emissions

TSP  1.4±0.5 0.65±0.3 

 Errors in the cumulative volume concentration retrieved from the lidar data were 
estimated by measuring the standard deviation of a 2-4 minute stationary stare through a 
homogeneous atmosphere. These estimations were conducted during all three field 
campaigns, and they agree well with the simulation results presented in Table 1. Using (16), 
total errors in mass concentration retrieved from the lidar data were estimated. The results are 
presented in Table 3 for 10% and 20% MCF errors.  

Table 3. Lidar mass concentration error in percent estimated for different particulate mass 
fractions and assumed error in MCF. 

Size fraction PM1 PM2.5 PM10 TSP 

Laser power 100% 20% 100% 20% 100% 20% 100% 20% 

10% 15% 24% 14% 22% 16% 27% 20% 36% MCF
error

20% 23% 30% 22% 28% 23% 32% 27% 40% 

 Summarizing these results, the measurement precision of PM mass concentration 
retrieved from lidar data can be estimated as 14-27% for the lidar system operating at full 
laser power and 22-40% for lidar operating at 20% power. The precision of lidar 
measurements strongly depends on the precision of the MCF, which in turn depends on the 
homogeneity of atmospheric conditions during field experiments and the mixing of 
background and emission aerosols in the FPS during their sampling period. Because of the 
relative insensitivity of optical instruments (OPCs and lidar) to larger particles, the errors in 
MCF measurements and lidar retrievals for TSP mass concentrations are larger. This is 
demonstrated by experimental data (see Table 3). 

6 EXPERIMENTAL RESULTS 
Several field measurement campaigns have been conducted with the Aglite system, 
including experiments at a swine feeding facility in Iowa and an almond orchard and 
cotton gin in California. Data presented in the following sections have been selected to 
demonstrate system performance and error analysis and are not intended as an emission 
analysis.
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6.1 Site descriptions
A schematic diagram of the Aglite system setup at the deep-pit swine production facility near 
Ames, Iowa is shown in Fig. 3 (this setup is representative of most experimental sites). The Iowa 
experiment was conducted from August 24 to September 8, 2005. The facility consisted of three 
separate parallel barns, each housing approximately 1,250 pigs. The area around the facility was 
topographically flat and surrounded by soybean and cornfields. An unpaved road bordered the 
swine production facility to the south, and fugitive dust events from the road were captured during 
lidar observations.  

Particulate emissions from barns were localized at a distance of ~650 m from the lidar, while 
fugitive dust clouds appeared at a variety of ranges. A number of OPC instruments and FPS were 
placed around the facility to provide background and plume data for lidar calibration. FPS were 
not grouped in clusters for this experiment, but instead were spread around the facility to provide 
better coverage. PM10 and PM2.5 mass fractions were not collected simultaneously, as the sample 
heads were changed halfway through the experiment. PM2.5 was sampled from August 24 through 
September 1, and PM10 from September 2 through September 9. The particle size volume 
distributions of the three components (background, emission, fugitive dust) are shown in Fig. 4a. 

Fig. 3. A typical experimental site layout showing locations of in-situ sensors and the Lidar (distance 
from lidar to the barns is ~ 650 m and is out of layout scale). 

The almond orchard experiment was conducted at the Nickels Soils Laboratory research 
farm near Dunnigan, California from September 26 to October 11, 2006. Harvesting included 
tree shaking, sweeping, and pickup operations that produced dust plumes from the tree 
canopy and bare surface soil localized at the point of harvesting. Typical arrays of point-
sensor instruments were installed on both the down- and up-wind sides of the orchard. Due to 
the significant amount of dust emission during harvesting and the short time requirements of 
the operations, the sampling times of the FPS were reduced to between 2 and 4 hrs.  

