
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

Space Dynamics Lab Publications Space Dynamics Lab

1-1-2008

Sub-Botnet Cordination Using Tokens in a Switched Network Sub-Botnet Cordination Using Tokens in a Switched Network

Brandon Shirley

Chad D. Mano

Follow this and additional works at: https://digitalcommons.usu.edu/sdl_pubs

Recommended Citation Recommended Citation
Shirley, Brandon and Mano, Chad D., "Sub-Botnet Cordination Using Tokens in a Switched Network"
(2008). Space Dynamics Lab Publications. Paper 116.
https://digitalcommons.usu.edu/sdl_pubs/116

This Article is brought to you for free and open access by
the Space Dynamics Lab at DigitalCommons@USU. It has
been accepted for inclusion in Space Dynamics Lab
Publications by an authorized administrator of
DigitalCommons@USU. For more information, please
contact digitalcommons@usu.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@USU

https://core.ac.uk/display/32566449?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/sdl_pubs
https://digitalcommons.usu.edu/sdl
https://digitalcommons.usu.edu/sdl_pubs?utm_source=digitalcommons.usu.edu%2Fsdl_pubs%2F116&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/sdl_pubs/116?utm_source=digitalcommons.usu.edu%2Fsdl_pubs%2F116&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

Sub-Botnet Coordination Using Tokens in a
Switched Network

Brandon Shirley and Chad D. Mano
Department of Computer Science

Utah State University
Logan, Utah 84322

Email: {brandon.shirley, chad.mano}@usu.edu

Abstract—Botnets have evolved to incorporate peer-to-peer
communication for the purpose of better hiding the administra-
tive source of the botnet. Current botnet detection mechanisms
identify network traffic patterns at strategic locations within a
network such as the gateway. As detection techniques improve,
botnet design will continue to evolve to evade detection; thus, it
is advantageous to identify potential future botnet models for the
purpose of developing defense mechanisms before an actual new
attack type is seen in the wild. This paper presents a model for
coordinating external communication among bots located within
the same switched network. This model prevents a gateway-
based monitor from correlating external communication dialogs
as the internal source of the communication is not a single bot-
host. Future phases of this project include developing efficient
techniques for mitigating this potential future botnet model.

I. INTRODUCTION

Currently, botnets are considered one of the greatest threats
to the security of the Internet [4], [8], [15]. A botnet is a col-
lection of compromised computer systems (called zombies or
bots) that are controlled by a single entity (called a botmaster
or botherder). The power of the botnet lies in the ability of
a botmaster to execute a large-scale distributed attack while
remaining hidden as the true source of the attack. Botnets can
be used for DDoS, SPAM, phishing, and other types of Internet
crime.

Most botnets are administrated using a centralized Com-
mand and Control (C&C) approach. In this model all bots
receive instructions directly from a central system such as an
IRC server. The centralized server, however, presents a weak-
point as the botnet can potentially be made impotent if the
server is identified and made inaccessible from the Internet.
Peer-to-Peer (P2P) style communication is one way a botnet
can overcome this weakness.

In a P2P botnet the C&C is decentralized as individual
bots receive instruction from other bots, not necessarily the
botmaster. Thus, even if a number of bots are identified,
security professionals may not have any information as to the
actual location of the botmaster. The advent of P2P botnets
was not unexpected as researchers were actively engaged in
forward-looking research when the first large-scale P2P botnet
was identified in January 2007 [10].

This paper takes a similar forward-looking approach in
presenting a token-based model for coordinating communi-
cation among bots that are part of the same switched network.

Our model prevents network administrators from identifying
communication patterns between an internal host and external
systems that would be indicative of P2P botnet communi-
cation. This is accomplished by strategically controlling the
amount and type of external communication each bot takes
part in, and then sharing any obtained data among all identified
bots in said switched network.

It should be noted that this model is designed to evade
current detection techniques, but is not immune to detection
altogether. Detection of a botnet utilizing a model such as this
requires much more in-depth monitoring of network traffic
than is typically done. Future work includes developing an
efficient switch-level monitoring system that provides the
ability to correlate a complete analysis of internal only traffic
with the border-crossing analysis provided by current detection
systems. This paper includes a proposal for the requirements
of such a system, but implementation and assessment of such
a system is not included here.

