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ABSTRACT 

Influence of Lipophilicity on the Accumulation and 

Distribution of Halogenated Phenols and a Pyridinol 

as Metabolites of Pesticides in the Rat 

by 

Assed A. Attumi, Master of Science 

Utah State University, 1981 

Ma jor Professor: Dr. Joseph C. Street 
Department: Graduate Program in Toxicology 

viii 

Exposure to halogenated phenols and pyridinols is of increasing 

concern because of their wide use and distribution. This research 

was initiated to determine the distribution, accumulation, and 

depletion of a group of halogenated phenols and a pyridinol in 

selected tissues of ma le wean ling rats at different time intervals 

following a single oral dose of 0.33 or 1.66 m moles per kg body 

weight . The halogenated pheno ls and pyridinol were distributed 

differently in every tissue sampled following their administration, 

even though the amount administered was the same in each case. The 

concentrations in tissue were found in the order: 2,4,5-trichloro-

phenol > 4-bromo-2,5-dichlorophenol > 4-iodo-2,5-dichlorophenol > 

3,5,6-trichloro-2-pyridonol in kidney and fat, whereas the series 

3,5,6-trichloro-2-pyridinol > 4-iodo-2,5-dichlorophenol > 4-bromo-

2,5-dichlorophenol > 3,5,6-trichlorophenol occurred in liver. No 



ix 

structurally significant series ~1as observed for their concentrations 

in blood. 

All halogenated phenols and pyridinol concentrations in tissues 

declined rapidly with time but not always in an apparently log linear 

fashion. Rates were greatest for clearance from blood. The highest 

concentration of halogenated phenols was in kidney among the tissues 

studied, whereas the highest concentration of halogenated pyridinol 

was in 1 i ver. 

Relationships were found between the relative lipophilicity, 

as indicated by the chromatographic Rm value, and the concen­

trations of these compounds in tissues. The Rm (i.e., relative 

liponhilicity) was generallv very w~ll correlated with the log 

concentration of compounds in tissues observed 24 h after dosing. 

The correlation coefficients ranged between .517 and .995 among 

tissues. Correlations were positive between the Rm values and 24 h 

concentrations in adipose tissue, and kidney, but negative for the 

relationship between the Rm and 24 h concentrations in blood and 

1 iver . 

(91 pages) 



INTRODUCTION 

The lower halogenated phenols have been in use as fungicides, 

herbicides, insecticides and precursors in the synthesis of other 

pesticides since the early 1930 's. Production of these chlorinated 

phenols has at times been the cause of problems with regard to 

industrial hygiene but has otherwise not created notable environ­

mental problems. Many organophosphate and organochlorine insecti­

cides are well known man-made environmental pollutants that have 

been used for several decades in agriculture and industry . It is 

well known that organochlorine pesticides are soluble in fat and 

some are highly persistent in the tissue of animals; halogenated 

phenols may act similarly. On the other hand, these halogenophenols 

are major metabolites of several organophosphorus and a few organo­

chlorine insecticides which are, themselves, readily biodegradable. 

Most literature reports indicated that the halogenated phenolic 

metabolites of these insecticides were found in urine, but only 

recently have these metabolites also been found i n the animal 

tissues . As of this date, there have been few reports of studies 

with the lower halogenated phenols in animals and data on accumu­

lation and depletion rates of halogenated phenols as residues in 

animal tissues are lacking. A similar lack exists for information 

about those halogenated pyridinols used in pesticide manufacture. 

There is a general relationship between lipophilicity and many 

types of biological activity for related structures among classes 



of foreign compounds and it has been found that lipophilicity is 

one of the most important factors in controlling the interaction 

of chemicals with biological systems. However, no work was found 

in the literature regarding the relationship between the structure 

of the halogenated phenols and pyridinols, their lipophilicity and 

their concentration in animal tissues . The purpose of this research 

was to identify the importance of relative lipophilicity as a charac­

teristic influencing the biological distribution of these compounds. 

This study was planned to determine if rats do indeed accumulate 

halogenophenols and halogenopyridinols and, if so, in which major 

tissues. Knowledge of the tissue distribution of halogenated 

phenols and pyridinols accumulated by rats will be of value in 

~lucidating sublethal physiological responses of these animals to 

low level exposures to agents yielding these compounds upon 

metabolism. 

Two objectives in this study purused structural relationships 

among selected halogenated phenols and a pyridinol in comparison 

to: a) their distribution in blood, kidney, liver, and fat (adi­

pose tissue); and b) their persistence in and depletion from these 

tissues with time. 



REVIE\4 OF LITERATURE 

Historical Background and 
Use of Ha 1 a gena ted Pheno 1 s 

The first halogenated phenol synthesized was pentachlorophenol 

(Erdmann 1B41; Laurent 1841). However, neither of those chemists 

determined the correct structure of the compound. Several dif-

ferent methods for synthesis were later tried until the prepara-

tion of pentachlorophenol by direct chlorination of phenol in 

the presence of a catalyst was reported by Merz and Weith (1872). 

Modern production of pentachlorophenol or lower chlorophenols may 

be performed in two ways (Melnikov 1971; Zollner et al. 1978): 

by direct chlorination of phenol, ch lorophenols, or polychloro­

phenols with chlorine in t he presence of catalysts at an elevated 

temperature or by alkaline hydrolysis of ch lorobenzenes in mix-

tures of different solvents. Both methods may give rise to the 

formation of contaminants such as chlor inated dibenzodioxins, 

dibenzofurans and 2-phenoxyphenols (predioxins) (Ahlberg 1977) . 

In 1936, production of halogenated phenols was started on a 

commercial scale, particularly of pentachlorophenol which was used as 

a preservative for wood and wood products and an agent to control 

mold, mildew and termites on wood (Carswell and flason 1938). 

4-Bromo-2,5-dichlorophenol has also found use as a wood preserva-

tive (Imamura et al. 1978; Tilemans 1977 ) . Pentachlorophenol has 

been used as a herbicide in pineapple and sugarcane fields (Bevenue 

and Beckman 1967). For many years, 2,4,5 - trichlorophenol has been 
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used effectively as a fun gicide in many major industri es, including 

textile, leather, and glue manufacturing processes. More recently, 

pentachlorophenol, 4-bromo-2,5-dichlorophenol, and 4-iodo-2,5-

dichlorophenol have found use as molluscicides (Roushdy et al. 

1974; Yamamoto and Kasuga 1976, 1977; Imamura et al . 1977). More 

than that, halogenated phenols and halogenated pyridinols have found 

use as intermediates in the production of several important pesti­

cides developed during the last two decades, such as Ronnel, lepto­

phos, iodophos, and chlorpyrifos (McCollister et al. 1959). The 

annual use of pentachlorophenol in the U.S.A. is probably more than 

20,000 tons and was estimated to be more than 24,000 tons in 1974 

(Arsenault 1976). 

Toxicity of Halogenated Phenols 

Modern data on the toxicity of lower halogenated phenols seems 

to be absent although many studies have been conducted on the penta ­

chlorophenol and tetrachlorophenols. Early studies on their toxi­

ci ty were performed due to an interest in them as antiseptic 

compounds (Bechhold and Ehrlich 1906) . The l iterature up to 1949 

has been excellently reviewed by Von Oettingen (1949). The con­

clusions that can be drawn from the ear lier work reviewed by Von 

Oettingen (1949) were confirmed in a study by Farquharson et al. 

(19 58). The authors concluded that with i ncreasing chlorination 

there is an increase in toxicity in which the convulsant action of 

phenol is replaced by the signs characteristic of poisoning by 

dinitrophenol, a well-known uncoupler of oxidative phosphorylation. 



Based on determinations of the dissociation constants for the 

chlorinated phenols, they suggested that the higher chlorinated 

phenols interfere with oxidative phosphorylation. The convulsant 

action of the lower chlorinated phenols, on the other hand, was 

assumed to be associated with the undissociated molecule. 

Although 2,4,5-trichlorophenol has been used in industry for 

many years, little toxicity data have been reported in the litera­

ture. Deichman and Mergard (1948) reported an acute oral LD50 in 

rats in the range of 0.62-0.825 g per kilogram body weight. Anderson 

et al. {1949) fed groups of cattle dosages of 0.8, 2.4, and 7.2 g 

per 100 lbs animal weight per day of zinc 2,4,5-trichlorophenute 

and 2,4,5-trichlorophenyl acetate in the diet for 78 and 154 days. 

They observed no adverse effects at any of the levels fed . For a 

98-day feeding trial using rats and a dose range of .03-1.0 g/kg/day 

of 2,4,5-trichlorophenol. McCollister et al. {1961) found that 

rats maintained at the higher dose level sho•1ed diuria, but only 

mild reversible pathological changes were seen in the liver and 

kidneys. Those fed lower dose levels showed no evidence of adverse 

effects. Repeated oral feeding (20 doses in 28 days) by intubation 

to rabbits produced very slight pathological changes in liver and 

kidneys in those animals receiving 0.5 g/kg doses of 2,4,5-

trichlorophenol. In a similar study, there was no evidence of 

adverse effect in rats at 0.3 and 1.0 g/kg. The only significant 

effect attributable to 2,4,5-trichlorophenol was a slight increase 

in average weight of the kidneys. No pathological changes were 

found upon microscopic examination. 2,4,5-trichlorophenol at a 



dose rate as high as 400 mg/kg administered orally for 14 days in 

rats decreased microsomal NADPH-cytochrome C reductase activity and 

cytochrome P450 content (Carlson 1978). UDP-glucuronyltransferase 

was slightly inhibited in vit ro and was not altered in vivo. The 

compound was not hepatotoxic as assessed by measurement of hepatic 

glucose-6-phosphatase and serum sorbitol dehydrogenase . 

Toxicity data for 4-bromo-2,5-dichlorophenol, 4-iodo-2,5-

dichlorophenol, and 3,5,6-trichloro-2-pyridinol are complete ly 

absent in reported literature. 

Organophosphate Insecticides with 
Halogenated Phenolic Metabolites 

Halogenated phenols and related compounds such as halopyri-

dinols are mammalian metabolites of many insecticides, including 

Leptophos ( phosve l) [Q- ( 4-bromo 2, 5-di chl orophenyl ) -Q-methyl phenyl 

phosphonothioate], chlorpyrifos (Dursban) [Q,Q-diethyl Q-(3,5,6 

tri chl oro- 2-pyri dyl) phosphorothi oate], and Ronnel [.Q_,Q-dimethyl 

Q-(2,4,5-trichlorophenyl) phosphorothioate]. They are organophos-

phate insecticides that control a wide variety of insect pests 

including important forage insects (Collier and Dieter 1965; Gray 

1965). Table l lists representative organophosphate and organo­

chlorine insecticides that release halogenated phenols upon 

metabolism or degradation . 

It was found that Dursban residues remained relatively stable 

when treated corn nlants were chopped and ensiled for 30 days 

(Leuck et al. 1969). Other studies showed that Dursban and 

3,5,6-trichloro-2-pyridinol residues were found in the soil and 



Table 1. Representative Organophosphate and Organochlorine Insecticides with Phenolic Metabolites 

Common Name 

Dursban 
( ch 1 orpyri fos) 

Ch loropyri fos-methyl 
(Dowcor 214) 

Leptophos (Phosvel) 

Ronnel 

lodophos (Iodofenphos) 

Iodofenphos ethyl 

Trichlor metafos-3 

Bromophos (Nexion ) 

Chemical tlame of Systematic Name 

0,0-diethyl-0-(3,5,6-trichloro-
2-pyridy l) phosphorothioate 

0,0-dimethyl-0-(3,5,6-trichloro-
2-pyridyl) phosphorothi oa te 

0-(4-bromo-2,5 dichlorophenyl)-
0-methyl-phenyl phosphorothioate 

0,0-dimethyl-0-2,4,5-trichloro­
phenyl phosphorothioate 

0- ( 2, 5-di chl oro-4-i odophenyl)-
0,0-dimethyl phosphorothioate 

0-(2,5-dichloro-4-iodophenyl )-
0,0 diethyl phosphorothioate 

0-methyl-0-ethyl-0-(2,4,5-trichloro­
phenyl) thiophosphate 

0,0-diethyl-0-2,5,6-trichloro­
phenyl) thiophosphate 

0- ( 4-bromo-2, 5-di ch lorophenyl) 
0,0-dimethyl phosphorothioate 

Phenolic Metabolite or 
Degradation Product 

3,5,6-trichloro-2-pyridinol 

3,5 ,6-trichloro-2-pyridinol 

4-bromo-2,5-dichlorophenol 

2,4 ,5-trichlorophenol 

4-iodo-2,5-dichlorophenol 

4-iodo-2,5-dichlorophenol 

2,4,5-trichlorophenol 

4-bromo-2,5-dichlorophenol 



Table 1. (Continued) 

Co11111on Name 

Bromophos ethyl 

Gardona (stirofos) 

2,4,5-T 

Erbon 

Silvex (2,4,5-TP) 

Lindane ( y-HCH) 

BHC 

Haloprogin 

Trichlorobenzene 

Chemical Name or Systematic Name 

0-(4-bromo-2,5-dichlorophenyl) 
0, 0-d i ethyl phosphorothi oa te 

2-chloro-1-(2,4,5-trichlorophenyl) 
vinyl dimethy l phosphate 

2,4,5 trichlorophenoxyacetic acid 

2-( 2,4,5-tri chl orophenoxy)ethy l 2,2-
dichloropropionate 

2-( 2,4,5-trichlorophenoxy) 
propionic acid 

y-1, 2,3,4,5,6 -hexachlorocyc lohexane 

1, 2,3,4 ,5,6-hexachlorocyclohexane 

2,4,5 trichlorophenyl-y­
iodopropargyl ether 

1, 2,4-tri chlorobenzene 

Phenolic Metabolite or 
Degradation Product 

4-bromo-2, 5-di chl oropheno 1 

2,4,5-trichlorophenol 

2,4,5-trichlorophenol 

2,4,5-trichlorophenol 

2,4 ,5-trichloropheno l 

2, 4,5-trichlorophenol 

2,4 ,5-trichlorophenol 

2,4,5-trichlorophenol 

2,4 ,5-trichlorophenol 

00 



in plants (radishes and carrots) after one year from treated soil 

in field plots treated with Dursban at 3.4 kg 1\.!/ha 1 ~hapman and 

Harris 1980; Smith et al. 1967). Leuck et al. (1969) examined and 

reported the persistence of ch 1 orpyri fos and its pheno 1 in forage 

corn to be more persistent than those of most organophosphorus 

insecticides. 