The winds during some of the experiment periods were light and variable, and the 
orchard under study was surrounded by other almond orchards that were also intensively 
harvested during the study period. On these days the experimental conditions challenged the 
entire Aglite system’s ability to separate background and in-plume aerosols parameters 
because: 1) the variable wind did not allow unambiguous up-wind and down-wind conditions, 
and 2) adjacent neighbor harvesting violated the assumption of a homogeneous background 
atmosphere component. This can be seen in Fig. 4b, where it is clear that the emission 
component is not fully separated from the background component. These issues were 
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mitigated by waiting for favorable conditions, but showed the system was not as immune to 
the effects of local environmental conditions as was originally hoped. 

The cotton gin experiment was conducted in California’s southern San Joaquin 
Valley from December 10 to 15, 2006. Cotton is subjected to three basic conditioning 
processes (drying, cleaning and extracting) before it is processed to separate lint and 
seed. An air handling system, which moves cotton from the trailer through the processes 
to the bale, is potentially a large source of particulate matter emission. All conveying air 
was cleaned by a cyclone before being released to the atmosphere. During this 
experiment the predominant wind direction changed diurnally between morning and 
evening hours. A downwind tower with the normal cluster of point sensors was located 
~150 m northwest of the gin, while an upwind tower was located ~450 m south with the 
same instrument array. Separating upwind and downwind PM data was critical though 
difficult. Fig. 4c illustrates the OPC-measured background component distribution, while 
the emission component is illustrated in Fig. 4d. 

6.2 Field site aerosol models
Data measured in situ are used to define the aerosol particle size distribution for each 
experiment. Examples of measured particle size distributions for the summer time Iowa 
atmosphere (Fig. 4a) and the fall California almond harvest (Fig. 4b) show bimodal 
distributions with different ratios of number concentration in fine and coarse modes. Fugitive 
dust in Iowa and emissions from the cotton gin processing and almond orchard harvesting 
were mostly composed from mineral aerosols exhibiting the properties of large particles [12].  

Fig. 4. (a) Size distribution comparison of background and emission aerosol components measured by 
OPC around swine faculty. (b) Almond harvest background and emission component comparison. (c) 
Comparison of a bimodal log normal fit to OPC measured background component distribution from 

cotton gin operation. (d) Comparison of bimodal log normal fit to OPC measured emission component. 
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The background aerosols for all three campaigns were consistent with the continental 
well mixed atmospheric model [19]. Bimodal log normal distribution fits of the distributions 
are also shown in Fig. 4. The approximation is made using a minimum-least squares fit of a 
bimodal log normal distribution (dotted or dashed line) to the particle volume distribution 
calculated using OPC data (heavy dots). 

6.3 Mass concentration retrievals  

6.3.1 Swine production facility 
The particulate loading measured by the FPS for an eight-day period at different locations 
around the swine farm was analyzed by Martin et al. [17] and is summarized in Fig. 5a. The 
error bars show 95% confidence intervals for the series of filters collected at each location 
during the period. Fig. 5b shows a 23-hour time series collected by an OPC located at the 
“Central” location in Fig. 3. The OPC number counts for each 20 s period were converted to 
PM10 concentration using (13). Large spikes represent fugitive (road) dust events, while the 
base signal shows the variability of the total aerosol loading (background and emissions). 

A direct comparison of OPC and lidar measurements taken with the lidar staring past the 
OPC is shown in Fig. 6a. These data were taken on September 5, 2005. The comparison of 
the 20 s OPC sample and the 1 s averaged, 12 m range bin lidar data is in good agreement for 
both the fugitive dust and baseline data. Whatever differences were observed could be related 
to the fact that the OPC measures at a single point, while the lidar yields results for a larger 
volume. In these figures OPC data have been converted to PM using the MCF from Table 2. 
A simultaneous comparison of PM10 mass concentration at two locations is shown in Fig. 6b, 
which represents the first 100 s of data in Fig. 6a. The co-located lidar and OPC plume 
measurements were taken at the central tower, 12.6 meters above the ground, while the co-
located background measurements were taken at an up-wind location. In many cases the 
particulate emissions from the swine facility only slightly exceeded the background aerosol 
loading. Lidar returns were still sensitive enough that these small variations are easily seen 
due to their spatial localization in the return lidar signal.  