II. RELATED WORK

Traditionally botnets have relied on a centralized command
and control (C&C) communication infrastructure utilizing IRC
servers as a means to manage the remote bot systems [3],
[6], [12]. A security administrator is able to monitor these
systems by identifying the location of the C&C IRC server
and logging in posing as a compromised bot system [1], [2].
Depending on the configuration of the server, various charac-
teristics of the botnet can be identified including population
and command instructions. Honeypots are systems deployed
by security administrators that act as infection targets and
allow administrators to detect botnet activity [4], [9], [18].
In order to evade detection various techniques exist to hide or
masquerade botnet communication activity [5], [8], [16].

More recently, botnets utilizing a P2P [13], [17] style
communication infrastructure have been proposed [6], [16] and
even discovered in the wild [10]. It is very difficult to ascertain
the characteristics of a P2P botnet because it is not possible to
monitor a centralized location where all infected bots connect
as such a location does not exist.

To the best of the authors’ knowledge, BotHunter [7] is the
most effective tool for detecting the existence of a bot within a
local network, including bots utilizing P2P style communica-
tion. Our proposed model is designed to evade an edge-based

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE "GLOBECOM" 2008 proceedings.
978-1-4244-2324-8/08/$25.00 © 2008 IEEE. 1

system such as BotHunter by creating a cooperative group of
infected bots within a locally switched network. The following
section discusses Bothunter in more detail and outlines our
approach to evading detection by a system like Bothunter.

III. SUB-BOTNET CREATION BACKGROUND

The details of creating a sub-botnet are provided in [14], but
are summarized here briefly. After a system is compromised
by an external source, the newly compromised system must
determine if other systems within the switched network are
already part of the botnet. If no other systems are detected
then the newly infected system attempts to identify and infect
other systems within the switched network. This is done in
an intelligent manner in order to minimize the chance of
being detected by network security devices. This method of
infection is advantageous as infections originating external to
the network have a greater potential for being identified by
existing IDS systems. It may not be feasible, however, to infect
all systems in this manner and external infections still play an
important role in botnet propagation.

If other systems on the network have already been infected
then the newly infected system is identified and incorporated
into the sub-botnet through the use of a stealthy broadcast
message via an existing protocol such as DHCP. The sub-
botnet continues to monitor for newly infected systems result-
ing from a system compromise originating from an external
network. As the sub-botnet grows in size, it is better able to
evade detection by a gateway-based monitor since it can more
effectively distribute external communication tasks among the
members of the sub-botnet.

IV. SUB-BOTNET MANAGEMENT

To the best of our knowledge, BotHunter is the most effec-
tive technique for detecting botnet communication, including
that of P2P botnets. BotHunter identifies “dialogs” between
internal and external hosts including the following events that
pertain to our technique.

• E2: External to Internal Inbound Exploits
• E3: Internal to External Binary Acquisition
• E4: Internal to External C&C Communication
A system is identified as being infected by a bot if a

certain pattern of communication events, that includes at least
two of the aforementioned events, is detected. Our model
introduces three events that a bot can execute which evade
detection by the monitor, but results in the same disbursement
of information to the bots.

• A2: Internal to Internal Exploits
• A3: Internal to Internal Binary Acquisition
• A4: Internal to Internal C&C Communication
A sub-botnet can avoid detection by strategically utilizing

A* events in order to minimize the number of E* events
that are required to maintain effective communication with the
overall botnet. Additionally, the E* events must be executed
in a way that is not only minimal on a sub-botnet basis, but is
strategic on a bot-basis, controlling the external exposure of
any single bot.

Fig. 1. S1 is an uninfected host, S4 is the ideal state, S8 is a detectable
state, and all other states are considered semi-safe or undetectable.
Old events are pruned as indicated by a Time Out (TO).

To illustrate this point let (A2∨A3∨A4) ≡ α, (E3∧E4) ≡
β, and (E2 ∧ (E3 ∨ E4)) ≡ γ. It follows that α ∧ ¬β ∧
¬γ ≡ α ∧ ¬(β ∨ γ) ≡ δ where δ is an undetectable state
and that β ∨ γ ≡ η where η is a detectable state. Therefore,
it is necessary to control bot actions such that only δ occurs
within a given timespan as BotHunter or any IDS Correlator
will have to eventually prune old events from each internal
host’s infection dialog.