Cows fed a complete ratio containing Dursban residue for 2 

weeks showed residues of Dursban and 3,5,6-trichloro-2-pyridinol 

in milk and cream samples (McKellar et al. 1976). Residues of 

chlorpyrifos and its metabolites 3,5,6-trichloro- 2-pyridinol, 

were determined in fat, muscle, 1 i ver, and kidney tissues of s1~i ne 

at 1 week posttreatment with chlorpyrifos, but only in fat and 

liver tissue at 2 weeks posttreatment (lvey and Palmer 1979 ). 

McKellar et al. {1972) found residues of chlorpyrifos predominantly 

in fat tissue and 3,5,6-trichloro-2-pyridinol in liver and kidney 

tissues of swine when the animals were fed chlorpyrifos in their 

diet for 30 days. The levels of the residues were small, ca . 

0.05 ppm, even at the highest dietary concentration of 10 ppm. 

The residues declined rapidly to undetectable or very lov1 levels 

within 7 days after withdrawal of the insecticide from the feed. 

Similar results were obtained when chickens were fed chlorpyrifos 

(Dishburger et al. 1972) and when turkeys were confined in pens 

on treated soil (Mann et al. 1973) . Also, residues of 3,5,6-

trichloro-2-pyridinol were found to be greater in liver and kidney 

than those found in fat when the cattle were fed chlorpyrifos in 

their diet for 30 days (Di shburger et a 1. 1977). Recently, it was 
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shown that the residues of 3,5,6-trichloro-2-pyridinol were found in 

liver, kidney and fat of cattle wearing chlorpyrifos-impregnated 

plastic ear bands (Ivey et al. 1978; Ivey 1979). Smith et al. 

(1967} reported that rats metabolized Dursban to 3,5,6-trichloro-2-

pyridyl phosphate (75 to 80%} and 3,5,6- trichloro-2-pyridinol (15 

to 20%). Bakke et al. (1976) reported that rats metabolized single 

oral doses of Dursban to at least six urinary metabolites. The 

urine contained about 90% of the dose. Three of these metabo lites 

were identified as the glucuronide of 3,5,6-trichloro-2-pyridinol 

(80%}, a glucoside of 3,5,6- trich l oro-2-pyridinol (4%), and 3,5,6-

trichloro-2-pyridinol (12%}. Also, Bakke and Price (1976) shm·~d 

that sheep and rats metabolized a sing le oral dose of chlorpyrifos 

methyl (the dimethyl analogue of Dursban) to three major metabolites 

that were excreted in the urine (70% of original dose) . These 

were the glucuronide of 3,5,6-trichlor~ · 2-pyridinol (68.6%), 

0-methyl-0-(3,5,6-trichloro- 2-pyridyl) phosphorothioate (17.8%) , 

and 3,5,6-trichloro-2-pyridinol (13.8%). The latter two metabolites 

and the present compound were isol ated from sheep feces. Sheep 

pl asma contained the same metabolites that were found in sheep 

urine. However, in the same study it was found the sheep excreted 

a sing le oral dose of 3,5,6-trichloro-2-pyridinol unchanged in the 

feces and as a glucuronide in the urine. Only the bile, liver, 

kidney and gastrointestinal tract with its contents contained 

detectable residues of 3,5,6-trichloro-2-pyridinol. 

Although leptophos administered orally to mice is rapidly 

metabolized and excreted as degradation products (Hol mstead 
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et al . 19 73), the major product was conjugated 4-bromo-2,5-dichloro­

phenol. Leptophos is relatively persistent in the envirionmen t in 

relation to other organophosphate insecticides (Leuck et al. 1969; 

Braun et al. 1975; Leuck et al. 1970 ) . Leptophos fed to dairy 

cattle as residues on corn silage was observed to increase body 

gain and decrease milk production while not affecting feed intake. 

The cows ingested Leptophos residues averaging 0.41 to 1.71 mg/kg 

body weight and all secreted mi lk containi ng both Leptophos and its 

phenol . Also, Leptophos and its phenol were excnted in feces, but 

only phenol was excreted in t he urine (Johnson et al . 1971) . The 

chemica l properties of Leptophos suggest that this pesticide may be 

deposited in the fat of animals (Davies et al. 1975; Freed et al . 

1976). Recently, it was shown that Leptophos is rapidly absorbed 

by adipose tissue of hens after a s ingle oral dose (Nabuhiro and 

Hideo 1978). Leptophos reduced the number and wei ght of eggs laid 

(Abou-Don ia and Preissing 1976). Urinary excretion of 4-bromo-2, 

5-dichlorophenol metabolite of Leptophos was found to be 12% of the 

tota l administered dose in rats (Br adway et al . 1977). Also 4-bromo-

2,5-dichlorophenol was found as a metabolite of Leptophos in the 

white mouse urine, cotton plants and houseflies (Holmstead et al . 

1973 and Lee and Fukuto 1976). 

Ronnel, in addition to its use as an insecticide, has been shown 

to enhance feed efficiency and improvf' 1·•eiqht gain in beef when 

directly employed as a feed additive (Ramsey et al . 1975). 

Bradway et al. {1977) reported t hat rats excreted single oral doses of 



Ronnel as 2,4,5-trichlorophenol (40.8 to 46.9% of the administered 

dose) in urine. It was found that Iodophenphos ethyl was inactive 

while its metabolite 2,5-dichloro-4-iodophenol was more active 
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than 3,5,6-trichloro-2-pyridinol (Abo-Khatwa and Hollingworth 1974), 

to stimulate oxygen uptake both in the presence and absence of 

phosphate in vitro rat with liver mitochondria . 

In studies with radioactive iodophenphos (14C) in rats, it was 

shown that elimination of iodophenphos equivalents in rat urine 

and feces accounted for 92% of the dose in 24 h after oral treat­

ment. Greater than 98% of the total of the radioactivity in the 

urine was in the form of acidic metabolites (Frederick and Charles 

1970). Recently, Ivey and Oehler (1976) studied the metabolism of 

iodofenphos which is used systemically to control a variety of ticks 

on livestock. They detected 4-iodo-2,5-dichlorophenol in tissues 

and urine of cattle fed iodofenphos. 

4-Bromo-2,5-dichlorophenol was found to be the main metabolite 

of bromophos in tomato plants, reaching 13% of the total dose applied 

after 7 days (Stiasni et al. 1969). That metabolic pattern in 

plants is identical with that found in rats (Stiasni et al. 1967). 

Organochlorine compounds (organochlorine insecticides and 

polychlorinated biphenyls) have become major environmental pollu­

tants. They have been used for several decades in agriculture and 

industry. Their low degradation in nature, their accumulation in 

livi ng bei ngs, their biomagnification (increase of residue in the 

food chain) and their biological effects in natural exposure and 

animal experimentation may create environmental problems, in part 
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by increasing halogenated phenols in the environment. Chlorophenols 

are major metabolites of many organochlorine compounds. Some of 

these compounds were listed in Table 1. 

Examples of biota contamination with chlorophenols following 

specific pesticide usage are numerous in the literature. For 

example, Fitzgerald et al. {1967) showed the degradation of 2,4,5-

trichlorophenoxyacetic acid (2,4,5-T) in wood plants led to 2,4,5-

trichlorophenol. Also, 2,4,5-trichlorophenol was found in sun­

flower seedlings and strawberry leaves after treating with 2,4,5-T 

(Chkanikov et al. 1970). Recently, it has been found that 2,4,5 -

trichlorophenol is produced from 2,4,5-trichlorophenoxyacetic acid 

in soil and water (Rosenberg and Alexander 1980). Clark et al. {1975) 

reported tissue residues of 2,4,5-trichlorophenol in sheep and cattle 

given oral doses of the herbicides 2,4,5-T and silvex. Liver and 

kidney contained the highest levels and withdrawal of the animals 

from treatment for 1 week before killing resulted in significant 

reduction in tissue residue level. 2,4,5-trichlorophenol was found 

to be the principal metabolite of the 4-(2,4,5-trichlorophenoxy)­

butyric acid herbicide following ora l administration to rats (Boehme 

and Grunow 1974). 

Erbon , 2-(2,4,5-trichlorophenoxy)-ethyl-2,2-dichloropropionate 

is a herbicide used extensive ly i n noncrop areas to control weeds 

and grass. Erbon is more toxic than other members of the 2,4,5-T 

herbicide family. 2,4,5- trichlorophenol was found in blood, urine 

and feces shortly after administ r ation of erbon given orally 

to sheep and the highest residue level of 2,4,5- trichl orophenol was 

found in the kidney, liver and fat (Wright et al . 1970). 
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In 1965 Grover and Sims showed that rats metabolized both lin­

dane, y-1 ,2,3,4,5,6-hexachlorocyclohexane (y-HCH) and (y-PCCH) 

y-2,3,4,5,6-pentachlorocyclohex-1-ene to 2,3,5- and 2,4,5-trichloro­

phenol which are excreted in the urine as free phenols, sulfates, 

and glucuronic acid conjugates (Chadwick and Freal 1972a and b; 

Freal and Chadwick 1973). Recently it was shown that lindane and 

hexachlorocyclohexene administered to rats produced 2,4,5-tri­

chlorophenol as one of the many other chlorophenol metabolites 

both in vivo and in vitro (Chadwick et al. 1975; Tanaka et al. 

1979a) . Tanaka et al . (1979b) showed the metabolic fate of pol y­

chlorocyclohexenes [1,3,4 ,5,6-pentachlorocyclohexenes (PCCHE) and 

1, 2,3 ,4 , 5,6-hexachlorocyclohexene (HCCHE)] using mic rosomes from 

rat liver and housefly abdomen. They found that PCCHE and HCCHE 

were metabolized to 2,4,5-trichlorophenol as one of the many other 

chlorophenol metabolites . 

Weikel and Bartek (1972) reported that, in the rat and rabbit, 

most of the administered dose of haloprogin, 2,4,5-trichlorophenyl-

8-iodopropargyl ether , an antifungal agent, was excreted in urine 

as the major metabolic products 2,4,5- trichlorophenol and its 

sulfate conjugate . Also, 2,4,5 and 2,3,5-trichlorophenol were 

identified as major rabbit urinary metabolites of 1,2,4-trichloro­

benzene (Kohli et al. 1976). 

It is well known that organochlorine pesticides are soluble 

in fat and persistent for a long time in the tissue of animals. 

On the other hand, halogenophenols are major metabolites of many 
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organophosphorus and some organoch lorine pesticides, which in general, 

are readi ly biodegradable as shown before . As of this date, there 

has been very little work reported in the literature about distri­

bution of the halogenated phenols and pyridinols in the tissues. 

Most of the studies were limited to the determination of urinary 

excretion of some halogenated phenol metabolites of biodegradable 

pesticides. 

Relation Between Chemical Struc­
ture and Biological Activity 

The question of whether there would be some relationship between 

chemical structure and biological activity arose as early as the 

last century, and once it appeared possible to extend the range of 

drugs gradually by synthetic routes, ma ny efforts were made to find 

an answer (Albert 1971). 

