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LIQUID OXYGEN MAGNETOHYDRODYNAMICS 

J. C. Boulware, H. Ban, S. Jensen, S. Wassom 

1. Abstract 
In the cryogenic realm, liquid oxygen (LOX) possesses a natural paramagnetic susceptibility and 

does not require a colloidal suspension of particles for practical application as a magnetic 

working fluid. Commercial ferrofluids have performed well in industrial applications, but 

expanding their workable range to low temperatures requires a suitable selection of the carrier 

fluid, such as LOX. In this chapter, the equation of motion for the pure fluid is derived and 

applied to a slug of LOX being displaced by a pulsed magnetic field. Its theoretical performance 

is compared to actual experimental data with discussion on empirical parameters, sensitivity to 

measurement uncertainty, and geometric similarity. The 1.1 T pulse of magnetic flux density 

produced oscillations in the slug of 6-8 Hz, generating up to 1.4 kPa of pressure change in a 

closed section when the slug acted like a liquid piston. The experiments and theoretical model 

demonstrate that LOX could be used as a magnetic working fluid in certain applications. 

2. Introduction 
Elimination of moving parts and increased subsystem lifetime is a major benefit of actuator 

systems with magnetically responsive fluids as opposed to those relying on a mechanical driver 

to instigate flow. Space systems, in particular, could benefit from increased subsystem lifetime as 

it would increase the overall mission length; however, unlike ground-based magnetic fluid 

systems, use of magnetically responsive fluids in the low-temperature regime of space requires 

verification of fundamental principles through basic research and experimentation, since it has 

never been applied. 

2.1 Magnetic Fluids 

Magnetism occurs due to the atomic or molecular structure of a material and can be classified as 

ferromagnetic, diamagnetic, or paramagnetic depending on the behavior of the poles. 

Ferromagnetic solids have permanently aligned poles and generate their own magnetic fields. 

Liquids, however, cannot maintain the alignment without a field and are either paramagnetic, in 



which the poles align with the applied field, or diamagnetic, in which the poles align opposite the 

applied field. The bulk effect of each is that paramagnetics are attracted to the field (towards an 

increasing gradient), and that diamagnetics are repelled by it (away from an increasing 

gradient)1
• 

In the 1960s, NASA developed "ferrofluids," which are a colloidal suspension of ferromagnetic 

particles in a carrier fluid. A surfactant on the particles prevents their alignment without a field; 

thus, ferrofluids actually exhibit superparamagnetism since they have an extremely high 

susceptibility to an applied field. Ferrofluids have found many industrial applications, such as in 

high-end audio speakers, digital data storage, and resonance imaging. As a working fluid, 

ferrofluids have been proposed for pumps2
•
7

, valves8
, actuators9

, heat pipes10
"

11
, and even optical 

tuners12
. The range of applicability of ferrofluids , however, is limited by the thermal 

characteristics of the carrier fluid, typically water, oil, or a hydrocarbon. While much use has 

been made of ferrofluids at ambient and high temperatures, freezing of the carrier fluid prevents 

their use at low temperature. Furthermore, the presence of nanoparticles and surfactants in 

ferrofluids complicates analyses, mainly due to agglomeration and nonhomogeneity. In the 

cryogenic realm, liquid oxygen (LOX) presents a potential solution as it possesses a natural 

paramagnetic susceptibility and does not require particles for practical application. 

2.2 Liquid Oxygen 

In all phases, the unpaired electrons in an 0 2 molecule lead to a bulk paramagnetic effect. At 

room temperature, however, the thermal energy within the molecules may dominate the magnetic 

alignment with an applied field; hence warm oxygen does not have an appreciable susceptibility. 

As temperature decreases and thermal energy is reduced, the molecules are more able to align 

and susceptibility increases. This phenomenon is known as Curie's Law, where, essentially, 

paramagnetic susceptibility increases as temperature decreases. Furthermore, once oxygen 

condenses (90 K, 1 atm), the volumetric susceptibility, x, significantly increases with the density 

of the fluid. The relationship between volumetric susceptibility, mass susceptibility, Xmass, and 

molar susceptibility, Xmolar, is defined through density, p, and molecular weight, MW, as 

J J Xmo/ar 
X = p X mass = p MW · (1) 

Throughout the remainder of the chapter, "susceptibility" will refer to volumetric susceptibility. 

Although it is approximately 30 times weaker than a low-end ferrofluid, LOX has the highest 



known paramagnetic susceptibility of pure fluids at about 0.0042. The lack of magnetic particles 

eliminates risks such as corrosion and shock, and since LOX is already commonly used for life 

support, thermal management, and propulsion systems, the integration process is simpler than for 

a ferrofluid. 

2.3 Previous Research 

The basic properties of LOX have been measured under a variety of temperature and pressure 

ranges13
-
15

, but unfortunately, very few experiments have studied the influence of a magnetic 

field, perhaps due to the volatile nature of LOX. Surface tension16
, surface instabilities17

, and 

levitation phenomena18
• 

19 have all been studied under high magnetic fields, but none of these 

experiments generated a bulk displacement of the liquid. Yerkes20 measured the wicking heights 

of LOX heat pipes when augmented by a magnetic field and showed an increase ofup to 4 times 

the capillary pressure for a magnetic flux density of 0.27 T. These experiments are useful in 

understanding the nature of LOX magnetohydrodynamics as well as experimental research on 

magnetic fluid pumps, magnetoviscosity, and magnetic fluid pipe flow. 

2.3.1 Magnetic Fluid Pumps. 

Regarding LOX, only one experimental study could be found which generated a high flow rate. 

Youngquist21 ofthe Kennedy Space Center researched the dynamics of a column ofLOX in aU

tube when a magnetic field was applied. He measured the displacement of one end of the column 

when the other was pulsed with a magnetic field induced by a solenoid. Figure 1 shows the 

experimental setup. 
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Figure 1. Experimental setup for LOX pumping, taken from Youngquist. 