Figure 1 illustrates the goal of limiting the monitorable
exposure of a single bot at any given time. Note that missing
transitions mean that a transition does not apply or that the
transition does not result in a state change. As an example,
consider a bot that executes an E2 event followed by an A3
event. If the next event is an E4 event, the bot will be detected
by the monitoring system. The bot must still obtain C&C
communication to be an effective botnet participate, thus, it
can receive the necessary information through an A4 event.
However, if an E4 event occurs before a Time Out (TO) period,
an estimate of the pruning period of the monitor, it will still
be detected.

We utilize a round-robin style token-passing scheme to
control E* events, thus protecting bots from executing commu-
nication dialogs that would expose the bot to an IDS monitor.
The token acts as an authority key for the bot that possesses
it, termed the Token Bot (TB). The TB performs internal to
external actions and maintains a report of past E* events
executed that is shared with all bots in the sub-botnet. In
the pursuit of detection avoidance the sub-botnet management
scheme must assure that each bot only performs one internal
to external (E2-E4) event within a given timespan, or that
each bot performs the same E2, E3 or E4 event each time it
initiates said event. Preferably, both criteria would be met, but
this depends on the size and volatility of the sub-botnet. The
token also ensures that only one bot is engaged in such an
event at any given time.

To maintain the restrictions on E* events we utilize a token
passing scheme that transfers TB duties within the sub-botnet.
The basic token passing process from the perspective of a new

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE "GLOBECOM" 2008 proceedings.
978-1-4244-2324-8/08/$25.00 © 2008 IEEE. 2

TB is as follows: 1) Token Acquisition (TAQ), 2) perform
Token Action (TAC), 3) Token Action Result Propagation
(TARP), and 4) the Token Pass (TP). If a problem prevents the
TB from completing all steps of the process, a Token Election
(TE) takes place to select a new TB. The TB also holds the
responsibility of identifying new bots infected via E2 events
and sending the new bot the current binary.

A. Token Data

The token is a data structure that contains all required infor-
mation to enable the TB to make intelligent decisions about
executing internal to external communication, forwarding in-
formation to the sub-botnet, and passing the token to other
bots. The data structure includes the following information:

• Report list - internal only peer list
• Action History - last two internal to external actions

performed (E3 or E4 events)
• Timestamp - indicative of when the token was compiled
• Bot Binary Version - denotes current binary version

The Report list is a local peer list which only contains bots
in the same switched subnet. Each entry in the report list
contains the bot’s MAC address, the last TAC it performed,
a timestamp associated with the last TAC performed or with
the original infection if no TACs have been performed, and
a dormancy counter to track unresponsive bots. The Report
list is the primary tool used for token passing and token
election should token passing fail. The complete Report list
is not distributed over multiple bots as this is not beneficial
for sub-botnet management and does not achieve the same
botnet hiding characteristics as it does in the Internet where
access to the other bots is restricted. The TAC for the given
bot is implied by the information in the Report list.

B. External Communication

Following a TAQ the new TB is listed in the Report list
with the associated TAC to be performed. This should be the
same action it performed previously, but may be a different
action if sufficient time has passed since the previous action
was executed. In any event, the action to be performed should
not be one of the two previous actions performed by former
TBs.

The three possible TACs that a TB can execute are: com-
mand update, an E3 event; peerlist update request, an E4 event;
or a binary update check, an E4 event. The two E4 events are
considered separate types of communication in the interest of
token management. In the case where only two bots exist in
the sub-botnet, a single bot will perform the two E4 event
tasks.

Prior to executing a TAC, the TB issues a TAQ acknowl-
edgment that contains the action that it will perform. This
message acts as a heartbeat indicator for the bots and forces
each bot to reset its timeout period. If the timeout period for a
bot expires prior to receiving the next TARP message, that bot
will issue a TE request to recover the token. This TE process
will be presented shortly.

Fig. 2. Token Bot passing the token as part of TARP.

1) Command and Binary Updates: The command update
request and binary update check for a sub-botnet work the
same for the TB as they would for an external peer that is
not part of any sub-botnet. Thus, external bots do not need to
distinguish between a sub-botnet and a non-sub-botnet request.
The only modification in the process is that a TB will then
forward any updates on to the other members of the sub-botnet.