There are numerous examples to substantiate the claim that 

studies on the relationship between the structure of a substance 

and its activity in biological systems have great practical va l ue 

and have made significant contributions to the understanding of 

biological phenomena in general. The term structure reiates to 

the physical characteristics, such as solubility, surface area, and 

molecular size, and the chemical factors of intramolecular electron 

distribution, pK, state of charge and stereochemistry. Any one, 

all, or any combination of these parameters might be influential 

in structure-act i vity considerations . Exp loitations of 



structure-activity relationship has at times led to the synthesis 

of valuable therapeutic agents . 

The Importance of Partition Coefficient 
in Structure-Activity Relationship 
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The partition coefficient is one of the most important factors 

in controlling the interaction of chemicals with biological systems 

(Daniels et al. 1966). 

Fundamental work was carried out by Richet (1893), who found 

that the toxic effects of ethers, alcohols, aldehydes and ketones 

are inversely proportional to their solubility in water; by Traube 

(1904), who established a linear relationship between surface ten­

sion and activity for a series of narcotics; and by Fuehner (1907), 

who noted the possibility of there being a quantitative relation-

ship between a biological property, for example the narcotic 

activity, and the number of carbon atoms. 

All of this research may be viewed in conjunction with the 

postulation of Crum-Brown and Fraser (1869) that the physiological 

action, ¢ , of a molecule is a function of its chemical constitution 

(C): 

¢ = f(C) (1) 

Meyer and Overton (1901) were stud.vinq independently the mode of action 

of the indifferent narcotics or physical toxicants which are quite 

diverse in structure and have depressant properties, especially 

in cells that are particularly rich in lipids, such as nerve cells. 
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From their studies it was discovered that most organic compounds 

foreign to the organism penetrate tissue cells as though the mem­

branes were lipid in nature. They also found that the passage across 

these barrier systems and the subsequent narcotic action parallel 

the oil-water partition coeffic ients of the structures investigated 

( Rekker 1977). 

While it has become apparent that biological activity can 

rarely be coupled to a single parameter but should rather be 

envisaged as the result of the interplay of various parameters, 

the partition coefficient did remain the major parameter in struc­

ture activity relationship studies. The period between the research 

of Meyer and Overton and the present situation is about half a 

century. For a review of the most important events during this 

period, reference is made to Purcell et al. (1973). Rekker {1977) 

outlined the following improved parameters that are meaningful for 

the understanding of biological action and the better approaches 

used in structure-activity studies: 

( 1) Hammett substituent constants 

Hammett (1937) was among the first to offer a quantitative 

treatment of the effects of structure on chemical activity. His 

equation {2) makes it possible to calculate a rate or an equilibrium 

constant of a meta- or para-substituted derivative of c6H5-R with 

R as the reacting center: 

Log ~: ; PO (2) 



where, K
0 

represents the equilibrium constant of an unsubstituted 

structure and Ks that of a substituted derivative. The symbol cr 

is called the substituent constant, reflecting its ability to 

attract or repel electrons. Electron withdrawing groups have 

positive substituents, with respect to hydrogen. The symbol p 
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is the rection constant in equation (1), and measures the sensitivity 

of the reaction to electronic effects on them, p-substituents . 

l'hen the log of the dissociation constants of various substituted 

benzoic acids is plotted as a function of the substituent constant 

of t he same compounds , meta and para substituents fall on a straight 

line . Ortho-substituted compounds deviate because of steric inter­

ference, but when these s t eric interferences are removed by operating 

in the gas phase, the ortho substituents fall on the line . The 

Hammett treatment has been app 1 i ed to many reactions and function a 1 

groups, and correlates well with a substantial amount of data 

(Jaffe 1953). Since t he electronic effects of substitutions as 

conducted by the Hammett method proved to largely determine the 

partitioning behavior of a series of analogues, the biologi cal pro­

cesses highly dependent on distribution of the chemical, can often 

be correlated with the Hammett constant. 

(2) Hansch approach to structure-ac t ivity relationship 

After the Hammett a-constant was found useful in evaluating 

the chemical constitution of a molecule upon which biological 

activity is highly dependent, Hansch et al. {1963, 1964 and 

1965a and b) found an alternatively very useful structure-activity 

correlate, by use of Tr . This \~as defined as 
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p 
rr = log (__l_) 

PH 
(3) 

where Px and PH are the octanol-water partition coefficients of a 

parent compound H and its derivative X, differing by a substituent 

group. Thus the constant rr indicates the change in the logarithm 

of the partition coefficient resulting from the introduction of the 

substituent group. 

The rr values for many substituent groups were directly measured 

by Hansch et al . (1964 , 1965b) for a variety of drugs (over 200 

aromatic compounds) and used in order to calculate the lipophilic 

character, as expressed by the partition coefficient function log 

or by Err of other compounds. 

Hansch and Fujita (1964) offered statistical models to explain 

the relationship between structure and biological activity, and to 

reduce it t o a series of linear regression equations . They take 

a logical approach to the penetration of a compound to the active 

site and the subsequent response evoked. It was assumed, as a 

first approximation, for many types of biologically active mole -

cules there is one key rate-contro l ling reaction at the active site. 

This is formulated as in equation (4). 

R f b. 1 . 1 d(response) ACK 1, 4) ate o 10 og1ca responses = dt = x 

A is the probability of a molecule reaching a site of action in 

a given time interval, Cis the extracellular molar concentration 

of the compound being tested and Kx is a constant. 



Thus, it was held that the biological response is a function 

of how much is applied, how successful the compound is in reaching 

the target, and how it reacts once it arrives. These factors are 

a direct result of the molecular structure. On the same studies, 

Hansch and Fujita (1964) developed five types of regression eq ua-
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tions to fit various types of biologically active structural series . 

The simplest case was designated as Type I, which is given by the 

following equation: 

1 Log C = a rr + b (5) 

where C is the concentration required for a definite effect-usual ly 

EC50 . The symbols a and b represent the slope and intercept, 

respectively. The activity of compounds in this type varies wit~ 

lipophilicity. Examples of type II activity are given in equation 

(6), which is represented by the action of phenols on Salmonella 

typhosa and the carcinogenic activity of the dimethylaminoazoben-

zenes. 

Log t = -a rr 2 + b rr + C (6) 

The other types, represent more complex situations, including fac­

tors for electronic and steric effects. 

(3) Boyce and Milborrow approach to structure and biological 

activity 

Hansch et al. (1965) pointed out that the calculated parti-

tion coefficient log P or Err cannot completely replace the 

experimental determination of partition coefficient because of 



possible group interactions, and Bird and Marshall (1967) found 

some anomalies in the calculated Ln values of penicillins. On the 

other hand, in order to avoid the practical difficulties of the 

direct determination of a partition coefficient, particularly when 

the compound is highly insoluble in either of the solvent phases, 

Boyce and Milborrow (1965) suggested the use of the chromatographic 

Rm value as a simplified assessment of partition coefficient and 

its derivatives by exploiting the theoretical relationship between 

partition coefficient P and Rf value deduced by Martin (1949) for 

liquid-liquid partition chromatography: 

where K is a constant for the system. 

Bate-Smith and \·Jestall (1950) introduced the term Rm, shown 

t o be related to the partition coefficient and calculated from 

the formula : 

R = Log (..l_ - 1 ) 
m Rf 

T1us, equation (9) can be used in place of equation (7) 

Log P = Log K + Rm 

(7) 

(8) 

(9) 
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T1e change in the value of Rm for a substituent (ll~) is a free 

e1ergy-based constant analogous to n used by Hansch. It is there­

fJre possible in principle to correlate the penetration of substances 

with their ~ va 1 ues. As a cora 11 ary of this, ~ and n usually 

h1ve a linear correlation. One of the purposes of the present 
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work is to show that reversed phase thin layer chromatography is 

a suitable technique and simple and rapid method for the determina­

tion of lipophilicities for halogenated pheno l s and pyridinols. 

The lipophilic nature of a series of compounds has been described 

by Boyce and Milborrow using this approach (1965), and it has 

frequentl y been used since, for example, by Biagi et al. (1969 , 

1970 ). The chromatographic Rm value determination is more con­

venient than measuring partition coefficients (Dearden et al . 1974) . 

Studies of the Relationship Between 
Molecular Structure of Halogenophenols 
and Chromatoaraphic Behavior 

To date, there are very few papers in the literature dealing 

with the relationship between structure of halogenoohenols and 

pyridinols and chromatographic behavior. Bark and Grnham (1966a) 

chromatographed 60 halogenated and halogenoalkyl substituted phenols 

on alumina surfaces in eight eluent systems. They found the Rf 

values of the phenols decreased with an increase in the number of 

halogen atoms in the molecule thus indicating that the alumina sur­

face acts as a proton donor towards the halogen atom as well as 

towards the phenolic group . It was seen that the Rf values of 

analogous halogenophenols increased with an increase in the size 

and corresponding decrease in the electronegativity of the halogen 

atom. In the same year, Bark and Graham (1966c) studied the 

chromatographic behavior of halogenated phenols, chromatographed 

in the reversed-phase thi n layer chromatographic system ethyl 

oleate-aqueous ethanol. They suggested the mechanism of the 
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chromatographic process is dissol ution of the phenol in the hydro­

phobic stationary phase, followed by the remova l of the phenol from 

the interface as a resu l t of solvation of the pheno l ic group by 

the polar mobile phase. They also fou nd that the Rf values of 

halogenated phenols decreased with an increase in the number of 

halogen atoms in the molecule. This suggested that the effect of 

partial molar volumes of the halogen atoms is more important in 

governing the separation process than are electronic effects . 

It was shown that the number and nature of the substituents 

and their relations will have an effect in determining the chro ­

matographic behavior of a compound (Bark and Graham 1966b). For 

the series of monohalogenated phenols, fluoro-, chloro-, bromo-, 

iodo-, Marcinkiewicz and Green {1963) found separations to occur 

according to the molar volumes of the halogen atoms. Bark and 

Graham also found the order of Rf values to be: fluoro < chloro < 

bromo < iodo, i.e . , in order of the molar volumes of the halogen 

atoms. Bark and Graham {1967) reported that the migration of 

halogenated phenols was related to the site of solvation of the 

molecule by the mobile phase, the solvation site being the hydro­

phobic part of the molecule for the non-aqueous eluent and the 

phenolic group for the acqueous eluent . They suggested that the 

above mechanisms may be influenced by a number of factors such as 

el ectron withdrawal or donation by the subst i tuent groups, 

steric effects and position of substituents in the mo l ecule. Al l 

these were shown to affect the Rf values. 
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It is well known that atoms within groups in molecules tend to 

attract or release electrons to other regions of the molecule, 

depending on the electronegativity of the atom. This alters the 

intramolecular distribution of electrons, making some region of 

the molecule electron-deficient and another electron -rich. Examples 

of substituent groups with electron withdrawing capacity are nitro, 

quaternized nitrogen, cyano, carboxyl, and chlorine, whereas some 

groups that release electrons are hydroxyl, methoxyl, methyl, 

amine, and phenyl. 

The distribution of a phenol between an aqueous and a lipoid 

solvent can be approximately calculated by use of the n constant 

for each substituent, as derived by Hansch (Fuj ita et al. 1964) . 



MATERIALS AND METHODS 

Experimental Animals 

Male weanling rats of the Sprague-Dawley strain, weighing 145 

to 170 g, were purchased from Simonsen Laboratories, Inc. of 

Gilroy, California. They were individually housed in stainless 

steel cages with wire mesh bottoms. The rats were fed Purina 

Laboratory Chow in cubed form ad libitum with fresh water prior to 

and throughout the study. The caqes were cleaned daily and the 
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rats were observed for six days before dosing with the test chemicals. 

Chemicals Tested 

The compounds used in the studies are presented in Table 2, 

together with the data on source, purity and structural formula. 

Experimental Desiqn 

Experimental animals were randomly assigned to treatmen ts , and 

adjustments were made to equalize the body wei ght within ±2 g in 

each treatment, so that differences in group weights might not be 

a factor. 

Seventy-two rats were allocated into five 9roups comprising 

16, 16, 16, 16, and 8 rats, respectively. Rats in groups 2, 3, 

and 4 were divided into two equal subgroups to make eight rats for 

each treatment. The subgroups were used with administration of the 

higher dose level of 2,4,5-trich l orophenol, 4-bromo-2,5-dichlorophenol 

and 3,5,6-trichloro-2-pyridinol. Each rat, except for those in 
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Table 2. Compounds Used in Investigation, Including Chemical Struc­
ture, Purity and Sources 

Compound 

2,4,5-trichlorophenola 

4-bromo- 2,5-dichloro­
phenolb 

4-iodo-2,5-di chloro­
phenolc 

3, 5, 6-tr i chloro-2-
pyr idi nold 

Structure 

Cl 

Cl-Q-OH 

Cl 

aProvided by Aldrich Chemical Company, Inc., Milwaukee, 
Wisconsin . 

