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ESTIMATION OF DAIRY PARTICULATE MATTER 
EMISSION RATES BY LIDAR AND INVERSE MODELING

C. C. Marchant,  K. D. Moore,  M. D. Wojcik,  R. S. Martin,  R. L. Pfeiffer,  J. H. Prueger,  J. L. Hatfield

ABSTRACT. Particulate matter (PM) emissions from agricultural operations are an important issue for air quality and human
health and a topic of interest to government regulators. PM emission rates from a dairy in the San Joaquin Valley of California
were investigated during June 2008. The facility had 1,885 total animals, including 950 milking cows housed in free‐stall pens
with an open‐lot exercise area, and 935 dry cows, steers, bulls, and heifers housed in open lots. Point sensors, including
filter‐based aerodynamic mass samplers and optical particle counters (OPC), were deployed at select points around the
facility to measure optical and aerodynamic particulate concentrations. Simultaneously, vertical PM concentration profiles
were measured both upwind and downwind of the facility using lidar. The lidar was calibrated to provide mass concentration
information using the OPCs and filter measurements. Emission rates were estimated over this period using both an inverse
modeling technique coupled with the filter‐based measurements and a mass‐balance technique applied to lidar data. Mean
emission rates calculated using inverse modeling (±95% confidence interval) were 3.8 (±3.2), 24.8 (±14.5), and 75.9
(±33.2) g d‐1 AU‐1 for PM2.5, PM10, and TSP, respectively. Mean emissions rates based on lidar data were 1.3 (±0.2), 15.1
(±2.2), and 46.4 (±7.0) g d‐1 AU‐1 for PM2.5, PM10, and TSP, respectively. The PM10 findings are roughly twice as high as
those reported from other dairy studies with different climatic conditions and/or housing types, but are of similar magnitude
as those from a study with similar conditions, housing, and emission rate calculation technique.

Keywords. Aerosols, Air pollution, Dairies, Emission, Estimation, Inverse modeling, Lidar, Optimization, Remote sensing,
Sampling.

gricultural production facilities are being
increasingly investigated for emissions of
pollutants into the atmosphere in order to
understand their contributions to and effects on

local and regional air quality. Under the Clean Air Act, the
U.S. Environmental Protection Agency (EPA) has set
threshold levels for widespread criteria pollutants considered
harmful to public health and the environment, referred to as
the National Ambient Air Quality Standards (NAAQS). The
NAAQS include particulate matter (PM) as PM2.5 and PM10,
which are defined nominally as the sum of particles with
aerodynamic equivalent diameters <2.5 and <10 �m,
respectively. Furthermore, several state air quality regulatory
agencies, such as the State of California Air Resources
Board, have begun to require air pollution permits for
agricultural  operations that exceed certain sizes. The San
Joaquin Valley Air Pollution Control District (SJVAPCD) has
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required agricultural operations of nearly all sizes to select
and implement approved Conservation Management
Practices (CMPs) since 2005 in order to meet PM10 emissions
reductions targeted under the EPA‐accepted plan to bring the
San Joaquin Valley airshed in California into compliance
with ambient PM10 levels. The EPA redesignated the airshed
as being in compliance with ambient PM10 levels in
November 2008, but sources must continue to implement
measures that helped meet PM10 NAAQS, including CMPs,
as part of their federally approved maintenance plan.

The accurate quantification of agricultural aerosol
emission rates is an important part of the regulation process.
To date, PM emission rate and emission factor values for
dairies in the U.S. are scarce in published literature. Sources
of PM from dairies include: animal activity, handling of feed
and manure, combustion, vehicle activities on unpaved roads
and areas, and windblown soil, manure, and feed. It is
expected that PM emission rates vary with multiple factors,
including diet, bedding, type of pen or housing, feed storage
and distribution practices, waste cleaning and storage
practices, animal age, moisture level of soil or animal
bedding, and meteorological conditions. A report by the
USDA estimated the PM10 emission rate for a dairy to be
1.8�g d‐1 animal‐1 (USDA, 2000). This was made by
extrapolating the previously reported emission rate from a
feedlot, and assuming that a dairy has 20% lower emissions.
Schmidt et al. (2002) measured PM10 concentrations in a
naturally ventilated dairy barn during winter and summer,
and calculated emission rates by coupling measured
concentrations with ventilation rates estimated based on
carbon dioxide exchange rates. Winter average PM10
emissions were 1.7 g d‐1 animal‐1, and summer average

A
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emissions were 0.3 g d‐1 animal‐1. Goodrich et al. (2006)
made measurements of total suspended particulate (TSP)
concentration using filter‐based samplers at a free‐stall and
open‐lot dairy over two summers and then measured the
particle size distribution (PSD) of the dust to determine the
PM10 fraction. An inverse modeling technique was applied
to the calculated PM10 concentrations, using the Industrial
Source Complex Short Term Model (ISCST3, ver. 3) to
estimate PM10 emission rates of 5.0 g d‐1 animal‐1 from the
free‐stall areas and 15.0 g d‐1 animal‐1 from the open‐lot
areas. Using a similar approach, Martin et al. (2006)
measured the dust concentration at a dairy during late fall
using filter‐based samplers and performed inverse modeling
with ISCST3 to estimate emission rates of 2.3 and 9.2 g d‐1

animal‐1 for PM2.5 and PM10, respectively.
Lidar (light detection and ranging), a remote sensing

technique, has also been applied previously to investigating
agricultural  activities. Cooper et al. (1994) used a Raman
lidar capable of measuring spatially coherent water vapor
structures in order to investigate the mass‐energy exchange
between the ground and the atmosphere over the canopy of
an orchard. Stoughton et al. (1997) used an elastic lidar to
map the dispersion of pesticide applied by an airplane over
a section of forest, with both horizontal and vertical lidar
scanning patterns. These lidar measurements tracked the drift
range of the pesticide plumes and were used to verify the
accuracy of two different parametric spray drift models.
Holmén et al. (1998, 2001, 2008) demonstrated the use of
lidar to augment point sampler measurements of PM
concentration of emissions from tillage activities. Lidar
returned power was compared with mass concentration
values measured by point samplers in order to verify plume
height and dispersion coefficients from a parametric model.
Hiscox et al. (2008) also demonstrated the use of an elastic
lidar to map particulate mass concentration from tillage
activities,  and compared them with mass concentration
measurements from point sensors. Eichinger et al. (2005)
used an elastic lidar to estimate heat flux emitted from crop
fields by measuring the height and width of the entrainment
zone, i.e., the boundary layer between aerosols near the
surface of the ground and the cleaner air above. These
estimates were input into a boundary layer model, which
generated an estimate of surface heat flux.

