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SPIRIT III radiometer saturation effect

Joseph J. Tansock, MEMBER SPIE
Utah State University
Space Dynamics Laboratory
1695 North Research Park Way
North Logan, Utah 84341
E-mail: joe.tansock@sdl.usu.edu

Abstract. The Space Dynamics Laboratory at Utah State University
(SDL/USU) calibrated the spatial infrared imaging telescope (SPIRIT)
radiometer as part of its contract with the Ballistic Missile Defense Orga-
nization (BMDO). During the calibration effort, SDL/USU discovered and
characterized a phenomenon that reduces the detector dark offset and
responsivity after saturation, which results in increased calibration uncer-
tainties directly following a saturation event. The magnitude and recov-
ery duration for the dark offset and responsivity depend on several vari-
ables, including saturation flux level, saturation integration mode,
integration mode, focal plane temperature, and saturation duration.
Detector-to-detector variations in the magnitude of the saturation effect
were also observed for detectors within an array. This phenomenon and
the methods used to characterize it are described. © 1997 Society of Photo-
Optical Instrumentation Engineers. [S0091-3286(97)00411-X]

Subject terms: infrared radiometric sensor calibration; saturation; dark offset; re-
sponsivity; infrared sensor; blocked impurity band detectors.

Paper RSC-04 received May 15, 1997; revised manuscript received July 2, 1997;
accepted for publication July 10, 1997.

1 Introduction

The Space Dynamics Laboratory at Utah State University
~SDL/USU! designed, built, and calibrated the spatial infra-
red imaging telescope~SPIRIT III! sensor as part of the
Midcourse Space Experiment~MSX!, sponsored by the
Ballistic Missile Defense Organization~BMDO!. MSX was
successfully launched on April 24, 1996 and has been ful-
filling its mission objectives since that time.

SDL/USU calibrated the SPIRIT III radiometer in sev-
eral ground calibration efforts and continues to upgrade the
calibration with on-orbit measurements. As part of the ra-
diometer ground calibration, SDL/USU discovered and
characterized a saturation phenomenon termed the radiom-
eter saturation effect.1 This effect causes a temporary re-
duction in detector dark offset and responsivity, resulting in
increased calibration uncertainties directly following a satu-
ration event.

The dark offset is the mean response to 0 input flux. It is
unique for each detector and is dependent on focal plane
temperature and time from power-up. The focal plane tem-
perature was controlled with a heater and the instrument
was allowed to stabilize after turn-on. The long-term sta-
bility of the dark offset for these conditions is documented2

and ranges from 0.2 counts to 2 counts, depending on the
array and integration mode.

The magnitude and recovery duration for the dark offset
and responsivity depend on several variables, including
saturation flux level, saturation integration mode, integra-
tion mode, focal plane temperature, and saturation duration.
Detector-to-detector variations in the magnitude of the
saturation effect were also observed for detectors within an
array. This paper describes this phenomenon and the meth-
ods used to characterize it.

The results of the saturation effect characterization were
used for on-orbit experiment planning and for quantifying
measurement uncertainties following a saturation event.

1.1 Radiometer Description

The SPIRIT III radiometer consists of a cryogenically
cooled high off-axis rejection telescope, scan mirror, spec-
tral beamsplitters and filters, and five focal plane detector
modules.3 The five focal plane modules are designated as A
through E. Focal plane modules A and B were designed
and manufactured by Aerojet Electrosystems Company,
and modules C, D, and E were designed and manufactured
by Rockwell International. Each detector array is spectrally
filtered to a unique passband between 4 and 28mm. Each
radiometer focal plane array consists of 192 rows and 8
columns of impurity band conductor, blocked impurity
band~IBC/BIB! arsenic-doped silicon detectors mounted to
a field-effect transistor~FET!, low-noise, cryogenic readout
circuits.

The scan mirror can scan or stop in either of the radi-
ometer’s two modes of operation: mirror-scan mode or
earthlimb mode. Three selectable integration modes are
available in the mirror-scan mode, and four selectable inte-
gration modes are available in the earthlimb~EL! mode.
The mirror-scan~MS! integration modes are designated
MS1, MS4, and MS41, and have integration times of ap-
proximately 2.8, 0.69, and 0.17 ms. The earthlimb integra-
tion modes are EL1, EL4, EL16, and EL161, and have
integration times of approximately 14, 3.5, 0.87, and 0.22
ms.

