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Multiplexed Dispersive Spectrometers Using Reduced
Background Infrared Detectors

Clair L. Wyatt and Roy W. Esplin

The application of multiplex spectrometry to cryogenically cooled LWIR extrinsic photodetectors is limit-
ed by system noise. This noise limitation results in a detector NEP that is directly proportional to band-
width. Therefore, multiplex schemes that require increased bandwidth are not productive of real advan-
tage. However, doubly encoded systems that are based on 2n - 1 or n + N - 1 measurements have the
potential to provide a real throughput gain proportional to the number of elements used on the throughput
matrix.

1. Introduction

In recent years, various multiplex schemes have
been applied to spectrometry. Fourier transform
spectroscopy has been used with great success in
both the visible and ir regions of the spectrum.12

More recently the possibility of applying optical cod-
ing based on Hadamard or modified Hadamard ma-
trices has been noted.3

The idea of multiplex coding is to gain advantage
over a sequential scanning spectrometer by allowing
the photodetector to sense a multiplicity of wave-
lengths simultaneously. This idea goes back to the
original work of Golay4 and Fellgett.5

A sequentially scanning spectrometer having a sin-
gle entrance and exit slit is used to measure n wave-
lengths by moving the exit slit through n positions in
a total time T. The time for each measurement is 
= Tin. In a typical multiplex scheme it is possible,
for example, to use an exit slit encoding mask that re-
sults in having n/2 of the slits open (on the average)
for each of n mask positions, for a total time T. This
is roughly equivalent to increasing the measurement
time for any one wavelength to T/2. The signal gain
of such a multiplex scheme, relative to the sequential
technique, is obtained by taking the ratio of the mea-
surement time; in this example the gain is n/2. How-
ever, the effects of noise also must be considered to
find the over-all advantage.

The gain of a spectrometer can be divided into two
classes. For a singly encoded system (either input or
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exit slit) the gain is referred to as multicolor,6 multi-
plex, or Fellgett's5 advantage. For a doubly encod-
ed system the additional gain is referred to as ten-
due (throughput) or luminosity gain.7 Usually the
mask with the larger number of slits determines the
multiplex gain, and the mask with the fewer number
of slits determines the throughput gain.

Two forms of limiting noise mechanisms are con-
sidered in the literature, they are detector-noise-lim-
ited systems and photon-noise-limited or noise-in-
signal limited systems.6'7

The purpose of this paper is to explore the applica-
bility of multiplexing schemes to cryogenically cooled
long wavelength ir (LWIR) systems operating under
effectively zero thermal background conditions. It is
shown that in this special case a third form of noise
must be considered that limits the multiplex advan-
tage in a different way. This form of noise is de-
scribed as system noise.

II. Detector Conditions

The operation of liquid-helium-cooled extrinsic
detectors at reduced background results in en-
hanced8 operation that has been applied in rocket-
sonde spectrometry.9 The relative capability of de-
tecting low level incident radiation is improved, and
the detector impedance becomes very high. These
effects result from the reduction of the background
to essentially zero levels by cooling the system to
near liquid helium temperatures.

The limiting noise is system generated because
background noise in the detector is essentially nonex-
istent. For such a detector the detectivity D* does
not apply since the limiting noise is independent of
detector area. The most significant detector param-
eter is the noise equivalent power (NEP)
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NEP = Pi/SNR = eR, (1)

where Pi is the incident power (watts), SNR is the
signal-to-noise ratio, e is the limiting noise (rms
volts), and R is the detector voltage responsivity (rms
volts per watt). For these high impedance detectors
the responsivity is given by the product of the cur-
rent responsivity R (ampere per watt) times the
transfer impedance Rb (ohms).

The ultimate enhancement is obtained at very low
frequencies, where the limiting noise voltage is ther-
mal noise of the bias resistor (or transfer impedance
resistor) given by the Johnson-Nyquist equation,

ein = (4kTRbAf) 112 , (2)

where is Boltzmann's constant (1.38 X 10-23 J
K- 1), T is the absolute temperature (K), Rb is the
bias resistance (ohms), and Af is the noise bandwidth
(Hz).

At these low frequencies, the NEP is given by sub-
stituting Eq. (2) into Eq. (1),

NEP = {(4kTAf) 1 '2 /[Ri(Rb)1 /2]}. (3)

Equation (3) illustrates that minimum NEP is ob-
tained by reducing the temperature T of the bias re-
sistor and by making Rb as large as possible. Values
of Rb as high as 1011 Q have been used resulting in
very low values of NEP, but such systems are fre-
quency-response-limited by the input time constant
RbCin-

For a thermal-noise-limited system, the noise and
signal roll off at 6 dB per octave above the break fre-
quency; consequently, the SNR is constant and Eq.
(3) applies until at some relatively high frequency the

.thermal noise becomes less than the amplifier noise.
At this frequency and for higher frequencies, the
SNR and NEP deteriorate at the rate of 6 dB per oc-
tave. This frequency response roll off can be com-
pensated for by using equalization or feedback tech-
niques without changing the SNR or NEP limitations
as outlined above.