An electric current of 30 A was pulsed through the solenoid, generating a magnetic field with a 

maximum flux density of 0.9 T. With the field applied, the height of the column oscillated about 

a new mean, reaching a maximum displacement of 4-5 em. It is worthy of note that pulses of 100 

A and 6 T were attempted, but yielded erratic results, often ripping off the top of the column. A 

theoretical model was created to obtain a one-dimensional, finite-differenced solution, which 

employed a second-order, velocity-based damping function relying upon empirical coefficients. 

Again, this study was the only experimental research found on the magnetohydrodynamics of 

LOX, but other ferrofluid pumps served well as bases for comparison. 

Park and Seo2
-
4 of Pusan National University have developed a magnetic fluid linear pump for 

use in infusion pumps and artificial hearts in the medical industry. Employing magnetic yokes to 

propagate droplets of a magnetic fluid, the device uses surface shear to pump water as shown in 

Figure 2. 

Figure 2. Experimental setup for pumping water with a magnetic fluid, taken from Park and Seo. 

Park and Seo report pumping heights equivalent to 2 kPa (0.29 psi) for a maximum flux density 

of 0.036 T (360 G). While this seems like an extremely small field compared to Youngquist's 

experiment, it is important to note the Park and Seo are using a ferrofluid and not LOX. The 

research performed by Park and Seo is useful as a study on traveling waves and their effects on 

the surface dynamics of a magnetic fluid droplet, but difficult to apply to LOX due to the 

differences in susceptibility and surface tension. Nonetheless, the work serves as a good 

benchmark for comparison. 

Hatch5 of the University of Washington developed a ferrofluidic rotary micropump to enhance 

lab-on-a-chip MEMS technology. The concept (shown in Figure 3) achieved 1.2 kPa of pressure 

head using a rotating and stationary permanent magnet with a surface flux density of 0.35 T 



(3500 G). As in the experimental arrangement of Park and Seo, the device pumps a separate, 

immiscible fluid, but uses normal pressure instead of shear. The study reports operation at 4 and 

8 rpm for 3 days at a time. It was found that the steady-state pressure gradient decreased over 

time when the plugs were rotated both clockwise and counterclockwise. Pumping speeds greater 

than 8 rpm generated too much pressure and disrupted the coupling between the permanent 

magnet and the translating ferrofluidic plug. While Hatch's design is intuitive and effective, the 

rotating permanent magnet is a mechanically moving component and, therefore, negates the goal 

of creating a system for fluid actuation with no moving parts. 
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Figure 3. A rotating permanent magnet to propagate a ferrofluid plug, taken from Hatch. 

Moghadarn6 also developed a microscale magnetic fluid pump and eliminated the moving parts. 

He used a series of solenoids spaced along a tube to drive a magnetic fluid linearly, similar to the 

method of Park and Seo. However, instead of wrapping the solenoids around the tube, they were 

offset and orthogonally aligned so that their core could be filled with an iron rod and increase the 

magnetic flux density. The setup produced 0.64 kPa of pressure head for flow rates of 1.1 

cm3/min at 0.45 T. The study compared different working fluids and particles, but relied on the 

viscous drag of the particles to create fluid motion. 

Krauss 7 of the University of Bayreuth has used a two-coil system to pump a ferro fluid circularly. 

The 90° phase difference of the two coils with orthogonal axes produced a net field able to rotate 

the fluid through the magnetic stress on the fluid surface. The mean diameter of the duct was 100 



mm and the system produced a maximum fluid velocity of 70 mrn!sec and a magnetic field of 

800A/m. 

Figure 4. Two-coil system for pumping a ferrofluid by magnetic surface stress, taken from Krauss. 

Zahn and Greer22 of the Massachusetts Institute of Technology took a theoretical approach to 

traveling waves, but without a free surface. He found that the magnetic fluid can actually be 

pumped backwards if the wave moves too fast. Without the free surface, the field interacts with 

the nanoparticles inside the ferrofluids, and motion is generated through the particle spin. He 

studied the dynamics of a spatially steady field, which, however, varied sinusoidally in time. His 

work was followed up by Mao and Koser23 ofYale University who were able to vary the field in 

space as well. Their findings showed that a maximum flow velocity was achieved when the 

product of the applied magnetic field frequency, the wave number, and the height of the channel 

approached unity. In other words, pumping becomes more efficient as the magnetic field 

frequency approaches the reciprocal of the relaxation time constant of the magnetic particles in 

the fluid. Mao and Koser compared their experimental data with numerical results for a 2D 

solution using FEMLAB and a lD solution using Matlab. They found that all 3 agreed well until 

the magnetic field frequency reached about 30 kHz, when the Matlab solution began to diverge. 

The aforementioned research illustrates the importance of fluctuating magnetic fields for 

pumping. Without a gradient of the magnetic field, no net force is generated, just as with a 

pressure gradient. However, as shown by Youngquist, stationary solenoids are still able to create 

a magnetic field gradient, since their strength lessens with distance. By pulsing the stationary 



solenoid, a time-varying gradient can also be induced and used for position control of the 

magnetic fluid. 

2.3.2 Magnetoviscosity 

Viscosity is adherent to fluid motion and can be calculated through its stress and strain rates. The 

normal and tangential surface force on a differential element due to thermodynamic pressure can 

be found through a divergence of the stress tensor; likewise, magnetic force can be found 

through the divergence of Maxwell stress tensor, but its associated viscosity is much more 

complicated. 

Molecular or microscale magnetic particles in a paramagnetic fluid align with the applied field 

and can induce additional shear as a function of the strength of the field. When aligned, the 

magnetic torque helps the particles resist rotation, thereby disrupting fluid flow. The 

magnetoviscous effect is heavily studied in ferrofluids, but questions remain in the case of a 

pure, paramagnetic fluid like LOX. For the purpose of the current research, LOX is considered as 

a ferro fluid with angstrom-scale particles, a fill fraction, ¢, of 100%, and a carrier fluid with the 

same viscosity as non-magnetized LOX. From equations given by Shliomis24
, the full fill 

fraction approximation leads to a vortex viscosity, [3, of 1.5 times the non-magnetized shear 

viscosity, ry, but the small diameter and viscosity lead to a nearly infinitesimal Brownian 

relaxation time, r. The ratio ultimately leads to a very small increase in the effective viscosity 

from particle alignment, !Jry. 