These previous estimates of dairy PM emission rates
relied on indirect methods, either by extrapolating values
from indirect measurements or by using computer modeling.
Scanning aerosol lidar, however, allows direct measurement
of aerosol concentration. An investigation of PM emissions
from a free‐stall and open‐lot dairy in the San Joaquin Valley
employing CMPs over an eight‐day period during June 2008
utilized both direct and indirect emissions measurements and
is herein reported.

METHODOLOGY
The PM emission rates from the selected dairy were

estimated using two different techniques: an inverse
modeling technique with the filter‐based samples (Cowherd,
2005) and a flux measurement technique using elastic lidar
(Bingham et al., 2009). The PM emission rates were not
estimated for the individual potential PM sources within the
dairy, but rather an overall PM emission rate was estimated

for the entire facility, normalized by the number of animal
units in the facility.

SITE DESCRIPTION
The dairy was located near Hanford, California, and was

surrounded by agricultural land, including two other dairies
located approximately 500 m downwind. The dairy facility
is roughly square shaped, covering 22.6 ha, including all
associated storage areas and access roads, which are mostly
unpaved. It is bordered on its east side by a paved road and
on the three other sides by cropland. The total number of
animals on the dairy was 1,885, with 950 milking cows,
100�dry milking cows, 30 bulls, 5 steers, and 800 heifers
uniformly distributed between birth and two years old. One
animal unit (AU) is defined herein as one heifer, steer, or bull
cattle and 0.7 milking or dry cattle, according to the U.S. EPA
definition (EPA, 2008), totaling 2,335 AU on the dairy. The
youngest calves were housed in individual small pens, each
with a shelter. Bulls, steers, dry cows, and heifers older than
about four weeks were housed in open‐lot pens, most of
which were equipped with an open shelter. Milking cows
were housed in a combination of open‐lot and covered free‐
stall pens. Pens had a total area of 13.7 ha, about 65% of the
total dairy footprint. Feed lanes were concrete and sloped for
drainage; all other surfaces were unpaved.

The SJVAPCD‐accepted CMP plan for this dairy
operation addressed the following: feed cultivation, harvest,
and storage; unpaved roads and unpaved vehicle/equipment
areas for crops; unpaved roads and unpaved vehicle/
equipment areas for animal feeding operations; and dairy. For
the feed cultivation, harvest, and storage categories, all
implemented CMPs pertained solely to crop land and have no
impact on PM emissions from the dairy area; this was also the
case with the unpaved roads and unpaved vehicle/equipment
areas for crops category. The unpaved roads and unpaved
vehicle/equipment  areas for animal feeding operations
category listed the following CMPs: (1) water shall be
applied to 1.4 km of private roads, (2) 0.2 km of private roads
shall be paved, (3) an 8 km h‐1 speed limit shall be placed on
1.4 km of private roads, (4) water shall be applied to 0.2 ha
of private vehicle/equipment traffic areas, and (5) a 8 km h‐1

speed limit shall be placed on 0.2 ha of private vehicle/
equipment traffic areas. The listed CMPs for the dairy
category were the following, with the first three dealing with
corral/manure handling and the last two dealing with overall
management/feeding:  (1) manure from open corrals shall be
frequently scraped and/or removed, (2) pull‐type manure
harvesting equipment shall be used, (3) shaded areas shall be
provided for cattle in open corrals, (4) wet material shall be
placed in the feed wagon prior to mixing, and (5) feed shall
be wetted during mixing. Each implemented CMP is targeted
to reduce PM10 emissions from the dairy.

The cows were milked twice a day, with a milking
schedule from 8:00 a.m. to 5:00 p.m. and from 8:00 p.m. to
5:00 a.m. local time. A feed truck delivered feed to all pens
from 5:30 a.m. to 12:00 p.m. and from 3:00 p.m. to 5:00 p.m.
local time. Milk cow lanes were flushed with water several
times daily, while heifer, dry cow, bull, and steer lanes were
scraped approximately weekly. Corrals were scraped as
needed, with gathered material stored as a mound in each pen
for later removal. No corral scraping occurred during the
measurement campaign, although scraping was performed
during equipment setup.
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SETUP
Historical measurements of wind velocity and direction

for the previous three years were obtained from station 15 of
the California Irrigation Management and Information
System near Stratford, California, 24 km southwest of
Hanford. These records showed that wind conditions during
the months of May and June were very consistent, with winds
coming dominantly from the northwest. Based on these data,
instruments were deployed to measure background
concentrations northwest of the facility and to measure
emission plumes south of the dairy. It was expected that some
emission plumes would pass southeast of the facility, but
building placement and a lack of permission from
neighboring property owners made it impossible to place
point sensors at these locations. On‐site measurements of the
wind direction during the experiment confirmed the
dominant direction to be from the northwest. An air quality
instrumentation  trailer (dimensions approximately 5 m ×
2.5�m × 2.5 m) at location AQ in figure 1 was used for the
following: sample preparation, collection, and storage;
instrument handling, storage, and servicing; and data storage.
The lidar instrument (Aglite) was housed within a trailer that
was placed approximately 800 m west of the southwest
corner of the dairy.

Two 15.3 m towers dedicated to holding meteorological
instruments were erected at the site. One was located 400 m
west of the dairy, and the other was located just inside the
southern boundary of the dairy. Each tower was equipped
with five Gill 3‐cup anemometers (R.M. Young Co., Traverse
City, Mich.; threshold speed 0.5 m s‐1, accuracy ±0.2 m s‐1

over 1 m s‐1) mounted at heights of 2.5, 3.9, 6.2, 9.7, and
15.3�m. Five temperature and relative humidity (RH) sensors
(model HMP45C, Vaisala, Oulu, Finland; ±0.2°C accuracy
at 20°C; RH accuracy of ±2% for values in the range 0% to
90% and ±3% for values in the range 90% to 100%) were
also mounted at heights of 1.5, 2.5, 3.9, 6.2, and 9.7 m. Wind
vanes (model 024A; Met One Instruments, Grants Pass, Ore.;
±5° accuracy) were mounted on top of both towers at
15.3�m. Campbell Scientific dataloggers were used to record
and store the data from the towers. Solar radiation was
measured with a weather station (Vantage Pro2 Plus, Davis
Instruments, Hayward, Cal.; accuracy ±5% of full scale),
which also recorded precipitation (accuracy ±3% or
0.02�mm per event, whichever is greater), temperature
(accuracy ±0.5°C for values greater than ‐7°C, ±1.0°C for
values less than ‐7°C), relative humidity (accuracy ±3% for
values 0% to 90% and ±4% for values 90% to 100%), wind
speed (±1�m s‐1 or 5%, whichever is greater), and direction
(accuracy ±3°). The Davis Instruments weather station
recorded 5 min averages, and the values from the tower
instruments were recorded as 1 min averages.

