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[1] We propose a novel approach based on wavelet and functional principal component
analysis to produce a cleaner index of the intensity of the symmetric ring current. We use
functional canonical correlations to show that the new approach more effectively
extracts symmetric global features. The main result of our work is the construction of a
new index, which is an improved version of the existing wavelet-based index (WISA)
and the old Dst index, in which a constant daily variation is removed. Here, we address the
fact that the daily component varies from day to day and construct a ‘‘cleaner’’ index by
removing nonconstant daily variations.
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1. Introduction

[2] It has long been recognized that even on quiet days
the daily variation changes very visibly from day to day,
both in its amplitude and its shape. This is attributable to
multiple dynamic drivers which include not only tidal
ionospheric winds, but also the effect of the Chapman-
Ferraro current, the Sq current, and the magnetotail current
[see Xu and Kamide, 2004, and references therein]. On
storm days, the effects of these drivers change even more
and lead to a very complicated daily variation [Blanc and
Richmond, 1980] which is difficult to deconvolute from the
global effect of the intensified symmetric ring current. Yet,
the Dst and related indices remove a constant daily variation
from daily H component signatures. In the Dst, this constant
quiet variation is obtained by averaging the daily H com-
ponent curves over several quiet days in a month. The main
goal of this paper is to introduce a technique allowing to
remove daily variations which change from day to day, as
well as the effects of other local-time-dependent compo-
nents, thus leading to an index of storm activity which better
reflects the variability of the symmetric ring current.
[3] Our approach builds on the WISA index introduced

by Jach et al. [2006] and studied by Xu et al. [2008] and
Zhu et al. [2007]. WISA is a 1 min resolution version of the
Dst index, and when appropriately averaged, is statistically
indistinguishable from the 1 h Kyoto Dst. It enjoys, how-
ever, important operational advantages over the Dst. It can
be algorithmically computed over time periods as short as
two weeks or extending to over a year, and requires only the
selection of equatorial terrestrial observatories as input (no
selection of quiet days is required). Nevertheless, the WISA

procedure also removes a constant daily variation, which is
just computed using a different, wavelet-based, algorithm.
In order to construct a ‘‘cleaner’’ index of the storm activity,
we need to remove the daily variations that are different
each day. We propose a general, automatic technique that
involves wavelet and principal component analysis methods
and extracts a nonconstant daily variation.
[4] This work also builds on the ideas introduced by Xu

and Kamide [2004], who use the method of natural orthog-
onal (principal) components to analyze the daily magnetic
variation, and argue that the first eigenmode represents the
solar quiet daily variation. We address this matter in more
detail in section 3. Chen et al. [2007] also use principal
component techniques to separate Sq from complicated
disturbances. However, as we show in the following section
we believe that the procedure these authors use includes
storm features in their estimated daily variation. In our
paper we use similar techniques, but we argue that our
proposed periodic component estimation methodology is
more accurate.
[5] The paper is organized as follows. A brief description

of the requisite statistical concepts is provided in section 2.
In section 3, we provide a detailed description of the
construction of the improved index. Then, in section 4,
we compare the new index to WISA by means of functional
canonical correlations. Finally, main conclusions are sum-
marized in section 5.

2. Wavelet and Functional Data Analysis

[6] In this section we first introduce some basic ideas
of the wavelet analysis focusing only on the aspects that
are relevant to our task. Then we present the functional
data analysis, mainly the functional principal component
analysis.
[7] First, we introduce a wavelet-based representation of

the magnetometer data in order to explain the central ideas
of the new procedure. Let, Xs = {Xs,t, t = 1, � � �, N} be the
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magnetogram recorded at station s = 1, � � �, m, where N is
the sample size recorded in minutes. We can write it as

Xs tð Þ ¼
XJ
j¼1

Ds;j tð Þ þ Ss;j tð Þ;

where Ds,j = {Ds,j (1), � � �, Ds,j (N)} are the details, and
Ss,j = {Ss,j (1), � � �, Ss,j (N)} is the smooth. Here, j = 1, � � �,
J is the multiresolution analysis (MRA) level. The details
capture the part of the records that correspond to the
frequencies in the range from 2�j�1 to 2�j cycles per
minute. For further details, see Percival and Walden
[2000, chap. 5]. In this paper, we introduce a procedure
that allows us to isolate the storm activity by applying
statistical techniques to different levels j. We focus on
detail levels j = 8, 9, 10. As explained by Jach et al.
[2006], these are the levels that contain daily periodic
features: j = 8 captures approximately 6 h periodic com-
ponent, j = 9 captures 12 h component, and j = 10 captures
24 h component. We use the same transform and filter
as used for WISA construction, i.e., the maximum
overlap discrete wavelet transform (MODWT) and the LA(8)
filter.
[8] We continue this section by explaining briefly the

idea of functional principal component analysis (FPCA);