3 f3 =-ry¢ 
2 

r =3Vryl kT 

t1 ry J1.0MH r I 4 f3 
= 

f3 l+J1.0MHr / 4f3 

(2) 

(3) 

(4) 

where V is the particle volume, k is the Boltzmann constant, T is temperature, Jl.o is the 

permeability of free space, M is the magnetization, and H is the applied field. These equations, 

however, were written for dilute solutions and may not be applicable for high concentrations. 

Furthermore, experiments by McTague25 have shown that particle interactions may also affect 

the overall viscosity, even in dilute solutions, and that the atomic interactions between particles 

under a magnetic field generate an increase in the viscosity. The equations above assume 

particles up to 10,000 times larger than a molecule of oxygen; thus, different forces may be at 



play. Without an adequate theory, the magnetoviscous effect of LOX cannot be declared either 

insignificant or significant until a physical experiment measures it. 

Lastly, use of a high-frequency AC field in the magnetic field may actually induce a "negative 

viscosity," as shown by Bacri26
. As mentioned, a static or low-frequency field will retard flow 

through particle alignment with the field. In the case of high frequencies, increased fluid motion 

was observed, indicating a reduction in the viscosity. This effect may be desirable or undesirable 

depending on the intended application. 

2. 3. 3 Magnetic Fluid Pipe Flow 

Aside from influencing the rotational viscosity and particle interactions, the field can have a 

macroscopic effect on the flow of a magnetic fluid through a pipe. Cunha27 numerically studied 

the laminar flow through a pipe within a magnetic field with a linear gradient. When the field 

gradient was opposite the flow direction, the fluid was impeded as expected; however, Cunha 

noted the drag reduction as the field gradient facilitated fluid flow. He characterized the flow by 

a magnetic pressure coefficient, Cpm, representing the ratio of the magnetic to hydrodynamic 

pressures in the flow. Cunha correlated his results to a non-magnetic friction factor relationship 

off = 8/Re and found that, as the magnetic effects arise, f is reduced. The reduction is more 

pronounced for higher Reynolds numbers, but the study is limited to an asymptotic value near Re 

= 50. Nonetheless, Cunha showed that as an axial field in the direction of fluid flow increases, 

drag on the walls decreases. 

An axial field with a linear gradient is not simple to reproduce in a laboratory experiment; 

instead, Chen28 applied a ring magnet and focused on the streamlines for magnetic fluid flow in a 

tube as the field and magnetoviscous response varied. He characterized the system parameters 

through a magnetic Reynolds number, Rem, and a viscosity parameter, R. Figure 5 shows the 

difference in the streamlines as the system parameters vary. 
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Figure 5. Streamline patterns for magnetic fluid flow in a tube with (a) Rem = 103 and R = 0 (no viscosity 
variance with field); (b) Rem = 103 and R = 1; (c) Rem= 105 and R = 1; and (d) Rem= 1.225 * 106 and R = 3.5, 
taken from Chen. 

The field was applied by a ring magnet at z = 0, but of undisclosed length or gradient. Study of 

the axial velocity profiles at various locations shows that an adverse gradient occurs even 

without a magnetoviscous influence. This indicates that even if the viscosity of LOX does not 

increase with a magnetic field, fluid damping still increases due to flow circulation. 

Schlichting29 gives the classical solution of oscillating flow through a pipe, but the presence of a 

magnetic field and the finite slug length complicate the analysis for the current study. In the case 

of an infinite slug without a magnetic field, the shear could be doubled during oscillations; it is 

expected that the augmentation would be greater with the magnetic field and finite slug. 

2.4 Current Test Parameters 

To determine the viability of LOX as a working fluid in a magnetically driven actuator, the 

authors conducted studies that were essentially an evolution of Youngquist's experiments, but 



with test objectives focused on advancing the technology towards applied research instead of 

basic; thus, the experimental principle was different as well. 

The broad goal of the research was to support the notion that LOX could be used as a working 

fluid in a magnetic fluid system due to its significant paramagnetic susceptibility. This goal was 

to be achieved by performing controlled, quantitative experiments, correlating them to a 

theoretical model, and determining predictable trends from the results. The theoretical model was 

to limit empirical input (other than initial conditions) and be able to make predictions regardless 

of system geometry. Most importantly, the final data should be useful to future, applied research. 

For this purpose, the experiments used a slug of LOX rather than a long column, as in 

Youngquist's experiments. Magnetic pressure on a slug is maximized when one edge is in the 

center of the solenoid and the other is in a negligible field. While this is achievable with a long 

column, a smaller slug is nearly as effective. Figure 6 shows that the magnetic flux density of a 

0.6 em (0.25 in) solenoid drops to 5% of its maximum value of 1.1 T at a distance 1. 7 5 em from 

the center of the solenoid (Youngquist's column of LOX totaled 36 em). This benchmark differs 

depending on solenoid geometry, applied current, and wire spacing, but the example shows that a 

slug can achieve nearly the same magnetic pressure for a much smaller mass and length. 

Eliminating mass and length reduces inertia and shear, which would otherwise retard slug 

motion. 
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Figure 6. Magnetic flux density along the axis of a solenoid. 



The experiment was designed to displace a slug of LOX and correlate its dynamics to a 

numerical model. In all, the research studied the viability of LOX in a magnetic fluid system 

with the following objectives: 

1) Displace a LOX slug using magnetic fields. 

-Experimentally accomplishing this would quantify the potential of a LOX-based magnetic 
fluid system. 

2) Detect the displacement through pressure. 

- Innovative measuring techniques will be required to study how LOX behaves in a magnetic 
field. 

3) Simulate the dynamics numerically. 

- A verified numerical algorithm can quantify LOX performance outside the scope of 
laboratory testing. 