2) Peerlist Update: The peerlist update is executed via
proxy using an external peer on the TB’s peerlist. The TB
sends a peerlist update request to an external peer, propagating
through the list until an acknowledgment is received. If no
external peers respond, the TB falls back on the default peer
discovery method as denoted by the P2P protocol used by the
botnet. Assuming the TB finds a responsive peer, the external
peer generates an updated peerlist and forwards it to the TB.
The TB then forwards this new list to the sub-botnet and each
individual bot updates its list accordingly.

C. Sub-Botnet Message Propagation

After a successful TAC, the TB must propagate the results to
the members of the sub-botnet, this is the TARP phase of the
process; to achieve this propagation the TB sends the Token
data to each bot as shown in Figure 2.

The TB first places itself at the bottom of the Report list
then attempts to forward the Token to the first bot in the list.
If this bot is unresponsive the TB continues on to the next bot
on the list. Once the Token has been successfully transmitted,
the receiving bot forwards the Token to the next bot on the list.
This process continues until all bots have received the Token
and the TB that initiated the process receives the Token back.

If a bot is unresponsive to the TARP attempt, its dormancy
counter is incremented and the next bot on the list is contacted.
During future TARP processes a bot with a non-zero dormancy
counter will be selected for a connection request in a proba-
bilistic manner based on the value of the counter. If it is still
unresponsive the counter will be incremented. If the dormant
bot does not respond prior to the counter reaching a pre-
determined value, it is assumed to be permanently unreachable
and is removed from the Report list. If, at some point, the bot
is responsive the dormancy counter is reset to zero.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE "GLOBECOM" 2008 proceedings.
978-1-4244-2324-8/08/$25.00 © 2008 IEEE. 3

When a bot has the Token it checks its binary version with
the current version listed in the Token. If an update is in
order, the bot will make a request to the TB from which it
receives the next TAQ broadcast. This places the burden of
initiating an update on the individual bot rather than on the TB.
Additionally, each bot may update any outdated information
in the Report list.

When a bot receives the Token data it is, in essence,
the TB until it forwards the Token data. However, it does
not take on the communication duties of the TB. When the
TB that originated the TARP process receives the Token
again it proceeds to the TP phase. If the original TB is not
available for some reason, the bot possessing the Token takes
on the responsibility of executing the TP. The bot knows
it must assume this responsibility if it cannot successfully
communicate with any bots in the remainder of the Report list.
This assumption of responsibility allows event propagation and
token passing to continue even if the TB is removed from the
network mid-process.

D. Changing the Token Bot

After receiving the Token back the TB must decide to which
bot it will pass the token. This is done by identifying the
next TAC to be performed and selecting an appropriate bot to
carry out the action. The TB references the Action History to
identify the least recently executed TAC. The TB then searches
the Report list for new bots, those that have not executed
a TAC and have an initial infection timestamp older than
a pre-defined minimum age; if they exist, any one of them
may be used to perform the required TAC. Otherwise, the TB
references the Report list to identify the bot with the oldest
timestamp associated with said TAC.

The TB initiates the process by sending a TP offer to the
target bot. If the target bot identifies itself as having an old bot
binary during the TARP phase, it replies with a message stating
such and receives the updated binary from the TB. Once the
binary has been updated, or if the binary was already up-
to-date, the target bot issues a TP acceptance to the TB. The
outgoing TB responds with a final acknowledgment, including
the current token data, and the incoming TB takes over.

The new TB receives the current version of the token even
though it just received a copy during the TARP process.
During the TARP process it is possible for any bot to update
information in the Report list before the new TB receives the
Token, thus the new TB must obtain the new version to prevent
updated information from being lost.

E. Token Bot Fault Tolerance

In the event that the TB becomes unavailable for any reason,
a TE is executed to reestablish the management authority
within the sub-botnet. The TE request can be initiated by
any bot after the timeout period of the bot has expired (the
timeout period is reset each time communication from the TB
is received). As the TE request is initiated by an independent
bot, it is possible that multiple bots initiate near simultaneous
requests as shown in Figure 3. In the case of simultaneous TE

Fig. 3. In the Token Requestion Collision bots a and b initiate a TE
request within the same timespan. In the Successful TE, bot a finally
passes the token to bot c, at which point bot c would make a TAQ
broadcast.

requests, special handling must be considered. This situation
may arise if two or more bots issue the request at the same
time or if there is a broadcast propagation delay that allows
for another bot to issue the same request before receiving the
broadcast. If a bot that issues a TE request receives a TE
request from another bot, it will cancel its TE. Each bot will
then generate a random backoff that must elapse before they
make another TE request, this will insure that only one TE
request succeeds at any given time. When a bot receives a
TE request it will send its report list with the report list’s
timestamp to the requesting bot. If there is a collision, the
requesting bot will still accept responses but will not actually
perform the election, as shown in Figure 3.