A total of 24 MiniVol PM filter‐based samplers
(Airmetrics,  Eugene, Ore.) were deployed in groups of either
two or three instruments at multiple locations around the
dairy in order to allow characterization of the particle mass
distributions (PM2.5, PM10, and TSP) of both background and
emitted aerosols. The MiniVol is a portable, programmable,
filter‐based sampler that yields mass concentration averaged
over the sample time, with an impactor plate assembly
employed for a single‐sized particle fractionation. A pair of
samplers consisted of one PM10 sampler and one PM2.5
sampler, whereas a group of three samplers consisted of one
TSP sampler, one PM10 sampler, and one PM2.5 sampler.

The 47 mm Teflon filters of the MiniVol samplers were
pre‐ and post‐conditioned according to the protocols outlined
in 40 CFR 50 Appendix J (EPA, 1987). Final average filter
weights for both pre‐ and post‐test were calculated from three
stable weights within ±5 �g determined using a
microbalance  (Type MT5, Mettler‐Toledo, Inc., Columbus,
Ohio). Balance accuracy was verified every ten filter
measurements using a 1.000 mg calibration weight. Mass
collection was determined by subtracting the pre‐weight
from the post‐weight. Mass concentration was then
calculated by dividing the mass collected by the total volume
of air sampled, which is the product of the sample flow rate
and sample time.

We followed the EPA standard definitions of PM2.5 and
PM10 (EPA, 2004, 2006), under which the measurement
efficiencies of the PM2.5 and PM10 samplers are not perfect
step functions with respect to particle size. Instead, there is
a slope associated with the removal efficiency of the
separation mechanism that leads to removal of some particles
smaller than the target size and throughput of some particles
larger than the target size. As a result, the measured PM
values do not correspond perfectly with a step‐function
definition of PM concentration. The aspiration efficiency of
MiniVol samplers has not been quantified in peer‐reviewed
literature.  However, several studies have compared TSP,
PM10, and PM2.5 MiniVol measurements with FRM and other
high‐volume samplers; these studies have found that MiniVol
samplers yield results between 0% and 20% lower than high‐
volume samplers (Baldauf et al., 2001; Chen et al, 2007;
Chow et al., 2002). Thus, our measured concentrations and
estimated emission rates may be considered as conservative
values for this facility.

Nine aerosol profilers (model 9722, Met One Instruments,
Inc.), also known as optical particle counters (OPCs), were
co‐located with several of the sampler groups. The OPCs
measured the optical particle size distribution with a period
of 20 s using eight discrete size bins, counting the number of
particles with diameters between two sequential cutoff
values. The lower bin values were 0.3, 0.5, 0.6, 1.0, 2.0, 2.5,
5.0, and 10.0 �m, with the eighth bin measuring all particles
whose diameter was greater than 10 �m. Flow calibration of
the MiniVols was carried out just prior to the study, and the
OPC flow measurements were conducted prior to and after
the study, as well as counting calibrations and comparisons
between all OPCs. As with the MiniVols, the OPCs also give
conservative numbers because particles larger than about
25��m have difficulty entering the inlet and return such a
large optical signal that they are not recognized as valid
measurements.  Furthermore, at wind speeds >3 m s‐1,
particles as small as 5 �m may have difficulty entering the
instrument inlet (R. Falbo, Met One Instruments, Grants
Pass, Ore., personal communication, February 2011).

The PM sampling layout during the field campaign is
shown in figure 1. The locations of instrumentation towers
are illustrated using solid black symbols, including the
location of the Aglite lidar instrument in the bottom‐left
corner of the figure. The dotted lines extending from the
Aglite instrument represent the beam paths of the vertical
profile scans. The dairy footprint is shown by a gray
rectangle,  and within it the pen, free‐stall, and manure
storage areas of the dairy are represented by white polygons.
The expected dominant wind direction is shown by an arrow
in the top‐left corner.
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Figure 1. Map of dairy footprint, pens, manure storage, and sampling
locations.

Upwind/background point sampler groups were located to
the northwest (A) and north (B) of the dairy at 2 and 9 m
elevations, respectively. Downwind measurements were
made along the southern edge of the dairy at locations C
(9�m), D (2 m), E (2 m), F (2 m), and AQ (2, 5, and 9 m), with
sampler heights above ground level shown in parentheses. At
the AQ location, the instruments at 5 m height were mounted
to a trailer and the instruments at 2 and 9 m heights were
mounted on a tower located 5 m west of the trailer, upwind
or crosswind of the trailer during >95% of the sample
collection times. Due to their close proximity to the dairy, it
was expected that all of the five downwind locations would
be impacted by the emission plume at least to some degree,
and this assumption was proven true over the course of the
campaign.

Samples of the soil on unpaved roads and in dry‐lot pens
were collected on June 16 and gravimetrically analyzed for
percent moisture level. The analysis showed that the average
percent moisture ±1 � was 0.56 ±0.50 (n = 3) and 5.3 ±5.1
(n = 7) for the unpaved roads and pens, respectively. We
observed that the roads were well compacted and did not
appear to have significant loftable material; no quantitative
analysis of the road or pen composition was performed.