Fig. 5. (a) Particulate mass concentration measured with filter particulate samplers (FPS) at different 
locations around an Iowa swine finishing facility. b) Particle mass concentration PM10 derived from 24 

hours of OPC sensor data (09/05/06-09/06/06). 

In addition to the direct comparison between OPC and lidar measurements, a comparison 
between lidar and FPS data was also made. Several FPS measurements were taken for a 23-
hour period from September 4 to 5 for both in-plume and background locations. These are 
listed in Table 4, along with the standard deviation of the measurements. The average and 
standard deviation of PM concentration were also calculated from OPC data over the same 
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time period. Three 20-minute lidar tower stare time series were taken at different times of day 
on September 5th and averaged to provide a one-hour ensemble average.  

a b

Fig. 6. Time series of PM10 mass concentration measurements from collocated OPC and Lidar: a) PM10
time series with the lidar looking past middle central tower OPC. b)  Middle central tower (plume) 

compared with the upwind tower (background).  

Average PM concentration was calculated both for the case where fugitive dust events 
were found in the data, and for the case where they were selectively removed. The variances 
of PM concentration for the OPC instruments and lidar include both measurement errors and 
the natural variability of aerosol loading during sampling time. Within the range of this 
variability, OPC and lidar retrieved mass concentrations are in excellent agreement with 
average mass concentrations measured by FPS for both background and total aerosol loading. 
The comparison of FPS, OPC instruments, and lidar measurements is made in Table 4 for 
background and in-plume locations. 

Table 4. Particle mass concentration measured with FPS, OPC, and lidar from in-plume (Central tower) 
and background (beanfield) locations at the Iowa swine facility. Collocated 1-hr lidar stare data are 

compared with 23-hr OPC data. 

FPS
(23 hour base) 

OPC data
(23 hour base) 

Lidar data  
(1 hour base) 

Background Plume Background Plume Background Plume 

PM10 with dust
Without dust, g/m

3
38.7±5.4 49.4±8.3 34.4±24 

28.6±7.8

42.2±28

38.7±7.8

37.1±18

30.2±2.5

52.8±21

46.4±6.5

PM2.5 with dust  
Without dust, g/m

3
13.3±3.2 14.7±3.3 14,3±9.0 

13.7±4.7

17.2±9.7

16.7±6.6

11.2±7.2

9.5±0.8

12.8±6.5

11.6±1.4

6.3.2 Almond orchard and cotton gin  
In both the almond orchard and cotton gin campaigns, particulate emission concentrations 
were significantly higher than the background aerosol. Both campaigns added new challenges 
that required expansion of the existing technique and provided lessons for future 
measurement series. 

The data presented for swine facility were all collected with the lidar staring in a constant 
direction for some time adjacent to the OPCs and FPS. A significant value of the lidar is 
illustrated in Fig. 7, where two scans over a cotton gin are shown. Fig. 7A shows the gin in 
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normal operation with the cyclone and seed pile plumes clearly identified. Fig. 7B shows a 
scan of the same area, but it was collected during a cycle trash collection event. Here, the 
emission from the intermittent operation overwhelms the steady state process. Like the road 
dust plumes observed at the swine farm, being able to identify and quantify these emission 
sources are critical to efficient process management.  

Gin plumesTrash plume

Gin plume

Seed pile
plume

A B
Gin plumesTrash plume

Gin plume

Seed pile
plume

Gin plumesTrash plume Gin plumesTrash plume

Gin plume

Seed pile
plume

A B

Fig. 7. Horizontal 2D slices of PM10 particulate mass concentration distributions measured during 
normal (A) and disturbance (B) occurrences at a cotton gin facility. The cyclone trash handling process 

provides a more intense, but shorter term emission source. 