Upon receiving the Report lists, the bot that initiated the TE
will look for the Report list with the most recent timestamp
and use that to replace its own Report list. Anytime a bot that
has not made a TE request receives a request, it will reset its
timeout period. This will keep the number of bots trying to
initiate a TE to a minimum.

The bot that issues the TE request waits for responses for
a set time period optimized for the size of the sub-botnet. If
the wait period expires without the bot in question receiving
another bot’s TE request, then the bot will issue a broadcast
that TE was successful. When the other bots receive this
message they again reset their timeout period. If the timeout
period is exceeded before another message is received then the
bot will attempt to contact the bot that issued the broadcast.
If the bot is responsive then the wait will continue, otherwise
another TE will be initiated in the same manner.

The bot that issues the TE success broadcast will use the
Action History and the most up-to-date Report list that it
received to pick a new TB. The method for choosing a new
TB is essentially the same as the method used for passing the
token. Once the bot finds a suitable responsive bot it will pass
the token to that bot, as shown in Figure 3. At this point the
new bot will make the TAQ acknowledgment broadcast and
the sub-botnet may resume normal activity.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE "GLOBECOM" 2008 proceedings.
978-1-4244-2324-8/08/$25.00 © 2008 IEEE. 4

V. DETECTION REQUIREMENTS

The proposed model is designed to enable a group of
cooperating bots to avoid being detected by traditional IDS
and dialog-based network monitoring systems. This is accom-
plished by strategically controlling internal to external botnet
traffic, thus eliminating the ability of a perimeter-based device
to correlate communication patterns of individual systems with
that of known botnet traffic patterns.

This model is founded on the assumption that complete
network traffic monitoring is performed at the perimeter of
a network or sub-net. Probabilistic monitoring at the switch-
level, as done by [11], may not be sufficiently fine-grained to
effectively identify the sub-botnet activity.

As with traditional worm, virus, and botnet threats, our
proposed system has defined “signatures” that allow it to be
detected. Thus, if a network provides complete monitoring of
traffic at the switch-level, sub-botnet activity can be detected.
While simple in concept, network monitoring at this level will
likely generate great amounts of data that may render effective
analysis infeasible.

The following are characteristics that are necessary in
building an effective system to mitigate a sub-botnet threat.
Complete Switch Coverage: In order to effectively identify
communication that passes through at most one switch, it is
necessary to monitor every switch within a network. Addition-
ally, the computational power within the switch monitor may
be limited, thus any communication that moves towards the
gateway router should be ignored by the immediate switch
monitor. If the communication does not eventually move to
the router it will be analyzed by another switch that identifies
that the data will not pass through the router.
Switch Monitor as a Support: The sub-botnet model pre-
sented is effective because it prevents a perimeter-based sys-
tem from identifying certain components of botnet behavior.
Thus, the switch monitor should act as a support to the
perimeter-based system, filling in pieces and enabling the
system to correlate external and internal-only traffic to effec-
tively identify an infected bot system. Creating a stand-alone
switch monitor/analyzer would place undue burden on network
administrators and would be much more costly to implement
in terms of time and equipment requirements.
Efficient Messaging: Acting as a support to a centralized IDS
system, the switch monitor must generate efficient messages
for two reasons. First, overly verbose reporting may potentially
have a negative impact on network performance. Second, all
data received by the central system results in additional burden
on the resources of the system. Thus, a switch monitor that
delivers more data than is necessary creates inefficiencies in
the overall network defense system.

VI. SUMMARY AND FUTURE WORK

This paper proposes a potential model for enabling covert
botnet activity within a switched portion of a network. The
model evades detection via traditional means by creating a
cooperative infrastructure among infected bot systems that
allows for strategic control over necessary external network

communication. While the proposed system can be detected,
it requires an in-depth monitoring infrastructure above what is
typical in many enterprise networks.