INVERSE MODELING

Sources of PM at the dairy were modeled using the
American Meteorological Society and U.S. Environmental
Protection Agency Regulatory Model (AERMOD) software,
version 07026 executable file. The interface used to run this
model was the commercially available AERMOD View
package by Lakes Environmental, Inc. (Waterloo, Ontario,
Canada). The model assumes steady‐state conditions,
continuous emissions, and conservation of mass. It requires
that the source type, size, location, and emission rate be
specified, as well as sampler or receptor locations. It also
requires hourly averaged meteorological data, including
wind speed, wind direction, temperature, and solar radiation.
The wind speed and direction data were taken from the
instruments mounted at 6.2 m, and temperature data were
taken at 2.0 m height at location MII in figure 1. Incoming
solar radiation values from the Davis Instruments weather
station were used in producing the surface meteorological
file for AERMOD. Cloud cover was set to be zero for the

entire period, as there were clear skies throughout the
measurement campaign.

The AERMOD meteorological preprocessor AERMET
requires assumptions about the Bowen ratio, noon‐time
albedo, and surface roughness length, which were chosen as
follows: a Bowen ratio value of 1.0, the spring‐time default
under dry conditions for cultivated land; a noon‐time albedo
value of 0.18 based on the value given for light‐colored, dry
soil by Hansen (1993); and a surface roughness length value
of 0.10 m, assuming that the dairy layout and structure
produced a surface roughness length near the middle of the
values given for all agricultural crops (0.04 to 0.20 m) as
reported by Oke (1987) and the default AERMET values
(0.03 to 0.20 m).

Specific areas of the dairy were modeled as sources of PM
emission, including the pens of the heifers, dry and lactating
cows, bulls and steers (13.3 ha), as well as calf hutches
(0.4�ha), totaling 65% of the dairy footprint. These are
marked in figure 1 as calf pens, pens, and free stalls. The free‐
stall and open‐lot pen areas were intermixed, meaning that
there was no practical way to differentiate between their
effects on the total emission rate of the facility. For this
reason, one emission rate was used for all areas. The effects
of the air quality instrumentation trailer (AQ) on dispersion
and nearby concentrations could not be modeled within
AERMOD because the software does not allow the modeling
of building effects with area sources. Fugitive dust emissions
were seen during the campaign due to vehicle traffic on the
unpaved service roads; however, these emissions were
intermittent  and not modeled but were instead attributed to
pen emissions as part of the operational activities of the dairy.
Fugitive dust emissions were witnessed from brief tractor
activity immediately south and downwind of the facility and
of the measurement locations on June 13. The OPC data from
the time of the activity were inspected, and no discernable
impact was observed. No other potential external sources of
aerosol were observed. In addition, it was assumed that PM
emissions from the wastewater lagoon and solids separator
basin were negligible compared to other sources.

The models require a priori values for the emission rate,
which is the very value that we seek to derive, in order to
predict the PM concentration values, which we have already
measured. Inverse modeling is the process of adjusting the
model emission rate and comparing the model‐predicted
concentrations to the already‐measured concentration values
until a least‐squares fit is found of the predicted
concentration values to the measured values. The model
emission rate that corresponds to that least‐squares fit is the
inverse modeling estimate.

AERMOD only predicts concentrations resulting from
specified sources, in this case the dairy pens, so background/
upwind PM levels must be subtracted from concentrations
measured downwind of the dairy for comparison in inverse
modeling. Facility‐produced PM concentrations, or concen‐
trations resulting from the dairy activities, were calculated on
a location‐by‐location basis by subtracting the average
upwind concentration from the measured downwind
concentration.  This difference was determined to be
significant if greater than the 67% confidence interval about
the upwind measurements, corresponding to one standard
deviation. Only facility‐produced concentrations deemed
significant were used in inverse modeling.
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An initial or “seed” emission rate for a given sampling
period was chosen and fed into AERMOD, resulting in an
initial set of predicted concentration values, which were
assembled into a vector. A linear relationship between the
emission rate and the predicted concentration was calculated
as:

 00 ecpm =  (1)

where e0 is the initial emission rate, pm0 is the corresponding
vector of predicted concentration values from AERMOD,
and c is a vector of coefficients that relate e0 and pm0. The
measured concentration values from the same sampling
period were assembled into another vector, pmmeas. The
optimal emission rate was calculated to be the minimum
least‐squares estimate of pmmeas:

 
cc

pmc
T

meas
T

e =  (2)

The calculated value of e was input into AERMOD, as
well as the values e ±0.01 g d‐1 animal‐1, and e was
confirmed to be the minimum mean‐squared solution. This
procedure was performed for each sampling period, resulting
in individual estimated emission rates.

ELASTIC LIDAR

Elastic lidar is a remote sensing technology with an
application in imaging aerosols in the atmosphere (Measures,
1984). Lidar (also known as laser‐radar) functions by
emitting a pulse of laser light and measuring the intensity and
timing of the light as it is scattered by molecules and aerosols
in the atmosphere. By recording the direction of the laser
beam, as well as the timing and intensity of the scattered
light, it is possible to construct an image of the aerosol in the
atmosphere. The ability of elastic lidar to directly map
aerosol concentration in the atmosphere enables
measurement of aerosol emission rates with higher temporal
resolution than through inverse modeling. In addition, elastic
lidar enables measurement of aerosol concentration at
thousands of points at relatively high temporal and spatial
resolution, in contrast to a handful of filter samplers, which
only measure aerosol concentration at a single point averaged
over a time period typically measured in hours to days.

Aglite is an elastic lidar instrument that was used to
measure PM emissions at this dairy. Aglite is a three‐
wavelength micro‐pulse scanning lidar, capable of imaging
a 400 m high aerosol profile of the atmosphere in 25 s, with
8 m vertical resolution, 6 m horizontal resolution, and single‐
photon measurement precision (Marchant et al., 2009). It
requires data from both the OPCs and filter samplers for
calibration and conversion of optical data into mass
concentrations.  The measured accuracy of Aglite can be
described using the 95% confidence interval of PM10
concentration measurements. During previous campaigns,
this has been shown to have values between 10% and 50% of
the mean background concentration and depends on several
factors, including the level of atmospheric aerosol loading
and the distance of the measurement from the lidar (Zavyalov
et al., 2009). The 95% confidence interval at 730 m (the range
to the calibration OPC) was approximately 30% of the
background PM10 concentration, or 10 �g m‐3, on average
over the course of the campaign. The Aglite instrument was
regularly calibrated approximately every 10 min throughout

Figure 2. Flowchart outlining the general operation of the Aglite
algorithm for converting measured power into PM mass concentration.

each day by co‐locating its scanning beam next to a cluster
of point sensors, which was mounted on a tower upwind of
the dairy. The OPC in the cluster provided measurements of
the shape and magnitude of the optical PSD of the
background atmosphere with a 20 s sample period.
Additionally, OPCs were located downwind of the dairy and
measured the optical PSD of the impacted atmosphere. By
taking the difference between upwind and downwind OPC
data, the PSD of the emission plume was calculated. Figure�2
outlines the general operation of the Aglite data processing
algorithm and illustrates the dependence of the different steps
of the algorithm on point sensor data.