Purity 

94% 

99.1 % 

94% 

99% 

bProvided by Velsicol Chemical Company, Chicago, Illinois. 

cProvided by Agricultural Division of CIBA-GEIGY Corporation, 
Greensboro, North Carolina . 

dProvided by Dow Chemical Company, Midland, Michigan. 
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group 1 (controls) was treated with a single dose of a test chemical. 

Two rats from each treatment were killed at 1, 3, 6, and 12 day(s) 

after administration of the compounds, as were two control rats. 

Dose Administration 

The dose level s of all compounds were based on the LDSO of 

2,4,5-trichlorophenol because the LD50 values of the other compounds 

were not available. Dose levels of 0.4 and 0.08 of the LD50 (1.66 m 

moles/kg and 0.33 m mo les /kg respectively) were used for each 

compound under study (except 4-iodo-2,5-dichlorophenol which ~1as 

tested only at the lower dosage). The lower dose 0.33 m moles/kg 

is equivalent to 65.6, 80.4, 95.9 and 65.9 mg/kg for 2,4,5-trichloro­

phenol, 4-bromo-2,5-dichlorophenol, 4-iodo-2,5-dichlorophenol and 

3,5,6-trichloro-2-pyridinol, respectively . The higher dose 1.66 m 

moles/kg is equivalent to 328, 401.9, and 329.5 mg/kg for 2,4,5-

trichlorophenol, 4-bromo-2,5-dichlorophenol and 3,5,6-trichloro-2-

pyridinol, respectively. The compounds were administered by gavage 

as so lution in corn oil. 

All compounds dissolved in corn oil, except 3,4,6-trichloro-

2-pyridinol which was dissolved in 1:9 v/v of ethanol and corn oil. 

The concentrations of the compounds in solution were adjusted so 

that each animal received 0.5 ml of the corn oil solution per 100 g 

of body weight. The control rats received an equal quantity of pure 

corn oil. 

Animal Termination 

Rats were anesthetized by placing them into a jar in which the 



air was saturated with d·iethyl ether. At this time as much blood 

was removed as possible via the dorsal aorta. Animals were then 

sacrificed immediately and the liver, kidneys and the peri-renal 

plus sub-cutaneous pockets of adipose tissue were dissected free 

and cleaned of extraneous tissues. Except for blood, the sample 

tissues were weighed, placed in labeled vials and quickly frozen 

for storage until they were analyzed (within three months). Blood 

was analyzed within 24 h after beinq drawn. 

Apparatus 

A Micro-Tek 220 gas chromatograph (GC) equipped with 
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Ni 

electron capture detector (ECD) and a 6 ft x l/4 in . glass column 

packed with 4% SE-30 + 6% QF-1 on 80-100 mesh chromosorb VI (HP) 

was used. The column was operated under the following parameters: 

nitrogen carrier gas flow rate, 60 ml/min; column temperature, 

170 °C; inlet, 2l0°C; detector, 275°C . 

Solvents and Reagents 

All solvents were pesticide quality or nano-grade (Fisher 

and Baker). Deionized water was used throughout the procedures and 

was extracted with benzene. N-ethyl-N'-nitro-N-nitrosoquanidine 
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(Aldrich) was used to prepare the ethylating reagent according to 

Stanley ( 1966). The silica ge 1 (Woe lm, active grade 1) was prepared 

according to Shafik et al. (1973) . 

Residue Analysis 

Procedure for blood. Blood was analyzed for residues using 

modification of the methods in the Manual of Analytical Methods 



(Thompson 1979). Extracting was by adding to 2 ml blood contained 

in a round-bottomed tube 1 ml of 4% trichloracetic acid, 2 ml of 

2% Na2so4 , and 6 ml of hexane. The mixture was rotated in a Rotc­

rack at 50 rpm for 2 h, then eentrifuged at 2000 rpm about min 
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to separate the layers. Five ml of the hexane extract was trans­

ferred to a 15 ml graduated centrifuge tube and the organic residue 

was extracted on a Roto-rack with 6 ml methylene chloride as before. 

Five ml of the CH2Cl 2 was combined with the hexane extract. Ten 

drops of keeper solution (1 % paraffin oil in iso-octane) were added 

to the combined extract solvent which was then concentrated to 0.5 

ml by using a nitrogen evaporator (Meyer N-evaporator) . One ml of 

benzene was added followed by freshly prepa red diazoethane so l ution 

dropwise until a definite yellow color persisted. After allowing 

the mixture to stand 15 min, any excess reagent was removed 

by bubbling dry nitrogen through the solution. The derivatized 

sample was then "cleaned up" by use of the deactivated silica gel 

procedure of Shafik et al. (1973). The first fraction was collected, 

concentrated to an appropriate volume, and analyzed by EC-GC. 

Procedure for liver and kidney. Four grams of liver or one 

kidney {0 . 7-1.0 g) was extracted by blending in a Lourdes homo­

genizer with 100 ml acetone and filtered through Whatman 40 filter 

paper into a 500-ml Erlenmeyer flask. The homogenizer and filter 

were washed with acetone . A Snyder column was attached to the flask 

and the extract was reduced by distillation to 25 ml and cooled to 

room temperature. An aliquot of the extract was taken for lipid 

analysis while the remaining extract was transferred to a 125 ml 
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separatory funnel and the sample extracted with benzene as described 

by !vey et al . (1978). The benzene extracts containing 2,4,5-

trichlorophenol, 4- bromo-2,5-dichlorophenol or 4-iodo-2,5-dichloro­

phenol were transferred to the alumina column for cleanup as des­

cribed by Bowman and Bereza (1969). In the case of 3,5,6- trichloro-

2-pyridinol, the extract was cleaned up with the same method of 

Ivey et al. {1978). The eluate containing the halogenated phenols 

or the pyridinol was concentrated in a flash -evaporator under water 

pump vacuum to 50°C to near dryness and transferred to a 15 ml 

graduated centrifuge tube. Freshly prepared diazoethane reagent 

was added drop-vlise until a persisting ye llow color occurred, and 

the reaction mixture was then allowed to stand for 15 min. Excess 

reagent was removed by bubbling dry nitrogen through the solution. 

From this point on the silica gel column cleanup method of Shafik 

et al. (1973) was followed . The first fraction was collected, 

concentrated or diluted to an appropriate volume and analyzed by 

EC-GC. 

Procedure for adipose tissue. An 8-10 g sample of fat was 

extracted by blending in a Waring blender with 75 ml acetone. 

The homogenate was transferred to a 600-ml beaker, heated on a 

hot plate to near boiling, and fi 1 tered through l'ha tman 40 filter 

paper into a 500-ml Erlenmeyer flask. The blender, beaker, and 

filter were washed thoroughly with acetone. The filtered mass 

was returned to the blender, blended with hexane, fi l tered into 

a 300-ml Erlenmeyer flask, and washed with additional hexane. A 

Snyder column was attached to the acetone f l ask and the extract was 
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reduced to ca 30 ml by distillation and cooled to room temperature. 

The column was removed, and the corresponding hexane extract was 

transferred to the flask containing acetone. The Snyder column was 

replaced, and the extract was again reduced to ca 75 ml (until the 

solvent vapors in the Snyder column reached 63 -64°C, a temperature 

that indicates the absence of acetone). The extract was transferred 

to a 500 ml separatory funnel and partitioned 3 times with 50 ml 

portions of acetonitrile. The acetonitrile extracts were combined, 

reduced to ca 10 ml by distillation through a Snyder column, and 

cooled to room temperature ; 30 ml of hexane was added through the 

column , and the column was removed. The solvent was evaporated to 

dryness and the residue was taken up in 5 ml of benzene . Deriva­

tion and cleanup were then carried out and the analytical procedure 

completed in an identical manner to the liver and kidney samples. 

Because residues were to be calcu lated on an extracted fat basis, 

the hexane solutio ns remaining after the acetonitrile extraction 

were transferred to a tared flask, the solvent was evaporated, and 

the fatty residue was weighed and recorded as sample weight . 

Analytical Recovery Studies 

Recovery studies were performed by adding known amounts of 

standards to each type of tissue sample (Table 2). After mixing, 

the f~rtified tissue samples were carried through the analytical 

procedure in an identi cal manner to unfortified samples. If 

the control samples contained any halogenated phenol or halogenated 

pyridinol, as found in the liver tissue for 2,4,5-trichlorpheno l 



and 3,5,6-trichloro-2-pyridinol, the amount was subtracted from the 

appropriate value obtained during recovery studies. 

Procedure for Lipid 

The procedure used for total lipid analysis was that described 

by Bragdon (1951), based on oxidation of the extracted lipid with 

dichromate and spectrophotometric measurement of the resulting 

chromate concentration. Calibration wa s made with stearic acid as 

a reference. 

Reversed-Phase Thin 
Layer Chromatography 

To estimate the relative solubility characteristics of the 

compounds tested for accumulation and distribution in the tissues, 

a revet·sed-phase thin 1 ayer chromatography procedure adapted from 

Biagi et al. (1969) was utilized. Chrom-Ar 500 (Mallinckrodt) 

cut in strips of 190 by 180 mm was impregnated with a 5% silicone 

oil (Dow Corning 200, 350 centistokes) in ether (w/v) solution for 

2 min, and then air dried. A solvent feed line was drawn 15 mm 

from the bottom, and the origin at 30 mm. Solutions of halogenated 

pheno ls and pyri dinol s were spotted on the origin 10 mm apart (and 

beginning 25 mm from the edge to avoid edge effects). The mobile 

phase consisted of 37.5% of v/v aqueous ethanol, saturated with 

silicon oil. The spotted chromatograms were suspended in eq uili­

brated chromatography chambers, allowed to equilibrate for 20 min, 

then the chromatogram was lowered into the mobile phase to the 

solvent feed line. When the solvent front had reached a line 100 mm 

from the origin, the chromatogram was removed and dried with the aid 
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of a forced-air heater. The halogenated phenols and pyrid inol s were 

detected as yellow spots on a purple background by spraying the 

eluted chromatograms with alkaline potassium permanganate (Bark and 

Graham 1966a). The yellow spots were marked at their centers and 

extremes. The Rf values were determined from the center of the 

spots. Each compound was chromatographed four times on four 

separate chromatograms and from these values the mean and standard 

error of the mean were computed. The Rm for each compound was cal­

culated from the following relationship: 

~ = Log ( rt - 1 ) 
f 

Equation (8) was introduced by Bate-Smith and vlestall (1950). 

(8) 



RESULTS 

Animal Studies 

No adverse effects were observed in any of the rats treated 

with either the low dose level ( . 33m moles/kg) or higher dose 

level (1.66 m moles/kg) of any compound used in these studies. 

Gross appearance and behavior, mortality, food consumption, weight 

gain, average body and organ :weight ratios were not affected by the 

chemicals. All animals were healthy and active in pre- and post-

administration periods, no deaths were observed and no significant 

difference in the body weight was observed among those given the 

compounds and the controls. A decrease in body weight was noted 

one day after the administration among the animals exposed to the 

higher dose level of pyridinol; however, this was all regained by 

the third day after administration . The kidney and liver weight 

relative to the body weight was not altered by administered com-

pounds, except a slight decrease in the liver was found in animals 

treated with a high dose of 2,4,5-trichlorophenol. These data are 

presented in Appendices A and B. 