The future work of this project is aimed at creating a
framework for implementing and testing the proposed model.
In addition, the framework will be designed in a flexible
manner to allow for the easy implementation of other proposed
sub-network botnet models. This framework will act as a
testbed for designing a defensive system according to the
guidelines presented in the previous section. We envision
that our system will interface with existing systems, such
as BotHunter, to improve the overall accuracy and ability of
existing botnet detection systems.

REFERENCES

[1] Paul Barford and Vinod Yegneswaran. An inside look at botnets.
In Special Workshop on Malware Detection, Advances in Information
Security. Springer Verlag, 2006.

[2] James R. Binkley and Suresh Singh. An algorithm for anomaly-
based botnet detection. In Proceedings of USENIX Steps to Reducing
Unwanted Traffic on the Internet Workshop (SRUTI), pages 43–48, July
2006.

[3] John Canavan. The evolution of malicious irc bots. In Proceeding of
Virus Bulletin Conference 2005, October 2005.

[4] Evan Cooke, Farnam Jahanian, and Danny McPherson. The zombie
roundup: Understanding, detecting, and disrupting botnets. In Proceed-
ings of USENIX Steps to Reducing Unwanted Traffic on the Internet
Workshop (SRUTI), pages 39–44, July 2005.

[5] D. Geer. Malicious bots threaten network security. IEEE Computer,
38(1):18–20, January 2005.

[6] Julian B. Grizzard, Vikram Sharma, Chris Nunnery, Brent ByungHoon
Kang, and David Dagon. Peer-to-peer botnets: Overview and case study.
In First Workshop on Hot Topics in Understanding Botnets, 2007.

[7] Guofei Gu, Phillip Porras, Vinod Yegneswaran, Martin Fong, and Wenke
Lee. Bothunter: Detecting malware infection through ids-driven dialog
correlation. In Proceedings of the 16th USENIX Security Symposium
(Security’07), August 2007.

[8] N. Ianelli and A. Hackworth. Botnets as a vehicle for online crime.
CERT Coordination Center, December 2007.

[9] B. McCarty. Botnets: Big and bigger. IEEE Security and Privacy,
1(4):87–90, 2003.

[10] Phillip Porras, Hassen Saidi, and Vinod Yegneswaran. A multi-
perspective analysis of the storm(peacomm) worm. Technical report,
Computer Science Laboratory, SRI International, October 2007.

[11] Joseph Reves and Sonia Panchen. Traffic monitoring with packet-based
sampling for defense against security threats. http://www.sflow.org,
2002.

[12] B. Saha and A. Gairola. Botnet: An overview. CERT-In White Paper,
June 2005.

[13] Vincent Scarlata, Brian Neil Levine, and Clay Shields. Responder
Anonymity and Anonymous Peer-to-Peer File Sharing. In Proceedings
of the IEEE International Conference on Network Protocols (ICNP),
pages 272–280, November 2001.

[14] Brandon Shirley and Chad D. Mano. A model for covert botnet
communication in a private subnet. In Proceedings of IFIP Networking
2008, May 2008.

[15] W. Timothy Strayer, Robert Walsh, Carl Livadas, and David Lapsley.
Detecting botnets with tight command and control. In Proceedings of
2006 31st IEEE Conference on Local Computing Networks, pages 195–
202, November 2006.

[16] Ryan Vogt and John Aycock. Attack of the 50 foot botnet. Technical
Report 2006-840-33, Department of Computer Science, University of
Calgary, August 2006.

[17] Beverly Yang and Hector Garcia-Molina. Comparing hybrid peer-to-peer
systems. In The VLDB Journal, pages 561–570, September 2001.

[18] Cliff C. Zou and Ryan Cunningham. Honeypot-aware advanced botnet
construction and maintenance. In Proceedings of the International
Conference on Dependable Systems and Networks (DSN), pages 199–
208, June 2006.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE "GLOBECOM" 2008 proceedings.
978-1-4244-2324-8/08/$25.00 © 2008 IEEE. 5

	Sub-Botnet Cordination Using Tokens in a Switched Network
	Recommended Citation

	Sub-Botnet Coordination Using Tokens in a Switched Network