Intermittent processes during the cotton gin campaign and the moving local emission 
source (harvesting machinery) at the almond orchard meant that these sources were 
temporally and spatially variable. An example of the problem that arises when comparing 
open air measurements of a mobile plume between a point sensor like the OPC and the lidar 
is illustrated by Fig. 8. 

Two towers were erected around the cotton gin facility, one northwest of the facility and 
one southeast. At the time when the data in Fig. 8 were collected, the northwest tower was 
downwind of the facility. PM2.5 time series data were derived from an OPC mounted on the 
downwind tower. The OPC samples the atmosphere using a single 1-cm diameter inlet with 
an intake rate of .33 l every 20 s. The lidar data are taken from the closest measurement range 
bin, which represents a cylinder ~12 m long (wavelength dependent) and about 1 m in 
diameter with a sampling period of 1 s, meaning the lidar is sampling almost 5000 l of air 
every second. As a result, the lidar measurements have much higher temporal variation (~10 
times) in the PM concentration measured at that point than the measurements of the 
collocated in situ OPC. 

Fig. 8 shows a time series comparison between the lidar and OPC. Much of the 
difference between the plots can be explained by the large difference in sampling volume 
between the two instruments, or edge-of-the-plume effects, while the overall variability of the 
data is due to the variable wind direction during the period, which caused the plume to move 
on and off the point sensor. While the point sensor misses sampling the plume for small wind 
direction changes, the plume just moves to other sample locations in the lidar beam.  

The results of particulate mass measurements with tower based clusters of in situ
instruments (FPS and OPCs) and lidar ensemble averages are presented in Table 5. The OPC 
data were averaged over the sampling time of FPS, while the lidar data were averaged for 
only 0.5 hrs. The errors for the OPCs and lidar are presented as the standard deviation 
measured over the averaging time. In this case PM concentrations are compared only within a 
single measurement cluster of FPS, so the standard deviation for the FPS cannot be 
calculated. The lidar data have a much higher sample rate and are averaged over a shorter 
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time and show large variability within this time frame, which is clearly illustrated in Fig. 8. 
Nevertheless, in general the OPC and lidar averaged data are in a good agreement with co-
located FPS measurements for both the almond orchard and cotton gin campaigns.  

Fig. 8. Optically derived PM2.5 mass concentration (µg/m3) measured at the downwind tower. Peaks 
correspond to times when the plume impacted the OPC measurement volume and the adjacent lidar 

range bin.  

Table 5. Particle mass concentration measured with FPS, OPC, and lidar at the almond orchard and the 
cotton gin. Collocated lidar stare measurements are averaged for 0.5 hrs while samplers and OPC data 

are averaged for 4-8 hrs.  

PM fraction PM1 PM2.5 PM10 TSP 

Airmetric, 4hr - 22.9 58.6 116 

OPC, 4 hrs 2.8±1* 20.1±28.1 71.2±110 136±170 

Almond
Orchard
10/10/06

Lidar, 0.5 hrs 2.4±4.1* 25.8±68 42.0±110 87.2±224 

Airmetric, 8hrs 23.2 27.4 35.6 59.6 

OPC, 8 hrs 21±3.5 30.7±5.1 49.1±22 83.2±101 

Cotton
Gin

12/12/06
Lidar, 0.5 hrs 27.3±5.4 33.6±6.7 49±9.7 76.2±15.2 

* PM1 concentration was estimated using the same MCF estimation for PM2.5 fraction.

7 DISCUSSION  
We have compared our error analysis with measurements of the observed local variability 
of collocated measurements with OPS and FPS of various field measurements. The lidar 
data in Table 4 and Table 5 were measured at 20% laser power. The standard deviation of 
lidar PM mass concentration estimated for the fugitive dust-free signal (see Table 4) varies 
by 10-15% of the mean value. These values are lower than the 22-32% variability measured 
during the almond and cotton experiments. Our experience has shown that even what 
appear to be uniform background measurements contain fairly significant spatial structure 
that contribute to the variability observed in the fast response lidar data. Therefore, the 
estimates in Table 1 are believed to be conservative for the lidar determined volume 
particulate concentration error. 