2 Radiometer Saturation Effect

The radiometer saturation effect discovered during the
SPIRIT III radiometer calibration resulted in a reduced de-
tector dark offset and responsivity immediately after a satu-
ration event. The dark offset and responsivity exponentially
recovered to nominal values within about 30 min. Further
testing was performed to better understand both the satura-
tion effect on the dark offset and responsivity. Data were
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collected in one of two data collection sequences:
saturation/dark offset, or saturation/response. The
saturation/dark offset sequence measured 100 minor frames
of the radiometer’s dark offset before and periodically after
saturation for 25 min. An external blackbody was used
along with the calibrator configured for its collimated
source as the saturation source. The saturation/response se-
quence measured 100 minor frames of the radiometer’s re-
sponse to various sources before and periodically after satu-
ration for 25 min. Unless specified, the radiometer shutter
stimulators were disabled, the saturation duration was ap-
proximately 13 s, and the focal plane temperature was ap-
proximately 10 K.

2.1 Saturation Dark Offset Effect

The saturation dark offset effect was evaluated using data
from the saturation/dark offset and saturation/response data
collection sequences. Equation~1! was used to calculate the
dark offset difference as a function of time from saturation.

DOdiff~ t !5DO~ t !2DOnominal, ~1!

where DOdiff( ) is the dark offset difference~in counts!,
DO~ ! is the dark offset~in counts!, DOnominal is the nomi-
nal dark offset~in counts!, andt is the time from saturation
~in minutes!.

To reduce noise in the estimated dark offset, 100 minor
frames of dark offset data from those detectors that were
directly saturated were averaged. To quantify the amplitude
and recovery time constant of the saturation dark offset
effect, Eq.~2! was used to curve fit the dark offset differ-
ence as a function of time from saturation:

DOdiff~ t !5~AMP!expS 2
t

t D1c, ~2!

where DOdiff( ) is the dark offset difference~in counts!,
AMP is the amplitude curve fit coefficient~in counts!, t is
the recovery time constant curve fit coefficient~in minutes!,
andc is the constant curve fit coefficient~in counts!.

Depending on the array, complete recovery from the
saturation dark offset effect did not occur by the end of the
data collection sequence. This results in a residual dark
offset at the beginning of the next data collection sequence.
The constant term shown in Eq.~2! was included in the
curve fit to account for this residual dark offset.

2.2 Saturation Responsivity Effect

The saturation responsivity effect was evaluated using data
from the saturation/response data collection sequence.
Equation ~3! was used to calculate the percent response
difference to the second-generation multifunction IR cali-
brator ~MIC2! scatter source as a function of time from
saturation.

Respdiff~ t !5
Resp~ t !2Respnominal

Respnominal
3100, ~3!

where Respdiff( ) is the response difference to the MIC2
scatter source~in percent!, Resp~ ! is the offset corrected
response to the MIC2 scatter source~in counts!, Respnominal

is the nominal offset corrected response to the MIC2 scatter
source~in counts!, and t is the time from saturation~in
minutes!.

To reduce noise in the estimated response, 100 minor
frames of response data from those detectors that were di-
rectly saturated were averaged.

To quantify the amplitude and recovery time constant of
the saturation responsivity effect, Eq.~4! was used to curve
fit the response percentage difference as a function of time
from saturation.

Respdiff~ t !5~AMP!expS 2
t

t D , ~4!

where Respdiff( ) is the response difference~in percent!,
AMP is the amplitude curve fit coefficient~in counts!, and
t is the recovery time constant curve fit coefficient~in min-
utes!.

A constant curve fit coefficient was not needed in Eq.~4!
because the data showed complete recovery of the satura-
tion responsivity effect within the data collection sequence.

3 Results and Discussion

The saturation dark offset effect and saturation responsivity
effect were evaluated as a function of saturation flux level,
saturation integration mode, integration mode, focal plane
temperature, and detector-to-detector variations.

Figures 1 and 2 show representative curves for the satu-
ration dark offset effect and saturation responsivity effect,
respectively, for all arrays for different saturation flux lev-
els. The saturation flux levels are expressed as a saturation
factor multiplied by the saturation equivalent radiance
~SER!. At saturation, the SER is equal to 1. These figures
show that all arrays experienced the saturation effect, re-
gardless of manufacturer. The saturation effect was array
dependent, however, and all arrays have different magni-
tudes and recovery durations. The figures also show that the
dark offset and responsivity exponentially recovered to
nominal values within about 30 min.