Gas Chromatographic Analysis of 
Halogenated Phenols and a 
Pyridinol in Tissues 

The percent recovery, limit of detection in part per billion 

(ppb), and detector sensitivity in picogram (pg) for each chemical 

are shown in Table 3. These are based upon duplicate analyses of 

the fortified tissues using the methods described. The blood and 



35 

Table 3. Electron-Capture Detector Sensitivities, Limits of Detection 
and Percent Recovery of Halogenated Phenols and Pyridinol 

Detector Limit of 
Compound Tissue Sensitivity Detectabi 1 i ty Recovery* 

pg ppb 

2,4,5-TCP Blood 10.5 0.5 100 .0 
4-Br-2,5-DCP Blood 9.0 0.1 88.6 
4-I- 2,5 -DCP Blood 11.7 0. 1 83.9 
3,5,6-TC-2-Pyridinol Blood 11 .3 0.1 89.6 

2,4 , 5-TCP Fat 12 .0 9.0 80.7 
4-Br-2,5-DCP Fat 10 2.0 64.0 
4-I-2,5-DCP Fat 13 1.8 64.6 
3,5,6-TC- 2-Pyridinol Fat 12 .5 2.1 54.1 

2,4,5-TCP Kidney 15.0 12.6 104.4 
4-Br- 2,5- DCP Ki dney 11. 5 9.5 69.0 
4-I-2,5-DCP Kidney 12.5 10. 0 86.8 
3,5,6-TC-2-Pyridinol Kidney 18.0 9.5 69.0 

2,4,5-TCP Liver 12.0 9.7 66.5 
4-Br-2,5-DCP Liver 10.0 8.9 70.8 
4-I-2,5-DCP Liver 11.5 6.0 81.6 
3, 5,6-TC- 2-Pyri di nol Liver 14.3 11. 0 103.8 

*Mean of duplicate analysis from adding 300 ng or 250 ng of each 
compound to the tissue. 
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fat contro l samples contained no halogenated phenols or pyridinols, 

but control kidneys and livers did contain a component which had 

a retention time identical to that of 2,4,5-trichlorphenol and 

3,5,6-trichloro-2-pyridinol. Before the recovery data were calcu­

lated, the recorder response of this component was subtracted from 

the 2,4,5-trichlorophenol or 3,5,6-trichloro-2-pyridinol response 

obtained from the fortified samples. No other interfering com-

ponent or halogenated phenol and pyridinol was detected in .chromate-

grams of the control samp le at a concentration exceeding its corres-

pending level of detectability. Figure 1 illustrates chromatograms 

of halogenated phenols and pyridinol of fortified and control kidney 

tissue samples. A small interference peak was present in kidney 

and liver treated samples analyzed for 2,4,5-trichlorphenol and 

3,5,6-trichloro-2-pyridinol, just beyond the 2,4,5-tri chlorphenol 

and 3,5,6-trichlor-2-pyridinol peak on the trailing edge. This 

interference was not identified and it did not affect the deter-

mination of compounds present because the determination was based 

on peak height. 

Chromatographic Rm Value Determinations 
as an Index of Lipophilicity 

In this study, Rm values were experimentally determi~ed for 

14 halogenated phenols and pyridinols as shown in Table 4. The 

common name, sources, melting points, purities, structural formulas 

and Rm values are presented in Table 4. Four of these compounds 

were then selected to be used through the animal study because 

they have been in use for severa l decades in agriculture and 
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l. 3 ,5,6-TC-2-Pyrid i nol 
2. 2 ,4,5-TCP 
3. 4 -Br-2 ,5- DCP 
4. 4 - I -2,5- DCP 
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Figure 1. Gas ch romatograms of hal ogenated phenols and pyrid inol 
of for ti fi ed and control kidney t i ssues of r ats . 
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Table 4. Common Name, ~·1elting, Sources, Purities, Structure Formulas 
and Chromatographfc R Values of Compounds Tested for 
Lipophilicity m 

Common Name Structural Melting R ±S-g 
Formula Point m x 

4-Brom3-2,5-dichloro-

Bc~H ?PC -0 . 0045±. 0003 phenol 99.1 % used 
as received 

3,5-Dichloro-2,6-dimethyl-

c~ 4-pyridinolc 
No H 

320°C 1.234±.071 
99%, used as received 

CH3 1 

2,4-Dichlorophenolc 45°C 0.00 99.8% used as received 
Cl-{)(,H 

2,6-Dimethyl-4-pyridinolc CH~ analytical grade, used 
No H 

0.00 
as received 

CH3 

Pentachlorophenol,b 188-189°C -.640±.032 used as received 

cPrH 

Pentabromophenole 

Br~H 
229°C - .632±.057 used as received 



Table 4. (Continued) 

Common Name 

3,5,6-Triceloro-2-
pyridinol. 
99 % used as received 

4-Iodo-2 ,5-dichlorophenola 
techni ca 1 grade, 
used as received 

Trichlorophenolsb 
2,3,4 
2,3 ,5 
2,3,6 
2,4,5 - (95%) 
2,4,6c 
3,4,5 
all recrystallized 

2,3,4 ,6-Tetrachlorophenolb 
technical grade · 
used as received 

Structura 1 Melting R ±S-g 
Formula Point m x 

';d' 
OH Cl 

-.908±. 040 

IQoH -.231±.045 

Cl 

cfO-oH 

77-78°C +.042±.043 
58-59°C -.084±.021 
53-54°C - .627±.064 

3 64°C +.035± .01 0 
67°C - .475±.032 
98oc +.2926±. 41 

-. 720±.003 

aProvided by Agricultural Division of CIBA-GEIGY Corporation, 
Greensboro, North Carolina. 
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bPurchased from Aldrich Chemical Company, Inc., Milwau kee, Wis . 

cProvided by Dow Chemical Company , Midland, Michigan. 

dProvided by Velsicol Chemical Company, Chicago, Illinois . 
ePurchased from K. K. Lab, Inc., Planeview, New York. 

fMelting values of compounds not reported were not determined . 

gMean of four chromatograms. 



industry, and as of this date, there has been very little work 

reported in the literature relating to these compounds. The Rm 

was used in this study as the estimator of the relative lipophili­

city of halogenated phenols and pyridinols. 

Concentrations Based 
on the Tissue Weight 

Halogenated phenols and the halogenated pyridinol were dif­

ferentially distributed in every tissue sampled following the 

administrations. These data are presented in Appendix D. Figure 

2 shows the corrected concentration of 2,4,5-trichlorophenol, 

4-bromo-2,5-dichlorophenol, 4-iodo-2,5-dichlorophenol and 3,5,6-

trichloro-2-pyridinol, respectively in selected tissues of rats 

24 h after single oral administration of 0.33 m moles/kg or 1.66 
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m moles/kg. All tissues showed different accumulation of halo­

genated phenols and pyridinol. The average 24 h concentrations of 

halogenated phenols and pyridinol in blood were 2 to 2.6 ppb in 

animals administered 0.33 m moles/kg body weight, whereas the 

average 24 h concentrations in animals dosed with 1.66 m moles/kg 

were 16 .9 to 17.4 ppb. It seems there was no significant difference 

among the 24 h concentrations of each compound observed in blood, 

whereas significant differences among 24 h concentrations in fat, 

kidney, and liver were readily observed. 

The 2,4,5-TCP mean concentration in fat 24 h after administration 

of 0.33 m moles/kg was found to be 247.1 ppb. This value was 1.7, 

1.7, and 15.9 times greater than that found for 4-Br-2,5-DCP, 

4-I-2,5-DCP, and 3,5,6-TC-2-Pyridinol, respectively, in the same 
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Figure 2. Comparison of lipophilici ty of haloqenated phenols and pyridinol with concentration ~ 
in tissue. Tissue data taken after 24 h of a single orally administered dose of 0.33 m moles/kg ~ 
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tissue. The 2,4,5-TCP mean 24 concentration in animal fat dosed 

with 1. 66 m moles/kg was about and 2.7 times greater than that 

found for 4-Br-2,5-DCP and 3,5,6-TC-2-Pyridinol, respectively. 

The average 24 h value of 2,4,5-TCP concentration in kidney­

based on the tissue weight (Figure 2) was elevated 1.1, 6.1, and 

7.5 times over the values for 4-Br-2,5-DCP, 4-l-2,5-DCP and 

3,5,6-TC-2-Pyridinol, respectively in animals administered 0.33 

m moles/kg. The kidney concentration of 2,4,5-TCP in animals 

administered 1.66 m moles/kg was 2. 7 and 3.0 more than that of 

4-Br-2,5-DCP and 3,5,6-TC-2-Pyridinol values, respectively . 

The average value of liver 3,5,6-TC-2-Pyridinol concentration 

24 h after administration was found to be more than 3. 6, 4.5 and 
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9.8 greater than values that were found for the liver 4-Br-2,5-DCP, 

4-I-2,5-DCP and 2,4,5-TCP, respectively, in animals given 0.33 m 

moles/kg. The liver 3,5,6-TC-2-Pyridinol in animals administered 

1.66 m moles/kg was 7.7 and 26 times over the values found for 

liver 4-Br-2,5-DCP and 2,4,5-TCP, respectively . 

Concentrations Based on 
the Lipid Weight 

Figure 3 illustrates the concentration of halogenated phenols 

and pyridinol in the selected tissues calculated on a tissue lipid 

basis 24 h after single oral administrations of 0.33 m moles/kg 

and 1.66 m moles/kg . The average 24 h concentration of all com­

pounds based on tissue lipid content, follow the same order and the 

same pattern as the 24 h concentration based on tissue weight. The 

only difference found was that the 24 h concentrations of all com-

pounds were higher on a tissue lipid basis than that found on 
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tissue weight basis, especially for 3,5,6-trichloro- 2-pyridinol in 

liver. The concentrations of halogenated phenols and pyridino l on 

a tissue weight basis and on tissue lipid basis after administra-
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tion 0.33 m moles/kg and 1. 66 m moles/kg are presented in Appendix D. 

Depletion of Halogenated Phenols 
and Pyridinol in Tissue 

The halogenated phenols and halogenated pyridinol used in this 

study were distributed in every tissue sampled following their 

administrations. Figures 4, 5, 6 and 7 show the concentration 

of 2,4,5-TCP, 4-Br-2,5-DCP, 3,5,6-TC-2-Pyridinol and 4-I-2,5-DCP, 

respectively, in selected tissues of rats after a single oral 

administration of 0.33 m moles /kg or 1.66 m moles/kg at different 

time intervals. With the exception of liver, in the case of 3,5,6-

TC-2-Pyridinol, and kidney in the case of 2,4,5-TCP, all residues 

in tissues declined rapidly ~lith time but not always in an apparently 

log linear fashion. The rates of decline were different for the 

different tissues and for the different compounds. Generally, 

concentrations of all compounds at 24 h after treatment were 

depleted by 96% or reached undetectable limits on the sixth or 

the twelfth day for animals given either dose. The only exception 

found was the 2,4,5-TCP concentrations in blood and kidney which 

slowly depleted by 10% and 21 % of the 24 h peak concentration, 

respectively, on the third day, and proceeded rapidly on the sixth 

day after treatment with 0.33 m moles/kg (Figure 4). On the 

other hand, the kidney 2,4,5-TCP 24 h concentration depleted by 

44.5% on the third day, after which the rate of depletion was very 

slow; apparent persistence between the third and the sixth day 
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Figure 4. Depletion of 2, 4,5-trichlorophenol i n blood, fat, kidney, 
and liver tissues of rats following a single ora l ly administered 
dose of 0.33 m moles/kg (e ) or 1.66 m moles/kg (o) of 2,4,5-trichloro­
phenol. Each point represents the mean of data from two rats . The 
broken lines indicate the termi nal depletion to the minimum limit of 
detection (x) . 
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Figure 5. Depletion of 4-bromo-2,5-dichlorophenol in blood, fat, 
kidney and liver tissues of rats following a single orally adminis­
tered dose of 0. 33 m moles/kg (e) or 1.66 m moles/kg (0) of 4-bromo-
2,5-dichlorophenol. Each point represents the mean of data for two 
rats. The broken lines indicate the terminal depletion to the minimum 
limit of detection (x). 
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Figure 6. Depletion of 3,5,6-trichloro-2-pyridinol in blood, fat, 
kidney and liver tissues of rats following a single orally adminis­
tered dose of 0.33 m moles/kg (e ) or 1.66 m moles/kg (o ) of 3,5,6-
trichloro-2-pyridinol. Each point represents the mean of data for 
two rats. The broken lines indicate the terminal depletion to the 
minimum limit of detection (x). 
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Figure 7. Depletion of 4-iodo-2,5-dichlorophenol in blood, fat, 
kidney and liver tissues of rats following a single ora ll y adminis­
tered dose of 0.33 m moles/kg. Each point represents the mean of 
data for two rats. The broken lines i ndicate the terminal deple­
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was observed (Figure 4). By the twelfth day depletion reached 96.7%. 

Also the initial rates of the liver 3,5,6-TC-2-Pyridinol 24 

concentration rapidly declined in the first three days then declined 

more slowly from that time on (Figure 6). 

Table 5 presents the tissue :b lood ratios of halogenated phenol s 

and pyridinol at varying time intervals after single oral adminis­

tration 1.66 m moles/kg. These ratios indicate that the rate of 

decline of halogenated phenols and pyridinol in blood were greatest 

when compared to other tissues, therefore, the ratios increased as 

time increased. With respect to blood, all tissues showed accumu­

lation of halogenated phenols and pyridinol with time. The highest 

accumulation of administered halogenated phenols was in kidney, 

followed by fat and liver, which showed the least accumulation; 

whereas the highest accumulation of halogenated pyridinol was in 

liver, followed by kidney and fat, respectively. Table 6 presents 

the tissue:blood ratios of al l compounds used in the study at 

varying t ime intervals after administration of a single oral dose 

of 0. 33 m moles/kg body weight. The higher tissue:blood ratios of 

residues following the low dose of these compounds (Table 6) 

indicates a proportionally more rapid clearance of the blood 

and distribution of residue to tissues than that occurring with 

the higher dose 1 eve 1 (Tab 1 e 5). 