The PSDs of background and emission aerosols are
measured by OPCs, to which Mie scattering theory is applied
in order to calculate optical backscatter and extinction
coefficients. Index of refraction values for a water‐soluble
type aerosol from Jursa (1985) were used in this analysis
based on the following: limited downwind chemical
composition measurements not herein reported showed fine
particles strongly dominated by water‐soluble aerosol; the
assumption that a significant portion of the aerosol emitted
from the dairy was organic and water‐soluble; and the very
small differences given by Jursa (1985) for the indices of
refraction for water‐soluble type aerosols and mineral‐type
aerosols. Mineral‐type aerosols, i.e., crustal material, was
likely another significant portion of the aerosol emitted by
the dairy, as found by Lange et al. (2009) downwind of beef
cattle feedlots. By aiming Aglite past the upwind OPC,
calibration coefficients were calculated to establish the
relationship between the optical properties of the atmosphere
and photons detected by Aglite (Marchant et al., 2009).

Since both Aglite and the OPCs detect dust optically, in
order to estimate the effective volume concentration of an
aerosol, it must be assumed that the detected particles are
spherical and have the same index of refraction as the
calibration aerosol. This effective volume concentration is
not necessarily equivalent to the true total volume of the
aerosol particles, as the particles may be non‐spherical or
have a different index of refraction. In addition, a conversion
factor is required to convert the lidar volume‐concentration
measurement to units of mass; this is called the mass
conversion factor (MCF) by Zavyalov et al. (2009). It is
derived using co‐located OPCs and MiniVol samplers. The
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OPC volume concentration, defined as the total volume of all
particles in a given volume of air (VTSP) or the total volume
of those particles whose optical diameter is less than or equal
to either 2.5 (V2.5) or 10 �m (V10), is averaged over the
MiniVol sample time. The MCF is defined as the ratio of the
PM concentration measured by a MiniVol sampler over the
corresponding volume concentration measured by an OPC.
Because it measures the PSD, a single OPC can measure the
separate effective volume concentrations corresponding to
PM2.5, PM10, and TSP. The MCF incorporates into a single
coefficient the differences between mass measurement and
optical measurement techniques as well as the effects of
many aerosol characteristics that are otherwise difficult to
accurately measure in ambient air (i.e., particle shape, index
of refraction, porosity, and density). Furthermore, the MCF
accounts for the imperfect measurement efficiency of the
MiniVol samplers. As a result, the MCF allows the OPC‐
measured volume concentration values to be converted to
PM concentration values that are equivalent to what would
have been measured by a MiniVol sampler. By extension,
lidar data can also be converted to PM concentration values
by first converting the data to OPC‐equivalent volume
concentration,  and then multiplying by the MCF, resulting in
MiniVol‐equivalent  PM concentration values.

The OPCs detect aerosol particles by measuring their side‐
scatter intensity with a 670 nm laser, and they were calibrated
using an aerosol of polystyrene spheres of known diameter.
Although the sphericity and complex refractive index of the
calibration aerosol (1.59 ‐ 0.0005i; Ma et al., 2003) differs
from the complex refractive index of a water‐soluble aerosol
(1.53 ‐ 0.007i), the OPC output aerosol profile concentrations
were used “as is” and no attempt was made to modify them
to compensate for this difference. The assumption that the
background and emission aerosols have the same refractive
index values as a water‐soluble type aerosol may result in
error if the true refractive index values differ significantly. In
future measurement campaigns utilizing optical instruments,
in situ measurements should be made of the physical
composition of the aerosols in order to confirm that
appropriate refractive index values are chosen. The use of the
MCF is expected to partly compensate for the error in
estimated mass concentration due to this difference in
refractive index.

The lidar system uses information about the shape of the
PSD of the emission aerosol but does not use any information
about the concentration of emission aerosol from the
downwind point sensors. Again using Mie theory, the optical
backscatter and extinction coefficients of the emission plume
were calculated from the emission plume PSD, as well as the
volume‐concentration  coefficients. The optical coefficients
were assembled into vectors, whose elements corresponded
to the wavelengths of the lidar, whereas the elements of the
volume‐concentration  vector corresponded to the different
size fractions of PM. All three of these vectors are then
normalized by the magnitude of the backscatter vector and
are then used by the lidar data processing algorithm.

It was observed that the aerosol PSD seen by the OPCs
varied over the several hours of each measurement period,
but that it was relatively constant over the brief periods of
time between lidar calibrations. For this reason, atmospheric
light‐scattering  coefficients were calculated for each time
period between lidar calibrations and applied to processing
of lidar data taken during each corresponding 10 min period.

As a result, change in the PSD over the course of the sample
period did not affect the conversion of lidar data from raw
power to volume concentration.

Aerosol volume‐concentration values are estimated from
the return power measurements of Aglite by a form of the
extended Kalman filter (Dias et al., 2004; Marchant et al.,
2011). The filter uses the Aglite calibration coefficients and
the normalized optical backscatter and extinction
coefficients of the emission aerosol, as measured by the
OPCs. The atmosphere is approximated as a linear
combination of basis aerosols, or in other words, as an
external mixture (Hess et al., 1998). For this specific
experiment,  the atmosphere is approximated as a uniform
background aerosol plus a single variable‐emission aerosol.

The filter converts measured return power to basis‐aerosol
amplitude,  as illustrated by the vertical profiles in figures 3a
and 3b. These graphs show a downwind vertical scan taken
at 5:23 p.m. on June 13. For this experiment, the atmospheric
aerosol was approximated as a uniform background aerosol
plus a single variable‐emission aerosol. The normalized
volume concentration coefficients and MCF values are then
used to convert basis‐aerosol amplitude to mass concen-
tration, as shown in figure 3c. The flow rate of PM passing
perpendicularly through each square meter of the lidar scan
is the aerosol PM flux concentration. This was calculated by
multiplying the PM concentration at each point by the
perpendicular  component of the wind velocity at that height
and is illustrated in figure 3d.