To describe the saturation effect as a function of the
various parameters studied in this paper, figures are shown
only for the array that best illustrates the saturation effect,
although results from other arrays are discussed. Complete
results for all arrays and data sets have been documented.4

3.1 Saturation Flux Level

The saturation dark offset and saturation responsivity ef-
fects were evaluated as a function of saturation flux level.
The differences in dark offset and responsivity were first
plotted versus time from saturation for each array~Figs. 1
and 2!. Curves were then fit to these data using Eqs.~2! and
~4!. Figure 3 shows the curve fit amplitudes as a function of
saturation flux level for the saturation dark offset effect for
array C, a typical array. The saturation flux levels are ex-
pressed as a saturation factor multiplied by the SER. At
saturation, the SER is equal to 1. Figure 3 shows that the
amplitude of the saturation dark offset effect increased to
an array-dependent saturation flux level, and then decreased
slightly for larger saturation flux levels. Most of the arrays
showed this general effect, although the slight decrease in
amplitude at larger saturation flux levels was not apparent
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in all arrays. The maximum dark offset amplitudes ranged
from 24 to 210 counts at SERs ranging from 10 to 500.

The saturation dark offset data include data for which no
stimulus was presented to the arrays after saturation, and
data for which the arrays were periodically stimulated after
saturation with the calibrator’s scatter source and internal
shutter stimulators. Figure 3 shows the amplitude of the
saturation effects to be independent of array stimulus,
which was true for all arrays.

Figure 4 shows the curve fit amplitudes as a function of
saturation flux level for array C’s saturation responsivity
effect. As with the dark offset effect, this figure shows that
the amplitude of the saturation responsivity effect increased
to an array-dependent saturation flux level, and then re-
mained the same or decreased slightly for larger saturation
flux levels. The maximum amplitude of the saturation re-

sponsivity effect ranged from about214 to 23% for
SERs equal to 10 to 500. Several arrays showed a measur-
able saturation responsivity effect for saturation flux levels
that were at or slightly less than saturation.

The saturation responsivity data included data in which
the arrays were periodically stimulated by the calibration
chamber scatter source as well as the shutter stimulators.
Figure 4 shows the amplitude of the saturation responsivity
effects is also independent of array stimulus, and was true
for all arrays.

Although the time required for the arrays to recover
from the saturation effects does not depend on the satura-
tion flux level, each array does have its own recovery time,
which is dependent on stimulus received after saturation.
The recovery time constant for each array was determined
from the average of the curve fit coefficients. Table 1

Fig. 1 Saturation dark offset effect for different saturation flux levels for arrays (a) A (EL1), (b) B2
(EL1), (c) C (EL1), (d) D (EL1), and (e) E (EL1).
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shows the recovery time constant for each array as a func-
tion of array stimulus. These data show that, with one ex-
ception, the recovery time constants for both the saturation
dark offset effect and the saturation responsivity effect
were reduced~i.e., quicker recovery! by stimulating the ar-
rays. For the responsivity effect array A had a short recov-
ery time constant~about 1 min! and was independent of
stimulation.

Table 1 also shows that the recovery time constants are
similar for the dark offset effect and the responsivity effect
for the same external stimulation. Although the saturation

responsivity effect could not be measured without some
external stimulation, this comparison suggests that the satu-
ration responsivity effect recovery time constant with no
external stimulation would be much larger, as observed in
the dark offset effect recovery time constants.

3.2 Saturation Integration Mode

To determine if placing an array in a lower gain~shorter
integration time! protects the arrays from the radiometer
saturation effect, the dark offset and responsivity differ-

Fig. 2 Saturation responsivity effect for different saturation flux levels (shutter stims disabled) for
arrays (a) A (EL4), (b) B2 (EL1), (c) C (EL1), (d) D (EL1), and (e) E (EL1).
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ences for the EL1 integration mode were plotted versus
time from saturation for different saturation integration
mode settings. Figures 5 and 6 show the normalized curve
fit amplitudes as functions of integration times for array C.
These figures show that placing the array in a lower gain
during saturation does provide some shielding from the
saturation effect. For example, placing the arrays in low
gain @EL161~0.2 ms! or MS41~0.17 ms!# rather than high
gain @EL1 ~14 ms!# during saturation reduced the saturation
dark offset amplitude by a factor of 2 for array C, with
reductions ranging from a factor of 2 to 10 for the other
arrays. The saturation responsivity effect amplitude was
also reduced by a factor of 2 for array C, and varied by a
factor of 2 to 5 for the other arrays. Although a reduction
occurs, the saturation effect is not completely eliminated by
this technique, even though the detectors may not saturate
while observing the bright source in the lower gain.