Distribution in Organs 

Data on the distribution of halogenated phenols and pyridinol 

in organs are shown in Appendix C. Following administration, each 

of the halogenated phenols and pyridinol was rapidly removed from 



Table 5. Tissue:Blood Ratios of Halogenated Phenols and Pyridinol at Various Ti me Periods After the 
Single Administration of a 1.66 m moles/kg Dose in Ratsa 

Time days 

Compounds Tissues 1 3 fi 12 

2 ,4,5-trich1oro- Fat 40.6+5.7 fi3.5 + 47.1 37.4 + 5.3 *29.8 + 0. 9 
rheno 1 Kidney 30.4+4.1 81. l + 11.3 33Q.5-+ 145.0 *?.5.7 + 2.5 

Liver 5.2 ~-0.4 12.7 3::1.7 7. 2 ~ 2.9 *fi . 99 3:: 2.9 

4-bromo-2 ,5- Fat 21.8 + 15.1 92.5 + ?.4.2 50.9 + 6.3 92 . <1 ~ 43.8 
dich1oropheno1 Kidney 37.5 + 3.2 234.1-+ 34 . 1 102.'l-+ 17.2 ND . 

Liver 19.7 3:: fi . 3 11 3.13::41.5 S0.5 ~-1 9.9 ND 

3,5,6-trichloro- Fat 15.1 + 3. 1 40.6 + 32.8 3'l.O + 0.01 ND 
2-pyridinol Kidney 13.9 + 0.1 242. 4-+ 1 07.7 3'l.5 + 0.0 *7.5 + 0.02 

Liver 133.4-.:!:. 20. 1 1272 .4-.:!:. 108.4 24 38 .3.:!:_ 102.3 *1989-:-3.:!:. 529.5 

aMean ± SE of two animals in eac h case. The values were obtained by dividing mean tiss ue 
concentration by mean blood concentration for each animal . 

* The values were obtained by dividing mean tissue concentration by lower limits of detectability 
of blood concentration. 

ND ~ not detected in kidney, liver and fat. 

Ol 
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Table 6. Tis sue:Blood Ratios of Halogenated Phenols and Pyridinol at Various Time Periods After Adminis­
tration of a 0.33 m moles/kg Dose in Ratsa 

Time days 

Compounds Tis sue l 3 li 12 

2 ,4,5-tri ch l oro- Fat 122.8 + 80.6 57.3 + 5.9 *47.9 + 21.9 *311. 1 + n. 1 
pheno l Kidney 171.1 + 2.8 7S . Cl t 14.7 *326. 4-+ 71 .6 *17 . 3 ~ 7. 2 

Liver 22.9 :!:.-6 . 9 21.0 ~ 4.2 *40.4 :!:.- 0.1 ND 

4-bromo-2 ,5- Fat f\4.3 + 42.8 195.3 + l 4Q.3 *fln.5 + 31i.5 *42 . 4+0.1 
dichlorophenol Kidney 149 . 9-+ lfi . () 567 .4 t Hl6.3 *525.4-:!:_l'l.S *147.3-:!:. 37.6 

Liver 51. 2 ~ 2 . 3 21.3 +-9.5 NO ND 

4-i odo- 2 ,5- Fat 61. 7 + 7. l 91.4 + l5 .fi *23 .4 + 111 . 1 ND 
dichlorophenol Kidney 63.6 + 0. 9 169 .6-+ Q. 3 *20. 7 + 0. l ND 

Liver 59 .0 ~ 15.8 25 .0 +- 4.8 *13.2 ~ 3.6 *lfi . 7 :!:. 1.7 

3, 5, 6- tri ch l oro- Fat 6. ~ + 2.6 31.7+ ?. 4.4 *39.6 + 26.f\ *?.0.2 + 'l.O 
2-pyri di no l Kidney 22 . 5- + 0 . 2 37.6 + 28.9 92.0 +-0 .6 *55.2 +- 1 .5 

Liver 203. 7-:!:. 84.3 6fl3.5-:!:. 131.7 *313.6:!:. Ql.2 *l Q4.'l:!:. 28.1 

aMean ± SE of two animals in each case. The values were obtained by dividing co ncentrat i on by 
mean bl ood concentration for each animal. 

* The values were obtained in dividing mean tissue concentration by lower limits of detectability 
of blood concentration . 

NO = not detected in kidney, liver and fat. 

~ 



the blood and accumulated in the fat and liver and followed by the 

kidney. The highest content of halogenated phenols was in fat, 

whereas, the highest organ content of the halogenated pyridinol 

was in liver. The percentage of each chemical in the whole organ 

relative to the administered dose is given in Appendix C. The 

content of chemicals in the whole organ at 24 h after administra­

tion was depleted, approximately by 96%, or reached undetectable 

limits on the sixth or twelfth day . All compounds appear to be 

redistributed from blood and perhaps other tissues, thus fat and 

liver decline rates become slow relative to blood. 
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DISCUSSION 

Animal Studies 

No evidence whatsoever of adverse effects were observed in rats. 

The decrease in body weight which was observed after one day post­

administration of the higher dose (1.66 m moles/kg) of the pyridinol 

was probably due to feed avoidance. However , the decrease in body 

weight was regained by the third day after dosing . McCollister et al. 

(1961) reported that the repeated oral administration of 0.1 g/kg/day 

of 2,4,5-TCP to rats for 24 days produced no adverse effects; whereas 

rats maintained at 0.3 to 1.0 g/kg/day for 24 days showed mil~ rever­

sible pathological changes in the liver and kidneys. However, at 

1.0 g/kg, the only effect attributable to 2,4,5-TCP was a slight 

increase in average weight of the kidneys. Anderson et al. (1949) 

fed groups of cattle dosages of 0.8, 2. 4, and 7.2 g per 100 pounds 

of animal weight per day of zinc, 2,4,5-trichloro-phenate and 2,4,5-

trichlorophenyl acetate in the diet for 78 days. They observed no 

adverse effect at any of the levels fed. Beck (1976) reported that 

halogenated phenols and pyridinols, when fed to rats at 100, 200, 

and 400 ppm in their diet, did not show significant difference in 

feed efficiency (weight gain/feed consumed) from controls. In light 

of the above, it would be safe to say that halogenated phenols and 

pyridinol are low in oral toxicity when the rats are given single 

oral doses at 0.33 and 1.66 m moles/kg. The lower dose, 0.33 m 

moles/kg is equivalent to 65.6, 80.4, 95.9, and 65.9 mg/kg for 



2,4,5-trichlorophenol , 4-bromo-2,5-dichlorophenol, 4-iodo-2,5-

dichlorophenol, and 3,5,6-trichloro-2-pyridinol, respectively. 

The higher dose, 1.66 m moles/kg, is equivalent to 328, 401.9, and 

329.5 mg/kg for 2,4,5-trichlorophenol, 4-bromo-2,5-dichlorophenol, 

and 3,5,6-trichloro-2-pyridinol, respectively. 

Gas Chromatographic Analysis of 
Halogenated Phenols and a 
Pyridinol in Tissues 

The recovery of the study compounds in analysis of these tissues 

was generally very acceptable except for the pyridinol in fat which 

was 54 . 1%. No interference peaks were present in the tissues analyzed; 

however, some liver and kidney tissues analyzed for 2,4,5-TCP and the 

pyridinol contained small peaks, just beyond the apex of the pyridinol 

peak on the trailing edge, and for 2,4,5 -TCP coincident with the GC 

peak. This interference was not identified but it was believed to be 

not due to pyridinol based upon data presented by lvey et al. (1978) 

and lvey (1979). In previous studies with Dursban in plants, it was 

found that dehalogenation of the [CJ 36] 3,5,6-trichloro-2-pyridinol 

could occur and [c1 36] chloride could be found in the tissues (Smith 

et al. 1967). Smith et al. (1967) studied the metabolism of [c1 36] 

chlorine-labeled chlorpyrifos in rats, chickens, and dogs and showed 

that [c1 36] chlorine-labeled material was present in trace quantities 

in the tissues which were eliminated from the body at a rate different 

from that of the major compound chlorpyrifos being investigated. 

They suggested that this minor compound might be present in the 

original compound as an impurity, or the compound might be undergoing 

enzymatic dehalogenation with the formation of radioactive chloride. 



Today, one must consider the probability that the "dehalogenated" 

residue observed by Smith et al. (1967) was actually 2,5,6 -TC-2-

pyridinol. There are several possible benzene oxides which can be 

der ived from i .p. administration of 300 mg 1,2,4-trichlorobenzene 
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to the male rabbit (Kohli et al. 1976), and one of these 2,4,5-

trichlorobenzene oxides is the most likely precursor for the metabo­

lite 2,4,5-trichlorophenol. The 2,4,5-trichlorobenzene oxide could 

give the corresponding phenol by direct opening of the c2o) bond 

or by the NIH shift of chlorine. Also, it has been found that 

2,4,5-TCP is metabolized to 3,5-dichloro-catecho l in soil and water 

(Rosenberg and Alexander 1980). These results indicate some possible 

routes to compounds representing the unknown peaks of halogenated 

phenols and pyridinol metabolites in animals. Studies of these com­

pounds is needed in the future. 

Twenty-Four Hour Concentrations 

The halogenated phenols and pyridinol were differentially 

distributed in every tissue sampled following the administration, 

even though the total amount of halogenated phenols and pyridinol 

administered was the same. The difference could possible be due 

to preferential absorption from the gastrointestinal tract or to 

preferential elimination of certain compounds. As the concent ra ­

tion of the dose administered increased, the percent concentration 

of the compounds in tissues tended to be lower and the elimination 

from the tissues became slower. The highest amounts of halogenated 

pyridinol residues were observed in liver, then followed by kidney, 

fat, and blood whereas the highest residues of halogenated phenols 



56 

were observed in kidney, followed by liver, fat, and blood . In 

general, the 24 h concentration in fat and kidney tissues showed 

2,4,5-TCP < 4-Br-2,5-DCP < 4-l-2,5-DCP > 3,5 ,6-TC-2-pyridi nol, where­

as the concentrations of these compounds in liver tissue gave the 

inverse series. The concentrations of these compounds in blood 

were similar and not significantly different, however the halogenated 

pyridinol concentration was higher t han that of the halogenated 

phenols. The average concentrations of these compounds, based on 

either lipi d or tissue wei ght, follow the same order and the same 

pattern as above. The only difference found was that the concen­

trations of all compounds were higher on a lipid basis than that 

found on a tissue basis in liver. 

These findings are consistent with evidence from other animal 1 

experiments which indicated that the 3,5,6-trichloro-2-pyridinol 

concentrates in liver more than kidney and fat such as when cattle 

were fed chl orpyrifos daily for 30 days at 1 eve 1 s of 3 to 1 0 ppm 

(Dishburger et al. 1977) and similar results obta ined with cattl e 

bearing chlorpyrifos impregnated plastic ear bands (Ivey et al. 

1978). Also, McKellar et al. (1972) found the residues of 3,5,6-

trichloro-2-pyridinol occurred predominantly in liver and kidney 

of swine when the animals were fed chlorpyrifos in their diet for 

30 days. Similar results were obtained when chickens were fed 

chlorpyrifos (D i shburger et al. 1972). This means that there must 

be a very large turnover of halogenated pyridinol in the rat liver 

since it has been reported that liver contains the predomi nant 
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concentration of halogenated pyridinol compared to the kidney and 

the fat. The increase of halogenated phenol residues in the kidney 

is not surprising, however, since the kidney would be one of the 

pathways for the elimination of halogenated phenols from the body. 

It is known that rats primarily excrete phenols via the kidneys 

(Goldstein et al . 1974) and that related halogenated phenols may 

act similarly. That is in agreement with the higher rate of 

excretion of halogenated phenols in the urine as found by Bradway 

et al. (1977) and Shafik et al. (1973) who found that the urinary 

halogenated phenols and pyridinols excretion as metabolites of 

rats exposed to Ronnel, Leptophos, Dursban, Bromophos, and C-9491 

were complete within l-4 days. However, when the rate of absorp-

tion exceeded the rate of excretion, the toxic compound accumulated 

to a critical concentration in the body . Accumulation may also 

occur if the compound is so lipid-soluble that it is reabosrbed 

by the renal tubules after filtration (Goldstein et al. 1974). 

The accumulation of the halogenated phenols and pyridinol studied 

herein appear to be consistent with this concept. 