4) Perform parametric studies to examine efficiency optimization methods. 

-Information on the sensitivity to uncertainties and geometric variance will help to estimate 
the potential capability of an optimized system. 

3. Theoretical Model 
The theoretical model was based on a simple force balance on the slug. The change in 

momentum of the slug was a result of the net force from magnetism, pressure, and damping. The 

equation of motion essentially becomes the Navier-Stokes equations with an additional term for 

the magnetic force. Rosensweig1 provides a thorough description of the force due to magnetism, 

also known as the Kelvin force. The Kelvin force density, f 111 , can be found through the 

divergence of the Maxwell stress tensor as a function of the permeability of free space, f1o, the 

magnetization vector, M, and magnetic field, H, as 

(5) 

The resultant magnetization from an applied field can be described by the Langevin function, 

where the volumetric paramagnetic susceptibility xis the ratio of the magnetization vector to the 

applied field vector, x = M I H. By substituting for M, using the vector identity, H· V'H = 

V'(H·H)/2 - Hx(V'xH), and noting that Ampere's Law cancels out the curl of the applied field, 

Eq. (5) can be derived to 

fm = flo(XH · Y')H, 

fm = floX(H · Y'H), 

fm :::: ,U0 X(Y'(H ·H)/ 2- H x (\7 x H)) , 

(6) 

(7) 

(8) 



fm = ,u0x(V(H · H)/ 2) , 

fm = JLoXV'Hz 12. 

(9) 

(10) 

With a constant temperature, the relative permeability, f1, also remains constant. The relative 

permeability is the ratio between the magnetic flux density, B, and applied magnetic fields, 11 = 

B / H, which can also expressed in terms ofvolumetric susceptibility, ,u = Jlo{l +x) . Given these 

relations, the Kelvin force density is derived as such: 

!,, ~ l'oxv(: r /2' (11) 

1 =/loX V'Bz 
Jm 

211
2 ' 

(12) 

J: = /loX V'Bz 
m 2 ,u/ (1 + X/ , 

(13) 

1 = - I- X V'Bz 
1 111 

2 fl o (1 + X/ ' 
(14) 

and the force in the axial direction is 

1 _I X dB 2 
J m.x - 2 Jlo ( 1 + X/ dx x ' 

(15) 

where the subscript x denotes the axial direction. 

The differential term considers the ends of the slug, and when Eq. (15) is integrated over the 

entire volume with a one-dimensional approximation, the force due to magnetism in the axial 

direction, F M, is 

(16) 

2 

F = _ 1_ X LfBX n:a 2 L 
M 2 flo (1 + X/ L1x ' 

(17) 

2 2 
F __ I _ X B x.US - B x .DS 2 L 

M - 2 ,U0 (I + X/ L n:a ' 
(18) 

2 
F _n:a X (B 2_ B 2) 

M - 2 Jlo ( 1 + X/ x.US x,DS ' 
(19) 

where a is the tube radius, L is the slug length, and the subscripts US and DS denote the upstream 

and downstream directions. The magnetic flux density generated by the solenoid is found by 



summing the contribution of each loop. The magnetic flux density from an individual loop of 

wire is derived from the Biot-Savart Law as, 

2 
J ( t) f.l oY!oop 

B - -------'---
x.!oop - ( 2 2 )-J/2 · 

2 rloop + dx 
(20) 

Where r is the radius of a single loop of coil, l(t) is the applied current over time, the subscript 

loop denotes a single loop of the coil, and dx is the axial distance from that loop. 

The oscillatory motion, finite slug length, and unknown magnetoviscous effects complicated the 

damping force on the one-dimensional analysis. These effects could be treated as having a 

combined effect on the wall shear stress through an empirically found damping factor, S· The 

classic relation for laminar wall shear stress in Hagen-Poiseuille flow as given by White30 and 

the force due to damping, F D, was calculated as 

r w = 4xl;ry I a , 

FD = 2Jra( L + Lilidde/1 )r w ' 

(21) 

(22) 

where rw is the wall shear stress, x is the velocity of the slug in the axial direction, 7J is the 

nonmagnetized dynamic viscosity of LOX, L is the visible length of the slug, and Lhidden is the 

hidden length of the slug in the steel sections. During filling, portions of LOX remained in the 

plumbing and could not be directly measured, but could be calculated through the frequency of 

the oscillations. The cause ofthe hidden slugs and calculation of their length will be discussed in 

a later section. 

The pressure force, F p, resulted from the differential pressure on either side of the slug as 

Fp = 1ra
2 L1p , (23) 

where L1p denotes the pressure differential across the slug. The change in pressure resulted from 

the compression and expansion of closed volumes on either side of the slug. 

Thus, with the forces due to pressure, magnetism, and damping, the equation of motion for the 

LOX slug becomes 

2 

mx=7ra 2 L1p + 7ra X 
2 

(B ,u/ -B, 0 / )+27rarJL + L,idden ), (24) 
2 f.lo (I + X J · · 

where m is the mass of the visible and hidden slugs and x is the acceleration. This one-

dimensional force balance assumes that the finite length slug was an incompressible solid and 

does not account for surface tension, cohesion, instabilities, or breakdown of the slug31
• 



Bashtovoi32 points out that capillary effects are reduced under the influence of a magnetic field 

and are thus considered negligible during the pulse; however, they must be significant enough to 

hold the slug in place when nonmagnetized. Gravity was also ignored, because the tube was 

oriented horizontally. 