3.3 Integration Mode

The saturation dark offset effect was evaluated as a func-
tion of integration mode by plotting the dark offset differ-
ence versus time from saturation for different integration
mode settings and different data collection sequences. All
arrays were saturated in the EL1 integration mode. Figure 7
shows the normalized amplitude of the curve fit coefficients
as a function of integration time for array D. This figure is
typical of other arrays and shows that the amplitude of the
saturation dark offset effect approximately scales with in-
tegration time.

The saturation responsivity effect as a function of inte-
gration mode was evaluated by comparing the array’s re-
sponse to the calibration chamber scatter source with the
response to the shutter stimulators. The percentage re-
sponse difference versus time from saturation for these data
are shown in Fig. 8 for array C. The curve fits show that the
amplitude of the saturation dark offset effect is similar for
the EL1 and EL4 integration modes, giving evidence that
the saturation responsivity effect is independent of integra-
tion time.

3.4 Focal Plane Temperature

The saturation dark offset and saturation responsivity ef-
fects as a function of focal plane temperature were evalu-
ated by first plotting the dark offset and responsivity differ-
ences versus time from saturation for different focal plane
temperatures. Curves were then fit to the data. Figure 9
shows the curve fit amplitudes versus thermal link tempera-
ture for array B, and Fig. 10 shows the saturation dark
offset effect curve fit recovery time constants for array B.
Figure 9 is typical of other arrays and shows that the am-
plitude of the saturation dark offset effect increases with
increasing temperature. In general, the amplitude is small
and similar among arrays for focal plane temperatures of
9.0 and 10.0 K, but increases for higher temperatures, rang-
ing from 26 to 290 counts for 11.0 and 12.0 K, depend-
ing on the array.

Figure 10 shows two recovery time constant dependen-
cies. First, the recovery time constant is shortened when the

Fig. 3 Saturation dark offset effect amplitude for different saturation
flux levels (amplitude versus saturation flux levels).

Fig. 4 Saturation responsivity effect amplitude for different satura-
tion flux levels.

Table 1 Saturation/dark offset effect and saturation/response effect recovery time constants (focal
plane temperature510.13 K).

Saturation Effect External Stimulus

Recovery Time Constant (minutes)

Array A Array B Array C Array D Array E

Dark offset None 14.9 15.0 20.5 9.0 1.9

Calibrator scatter source 1.0 12.1 9.2 2.8 1.7

Calibrator scatter source and shutter stimulators 1.2 4.1 4.7 2.3 1.6

Responsivity None — — — — —

Calibrator scatter source 1.0 9.0 6.5 2.8 1.7

Calibrator scatter source and shutter stimulators 1.2 4.1 3.8 2.1 1.6

Tansock: SPIRIT III radiometer saturation effect

2967Optical Engineering, Vol. 36 No. 11, November 1997

Downloaded From: http://opticalengineering.spiedigitallibrary.org/ on 08/15/2014 Terms of Use: http://spiedl.org/terms



array is stimulated during data collection at 9.0 and 10.0 K
~shutter stimulators disabled versus enabled!. Second, the
time constant becomes shorter for focal plane temperatures
warmer than 10.0 K. In general, the recovery time constant
is less than 3 min for focal plane temperatures above 11.0
K for all arrays.

The curve fit results for the saturation responsivity effect
are shown in Figs. 11 and 12 for array C. In Fig. 11, the
amplitude of the saturation responsivity effect remains at
approximately the same value for focal plane temperatures
between 9.0 and 11.0 K. The amplitude of the saturation
responsivity effect for 12.0 K could not be quantified from
a curve fit because responsivity recovery was reached be-
fore the first data point at approximately 1.8 min following
saturation. Figure 12 shows the same recovery time con-
stant dependencies as the saturation dark offset effect: the
recovery time constant is shortened when the array is
stimulated during data collection, and the time constant be-
comes shorter for warmer focal plane temperatures.

3.5 Saturation Duration

To determine the effect of saturation duration on the radi-
ometer saturation effect, the dark offset and responsivity
differences were plotted versus time from saturation for
saturation durations of 15 ms, 46 ms, 13 s, and 3 min, and
curves were fit to the data. The amplitudes of these curve
fits for the saturation dark offset and responsivity effects
for array D are shown in Figs. 13 and 14, respectively, as a
function of saturation duration. The 15- and 46-ms satura-
tions were accomplished by scanning a source over the ar-
ray at appropriate velocities.

Fig. 5 Saturation dark offset effect amplitude versus saturation in-
tegration time.