Relationship of Lipophilicity and 
Concentration of Halogenated Phenols 
and Pyridinol in Tissues 

Generally, the most important physio-chemical fac tor influencing 

the ability of a foreign compound to achieve effective concentrations 

in various biological phases is lipid solubility. The lipid-protein 

structure of cellular membranes requires that the foreign substance 

have sufficient lipophilicity to partition into the membrane, largely 

by diffusion, in order to cross into the cell. 
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Various methods of evaluating relative solubility parameters 

appear in the literature . The Hansch approach to regression analysis 

in structure-activity studies generally employs the relative octanol-

water partition coefficient, known as n. 

p 
n = log(p X) 

H 

In this study the relative lipophilicity values, as measured 

by Rm for halogenated phenols and pyridinol, were generally very 

well correlated with the log residue concentration of compounds in 

all tis sues as shown in Table 7 and Table 8. The data presented in 

Table 7 and in Table 8 are summarized in Figures 8 and 9 to illus­

trate the relationship between the lipophilicity, Rm, and the halo­

genated phenols and pyridinol concentrations in tissues 24 h after 

dosing. Increased concentration in tissue correlated with increased 

lipophilicity, the Rm' for the cases of fat and kidney . 

Tables 9 and 10 show data for halogenated phenols and pyridinol 

and the results of regression analyses of compound concentrations 

as a function of lipophilicity. A strong linear correlation was 

seen for all compounds in fat, kidney, and liver at both dose levels. 

The compounds had a poorer correlation in the case of blood (at 

lower dose only). It is possible that the residue concentration in 

blood peaked much earlier than 24 h and that the measurements made 

here at 24 h, were at a time well into the process of redistribution 

from blood to tissues. Measurements made at shorter time intervals 

might well haveshownastrongcorrelation of blood residues with~ · 
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Figure 8. Effect of lipophilicity of halogenated phenols and 
pyridinol on concentration in tissues 24 h after administration 
of 0.33 m moles/kg. Solid circles (e) represent ng/g lip i d and 
the open circles (o) represent ng/g tiss ue. 
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Fi gure 9. Effect of l ipophilici ty of halogenated phenols ~n d pyri­
dinol concentration in tiss ues 24 h after administrat i on of 1. 66 m 
moles / kg. So lid circles (e ) represent ng/g li pi d and the open 
circles (o) represent ng/g tissue. 



Table 7. Concentrations of Halogenated Phenols and Pyridinol in Tissues 24 h After Administration 
(0.33 m moles/kg) and their Chromatographic Rm Values 

Compound Rm Bl ooda 

2,4,5-trichlorophenol +0 .035 3.32 

4-bromo-2,5- dichloro-
phenol -0.045 3. 29 

4-Iodo-2,5-dichloro-
phenol -0 .2 31 3 .41 

3,5,6-trichloro-2-
pyridinol -0.908 3.37 

alog concentration pg/g tissue. 

blog concentration ng/g extractable fat. 

clog concentration ng/g tissue. 

dlog concentt·ation ng/g lipid s. 

Fatb 

2.39 

2.15 

2.17 

1.19 

La c 
Kidney Liver 

T i ssuec Lipi dot Ti ssuec Lipi dd 

2.54 4 . 16 1.67 3.03 

2.48 4.17 2.01 3. 72 

1. 76 3 .82' 2.1 1 3.81 

l.E7 3 .04 2.66 4 . 26 

':."! 



Table 8. Concentrations of Halogenated Phenols and Pyridinol in Tissues 24 h After Administration 
(1.66 m moles/kg) and their Chromatographic Rm Values 

Compound R Bl ooda m 

2,4,5-trichlorophenol +0 .035 4.23 

4-bromo-2 ,5-dich 1 oro-
pheno 1 -0 .045 4.23 

3,5,6-trichloro-2-
pyridinol -0.908 4.24 

aLog concentration pg/g tissue. 

blog concentration ng/g extractable fat . 

clog concentration ng/g tissue. 
dLog concentration ng/g lipid. 

Fatb 

2.84 

2.47 

2.40 

Log Concentration 

Kidnel Liver 
Ti ss uec Lipidd Ti ssuec Lipidd 

2. 71 4.42 l. 95 3.63 

2.79 4.44 2.48 4.17 

2.40 4.05 3.36 5.04 

"' N 



Table 9. Correlation of the Halogenated Phenols and Pyridino l Concentrations in Tissue with Rm 24 h After 
Administration of 0.33 m moles/kg 

Tissues Regression equat ion (n 

Blood Log Cb = 3.331 - 0.064 Rm 4 

Fat Loa cc = 2.328 + 1.227 Rm 4 

Kidney Loq cd = 2.363 + 0.879 R 4 
Loq Ce = 4.150 + 1.235 R~ 4 

Liver Log cd = 1.845 - .924 R 4 
Log ce = 3.543 - 0.822 ~m 4 

an is the nunber of halo~ena ted ~henols and pyridinol in the re~:Jress ion . 
r is the correlation coefficient, and 
s is the standard error of the estimate . 

blog concentration pg/g tissue. 

clog concentration ng/g extractable fat. 

dlog concentration ng/g tissue. 
elog concentration ng/g lipid . 

r s)a 

-0.517 .120 

0.982 .239 

0 .813 .222 
0. 995' .240 

-0.961 .210 
-0 .926 . 202 

"' w 



Table 10. Correlation of Halogenated Phenols and Pyridinol Concentrations in Tissue with Rm 24 h After 
Administration of 1.66 m mo l es/kg 

Ti ssues 

Blood 

Fat 

Kidney 

Liver 

Regress i on Equation 

Log cb = 4.228 - 0. 015 ~ 

Log cc = 2.663 + 3.065 Rm 

Log Cd = 2.751 + .377 Rm 
Log Ce = 4.430 + .416 Rm 

Log cd = 2. 197 - 1.306 !!m 
Log Ce = 3. 883 - 1 . 299 Rm 

(n 

3 
3 

an 
r 
s 

the nu~ber of halo9enated phenols and pyridi nol in the regres sion. 
the corre l ation coeffi cient, and 
the standard error of the estimate 

blog concentration pg/g tissue. 

clog concentration ng/g extractab l e fat. 

dlog concentration ng/g tissue. 
elog concentration ng/g lipid. 

s )a 

- . 965 . 153 

.681 .203 

. 964 .2 10 

.993 .214 

-.955 . 357 
-.952 .357 

"' _,. 



This was consistent with the concept that compounds must have 

lipophilicity to cross membranes, but there were some exceptions 

as indicated in blood and liver tissue concentration which shows 

the concentration was inverse to the increase of the lipophilicity 

of the compounds. 

This provided one of the most important exceptions to the 

generalization that increasing lipid solubility enhances concen­

tration. The reason for that exception in the liver is not known 
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at the present time. However, there may be binding of this com­

pound with biological macromo lecul es in this organ. This would 

argue from the report that trichlorophenol and the pyridinol reduced 

thyroxine (T4) bound to liver mitochondria by 10 to 30% (Beck 1976). 

Also, it was indicated that the trichlorophenols, the dichloro­

bromo-phenol and the pyridinol bind at least as well as T4 (itself) 

to the T4-binding site of bovine serum albumin in vitro. The rela­

tive binding affinity was found higher for the halogenated pyridinol 

than t hat found for 2,4,5-trichlorophenol. So protein and/or 

organele binding may be a reason for the concentration increase in 

blood and liver and the delayed clearance from liver. 

Often drugs are conjugated in liver first, and then pass into 

bile as a glucuronide, sulfate, glycinate or gluthione conjugate, 

and pass into the intestine. If the properties of the drug happen 

to be favorable for intestinal absorption, a cycle may result 

(enterohepatic cycle) in which biliary excretion and intestinal 

reabsorption continue until renal excretion finally eliminates the 
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drug from the body (Goldstein et al. 1974). It was found that sheep 

plasma contained the glucuronide of 3,5,6-trichloro-2-pyridinol as 

well as urine when the sheep were given a single oral dose of 

chlorpyrifosmethyl or its metabolite 3,5,6-trichloro-2-pyridinol 

(Bakke and Price 1976). That means the glucuronide pyridinol was 

reabsorbed from the intestine and recycled causing the little ele­

vation in its blood concentration which was found. The other possi­

bility is that conjugation with glucuronic acid probably takes place 

in the gastrointestinal tissues prior to the phenol's absorption 

into the blood (Pekas and Paulson 1970). Bakke and Price (1976) 

reported that 3,5,6-TC-2-pyridinol was absorbed rapidly into the 

blood of the sheep and excreted rapidly in urine . 

Any other reason for the higher concentration of 3,5,6-TC-2-

pyridinol in liver may be related to the electronegativity of nitro­

gen that makes pyridine unreactive toward electrophilic substitution 

but makes pyridine highly reactive toward nucleophilic substitution. 

As is well known, some conjugation reactions occur through nucleo-

philic attack by the electron rich atom . Thus, 3,5,6- TC - 2-pyridinol 

conjugation with glucuronide occurs very rapidly as reported by 

Bakke and Price (1976). 

Depletion of Halogenated Phenols 
and Pyridinol in Tissues 

The levels of ha logenated phenols and the halogenated pyridinol 

in tissue decline with time, however, the rates of decline were dif-

ferent for different t issues and for different compounds used. This 

kinetic study of hal ogenated phenols and pyridino l indicated a 

persistence of compounds in various tissue after an initial rapid 
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dec line with time, but not always in an apparently log linear fashion . 

An ini tia l rapid decline phase followed by a slower decline was shown 

i n most tissues. The decline of 3,5,6-TC-2-pyridinol in liver and 

2,4,5-TCP in kidney were exceptions which showed very slow decline 

and persistence of significant residues to the twelfth day. 

The reason for persistence of 2,4,5-TCP in kidney and 3,5,6-

TC-2-pyridinol in liver may be binding of these compounds with 

biological macromolecules. Pyridinol association with the liver 

mitochondrial fraction may be a factor also, in analogy to the 

specific binding of T4 and T3 ( Krenni·ng et al. 1980). 

The levels of halogenated phenols and pyridinol in blood 

declined rapid ly when compared to most other tissues as suggested 

by the comparative levels of these compounds at various time periods 

following administration of a single oral dose of the compound . This 

may indicate continued partitioning fnto tissues showing slow kinetics 

such as kidney and liver, bec?use it is seen that the rats have 

ability to rapidly detoxify and eliminate phenols from the blood 

(Go ldstein et al . 1974) . Although halogenated phenols and pyridinol 

were not analyzed separately in plasma and blood cells, earlier 

studies have indicated that most of the pyridinol in blood is found 

in the plasma (Bakke et al. 1976). 

The rates of decline from fat were slower than those found in 

the blood with time and the persistence of all compounds in fat 

with time exceeded that found in blood. 

The concentrations of compounds in the lip i d fraction of each 

tissue were not identical. These differences may be due to factors 



such as the structure of lipid in each tissue, the permeability of 

tissue vascular systems to compounds and solubility of the com­

pounds which related to the lipophilicity in this study. The 

compounds may thus display some special affinity for some specific 

component of lipid such as has been shown for DDT (Tinsely et al. 

1971). 
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The results indicated that there may be possible quantitative 

differences in the kinetics of halogenated phenols and pyridinol 

distribution of different dose l evels . The relative tissue concen­

tration of compounds as reflected by tissue:blood ratios were con­

sistently increased with time after admin istration. The accumula­

tion of compounds in tissues appears to be a direct function of the 

dose administered but ~oth the dose levels used in this s~udy were 

not in a linear relationship because the lower dose level of com­

pounds produced a significantly greater concentration in tissues 

than the higher dose level in rela t ion to the percent dose adminis­

tered; however, it is possibly only at t he lower dos e levels that 

a linear relationship may be expected. 

If further studies are to be carried out in t his area, there 

are some points that should be implemented. Samples of tissues 

should be collected between 1 and 24 h in addition t o the samp le 

times used in this study to investigate the exact time of peak 

uptake in tissues . Due to the l ipophilicity of thes e compounds, 

they are expected to distribute to most tissues, hen ce other critical 

tissues should be sampled, especiall y brain, bile , muscle, and 

gastrointestinal tract and contents. Bakke et al . (1976) reported 



69 

that sheep bile, liver, kidney, and gastroin t estinal tract with its 

contents contained detectable residues of 3,5,6-trichloro-2-pyridinol 

after a single oral dose of chlorpyri fos or 3,5,6-trichloro-2-

pyridinol and that other related hal ogenated phenols may act 

similarly. Also, urine and feces should be sampled to know the 

fate of all compounds in the body of the animal .because the rates 

of halogenated phenols and pyridinol s removal from tissues are 

expected to be reflected in their ra t es of excretion. It would be 

instructive to determine the halogenated phenols and pyridinols 

in tissues in future work following specific organophosphorus 

pesticides administration to animals for metabolism studies, 

because halogenated phenols are the major metabolites of these 

pesticides. Finally, although there were no indications of halo­

genated phenols and pyridinols metabolites, such as the partial 

dechlorination or the shift of chlorine which could occur (Smith 

et al. 1967 and Kohli et al. 1976), s t udies designed differently 

might produce evidence of such compounds as metabolites . 
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SUMMARY 

This thesis was initiated to determine the structur e-activity 

relationships among halogenated phenols and a pyri dinol in terms 

of their distribution and accumulation in selected ti s s ~ es and the 

kinetics of their decline from those tissues . The compounds used 

in the studies were 2,4,5-trichlorophenol , 4-bromo- 2,5 -dichloro­

phenol , 4-iodo-2,5-dichlorophenol, and 3,5, 6-trichloro-2-pyridinol. 