The relationship between the initial magnetic pressure on the slug and its max1mum 

displacement must be nondimensionalized to compare different geometries. The maximum 

displacement can be nondimensionalized using the cross-sectional area of the tube and the 

downstream volume as 

Vol0 s 
(25) 

where dxmax is the maximum displacement of the slug and Volos is the downstream volume. The 

initial magnetic pressure on the slug, Pm.1, is defined as 

- Jus M dH = _ I_ X (B 2 - B 2 ) 
Pm,i - Jlo DS 1 lJlo (I+ X/ us,; DS.i ' 

(26) 

where the subscript i represents the initial value before the pulse. Because the initial magnetic 

pressure is a function of the magnetic flux density at each of the edges, it can be found as a 

function of the initial slug position. To nondimensionalize the initial magnetic pressure, the 

Alfven velocity, Ua, could be used as, 

Bmax 
ua = ~JloP, 

so that the resulting nondimensional initial magnetic pressure is, 

• Pm.i 
Pm = 5 2 ' 

. pua 

(27) 

(28) 

where Bmax is the maximum magnetic flux density and pis the density of LOX, . It is also useful 

to define an average initial velocity, u1, with the maximum displacement and the length of time 

required to reach that maximum displacement, dt, which occurs during the first oscillation. The 

average initial velocity is thus, 

U = dxmax 
I dt 

(29) 

Then, the Mason number represents the ratio of damping to magnetic forces and is defined for 

the current study as 



Ma = FD = 81r( L + L,idden )slJUi 
F 2 

M 1m P m,i 

(30) 

4. Experimental Apparatus 
The experiments were conducted on a small slug of LOX inside a circular tube, and 

measurements were made that described the slug dynamics in a variety of test conditions. The 

tube was oriented horizontally to mitigate the dominance of gravity, and was, therefore, small 

enough so that the capillary forces allowed slug formation without inhibiting motion. Because 

LOX is extremely volatile, helium was used as the surrounding gas, since it does not react with 

oxygen. Also, with a melting point of 4 K at 1 atm, helium could be treated as an ideal gas at the 

test conditions. Since the test section was part of a closed volume, the slug displacement could be 

measured through pressure changes on either side of the slug as long as it did not break down. 

PDS t 
LOX 

Figure 7. Experimental principle of measuring slug displacement through pressure changes. 

The slug dynamics were sensitive to the following parameters: 

• slug length 

• initial position 

• solenoid geometry 

• applied current 

• system volume 

• tube radius 

• initial system pressure . 



Experimentally, it was not feasible to vary the tube radius since it affected the capillarity of the 

slug. Even marginal changes could significantly affect the dominance that surface tension would 

play; thus, tube radius remained constant throughout the experiments. Likewise, the volatility of 

LOX precludes high-pressure testing; thus, the initial system pressure remained as close to 

atmospheric as possible throughout the experiments. The closed volume was placed in a liquid 

nitrogen bath to prevent LOX boil-off, and test conditions and fluid properties were calculated at 

77 K and 1 atm. 

A photograph and CAD drawing of the experimental system can be seen in Figure 8. The closed 

volumes on either side of the test section were dubbed the "upstream" and "downstream" sides 

where the upstream side was the larger volume including the condenser, and the downstream 

side was the smaller volume. Different geometric configurations required different system 

volumes. Figure 8 shows a small downstream section of 1.8 cm3 and a small solenoid of 30 

gauge wire. Another configuration used a downstream volume of 5.9 cm3
, but maintained the 

upstream volume constant at 337 cm3
. Because the downstream volume was significantly less 

than the upstream volume in both cases, the data from the downstream pressure sensor was used 

for comparison. The operating pressure was maintained between 100-135 kPa for safety, and the 

runtime was limited to 0.25 seconds to reduce resistance heating in the solenoids. 

Condenser ------~ 

Test Section~ . - ) 

~ 
Quartz Tub'- " . / ". # · 

!0. (-.) 
['! .d' ·' 



Figure 8. Photograph and CAD drawing of experimental apparatus, from Boulware33
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Before the liquid slug could be precisely positioned in the quartz tube, gaseous oxygen had to be 

introduced to the system at room temperature. Once the system was closed and submerged in 

liquid nitrogen, the gas condensed into LOX droplets and fell from the heat exchanger into the 

horizontal section of the plumbing. From there, a magnetic wand was used to drag portions of the 

LOX into the transparent quartz tube. While the process allowed for precise measurement of the 

slug length within 0.8 mm, an unknown amount of LOX remained in the steel sections. The mass 

of LOX that could not be seen was dubbed the hidden slug length but could be precisely 

calculated through the frequency of the pressure oscillations as will be shown later. 

The quartz tube had an inner diameter of 1.9 mm, and the solenoids were powered by a Hewlett

Packard 6268B 900 W DC power supply. The power supply had an upper limit of 30 V or 30 A; 

therefore, an optimization process for the solenoid sizing could be developed. To maximize the 

capability of the power supply, a resistance of 1 n was desired when the solenoid was in the 

liquid nitrogen tub; thus, with a known coefficient of temperature resistance of 0.0039 for 

copper, the corresponding resistance when at room temperature was 6.34 n. With a wire of 

known gauge, the total wire length could be found, and then an iterative scheme using Matlab 

and Excel could be used to determine the length and outer diameter of the solenoid that produced 

the highest magnetic field for a constant voltage source. The optimal slug length for a particular 

solenoid was determined as the length that generated the highest pressure change while 

accounting for forces due to magnetism, pressure, and damping. The theoretical model was used 

to create a numerical solution to find this length. 

Kulite CT-375 analog pressure sensors located upstream and downstream of the slug in the test 

section were sampled at 5kHz using a Measurement Computing PCIM-DAS1602/16 AID card 

driven by Matlab with Simulink and xPC Target with a combined uncertainty of 0.17 kPa from 

the effects of nonlinearity, hysteresis, 16-bit analog-to-digital conversion errors, and 

repeatability. Because the changes in the upstream and downstream pressures were the desired 

output, the absolute pressure and the measurement uncertainty were not influencing factors. The 

noise in the raw data was reduced by a Chebyshev Type II lowpass filter, set to 0 db at 45 Hz and 

-40 db at 50 Hz. The LOX slug formed a concave meniscus with edges measureable within 0.8 

mm resolution via notches on the quartz tube. 