Lidar technology can estimate the total PM emission rate
from a source using a mass balance technique and a scanning
pattern consisting of vertical scans both upwind and
downwind of the source. An example of this scan geometry
is illustrated in figure 4, which shows PM10 vertical
concentration profiles both upwind and downwind of the
dairy (the same scan as illustrated in fig. 3), as well as a
horizontal image of PM10 concentration of the atmosphere
near the ground over the dairy. The obstructing power lines
at 1400 m east can be seen as dark blotches in the horizontal
portion of the scan. The configuration of the lidar sampling
is also illustrated by the dotted lines in figure 1.

Each lidar scan began with a continuous stare for
calibration purposes at 0° elevation and 41° azimuth,
clockwise from true north, lasting 40 s and pointing past
upwind sample location A. This was followed by two vertical
scan pairs upwind of the facility, also at 41° azimuth. The
dashed line extending from the Aglite trailer to location A in
figure 1 represents the direction of the upwind profile scan
and calibration stare. The beam was then horizontally
scanned about 10 m over the dairy from the upwind to
downwind sampling locations, which was followed by five
vertical downwind scan pairs. The vertical scan pairs
consisted of one up scan and one down scan, in which the
beam began pointing parallel to the ground, was raised to 25°
elevation over 25 s, and then lowered back to ground level
over 25 s. Three vertical scan pairs were made on the
downwind border of the dairy at 90° azimuth, with two more
at different distances downwind of the dairy at 94° and 98°
azimuth. Unfortunately, due to a logistical error, the vertical
scans made at 90° azimuth, parallel to the downwind border
of the dairy, were impaired by backscatter of laser light off of
the guy wires of a downwind instrument tower. For this
reason, only the vertical profiles taken at 94° and 98°
azimuth were used for estimating aerosol emissions. The two
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Figure 3. Four sequential data processing steps showing the conversion of (a) raw measured power to (b) basis‐aerosol amplitude, (c) PM10 mass
concentration, and (d) PM10 flux concentration.
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Figure 4. Example of Aglite scan configuration showing upwind and
downwind vertical PM10 concentration profiles.

dashed lines extending from the Aglite trailer past the south
of the dairy in figure 1 represent these two scan angles for
profile scans that did not suffer interference from instrument
towers. The use of the two separate downwind profile scans
was motivated by an attempt to monitor changes in plume
morphology at multiple ranges from the emission source,
which is not discussed here.

Differences between the upwind and downwind scans
were then converted into individual measurements of the flux
of aerosols through the downwind scanning plane of the lidar,
which is the dairy aerosol emission rate, using wind velocity
profiles from measurements collected at the meteorological
towers. In this way, the net emission rate of a facility can be
directly observed with high temporal resolution and without
requiring a mathematical model of the emission process
(Bingham et al., 2009). This net emission rate is generally
measured at the facility boundary, not taking into account any
falloff in aerosol concentration that may occur as the plume
continues downwind. Lidar scans were excluded from the
dairy emissions analysis if the wind direction deviated more
than ±60° from north. Lidar scans were also visually
inspected for potential problems, such as aerosol‐source
activity in the upwind area or returns from solid objects; an
observed example of a solid object returning the laser signal
is a sampling tower or its guy wires.

MEASUREMENTS
The measurement campaign began at noon Pacific

Standard Time (PST) on June 13, 2008, and lasted through
midnight on June 20, 2008. All stated times are in PST. For
logistical reasons, the OPC and MiniVol instruments were not
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available to make measurements on the afternoon of June 18
and all of June 19. The lidar was operated continuously until
it was stopped at 19:30 on June 19 due to a malfunction of its
laser. One more period of measurements was conducted with
the OPC and MiniVol instruments on June 20. Meteoro-
logical conditions throughout the field study were hot and
dry, with diurnally consistent winds. The mean temperature
of the seven measurement periods at 10 m height was 28.8°C;
cloud cover was absent or extremely light and at high
altitudes throughout, with no recorded precipitation events.
Calm or very low wind conditions existed each morning
before sunrise with unstable direction. The wind speed at
6.2�m height from 5:00 to 6:00 a.m. varied between 0 and 2�m
s‐1 with a campaign average of 1.2 m s‐1. The average wind
direction during all sample periods was from the northwest,
with an average speed of 2.6 m s‐1 and a standard deviation
of 1.2 m s‐1 at 6.2 m height.

POINT SAMPLERS
The filter samplers were run over seven separate periods

from June 13 until June 20. On June 13, they ran from noon
until 23:00 PST. On June 14, 15, 16, and 17, they ran from
00:30 until 23:00. On June 18, the filters ran from 00:30 until
noon, and on June 20 the samplers ran from 11:00 until 23:00.
There was a logistical break of 1.5 h between sample periods
to allow for instrument inspection, data recording, and
placement of fresh filters in the MiniVol samplers.

Measured PM2.5 concentrations downwind of the dairy
ranged from 15.4 to 56.0 �g m‐3, with upwind levels ranging
from 13.6 to 31.4 �g m‐3. Measured downwind PM10
concentrations ranged from 59.2 to 138.6 �g m‐3, and upwind
PM10 levels ranged from 42.3 to 104.5 �g m‐3. Measured TSP
concentrations downwind of the dairy ranged from 129.9 to
246.4 �g m‐3, with upwind levels ranging from 69.8 to
188.4��g m‐3. In general, the highest downwind concen-
trations of all mass size fractions were measured at 2�m above
ground level, with elevated measurements at 5 m and 9 m
reporting slightly lower values. This same decreasing
concentration with increasing measurement height trend was
observed in OPC measurements. Figure 5 shows the
correlation between upwind and downwind MiniVol
measurements.  The vertical axis shows the concentrations
measured at locations D, AQ, and E in figure 1 over all seven
sampling periods, whereas the horizontal axis shows the
concentrations measured at location A during the same
periods.

MCF values were estimated for each of the MiniVol
sample periods using data from sampler clusters that had both
an OPC and MiniVols. Because the MCF can only be
calculated during time periods when both the OPCs and
MiniVols are operating, emission rates can only be
determined from the lidar data during the filter sampler
operational periods. Furthermore, as mentioned above, it was
observed that the OPC‐measured PSD of the atmospheric
aerosol changed over the course of the day. However, the
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Figure 5. Correlation between upwind (location A) and downwind
(locations AQ, D, and E) PM concentrations over all seven sampling
periods.