There was no evidence whatsoever of advers e effects at t he dose 

levels employed. 

The compounds were chromatographed in reversed-phas e thin 

layer chromatography as a measure of their rela t i we l i pophilicity 

values (Rm). The ~values were found to be gener ally very well 

correlated with the log concentration of these compounds in tissues. 

The correlation coefficients were - .51 7, .982, .813, and - .961 for 

the low dose level of these compounds in bl ood, f• t , kidney, and 

liver based on the tissue weight, respectivel y. Cor rel ation coeffi­

cients of .995 and -.926 were calculated fo r kid n~y and liver based 

on the lipid content. Similar correlation coeffi c i ent s were -.965, 

.681, .964, and -.955 for the high dose level of t hese compounds in 

blood, fat, kidney, and liver based on the ti ssue weight , respectively, 

or .993 and - .952 in kidney and liver based on t h~ l ipid content, 

respectively. 

The levels of compounds in tissues decli ned w·i t h t ime, however, 

the rates of decline were different for diffe rent tissues and for 
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different compounds . All compounds appear to be redistributed from 

blood and perhaps other tissues, thus fat and liver decline rates 

become slow relative to blood. 

The persistence of the compounds in tissues after an initial 

rapid decline with time indicated quantitative differences in the 

kinetics of compounds distribution at different dose levels . 
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Table 11 . Mean Body Weight {g±S.E.a) of Rats at Various Time Periods After a Single Oral Dose of 
Halogenated Phenol or Pyridinol 

Days 

Treatment 0 1 3 6 12 . 
2, 4,5-trichlorophenol 

0.33 1'1 moles/kg 182 ± 4 (8)b 188 ± 4 (8) 211±5 (6) 230 ± 5 (4) 276 ± 8 (2) 
1.66 m moles/kg 186 ± 3 (8) 190 ± 4 (8) 210 ± 5(6) 241 ± 5 ( 4) 271 ± 8 (2) 

4-bromo-2,5-dichlorophenol 

0.33 m mole s/kg 185 ± 3 (8) 190 ± 3 (8) 209 ± 4 (6) 238 ± 7 (4) 248 ± 1 (2) 
1.66 m moles/kg 185 ± 3 {8) 190 ± 3 {8) 218 ± 3 (6) 250 ± 4 (4) 288 ± 4 (2) 

4-iodo-2,5-di chl orophe nol 

0.33 m moles/kg 186 ± 3 (8) 190 ± 3 (8) 210 ± 5 (6) 232 ± 8 {4) 266 ± 2 {2) 

3,5,6-trichloro-2-pyridinol 

0.33 m mol es/kg 183 ± 3 ( 8) 186 ±3 {8) 209 ± 4 ( 6) 240 ± 6 (4) 280 ± 2 (2) 
1.66 m moles/kg 186 ± 2 (8) 185 ± 3 (8) 210 ± 4 ( 6) 232 ± 12 (4) 274 ± 7 (2) 

Control 185 ± 2 (8) 190 ± 2 (8) 207 ± 3 (8) 232 ± 4 (8) 265 ± 5 (8) 

aStandard error of the mean . 
bValue in parentheses is the number of animals . 

00 w 
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Table 12. Mean Relative Kidney and Liver Weight (g tissue/100 g body weight ± S.E.a) of Rats at Various 
Time Periods After a Single Oral Administration of Halogenated Phenol or Pyridinol 

Days 

Treatment Ti ssue 1 3 6 12 

2,4 ,5-trichlorophenol 
0.33 m moles/kg Kidney 0.81 ± .01 0.91 ± .04 0.80 ± .02 0.77 ± .05 
0.33 m moles/kg Liver 4.34 ± .02 4.11 ± .08 3. 72 ± . 05 3. 63 ± . 17 
1.66 m moles/kg Kidney 0.85 ± .01 0.79 ± .03 0.84 ± .04 0.78 ± .03 
1.66 m moles/kg Liver 4.75 ± .51 4.35 ± .16 4.07 ± . 15 3.86 ± .09 

4 ,bromo-2, 5-di chl oropheno 1 
0.33 m moles/kg Kidney 0.81 ± .03 0 .89 ± .02 0.82 ± .01 0 .80 ± .04 
0.33 m moles/kg Liver 4.08 ± .25 4.00 ± . 14 3.57 ± . 44 3.44± .1 9 
1.66 m mole s/kg Kidney 0 .85 ± .02 0.84 ± .04 0.79 ± .02 0.81 ± .03 
1.66 m moles/kg Liver 4.21 ± .08 4. 27 ± .14 3.84±.13 3.89 ± .02 

4-iodo-2,5-di chlorophenol 
0.33 m moles/kg Kidney 0.81 ± .09 0 .81 ± .04 0.79 ± .04 0.75 ± .03 
0.33 m moles/kg Liver 4.27 ± .18 4.18 ± .01 3.69 ± .08 3.82 ± . 18 

3,5,6-trichloro-2-pyridinol 
0.33 m mol es/kg Kidney 0.82 ± .03 0 .89 ± .02 0.84 ± .02 0.80 ± .03 
0.33 m mole s/kg Liver 4.37 ± .00 3.98 ± .01 3.73 ± .29 4.02 ± .01 
1.66 m moles/kg Kidney 0.85 ± .04 0.84 ± .02 0.80 ± .02 0.83 ± .08 
1.66 moles/kg Liver 4.20 ± . 18 4 . 15 ± .06 3.45 ± .00 3. 99 ± . 17 

Control Kidney 0.81 ± .06 0.78 ± .02 0.83 ± .01 0.78 ± .01 
Liver 4.43 ± .20 3.96 ± .08 3.58 ± .01 3. 56 ± .09 

co 
"' aStandard error of the mean; each value represents an average of two animals. 
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Table 13. Distribution of Halogenated Phenols and Pyridinol in Rats Organs Following Oral 
Administration 

Days After Dosing 

Treatment Organs a l 3 6 12 

2, 4, 5-trich l oropheno l 

0.33 m moles/kg Bloodb . 030 (. 0003) .032 ( .0003) NDc NO 

Fatb 3.135 ( .030) 2. 144 ( .019) . 498 ( .005) .384 ( . 004) 

Kidney .498 (.005) .277 ( .003 ) .247 (.002) .018 ( .0002) 

Liver .360 (.003) .344 (.003) .043 ( .004) ND 

1.66 m moles/kg Bloodb .262 ( .0004) .058 (.0001) .019 ( .00003) .016 ( . 00003) 

Fatb 11.442 (.019) 4. 115 ( . 007) .695 ( .001) .352 ( .001) 

Kidney .861 ( .005) .457 (.001) .573 ( . 001) . 028 (. 0001) 

Liver . 826 (. 001) .395 (.001) .060 (.0001) . 037 ( . 0001 ) 

4-bromo-2,5-dichlorophenol 

0.33 m moles/kg Bloodb . 029 (. 0002) .003 (.00002) NO NO 

Fatb 1.878 (.015) .515 ( .004) . 187 ( .001) . 125 (.001) 

Kidney .465 (.004) . 035 (. 0003) .010 (.0001) NO 

Liver . 783 (. 006) .027 (.0002) ND NO 

1.66 m moles/kg Bl oodb . 235 ( .0004) .003 ( .0004) .007 ( .00001) ND 

Fatb 4.566 ( .007) .613 (.001) .358 (.0005) .287 ( .0004) 

Kidney .931 ( .001) . 140 ( . 0002) .071 (.0001) ND 00 ..._, 
Liver 2.254 (.003) . 320 ( . 0004) . 162 ( . 0002) NO 



Table 13. (Continued) 

Organs a 
Days After Dosi ng 

Treatment 
1 3 6 12 

4- i odo-2, 5-di ch 1 orophenol 

0.33 m moles/kg Bloodb .038 ( .0002) .002 (.00001) ND ND 

Fatb 1.903 {.012) . 236 (. 002) . 078 ( . 0005) ND 

Kidney . 087 ( .001) . 051' ( . 0003) .005 (.00003) ND 

Liver 1. 026 (. 007) .031 ( .0002) ,013 (.0001) ND 

3,5,6-trichloro-2-pyridinol 

0 .33 m moles/kg 81 oodb . 034 (. 0003) .002 ( . 00002) ND ND 

Fatb .266 ( .002) . 102 ( .001) . 083 ( .001) ND 

Kidney . 069 ( . 001) . 014 ( .0001) .009 (. 0001) ND 

Liver 3 .617 (.033) .662 ( . 006} .333 (.003) .263 (.0002) 

1 . 66 m mo 1 es/ kg Bloodb . 251 (. 0004) .019 ( .00003) .017 (.00003) NO 

Fatb 5.007 (.009} . 211 ( . 0004) . 168 ( .0003) NO 

Kidney .396 (.001) .121 (.0002) .013 (.00002) ND 

Liver 17. 839 ( .031) 3 . 146 (.005) 2.157 {.004) 2 . 609 ( . 004) 

aEach value represents the content (ug) of chemical in the whole organ, average of two animals; value 
in parentheses is percentage of the original dose. 

bEstimated organ wei9h/i was calculated (Lindstrom et al. 1974) as blood [B ( ) = 77 (B.ILk )
0

·
99

] and 
00 fat [Fm(g) = 180 (B . W.kg) · ]. m 9 9 00 

eND, not detected . 
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Table 14. Concentration of Halogenated Phenols and Pyridinol in Tissue After Administrationa 

Ti ssues Concentration 

Treatment Days Bloodb Fat Kidney Liver 

Ti ssueb Lipide Tissue b Li pi dd Ti ssueb Lipidd 

2,4,5- trichlorophenol 
0.33 m moles/kg 1 2. 1 97.3 247.1 345.6 14 . 5 46 . 4 2.1 

3 1.9 54.6 111 .4 139.0 8 . 0 38.3 1.7 
6 rl r 11.9 24 .0 134.5 8.0 5. 0 0.2 

12 ND ND 7.4 8.6 . 5 ND ND 
1. 66 m moles/kg 1 17.0 328 .0 688.0 515 . 7 26.3 88.8 4.2 

3 3. 7 114 .4 192.7 289 . 4 17.1 45.4 1. 8 
6 1.0 15 .6 34 .8 275 .5 16 .8 5.9 .3 

12 .8 7.3 14.9 13.1 0.8 3.5 .2 

4- bromo-2,5-dich1oropheno1 

0.33 m moles/kg 1 1.9 55.3 141.9 303.7 14.8 101.9 5.3 
3 0.2 15.1 26.4 19.3 10.1 3.3 0.1 
6 NO 4.3 8.0 5.3 3.1 ND ND 

12 ND 1.4 2. 1 ND ND ND ND 

1. 66 m moles/kg 1 16.9 142.7 292.6 616.2 27.5 300.9 14 .8 
3 0.3 15.5 29.2 77.0 10.3 34.5 1. 8 
6 0.4 8 .0 19.0 36.3 4.0 17.0 1.0 

12 ND 5.5 9.3 ND ND ND 0.3 

"' 0 



Table 14. (Continued) 

Tissues Concentration 

Treatment Days Bloodb Fat Kidney Liver ---
Ti ssueb Lipide Tissueb L ipidd Tissueb L ipidd 

4-iodo-2,5-dichlorophenol 

0.33 m moles/kg 1 2.6 56.4 148.1 47.0 6. 5 128.2 6.4 
3 0.1 6.0 12.5 29.2 1. 3 3.4 0.2 
6 ND 1.6 2.6 2.9 0. 1 1.5 0.1 

12 ND ND ND ND ND 0.8 0.1 

3,5,6-trichloro-2-pyridinol 
0.33 m moles/kg 1 2.4 8.2 15.5 46.3 1.1 456.7 18.0 

3 0.1 2.3 6. 7 8.0 0.4 82 .0 3.9 
6 ND 1.9 4.8 4.6 0.1 37 . 6 1.5 

12 ND ND 4. 1 ND ND 23.4 1.0 
1.66 m moles/kg 1 17.4 117.3 253.2 253.2 11. 2 2313.7 110 . 7 

3 1.1 5.5 21.4 67.1 4.3 355.1 16.3 
6 1.0 4.4 12.1 7.6 0.2 212 . 6 13.0 

12 ND ND 4.6 ND ND 238 . 7 11. 2 

aEach value represents an average of two animals. 
bConcentration ng/g tissue. 
cConcentration ng/g extractable fat . 

dConcentration ~g/g lipid. 
<0 

ND = not detected. ~ 
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