5. Numerical Solution 
To apply the theoretical model to the experiment, a numerical simulation was written in Matlab 

v7.6.0 (R2008a) on a 2.4GHz Pentium 4 processor with 2GB of RAM. The pulse dynamics were 

typically solved in less than 2 seconds, allowing for a thorough optimization of system variables 

through a regression analysis. 

Fluid properties for LOX were taken from the CRC Handbook of Chemistry and Physics15
, and 

studies by Hilton14 indicated that the pressure fluctuations would not significantly affect those 

values. Experimental measurements and observations were used to determine certain boundary 

and initial conditions. The magnetic flux density is proportional to the applied current and 

depends on the temperature of the solenoid over time. Eqs. (31-34) calculated the solenoid 

temperature and current over time. 

(31) 

(32) 

(33) 

(34) 

where R is the resistance of the solenoid, a is the coefficient of temperature resistance for 

copper, Tis the temperature of the solenoid, P is the electrical power, the subscript i denotes the 

time step, and the subscript 0 represents the initial value. Because the solenoids are only powered 

for 0.25 seconds, convective cooling was shown not to be prevalent, despite being in direct 

contact with the nitrogen. This is likely due to the nitrogen boil-off creating a vapor bubble 

around the solenoid. 

Using data from the previous time step, the position of the slug could then be found. Positive 

displacement and velocity were considered as in the upstream direction, and the center of the 

solenoid was considered the origin. Since the slug was initially at rest, the initial velocity and net 

force were assigned values of zero. The displacement of the upstream edge of the solenoid was 

found as, 

• A Fr.i-1 A 2 (35) 
x i = x i-I + x i-I LJt + 2 LJt ' 

2 p;ra ( L + Lhidden } 

where F r is the total force from the previous time step. Then, the magnetic flux density and force 

due to magnetism could be found as, 
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where Mx is the number of turns in the solenoid in the axial direction, Mr is the number of turns 

in the radial direction, a sol is the radius of the solenoid, and b is the wire diameter. The force due 

to pressure, was found as, 

VDs,; = VDs,;-t +(xi - xi-1 )tra
2

, 

Vus,; = Vus ,;-1 - (x; - x,_I )tra 2, 

P - P VDS,i~l 
DSJ - DS,i-1 V . ' 

DS,t 

P. - P. VUS,i~/ 
US ,i - US,i-1 V, . ' 

US ,t 

(39) 

(40) 

(41) 

(42) 

Fp,; = 7Ca
2 

( Pns,; - Pus,;)· ( 43) 

Finally, the force due to damping was calculated along with the Reynolds number and wall shear 

stress as, 

16 px;_/ 
r .=--

w,, Re. 2 
1 

F D; = 2tra( L + L hidden )r wi ' 
' ' 

where Re is the Reynolds number. 

(44) 

(45) 

(46) 

Together, the pressure, magnetic, and damping forces formed the net force on the slug as 

FT. = Fp +FM. -sgn(x _1)FD. , ,I ,I ,I I ,1 
(47) 

where damping was always opposite the direction of velocity. To begin the next time step, the 

velocity was calculated as 

FT +FT. 1 x = .~ .1- !Jt +x . 
I 2 2 (L L ) 1- 1 • pn:a + hidden 

(48) 



The small volume of the downstream volume amplified its pressure fluctuations, so it was used 

for comparison. The time step of the simulation was chosen as 0.0002, so that it correlated with 

the sampling frequency of the pressure sensor, and then the absolute residual, o, between the 

experiment and simulation was calculated at each time step as 

0; = P,xp,i - ~im.i ' (49) 

where the subscripts exp and sim denote the experiment and simulation data. The simulation as a 

whole was characterized by the root mean square deviation (RMSD) of the residuals during the 

pulse period. 

I N 2 oRMs = - l:o, , 
N ;;o 

where N is the number of data points during the pulse. 

6. Results and Discussion 

(50) 

The authors completed the aforementioned experimental and numerical research and published 

the results in a series of articles33
•
35

• Key findings from the studies are the optimization of the 

solenoid and slug combination, the maximum attainable pressure change in the downstream 

section, uncertainty determination from the numerical model, and geometric variance of the test 

parameters. 

6.1 Solenoid I Slug Optimization 

Using the process described before, two solenoids were constructed of24- and 30-gauge wire, as 

shown in Table 1. 

Table 1. Optimized solenoid specifications. 

Solenoid A Solenoid B 

Wire Gauge: 24 30 

Radial Turns: 25 22 

Axial Turns: 40 22 

Length: 25.6 mm 6.8mm 

Inner Diameter: 6.3mm 6.3mm 



Outer Diameter: 35 .1 mm 21.3 mm 

Mass: 128.4 g 11.1g 

Bmax: 1.17 T @ 30 A 1.0 T@ 23.4 A 

dB/dZmax: 89.7 T/m@ 30 A 128.5 Tim@ 23.4 A 

The actual fabrication of Solenoid B led to a resistance of about 1.3 .Q in the liquid nitrogen; 

hence, only 23.4 A of current could be drawn from the power supply. The reduced current draw 

led to a lower total magnetic flux density, but its smaller size generated a higher flux density 

gradient. The magnetic flux density along the axis affected the initial magnetic pressure for a 

slug based on its length and initial position. Figure 9 and Figure 10 show the maximum pressure 

change calculated by the numerical simulation for a variety of slug lengths and initial positions. 

(a) (b) 

Figure 9. Isometric (a) and side view (b) of a surface map generated to find optimal slug for Solenoid A35
• 
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Figure 10. Isometric (a} and side view (b) of a surface map generated to find optimal slug for Solenoid B35
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A positive change in pressure represents a compression of the downstream section and a negative 

change represents an expansion. The dashed lines in Figure 9b and Figure 1 Ob follow the 

pressure change for various slug lengths regardless of its initial position. The peak of the lines 

indicates the slug length that would induce the maximum pressure change for that solenoid. This 

value was termed the optimal slug length and was 2. 7 em for Solenoid A and 1.3 em for Solenoid 

B. 