The MCF determined in these examples may contribute a fairly large (but undefined 
here) uncertainty to the lidar determined PMk. It is seen from Table 2 that in several cases the 
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MCFs are similar for background and emitted aerosol components. While the background and 
emission source aerosol characteristics may be similar in some cases, significant errors in 
emitted aerosol concentration determination  are obvious due to contamination by the 
background component due to shifting wind direction during long sampling times (4-23 hrs) 
of the filter-based samplers. At the swine facility, the concentration of emissions often 
exceeded the background concentration only slightly (by 20-30%), so that the main filter 
mass acquired by FPS was largely defined by the background particulate.  

At the almond orchard, many of the PM background samplers were influenced by the 
dust generated from surrounding orchards. Hence, “background” varied significantly from 
days with no local harvesting and fairly steady winds (continental aerosol) to those with local 
harvesting (highly variable mineral concentration). At the cotton gin, on the other hand, the 
background aerosol loading was relatively low and required FPS run times of 8-12 hrs, during 
which the wind direction changed by 180 . As a result, both sampler locations were exposed 
to emission aerosol. Based on these results, it was concluded that a fast response mass 
fraction measurement system is required for agricultural source characterization experiments. 
To this end, a real time quartz crystal based mass fractionation system has been added to the 
Aglite system to supplement the FPS in determining MCF.  

Despite the challenges of using the FPS, the observed comparisons between the optically 
derived mass fractions and the FPS-measured mass fractions indicate that this approach 
shows good agreement between point sensor measurements for data averaged over time. 
Small differences in the PM concentrations measured with FPS, OPCs, and lidar are mostly 
due to inherently different measurement techniques. Point measurements cannot reasonably 
capture the entire local plume. Moreover, the intermittent character of plume emission, 
variable winds, and local turbulence require the use of statistical or model based approaches. 
The lidar technique is able to capture the entire plume in space and time and to measure and 
monitor particulate mass concentrations inside of the plume.  

The experimental values of MCF estimated during all three field campaigns were 
presented in Table 2. A couple of comments should be made with respect to these data. First, 
there is strong dependence of MCF on the PMk fraction that cannot be explained by the 
dependence of particle density on its size. Recently Binnig et al. studied the correlation 
between optical and aerodynamic particle diameters using an OPC and a sharp-cut cyclone 
[16]. Following their analysis, the MCF in this case can be approximated as follows:  

33 3
2

3 3. . 0

. .

ST k AC k
k k k k k

opt k opt k k

d dMCF f f
d d

 (17) 

where dopt ,dST, and dAC represent optical, Stokes, and aerodynamic diameters of the particle, 
respectively. o and  are the densities of water droplets and particles respectively, and f
represents the dynamic shape factor. Binnig et al. [16] found that for many aerosol types there 
is no constant conversion factor between these diameters because the conversion factor is size 
dependent. Indeed, converting optical diameter to an aerodynamic one using a simple 
conversion expression [24] did not improve the size dependence of MCF. The atmospheric 
aerosols are composed of a mixture of particles of different origins that may have different 
shape and density in both size modes. This means that for real aerosols, all three parameters 
in Eq. (17) may be size dependent, leading to a strong dependency of MCF on the PM 
fraction. Second, some of the difference in MCF values estimated during different campaigns 
can be explained by the different origins of emission and background particulate mixtures. 
For instance, the smaller MCF values estimated for the cotton gin reflect the significant 
contribution from relatively long organic fibers in total aerosol loading.  

Under the calibration approach presented in this study, the MCFk for each PMk fraction 
takes care of most of the experimental uncertainties in the aerosol density, irregularity of the 
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particle shape, and the relationship between particle optical and aerodynamic properties. The 
lidar mass concentration data in this approach are highly correlated to the FPS data and 
provide a surrogate for the long term averaged filter-based mass measurements. The 
averaging procedure over many correlated measurements statistically improves the accuracy 
of MCF estimation and discards outliers in OPC and FPS measurements. 

