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It has long been known that the time course of a bimolecular reaction occurring in a condensed
host depends on the behavior of the nonequilibrium pair-correlation function for reactant pairs.
The classical analysis of such reactions has led to a kind of standard rule: The association rate con-
stant for a diffusion-controlled reaction is 47DR and this rate constant produces the fastest possible
kinetics. This result is only (approximately) true for the case of an irreversible reaction, however.
Here, we reexamine this old problem, looking closely at the reversible case. We report a result that
challenges the standard wisdom: When the reaction is highly reversible the relaxation of the related
kinetics to equilibrium can be much faster than the model in which 47DR is the association rate
constant. We suggest that our work provides a natural resolution to a well-known, long-standing
controversy in the study of electrically active impurities in silicon grown by the Czochralski

method.

The rates at which physical and chemical changes
occur in condensed media are often determined by the
mobilities of the individual members of the participating
species. Such a situation has been termed ‘““diffusion con-
trolled.” While the effects of diffusion on condensed
phase reaction rates have been studied for many years,!?
the diffusion-controlled reversible reaction—despite its
ubiquity and importance—has only recently received any
careful attention.’ Frequently, discussions of diffusion-
controlled reversible reactions have assumed that the bi-
molecular association rate could be represented with
negligible error by the “standard” form 47DR, where D
is a mutual diffusivity and R an encounter distance for
the appropriate reactants. In this paper, we discuss the
limits of the validity of this assumption and argue that its
use to infer values of diffusivities can lead to significant
overestimates.

Though the work reported here has a much more gen-
eral applicability, we were initially drawn to this problem
by our interest in the well-known problem of the forma-
tion of electrically active oxygen clusters in Czochralski-
grown silicon crystals.* Succinctly stated, a considerable
body of evidence now exists which implies that when
such material is annealed at about 700 K (after quenching
from the melt to room temperature), isolated impurity
oxygen atoms become mobile and aggregate, producing,
as a result, easily ionized donor states. Straightforward
kinetics models developed to describe this phenomenon
share a common failing: in order to quantitatively fit the
kinetics data, interstitial oxygen atoms must be assigned
mobilities greatly in excess of those measured by tech-
niques independent of reaction.’

The essential features of the source of the discrepancy
outlined above can be extracted from a study of the sim-
plest association process, namely, dimerization, A4,
+ A, A4,, to which we now restrict our attention. We
assume that the kinetics of the dimerization process is
governed by a potential energy surface similar to that
shown in the schematic sketch, Fig. 1. In a “diffusion-

4

controlled” reaction Ep, > E . Following the guidance
of previous discussions,® we postulate that the kinetics of
this process can be described by

dc 1 2dc 2

dt dt

=—k' (t)c?+2k_c, , (1)

where the ¢’s are sample-average concentrations, k', is a
time-dependent, bimolecular rate coefficient, and k_ is
the dimer dissociation rate (see Fig. 1). The coefficient
k', depends on the probability that at any instant, two
monomers will actually be separated by the critical dis-
tance R. (We ignore the crystal structure of the host
here.) To determine just how k', depends on time we in-
troduce the (coarse-grained) pair concentration p(r,t).
Specifically, p is the concentration of A4 ,- A4 pairs at time
t whose members are separated by a distance r; p is nor-
malized so that its value for large separations approaches
c?. (Note that in this normalization pairs are double
counted.) We take V to be the volume defined by the re-

potential energy

4
k —»

diffusion

O — separation 5
r

FIG. 1. Qualitative sketch of the potential energy of interac-
tion between two monomers immersed in a dense host.
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action distance R. Then Vp(R,t) is (twice) the instan-
taneous concentration of monomer pairs with critical
member separation. Since k is the rate monomers cross
the energy barrier E ., koVp(R,t) represents the rate at
which monomers disappear due to reaction, or, in other
words, k', (t)=koVp(R,t)/cl.

Clearly, the dimerization kinetics are governed by the
behavior of the pair concentration. We expect that p(r,t)
will satisfy an equation of the type dp(r,t)/0t
=DV?p(r,t)+R(r,t), where R accounts for all reactive
gains and losses of 4,-A, pairs with member separation
r. These result whenever (a) either member of such a pair
forms a dimer with a third monomer or (b) a dimer-
monomer pair of separation r becomes a monomer triplet
through the dissociation of the dimer.” In addition to
having to specify &, determination of p also requires
specification of appropriate boundary and initial condi-
tions. One boundary condition has already been as-
sumed: p—c? as r becomes large. A second boundary
condition can be obtained by considering the possible
changes in the concentration Vp(R,t). Pairs of member
separation R can be lost by dimerization, can be gained
by dimer dissociation, and can be either lost or gained by
diffusion. Thus, the second required boundary condition
is

AVp(R,D] _ Vp(R,t)+2k _c,(t)
a °

+47DR? gf”) . )

In the irreversible case, where k _ vanishes, the left-hand
side of (2) is often set equal to zero leading to the so-
called “radiation boundary condition.” For the reversi-
ble reaction, however, the full-time dependence of (2) is
required. The reversible reaction kinetics are automati-
cally rendered analytically intractable as a consequence.