Ramsay and Silverman [2005, chap. 8] provide a detailed
exposition.
[9] Figure 1a shows an example of the data which is the

sum of the MRA of magnetometer records at levels j = 8, 9,
10. Dashed lines indicate UT midnight. Our goal is to
remove the daily component, so it is natural to split the
data into daily observations (functions). The functional
observations defined on 24 h intervals are shown in
Figure 1b. Hence, we treat the daily records as functions
and extract the daily variations using FPCA.
[10] In multivariate case we define sets of normalized

weights to emphasize types of variation that are most
strongly represented in the data.
[11] Let um = (u1m, � � �, upm)0 be themth weight vector such

that fim =
P

j ujm xij has the largest mean square 1
N

P
i fim

2

subject to constraint kumk2 = 1, and
P

j ujk u jm = 0, k <m, i.e.,
each mode must be orthogonal to the previous one so that
they are indicating something new. We carry out the
procedure, up to a limit of number of variables p.
[12] The main idea of the FPCA is to find functions

whose inner products with the data yield maximum varia-
tion in the curves. FPCA is an orthogonal linear transform
that transforms the data to a new coordinate system such
that the greatest variance by any projection of the data
comes to lie on the first principal component, the second
greatest variance comes to lie on the second, and so on.

Figure 1. (a) Ds,P records, H component during 29 March to 3 April 2001, HON, UT. (b) Functional
data derived from the H component during 29 March to 3 April 2001, HON, UT.
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[13] In functional context u(t) and X(t) are functions and
summation over j is replaced by integration over t. Similar
to the multivariate case we define the jth principal compo-
nent score of Xi as gj =

R
Xi(t) uj(t) dt. It can be interpreted

as the weight of the contribution of the FPC uj to the curve Xi.
Each principal component, say jth uj(t) is chosen to max-
imize 1

N

P
i (
R
uj(t) Xi(t))

2 subject to constraint:
R
uj
2(t) dt = 1.

Same as for multivariate PCA, the weight function uj(t) is
required to satisfy the orthogonality constraint

R
uk(t) uj(t)

dt = 0, k < j.
[14] Principal components form an orthonormal system.

The main goal of the FPCA is to find the dominant modes
of variation in the data. In this study we are interested in the
first principal component. Xu and Kamide [2004] and Chen
et al. [2007] argue that it captures the main features of the
daily Sq variation. However, our approach differs from the
one introduced by Xu and Kamide [2004]. Instead of the raw
data, we use filtered records, i.e., the sum of three levels of
MRA, and remove storm features with care.

3. Removal of the Daily Variation

[15] In this section we provide the details on the removal
of the daily component from the magnetometer data. During
quiet periods, it is basically the Sq variation, but during
disturbed periods it may reflect the dynamo effect and
disturbances from other M-I currents. This component is
semiperiodic, as it is caused by the rotation of the Earth. The
atmospheric dynamo generates currents that flow in the

upper atmosphere in the E region. These currents arise as a
consequence of atmosphere storm dynamics (winds) which
have been generated by geomagnetic storms. During storms
these wind patterns are quite different from the quiet time
winds that create the Sq current system.
[16] The periodicity is clearly visible in MRA details Ds,j

for levels j = 8, 9, 10 (see Figure 2). However, one can also
see that it is enhanced during a storm. This fact is taken into
account while removing the daily variation from storm
features.
[17] Let

Ds;P tð Þ ¼ Ds;8 tð Þ þ Ds;9 tð Þ þ Ds;10 tð Þ; t ¼ 1; � � � ;N

be the part of the signal that includes practically all
frequencies of the daily component spectrum. The subscript
‘‘P’’ stands for (semi) ‘‘periodic.’’
[18] Our goal is to extract the signature of the storm

activity from the Ds,P. A storm is a global event and it is
visible in the records of all stations. Its signatures at various
stations are aligned in UT. Figure 3 illustrates the fact that
the storm features are roughly aligned in UT, whereas the
periodic components are not. Therefore, we want to extract
as many UT aligned features as possible. Such features are
attributable to the storm activity, and should be included in
the index.
[19] As mentioned above, the periodic daily component is

a local feature that is approximately aligned in LT. In order

Figure 2. Multiresolution analysis details D8, D9, and D10, 29 March to 2 April 2001, HON, UT.
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to separate it from the storm signature, we first need to
remove all features aligned in UT. Therefore, we remove