The system noise esn for the transimpedance feed-
back amplifier (TIA) is given approximately by10

esn = ess 2 7fRbCln (4)

where 27rfRbCin > 1, es is the amplifier short circuit
noise voltage, Rb and Ci. are the bias resistor and
input capacitance, respectively, and f is the frequen-
cy. The limiting frequency for which NEP [Eq. (3)]
is valid is given by equating esn to ejn [Eqs. (2) and
(4)], solving for f,

f = (4kTf)'/ 2 / 2lreSS(Rb)V2Cfn]}. (5)

Examination of Eqs. (3) and (5) shows that both f
and NEP are proportional to (Rb)-1/2; thus, NEP is
directly proportional to the limiting frequency, the
noise equivalent power increasing in direct propor-
tion to system bandwidth for system-noise-limited
systems, i.e., NEP = constant X f.

Ill. Photon Noise

In addition to the effects discussed above with re-
spect to enhanced operation of ir detectors under low
backgrounds, it is necessary to examine the possibili-
ty of photon noise-in-signal effects.

Photon noise of magnitude equal to the system
noise occurs for signal levels equal to the NEP pho-
ton rate squared. In terms of power, this power
level, Pm, for which photon noise equals system noise
is many orders greater than NEP and is never a sig-
nificant problem in system-noise-limited LWIR sys-
tems.

IV. Multiplex Advantage

The multiplex advantage of system-noise-limited
cryogenic LWIR systems can be approximated and
visualized using a heuristic argument. In each
scheme it is assumed that the St matrix is used,
which on the average has n/2 open slits for each of n
positions of the mask.

For a singly encoded system with an St matrix on
the exit position, the signal at any wavelength will, on
the average, be measured n/2 times that of a sequen-
tially scanning spectrometer. The inverse transform
is roughly equivalent to a co-adding scheme where
the signal increases n/2 times and the noise increases
n1/2 times. For singly encoded systems, the total
time T is the same for n measurements as it is for a
sequentially scanning system, so the electrical band-
width is the same. Thus, the over-all multiplex ad-
vantage is given by the ratio of signal increase to
noise increase, or n1 /2/2.

Several doubly encoded systems are considered for
a system using N input slit elements and n exit slit
elements. In each case the total time is held con-
stant at T for comparison purposes. It is also neces-
sary to increase the bandwidth of the system to make
more than n measurements, so NEP is increased pro-
portionately. Table I gives the signal gain, the noise
increase and resultant SNR, the NEP change, and
the over-all multiplex advantage.

The data contained in Table I lead to the following
three conclusions. First, the doubly encoded scheme
of nN measurements requires an increase in band-
width of N, which degrades NEP by that factor. The
result is an over-all gain of n1/2 /(4N1/2 ), which degen-
erates to the singly encoded scheme with the maxi-
mum gain for N = 1. Second, the doubly encoded
scheme of 2n - 1 requires a bandwidth increase of
the factor 2, which degrades NEP by the factor 2, re-
sulting in an over-all gain of nl/ 2N/[2(32) 1/2 ], and re-
quires that N (32)1/2 to yield a gain equal to that of
the singly encoded scheme. Third, the doubly en-
coded scheme of n + N - 1 measurements requires
negligible increase in bandwidth, where N < n, and
results in an approximate gain of n1/2N/4. These
last two schemes appear to yield a true throughput
gain using input encoding.

Phillips and Harwit reported1' for an n = 19 spec-
tral element system a mean-square noise 4.2 times
higher for the 2n - 1 mode than for the nN mode. It
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Table I. Signal Gain, Noise Increase, SNR, NEP Change, and Over-all Advantage for Various Multiplex Schemes in LWIR
System-Noise-Limited Spectrometers

Singly
Scheme encoded

Doubly encoded
Number of

measurements n nN 2n-1 n+N-la

Signal factor n/2 nN/4 nN/4 nN/4
rms noise factor n1/2 (nN)l"2 -(2n)"12 -(n) 12

SNR gain n112/2 n1/2N"12/4 -nl 2N/(32)"'2 n 12N14
NEP quotient 1 N 2 1

Over-all advantage n1"2/2 nl 2 [4N' 2] -nl/ 2N/ [2(32)1/2] -nl/ 2 N/4

a n> N> 1.

is likely that the noise statistics would vary with the
particular encoding scheme used and would have to
be worked out for each case.

The n + N - 1 scheme should work well where n >
N > 1 for the central n - N unknowns.12 The en-
coding schemes and noise distribution have not been
worked out; however, the scheme looks very promis-
ing for system-noise-limited ir spectrometer systems.

V. Conclusions

The limiting noise form in cryogenically cooled
LWIR spectrometers is system noise. This limiting
noise results in a system NEP that is directly propor-
tional to the bandwidth required. Photon noise is
never a problem in system-noise-limited systems.

Thus, singly encoded multiplex spectrometers have
an over-all multiplex advantage of about nl/2/2.
Doubly encoded systems have no advantage when an
nN measurement scheme is used. However, the
schemes of 2n - 1 or n + N - 1 measurements have
real potential throughput gains proportional to N be-
cause these schemes require very little bandwidth in-
crease over a sequentially scanning system. The en-
coding schemes and noise distribution must be
worked out to verify the feasibility of these promising
applications of multiplex spectrometry to the long-
wave ir region.
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