6.2 Maximum Attainable Pressure Change 

Figure 11 shows an experimental run versus the numerical simulation and was the basis of the 

analyses. A 0.25 sec pulse caused an oscillation of a 1.3 em slug that had one edge initially in the 

center of the solenoid. The system pressure was about 131 .2 kPa when power was switched to 

the solenoid at 0.01 sec. The downstream pressure fluctuated at approximately 7Hz, generating a 

maximum pressure change of 1.2 kPa at about 0.06 sec after the pulse began. The regression 

analysis found that a hidden slug length of 14.5 em and a damping factor of 6.08 resulted in the 

lowest RMSD of the absolute error at 30.6 Pa. The solid line in Figure 11 shows the accuracy of 

the Matlab simulation. 
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Figure 11. Experimental and simulated pressure oscillations for a 1.3 em slug34
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To perform the parametric studies mentioned in the third objective, several hundred runs similar 

to Figure 11 were conducted. Each oscillated at about 6-8 Hz with amplitudes relative to the 

initial conditions and applied current. 

In Figure 11, the maximum pressure change was approximately 1.2 kPa at about 0.07 sec. One 

edge of the 1.3 em slug in the center of the solenoid correlates to an initial center displacement of 

0.65 em between the slug and solenoid. As the initial center displacement varied, a trend was 

apparent in the maximum pressure change attainable in the downstream end. Increasing the 

offset of the slug from the solenoid resulted in a higher pressure change symmetrically for 

compression and expansion, as shown in Figure 12 for various slug lengths. Each of the tests in 

Figure 12 used Solenoid B, which was calculated to have an optimal slug length of -1.3 em from 

the regression analysis. In Figure 12, the 1.3 em slug length seemed to generate the highest 

pressure change, thereby verifying the regression analysis. 
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Figure 12. Maximum pressure change for various slug lengths using Solenoid B. 

The runs in Figure 12 maximized the capability of the 900 W power supply. For many 

applications, however, it is essential to consider a low-power system. Figure 13 shows the 

maximum pressure change versus current for three slug lengths. Because the Biot-Savart Law 

denotes a linear relationship between applied current and magnetic flux density, Eq. (5) indicates 

that the trend in Figure 13 should be quadratic; instead, it appears linear. This is likely due to 

resistance heating and the limited heat capacity of the solenoid. As the solenoid temperature 

increases, it cannot draw as much current and, thus, cannot generate as high a magnetic field. At 

high current levels, the solenoid may not stay cool long enough to generate high pressures, even 

during the 0.25 s pulse. 
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Figure 13. Experimental data obtained for the maximum differential pressure generated at various currents 
for 1.3 em, 1.9 em, and 2.5 em slugs with one edge centered in the solenoid. 



6.3 Hydrodynamic Breakdown 

Each of the data points in Figure 12 represents a run conducted in which the slug maintained its 

form and remained intact. If the initial position was too far from the solenoid, the displacement 

of the slug generated a pressure force greater than the magnetic force, and the slug broke down, 

apparent in the data as well as physically in the experiment. Stationary experiments with a 

ferro fluid by Perrt 1 verified the theoretical prediction that the pressure force could not exceed 

the maximum magnetic capability of the solenoid. In Perry's case, the stationary experiments 

induced a hydrostatic breakdown, whereas, in the current study, the breakdown took place during 

dynamic motion and occurred slightly earlier than the static equations predicted. 

With one edge of the slug centered in the solenoid and the other in a negligible field, Eq. (24) 

predicted that the breakdown pressure should have been 1.95 kPa. Resistance heating in the 

solenoid, however, limited the amount of current available at the time the maximum pressure 

change occurred. Assuming 19.5 A of current at the peak of the curve, the breakdown pressure 

should have been 1.45 kPa, which matches the experimental data much better, regardless of the 

fact that it is a static prediction and does not consider fluid properties, such as surface tension, 

cohesion, contact angle, and viscosity. Prediction of the hydrodynamic breakdown must also 

consider the uneven force distribution along the slug, pressure differential about the slug, and 

gravity, to be completely understood. The Reynolds number for the bulk slug motion remained 

under 1500 for all of the runs, but a more aggressive study may have to consider slug velocity 

and internal flow dynamics. 

A probabilistic method to predict risk of failure should be used to predict hydrodynamic 

breakdown, as it is likely due to a combination of the uneven force distribution along the slug, 

pressure differential about the slug, gravity, and low surface tension of LOX. For higher-speed 

tests, the rapid oscillations may also induce turbulent internal flow dynamics that cause the slug 

to break down. 

6. 4 Determining Uncertainty 

By extracting the frequency and amplitude of the oscillations in the experimental data, the 

Matlab model could be used to calculate the hidden slug length, damping factor, and precise 

initial position of the slug. The authors performed detailed analyses on the uncertainties and 

found a logarithmic correlation between frequency and hidden slug length and also between 



amplitude and damping factor, as shown in Figure 14. The initial position of the slug also 

affected the amplitude; however, unlike the damping factor, it did not cause the mean to decrease 

over time. Based on the oscillations, these correlations could be used to precisely calculate the 

hidden slug length, damping factor, and initial position of the slug within the given uncertainty 

bounds of experimental measurements. 
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Figure 14. (a) Hidden slug length vs. frequency and (b) damping factor vs. amplitude34
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6.5 Geometric Dependence 

A variety of geometries were tested to determine if an optimal configuration existed. As 

mentioned, the Matlab model could be used to predict the slug length which would produce the 

maximum pressure change for a particular solenoid. The authors confirmed the theoretical results 

by testing three configurations with Solenoids A and B as follows: 

• Configuration 1: Solenoid A with an optimized slug length of 2. 7 em 

• Configuration 2: Solenoid B with an optimized slug length of 1.3 em 

• Configuration 3: Solenoid B with a nonoptimized slug length of 2.5 em 

Figure 15 shows the magnetic pressure for each configuration as the center of the slug relative to 

the center of the solenoid varies. 
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The maximum magnetic pressure was proportional to the magnetic flux density each solenoid 

could produce. Thus, since Solenoid B was used for Configurations 2 and 3, the maximum 

magnetic pressure was the same for both. The peaks correlate to one edge of the slug in the 

center of the solenoid and, therefore, occur further out for Configurations 1 and 3 because they 

used longer slugs than Configuration 2. 