DP tð Þ ¼ 1

m

Xm
s¼1

Ds;P tð Þ; t ¼ 1; � � � ;N ;

which is the average of Ds,P of all stations s = 1, 2, � � �, m
used in the study. The mean DP roughly follows the storm
pattern (see the thick line in Figure 3). After the mean
removal, the data is mostly cleaned from events aligned in
UT (see Figure 4) and so the daily variation can be removed
more effectively. We emphasize, that the computation of
DP(t) is merely a preliminary step. As the records from
different stations may have slightly different dynamic
ranges, the average may be biased toward some stations.
Averaging with appropriately computed weights is possible,
but this increases the complexity of the algorithm, and leads
to negligible gains.
[20] Denote by Ds,P

c (t) = Ds,P(t) � DP(t) the centered
record at station s. Figures 5 (disturbed period of time) and
6 (quiet time) show that Ds,P

c contains a strong quasiperiodic
component which reflects the Sq variation during quiet
periods and a more complicated Sq variations during storm
periods. In Figure 5 we see that there is nighttime activity in
Ds,P
c . We want to add it to the storm index, but not the

quasiperiodic component. We therefore postulate that

Dc
s;P tð Þ ¼ Ps tð Þ þ Rs tð Þ; t ¼ 1; � � � ;N ; ð1Þ

where Ps is identified with the daily periodic component and
Rs is the remaining effect of a storm left after the average
removal. Next, we apply principal component analysis
techniques to estimate the daily variation Ps. We convert
Ds,P
c into functional object, i.e., daily functions that start at

UT midnight. Using principal component analysis we can
write (t0 is the time in minutes within 1 day)

Dc
s;P t0ð Þ ¼ ms t

0ð Þ þ
X1
j¼1

gs;jus;j t
0ð Þ; t0 ¼ 1; � � � ; 1440;

where ms (t
0) is the daily mean, gs,j is a score vector for jth

PC, and us,j is the jth PC for station s. We assume that
periodic component for day i = 1, � � �, N/1440 is

Ps;i t
0ð Þ ¼ ms t

0ð Þ þ g*s;1;ius;1 t0ð Þ; t0 ¼ 1; � � � ; 1440; ð2Þ

where gs,1,i* is a filtered score for the ith day described
below. The function us,1(t

0) is the first PC for station s. In (2)
ms (t

0) and us,1 (t0) are deterministic functions defined over
the 24-h interval, and gs,1* are random weights that change
from day to day. Hence, the extracted daily component Ps(t)
is nonconstant. Note that Ps,i(t

0) where t0 = 1, � � �, 1440 and
i = 1, � � �, N/1440 is the same daily periodic component as
Ps(t) where t = 1, � � �, N split into daily functions.
[21] Decomposition (2) is akin to the ideas of Xu and

Kamide [2004] and Chen et al. [2007], who argued that the
first principal component follows the pattern of the daily Sq
variation. However, while these authors work with the raw

Figure 3. Ds,P components and their mean (thick line) of 4 Dst stations, HON, KAK, SJG, and HER,
during disturbed period of time: 29 March to 2 April, UT.
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magnetometer records, we first apply a wavelet filter to the
data and use just the levels that contain the periodic
component. We also remove the average of several stations
to separate the storm effect. So, in our paper, to estimate
daily periodic component Ps, we compute the first PC of
Ds,P
c rather than the first PC of the raw magnetometer data.
[22] As mentioned earlier, the three selected MRA levels

contain residual storm features. Averaging over m stations
removed a substantial part of them, but not all. Daily scores
of the first PC, gs,1, show extreme values during the days
when a storm occurred. Therefore, they contain the residual
signature of the storm which should be added to the index.
[23] Let p0.95,s denote the 95th percentile of the daily

scores gs,1 for station s. We define

gs;1* ¼ Mgs;1 ; if jgs;1j > p0:95;s for all s;
gs;1; otherwise;

�
ð3Þ

where Mgs,1 is the median score of station s. This means
that to extract the residual storm effect from the daily scores
we find the largest 5% of the scores gs,1 for each station s
individually. If the extreme value is captured by all stations
we replace it by the median score, Mgs,1, of the
corresponding station. The scores defined in (3) are used
to compute daily periodic component Ps defined in (2).
[24] Therefore, the residual storm contribution is