Fig. 6 Saturation responsivity effect amplitude versus saturation in-
tegration time.

Fig. 7 Saturation dark offset effect for different integration modes
(amplitude versus integration time).

Fig. 8 Saturation responsivity effect for different integration modes.

Fig. 9 Saturation dark offset effect amplitude versus focal plane
temperature.

Fig. 10 Saturation dark offset effect recovery time constant versus
focal plane temperature.
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In general, the amplitudes of the saturation dark offset
and saturation responsivity effects were similar for the 13-s
and 3-min saturations for all arrays. For the saturation dark
offset effect, the amplitude of the effect for array D was
about24.5 counts, and ranged from24.5 to nearly210
counts among the arrays for these saturation durations. For
the 15-ms saturation, which is equivalent to an array’s point
source scan, the amplitude for the saturation dark offset
effect was nearly 0 counts for four of the five arrays.

For the saturation responsivity effect, the amplitude of
the effect for the 13-s and 3-min saturation durations was
about25.5% for array D and ranged from22 to nearly
213% among all arrays. For the 15-ms saturation, the am-
plitude for the saturation responsivity effect was nearly 0%
for four of the five arrays. These results show the saturation
effect remains unchanged for saturation durations greater
than 13 s and is less for saturation durations less than 46
ms.

3.6 Detector-to-Detector Variation

The detector-to-detector variation of the saturation dark
offset and responsivity effects was evaluated by performing
a curve fit on each nominal detector within an array. Fig-
ures 15 and 16 are pixel plots showing the curve fit ampli-
tudes as a function of detector row number for the satura-
tion dark offset and saturation responsivity effects,
respectively, using array D as an example. The EL1 inte-
gration mode was used to obtain the data in these figures.

Figures 15 and 16 clearly identify the detectors that were
directly saturated and show that the saturation event satu-
rated detectors near the center of the array. The nonzero
amplitude of the saturation effects located to the left of
center is due to an inadvertent saturation from the saturat-
ing source being passed over the array after being removed
from array C. The saturation duration for these detectors is
estimated to be approximately 46 ms, the time required for
the source to move over the array. These data show that
detectors that are not directly saturated are not affected by
the saturation dark offset effect.

In general, the peak-to-peak variation of the saturation
dark offset effect amplitude for those detectors that were
directly saturated ranges from approximately 2 to nearly 10
counts among the arrays. The peak-to-peak variation of the
saturation responsivity effect for those detectors that were
directly saturated ranged from approximately 4 to nearly
10% among arrays.

Fig. 11 Saturation responsivity effect amplitude versus focal plane
temperature.

Fig. 12 Saturation responsivity effect recovery time constant versus
focal plane temperature.

Fig. 13 Saturation dark offset effect amplitude versus saturation du-
ration.

Fig. 14 Saturation responsivity effect amplitude versus saturation
duration.

Fig. 15 Saturation dark offset effect amplitude for individual detec-
tors.
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4 Summary

The radiometer saturation effect was observed on all of the
five arrays, regardless of manufacturer. The results of the
radiometer saturation effect study showed that the magni-
tude of the saturation effect for both dark offset and respon-
sivity is dependent on saturation flux level. The magnitude
of this effect increases for increasing saturation flux levels
up to an array-dependent saturation level, and then remains
the same or decreases slightly for larger saturation flux lev-
els. Placing an array in low gain during saturation provides
some shielding from the saturation effect, but the saturation
effect can occur as a result of viewing a bright source in a
low-gain integration mode, even if the detectors do not ac-
tually saturate. The amplitude of the saturation dark offset
effect is proportional to integration time, while the ampli-
tude of the saturation responsivity effect is independent of
integration mode. For warmer thermal link temperatures,
the saturation dark offset effect magnitude becomes larger
while saturation responsivity effect magnitude remains the
same. The saturation responsivity effect is unaltered for
saturation durations greater than 13 s and is less for satura-
tion durations less than 46 ms. There are detector-to-
detector variations in the magnitude of the saturation re-

sponsivity and dark offset effects that have peak-to-peak
values approximately the same magnitude of the saturation
effect.

Each array has its own saturation effect recovery time
constant that is approximately the same value for the satu-
ration dark offset and responsivity effects. This time con-
stant is independent of saturation flux level and integration
mode. However, the recovery time constant becomes
shorter for higher thermal link temperatures, and is also
decreased by stimulating the detectors.
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Fig. 16 Saturation responsivity effect amplitude for individual detec-
tors.
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