The experiments performed on each configuration were compared to determine any trends 

relative to solenoid geometry. Figure 16 - Figure 18 show experimental data for the maximum 

pressure change versus initial position for each configuration, as well as points of hydrodynamic 

breakdown and correlation to the numerical simulation. 
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Since Configuration 1 had a larger downstream volume, the pressure change caused by slug 

displacement did not correlate with the same displacement in Configurations 2 and 3. Although 

the maximum magnetic pressure in Figure 15 indicates that the slugs should have broken down 

at 2.11 kPa for Solenoid A (Configuration 1) and 1.54 kPa for Solenoid B (Configurations 2 and 

3), the experimental data showed a breakdown around 1.5 kPa for all three. Again, this is likely 

due to the aforementioned differences between hydrostatic and hydrodynamic breakdown. 

It was observed that throughout a series of runs conducted within the same time frame, the 

hidden slug length and damping factor were relatively unchanged. Thus, these uncertainties were 

found for a few points and then applied over the whole range of initial positions to obtain the 

numerical simulation. Since the simulation did not consider hydrodynamic breakdown, it could 

study points unachievable in the experiment. The study showed that the maximum pressure 

change eventually decreased as the initial position increased due to a lack of magnetic pressure 

far away from the solenoid. The peaks of the numerical simulation correlate to the magnetic 

pressure curve in Figure 15 reaching a near-negligible region. This point occurs at about 3.25 em 

for Configuration 1, 1.0 em for Configuration 2, and 1.75 em for Configuration 3. 



To apply the studies to other geometries, the findings must be nondimensionalized. Using Eq. 

(1 1) and (14), the nondimensional maximum displacement and initial magnetic pressure were 

seen to have a common trend, as seen in Figure 19. 
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Each of the configurations held a nearly linear relationship regardless of their differences in 

overall size. The average slope of a linear fit of the three data sets was 2.3 8 and could be applied 

to other geometries with similar physical phenomena. For the current study, the capillary and 

gravity forces were negligible compared to the pressure, damping, and magnetic forces; thus, the 

results found could only be applied to systems of the same scale. Furthermore, a different 

paramagnetic fluid would have a different susceptibility and fluid properties, resulting in a 

different slope as well. Nonetheless, the correlation found is useful as a guideline during the 

preliminary design state of a magnetic fluid actuator. 

Each configuration used the same power source and generated approximately the same pressure 

change. Treating the pressure change as an indicator of work performed by the fluid would entail 

approximately the same output per power input for each configuration. However, since fluid 

damping is detrimental to performance, it could be seen as a form of exergy destruction. Exergy 

is the potential work of a system and is used to determine its second law efficiency. High 

damping of the fluid reduces the potential work and, therefore, should be factored into a measure 

of the system' s second law efficiency. This measure can be found through a nondimensional 



number known as the Mason number, the ratio of damping to magnetic forces, and is shown in 

Eq (30). Figure 20 shows P m.i versus ui for the three configurations. The slope of the linear trend 

line for each set of data provides an important characteristic of each combination, as it is a 

component of the Mason number. A lower Mason number indicates a more efficient system, 

since less damping would exist for a given magnetic force (achievable through power input). 

While it seems counterintuitive that a slower average initial velocity would imply a more 

efficient system, Solenoid A was nearly 4 times longer than Solenoid B; thus, the magnitude of 

velocity was relative. Instead, the Mason number is representative of exergy destruction and 

should, ideally, be as low as possible. 
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The near-linearity of the trend lines indicates that the Mason number is consistent for each 

configuration. This implies that with a given slug length and profile of the magnetic flux density 



along the axis of the solenoid, u i can be calculated through a proportionality constant of Pm.i· 

When Eq. (9) is calculated for each run, the average Mason number for each configuration can 

be found as shown in Table 2, assuming each configuration has an average damping factor of 6 

and hidden slug length of 13 em. 

Table 2, Average Mason number 

Con fig. #of Runs Avg. Mason# Std. Dev. 

1 41 0.247 6.62 * 1 o-2 

2 26 0.091 2.03 * 10-2 

3 37 0.143 3.54 * to-2 

The correlations in Table 2 reveal two methods for improving system efficiency through 

geometric measures. By optimizing the slug length for a solenoid and by minimizing the overall 

geometry, damping can be lessened for a given magnetic force. While this seems particularly 

beneficial for applications with MEMS technology, it is important to remember that capillarity 

has not been introduced to the system. Nonetheless, the experiments and analyses performed 

have verified the theoretical model and are therefore useful to future research and applications. 

7. Conclusions 
The case for a LOX-based magnetic fluid system to replace mechanically moving parts in a 

satellite system has been argued. The experiment alone satisfied the first two objectives by 

confirming the potential of a LOX-based magnetic fluid system through innovative measuring 

techniques. The experiment and numerical simulation also verified the theoretical model, thus 

satisfying the third objective. The fourth objective was satisfied through the parametric studies 

which examined the maximum pressure change attainable, effect of uncertainty, and geometric 

variance. Accomplishing the objectives aided the overall goals by establishing the following 

conclusions: 

• an optimal slug size for a specific geometry exists that maximizes the attainable pressure 

change for a given power source; 

• a low-power system may perform more efficiently due to less resistance heating in the 

solenoid; 



• unknown portions of LOX in the fluid system and undetermined physical phenomena can be 

empirically calculated through the theoretical model; 

• an optimized slug and solenoid configuration will result in a more efficient system in terms 

of work performed by the fluid with a minimal amount of damping; 

• reducing the physical scale of the experiment increases its efficiency, as long as capillarity is 

still negligible. 

The conclusions of this research support the overall goals in aiding the design of a LOX-based 

magnetic fluid system with no moving parts for small satellite applications. 
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