It is convenient to rewrite the pair concentration p in
terms of the monomer-monomer (coarse-grained) pair-
correlation function & (r,t): p(r,t)=c3[1+h(r,t)]. Sub-
stitution of this form for p into the diffusion-reaction
equation of which it is a solution leads to

oh(r,t)
ot

where 7, depends on monomer triplet correlations as
well as dimer-monomer correlations. We will focus on
highly reversible reactions at low concentrations. We
have explored different model expressions for 7,, but
have found that, for the dilute reactant case, this term
contributes little to the kinetic behavior of the pair-
correlation function. Its precise form is therefore ir-
relevant for our present discussion. Also, in the low-
concentration case the boundary condition (2) can be ap-
proximated by

dh(R,t) _
ot

=DV2h(r,t)+R,(rt), (3)

—ko[1+h(R,1)]+2k _c,/(Vc?)

+(4wDR?*/V)3h(R,t)/3r . (4)

Equations (1), (3), and (4), then, along with the conditions
h—0 as r becomes large (no correlation among pair
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members at large separation), h =0 for all separations at
t=0 (no initial correlation among monomer pair
members), and values for ¢,(0) and c,(0), define a well-
posed mathematical problem. Condition (4) is the key to
obtaining appropriate pair correlations for the reversible,
diffusion-controlled reaction; its incorporation is the
essential difference between our analysis and all those
that have preceded it.

Let us assume that the reaction is diffusion-controlled
and that the monomers are initially uniformly randomly
distributed. Suppose that the initial concentration of di-
mers is well below its equilibrium value at the tempera-
ture to which the sample is rapidly raised and fixed.
Then some fraction of the monomer pairs with initial sep-
aration R will quickly associate and 4 (r,z) will become
negative for r near R. Later, both diffusion and dissocia-
tion will try to fill in this “correlation hole.” In an ir-
reversible reaction it is easy to show that the pair-
correlation function approaches a steady approximate
value, h(r,t)—>—R /r, as time goes on. In this case,
koV[1+h(R,t)] approximates the “diffusion-controlled”
rate constant 4mDR. In the reversible case, however, the
dissociation reaction keeps filling the correlation hole
back in so that, after a period of being negative, h eventu-
ally returns to zero for all r as equilibrium is established.
For this circumstance, k,V[1+h(R,t)] is always greater
than 47 DR.

The time course of the “pair-correlation kinetics” de-
scribed above is bounded from below by a fictitious,
though often used, Kkinetics model. In this model,
koV[1+h(R,t)] is replaced by 4mDR and k _ is replaced
by an effective dissociation rate constant chosen to make
the equilibrium state of these kinetics agree with that of
the pair-correlation kinetics model. This latter model we
call the “diffusion-controlled” kinetics model. In it the
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FIG. 2. The pair-correlation function for separation equal to
the critical reaction distance. Time is measured in units of
2/4wDRc,. “Dimer eq.” is the equilibrium dimer concentration
in units of ¢.
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FIG. 3. Dimer concentration, measured in units of ¢, as a

function of time (in units of 2/4mDRc,). PC corresponds to the
pair-correlation model, DC to the diffusion-controlled model.

effective dissociation rate constant k' is given by
k'_=k_/y, where v is the ratio koV /4mDR (assumed
to be >>1 for a diffusion-controlled reaction). This mod-
el tacitly assumes that the pair correlations are always
constrained to be in steady state. The diffusion-
controlled model relaxes toward equilibrium at a charac-
teristic rate determined by both 47DR and k’_. Since
both of these rate constants are lower than the corre-
sponding rate coefficients of the pair-correlation model,
the latter always approaches equilibrium more rapidly
than the former.

We show in Figs. 2 and 3 the results of numerically in-
tegrating the pair-correlation model. We chose paramet-
ric values typical of thermal donor phenomena: oxygen
interstitial diffusivity of (0.2 cm?/s) exp(—2.5 ev/kgT),
temperature at 450°C, total oxygen concentration,
co=10" cm™3  Furthermore, we assumed highly
diffusion-controlled conditions: ¥ =1000. In all cases,
¢,(0) was taken to be zero (only monomers in the initial
state). Figure 2 demonstrates the behavior of the pair-
correlation function for small separations; time is scaled
in units of 47DRc, /2. Each curve was calculated assum-
ing R=5 A. The different cases shown represent
different degrees of reversibility. Each time course corre-

actual diffusivities, © =D .z /D.

sponds to a different dimer equilibrium concentration
measured in units of ¢,. A dimer equilibrium value of 0.5
means that all monomers eventually wind up bound in
dimers—the case of total irreversibility. For a totally ir-
reversible reaction, A (R,t) quickly becomes —1 and stays
there. For more reversible cases, however, h (R,t) goes
less negative and eventually recovers to its starting value
of zero.

Figure 3 shows the effect on the kinetics of the pair-
correlation behavior described in Fig. 2. Here all exam-
ples evolve to the same dimer equilibrium concentration,
namely, 0.001c,. Two pair-correlation calculations, one
with R =5 ;\, the other with R =10 A, are shown. Both
rise toward equilibrium more rapidly than the corre-
sponding diffusion-controlled calculation (which in these
time units is independent of R).

Finally, we note that the diffusion-controlled kinetics
can be fit to the pair-correlation kinetics by assuming an
effective diffusivity, D =©D, where O is the fitting pa-
rameter. Figure 4 depicts how the fitting parameter
varies with degree of reversibility. The point of the figure
is that the more reversible the reaction the larger is the
required D4 in order to fit the more realistic kinetics
with the fictitious diffusion-controlled model. We see
that for a reversible diffusion-controlled reaction, this
effective, kinetics-based diffusivity can easily be an order
of magnitude or more larger than the actual diffusivity
appropriate to the system under study.
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FIG. 1. Qualitative sketch of the potential energy of interac-
tion between two monomers immersed in a dense host.