MiniVol sample period determines the time period over
which the MCF is calculated. As a result, it was necessary to
treat the calculated MCF as though it were the correct value
“on average,” even though the true MCF value may have
varied over the time period of the measurement. Average
MCFs for each sample period were calculated as the sum of
the measured mass concentration values divided by the sum
of the measured volume concentration values across all
sample clusters and are shown in table 1, along with the
average of all seven periods ±95% confidence intervals. The
measured values of MCF2.5 on June 13 and 20 were twice as
high as on the other days. The measurement periods of those
two days were both in the latter half the day, as previously
described. Sample period mean temperatures were higher
and mean relative humidities were lower than for other
samples, as would be expected for the noon‐to‐midnight
hours compared to midnight‐to‐midnight hours. Another
significant difference observed during these two sample
periods over the others was that the wind blew consistently
out of the west for several consecutive hours, which may have
changed the composition and size distribution of the
background aerosol due to different upwind sources.
Variability of the MCF of similar magnitude has been
observed on other field campaigns (Williams et al., 2010).

AGLITE MEASUREMENTS

The Aglite lidar was placed approximately 800 m due
west of the southwest corner of the dairy. It was run
continuously from noon on June 13 until 19:30 on June 19,
at which time the laser malfunctioned and prevented further
measurements.  The instrument ran in a continuous repeating
scan pattern, as described above. The post‐processing data
conversion to aerosol concentration profiles was accom-
plished as previously detailed. As verification of the quality
of the lidar data, the PM concentrations measured by Aglite
at 10 m above ground level (the lower limit of Aglite scan
height near the point sensor locations) were found to be

Table 1. Average calculated mass conversion factors (±95% CI) for each measurement period.
MCF June 13 June 14 June 15 June 16 June 17 June 18 June 20 Average

Duration (h) 11 22.5 22.5 22.5 22.5 11.5 12 ‐‐
PM2.5/V2.5 5.56 2.71 2.67 2.03 1.89 1.96 4.83 3.09 ±1.10
PM10/V10 1.43 1.28 1.27 1.24 1.13 1.17 1.58 1.30 ±0.12
TSP/VTSP 0.90 0.90 0.94 0.85 0.87 0.89 1.29 0.95 ±0.11
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Figure 6. (a) Average PM10 concentration (�g m‐3) of all vertical scans
measured by lidar at both 94° and 98° azimuth and (b) horizontal average
PM10 concentration map estimated by AERMOD overlaid on the dairy
footprint, for the first 6 h of the sampling period on June 13.

consistent with those measured by the downwind point sensor
instruments (mounted at 2, 5, and 9 m heights) during all
measurement periods. Figure 6a is the average downwind
vertical profile of the PM10 concentration as measured by
Aglite of the first 6 h of the sampling period on June 13, from
12:00 to 18:00. Shortly after 18:00 h, the wind direction
shifted to coming from due west, hampering the effectiveness
of the instrument placement. Figure 6b is the corresponding
horizontal concentration map of period‐average PM10
concentrations as predicted using inverse modeling with

AERMOD at a 10 m height added to the period average
background of 54 μg m-3. The figure also shows the
downwind profile lidar beam paths (dotted lines) used to
construct figure 6a and the footprint of the dairy. It should be
noted that the lidar was unable to scan past a range of 1400
m due to obstruction by power lines running along the east
boundary of the dairy.

The range of maximum average concentrations in
figure�6a matches somewhat with the location of maximum
modeled aerosol concentration in figure 6b. Unfortunately,
no point sensors were placed anywhere along the east
boundary of the dairy, except for the southeast corner
(location F in fig. 1). More thorough coverage of the dairy
perimeter by point sensors would have either confirmed the
magnitude of the concentration seen east of the dairy in
figure�6b or constrained the inverse model so as to give a
more accurate estimation of the plume concentration in that
area. In either case, better point sensor coverage would have
resulted in increased confidence in the inverse modeling
results.

CALCULATED EMISSION RATES
The size‐fractionated PM emission rates of the dairy were

estimated for each measurement period using both inverse
modeling coupled with the MiniVol sampler measurements
and by application of a mass balance approach to the mass‐
calibrated lidar measurements, as described previously in the
Methodology section. A total of 161 filter samples were
taken over the course of the campaign; however, 12 of them
with noted problems (dropped filter, sampler malfunction,
insect on filter, etc.) were removed from further calculations.
There were 109 considered downwind measurements in the
remaining 149. From these 109, 91 passed the screening
criteria of having a level greater than the mean upwind
concentration plus the 67% confidence interval and were
used in emission rate calculations, broken down by size
fraction as follows: 31 PM2.5, 41 PM10, and 19 TSP. Of the
2,045 total downwind lidar scans taken throughout the whole
campaign, 518 scans with identified problems were removed
from emission rate calculations, mostly for the reason of
excessive wind direction deviation.

The calculated emission values per sample period from
inverse modeling and the average lidar measured emission
rates ±95% confidence intervals are tabulated in table 2. The
overall averages, standard deviations (SD), and 95%
confidence intervals for each size fraction are shown at the

Table 2. Emission rates estimated using inverse modeling (IM) and lidar measurements
for each sample period, as well as the average temperature and wind velocity.

Sample
Date

(2008)

Emission Rates ±95% Confidence Interval (g d ‐1 AU‐1)
No. of
Lidar

Samples

Meteorological Conditions

PM2.5 PM10 TSP Temp.
(°C)

Wind Speed
at 10 m (m s‐1)

Wind Dir.
(degrees)IM Lidar IM Lidar IM Lidar

June 13 13.0 2.7 ±0.9 43.5 19.0 ±6.3 100.2 58.9 ±19.6 186 33.0 2.9 307
June 14 2.3 1.6 ±0.5 21.3 19.0 ±5.4 82.1 54.1 ±15.4 392 27.2 2.4 301
June 15 1.6 0.3 ±0.2 12.7 4.0 ±3.4 48.6 12.4 ±10.5 351 27.1 2.3 321
June 16 1.7 0.8 ±0.5 16.3 14.9 ±8.7 79.7 45.0 ±26.3 331 26.7 2.6 320
June 17 1.0 1.6 ±0.6 11.9 27.2 ±10.1 39.9 88.7 ±32.9 206 25.4 3.1 313
June 18 1.3 0.6 ±0.3 7.7 6.3 ±3.7 23.7 19.1 ±11.1 61 21.9 2.1 332
June 20 5.7 ‐‐ 60.4 ‐‐ 157.2 ‐‐ ‐‐ 34.8 1.4 306

Mean 3.8 1.3 24.8 15.1 75.9 46.4 28.8 2.5 316
SD 4.4 0.8 19.6 7.9 44.8 25.5 4.6 0.5 11

95% CI 3.2 0.2 14.5 2.2 33.2 7.0 3.2 0.3 8



1462 TRANSACTIONS OF THE ASABE

Table 3. Emission rates estimated by inverse modeling and lidar measurements in this
study, as well as those reported by previous studies (all values are in g d‐1 animal‐1).