It should be noted that filter-based FPS represent mass concentration of dry particles, 
while optical instruments like OPCs and lidar are sensitive to the particle physical properties 
affected by ambient air humidity [25]. The lidar mass fraction data reported in this paper are 
tuned to the sampler data and thus represent the mass concentration of dry aerosol particles. 

8 CONCLUSION 
SDL has developed a three-wavelength portable scanning lidar system to derive information 
of particulate spatial aerosol distribution over remote distances. The lidar system and retrieval 
approach has been tested during several field campaigns measuring agricultural emissions 
from a swine feeding operation, almond orchard harvesting, and cotton gin processing. Test 
results show the great potential of lidar measurements to characterize particulate emission 
quantitatively and represent spatial and temporal variations of the emitted plume as 3-D/2-D 
mass concentration fields. To the best of the authors’ knowledge, this is the first attempt to 
characterize the agricultural emission sources as density fields of the particulate classes 
(PM10, PM2.5, PM10-PM2.5, and PM1) applicable to US EPA regulation practices.  

Aglite uses an integrated approach to retrieve particulate mass concentration, fusing 
together in situ and remote measured data. The retrieval of optical parameters from a three-
wavelength lidar, coupled with a minimum least-squares solution, was found to be a valid 
method for retrievals of mass concentration in aerosol plumes. In situ measured data are used 
as boundary conditions for lidar retrievals, to determine the parameters of the lidar equation, 
and to establish a calibration factor, the MCF, for converting lidar data to mass concentration. 
The aerosol components during field experiments included background aerosols, emissions 
from agricultural facilities, and fugitive dust from unpaved roads. The strength of lidar returns 
from these sources varied by an order of magnitude, and the demonstrated retrieval algorithm 
gives meaningful results for all sources of particulate emissions.  

Calibration and validation data are derived from TSP, PM10, PM2.5, and PM1 samplers and 
OPC sensors. A simple calibration procedure has been developed to convert the particle size 
distribution as measured by the OPCs to mass concentration units. Collocated FPS 
measurements and run time averaged OPC data from several locations are used to calculate an 
MCF for particles in the background and emitted plume. This MCF is then used to convert the 
OPC and lidar data to different fractions of mass concentration. The values of particulate 
emission mass concentration measured by the lidar agree with measurements by point sensor 
instruments within the stated error for all three experiment sights. 

The main uncertainties involved in the retrieval process are due to errors in the cumulative 
volume concentration values retrieved from lidar data and in the MCF estimated from point 
sensor data. The lidar system typically operates at 20% of laser transmitted power to keep 
operations in the eye safety regime. In this case, the average errors in cumulative volume 
concentration for the typical deployment range of 600-1000 m are estimated at 10-15%. Errors 
in MCF strongly depend on the homogeneity of experimental conditions and the influence of 
FPS data by background and additional sources of particulate matter that often occur during 
long sampling times required for filter-based sampling. Experimental MCF errors vary by 10-
20%, leading to 10-32% total errors in lidar PM concentration retrievals in the eye safety 
regime.  

Systematic error analyses presented in this study show that there are several ways to 
minimize the uncertainty in lidar retrievals. Real time PM sampling instruments employed on 
the downwind side of the facility will help to avoid the contamination typical for filter-based 
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samplers. The experimental errors in MCF calculations are expected to be reduced to the level 
of ~5-12%, comparable with the accuracy of real time sampling instruments. The errors in 
cumulative volume concentration retrievals can also be reduced by applying more 
sophisticated digital filtering approaches to the data and new techniques for lidar retrievals. 
These advanced approaches can help reduce total measurement uncertainties in PM 
concentration retrieval to the level of 15-20%. Future experiments are planned to test new 
retrieval and measurement approaches to verify the outlined improvements.  
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