Emission

This Study USDA
(2000)

Schmidt et al.
(2006)

Goodrich et al. Martin et al.
(2006)Inverse Modeling Lidar (2006)

PM2.5 4.7 ±4.0 1.6 ±0.2 ‐‐ ‐‐ ‐‐ 2.3

PM10 30.7 ±18.0 18.7 ±2.7 1.8 1.7/0.3
(winter/summer)

5/15
(free‐stall/open‐lot)

9.2

TSP 94.0 ±41.1 57.5 ±8.7 ‐‐ ‐‐ ‐‐ ‐‐

bottom of table 2. The mean determined emission rates from
both techniques were of similar magnitude.

There was significant variation in the estimated emission
rates within the same technique for the different
measurement periods throughout the study. In particular,
inspection of table 2 shows that the PM10 emission rate
estimated by inverse modeling was more than twice as high
on June 13 and 20 than on any other day. As mentioned
previously, the sampling period for those two dates covered
only the afternoon and late evening, during which time it
might be expected that convection is stronger than during the
night and morning and more able to transport PM away from
the dairy. Time‐resolved lidar data show a diurnal pattern of
PM emissions, with lower emissions during the morning
hours and higher emissions during the afternoon hours.

The overall mean emission rates estimated by lidar and
inverse modeling with ±95% confidence intervals are shown
in units of g d‐1 AU‐1 in table 2 and in units of g d‐1 animal‐1

in table 3. For comparison, Table 3 also shows the estimated
emission values from previous studies (USDA, 2000;
Schmidt et al., 2002; Goodrich et al., 2006; Martin et al.,
2006).

While the overall mean PM10 and TSP values, as
estimated by the two techniques, differed by about 40%, day‐
to‐day differences between the two were observed, such as on
June 15, when the PM10 emission rate estimated by the
inverse modeling technique was over three times higher than
the emission rate estimated by the lidar method. One factor
in this may be that the two methods operate on different
principles. Furthermore, inverse modeling does not simulate
elevated plumes very well (Williams et al., 2010), and the
lidar was unable to sample plumes lower than about 10 m off
the ground due to safety and data quality concerns. These
factors might explain some of the differences observed in the
estimated daily average and campaign average emission
rates.

The results of this study differ from those of Schmidt et al.
(2002) and Martin et al. (2006) in climatic conditions and/or
housing type. Goodrich et al. (2006) reported similar
emissions for open‐lot pens during the summer in the Texas
panhandle, and lower values from free‐stall areas. While
Goodrich et al. (2006) also used an inverse modeling
technique, the model employed was ISCST3, whereas
AERMOD was used in this study. Differences of maximum
predicted concentrations from ISCST3 and AERMOD of up
to a factor of 2 were reported by Faulkner et al. (2008) from
a ground‐level area source with identical source, receptor,
and meteorological inputs. This difference would be carried
into inverse modeling emission rate calculations. AERMOD
replaced ISCST3 as the EPA‐recommended air dispersion
model for regulatory purposes in December 2006.
Meteorology, soil type, soil moisture, housing type, bedding
type, feed, manure handling and storage, associated

vehicular traffic, and animal age and activity may all be
significant factors affecting PM emissions from a dairy.
Based on the multiple potential factors affecting the
quantification  of emissions from dairies, the variation seen in
the literature and herein reported are not unexpected.

CONCLUSION
This measurement campaign represents the first time that

lidar has been used to estimate PM2.5, PM10, and TSP
emission rates from a dairy. Estimation of facility aerosol
emission rates using the lidar technique has been previously
demonstrated at other agricultural facilities, including cotton
gin and almond harvest operations, and its application to
estimating emissions from a dairy represents a logical
evolutionary advance.

Lidar measures aerosol concentration with higher spatial
and temporal detail than is available from typical point‐
sensor‐only inverse modeling approaches. Additionally, it
has the ability to sense aerosols in locations that are difficult
to access with point sensors, such as several hundred meters
above the ground, and the ability to generate images of
aerosol concentration over large areas for diagnostic
purposes.

It should be noted that the emissions reported herein are
not representative of the emissions throughout the year, as
measurements were taken under summer conditions (hot and
dry) with relatively dry soil, and emissions during other
seasons are expected to be lower due to emission suppression
from precipitation events, among other factors. In order to
determine suitable values for regulatory purposes, surveys of
particulate  emission rates should made at a variety of
different dairies and pen types during different times of the
year.

These kinds of measurements can be used to evaluate
different management scenarios in order to understand and
minimize the environmental impacts of commercial dairies,
as well as other types of agricultural facilities. The results of
the experiment described here indicate that it is technically
feasible to use the techniques described here for such
purposes. It is expected that improved lidar hardware designs
in the future will increase the quality of the results from the
lidar technique by increasing both the number and the quality
of individual lidar scans taken in a measurement period.
Furthermore, the quality of the inverse modeling results
could be improved through the use of larger numbers of point
sensors, distributed so as to cover more of the facility
perimeter.

Because of its technical complexity and high cost, the
lidar measurement technique may be financially impractical
for monitoring massive numbers of individual facilities.
Nevertheless, the mass balance technique of lidar for
estimating the net emission rate is fundamentally different
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from inverse modeling, meaning that lidar offers a way to
validate the inverse modeling technique. Furthermore, lidar
is potentially able to estimate the emission rate with much
higher temporal and spatial resolution than inverse modeling,
meaning that it may be used to quantify the efficacy of
management  practices. A possible future scenario for PM
emissions monitoring may involve using lidar to compare
various management practices and to validate cheaper
techniques for monitoring individual facility compliance.
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