Rs tð Þ ¼ Dc
s;P tð Þ � Ps tð Þ; t ¼ 1; � � � ;N ð4Þ

[25] It allows us to construct a so-called preindex, which
consists of a storm signature extracted from three MRA
levels of station s magnetogram. It is defined as follows

Is tð Þ ¼ DP tð Þ þ Rs tð Þ; t ¼ 1; � � � ;N ; ð5Þ

and is the contribution of station s to the storm signature. An
index is constructed by averaging the Is(t) from judiciously
selected stations.
[26] We now provide a brief summary of the procedure

introduced in this section.
[27] 1. Perform the MRA on the raw magnetometer

records, and extract details at levels j = 8, 9, 10 using
MODWT and LA(8) filter. From here, work with the sum of
these three levels of details.
[28] 2. Find the average of all stations used in the study,

and remove it from the record at each station.
[29] 3. Convert the data from previous step into a func-

tional 1-day object. Compute the first FPC.
[30] 4. Replace the outlier scores aligned through all

stations with median scores. Use those scores to estimate
the daily component.
[31] 5. Compute the storm activity preindex.

4. Comparison of Indices

[32] The objective of this section is to compare the
improved preindex introduced in section 3 to the known
WISA preindex, i.e., the part of the storm activity extracted
from the three MRA levels.

Figure 4. Centered Ds, P components of 4 Dst stations, HON, KAK, SJG, and HER, during quiet time:
29 March to 2 April, UT.
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[33] First, we describe the data sets we use in this study.
Then, we introduce a quantitative procedure we apply to
compare the new preindex to the WISA preindex.
[34] We use the H component of the magnetometer

records, the same as in WISA and Dst. Table 1 contains
the list of the stations used in this study. To verify our
results we use two four-station combinations and one six-
station combination (see Table 2). The stations in each
combination are roughly equispaced in the equatorial zone.
The first set of four stations, HER, KAK, HON, SJG, was
used because it is the standard Dst set, even though the
stations HER, PHU, HON, SJG, are more equispaced. The
index and the canonical correlations for the two sets do not
differ significantly. It is in fact an advantage of our method
that it is fully automatic, and records from any set of

stations can be used as inputs, and the resulting indices
compared.
[35] In order to produce a comprehensive study we

applied the new procedure to 3, 5, and 6 month periods
during 2001.
[36] Figure 7 provides a visual comparison of the im-

proved preindex to the data, Ds,P, it was constructed from.
During the disturbed periods of time (Figure 7, top) im-
proved preindex captures the storm signature (solid line),
and most of the daily periodic component is eliminated from
it during the quiet periods (Figure 7, bottom). What is left is
in the range of ±10 nT, slightly above the measurement
error. During quiet days the original data are semiperiodic,
so any index is semiperiodic, but with a smaller amplitude
and often out of phase with the data.

Figure 5. Ds,P
c components of 4 Dst stations: HON, KAK, SJG, and HER, during disturbed period of

time: 29 March to 2 April, in LT. Grey areas correspond to nighttime.
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[37] A visual comparison is not enough to conclude that
our proposed method removes daily periodic activity better
than WISA or Dst. Therefore, we propose to use the
functional canonical correlations to evaluate level of im-
provement quantitatively.

4.1. Functional Canonical Correlations

[38] In this section we introduce the main idea of the
functional canonical correlation analysis (FCCA).
[39] Classical canonical correlation analysis (CCA) com-

putes linear transformations of two variables such that the
correlation between the transformed variables is maximized.
Let (xi, yi), i = 1, � � �, n, be pairs of observed vectors. The

Figure 6. Ds,P
c components of 4 Dst stations: HON, KAK, SJG, and HER, during quiet time: 6–10

March, in LT. Grey areas correspond to nighttime.

Table 1. Geomagnetic Observatories Used in This Study

Station Name Colatitude Longitude

1 Hermanus (HER) 124.43 19.23
2 Antananarivo (TAN) 108.92 47.55
3 Phuthuy (PHU) 68.97 105.95
4 Kakioka (KAK) 53.77 140.18
5 Honolulu (HON) 68.68 202.00
6 San Juan (SJG) 71.89 293.85
7 Mbour (MBO) 75.62 343.03

Table 2. Combinations of Four and Six Stations Used to Test the

New Method

Set Station

Four-1 HER, KAK, HON, SJG
Four-2 TAN, KAK, HON, SJG
Six-1 TAN, PHU, KAK, HON, SJG, MBO
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goal is to find vectors a1 and b1 such that the correlation
between linear combinations a01 xi and b01 yi is the highest.
A detailed discussion on CCA is given by Anderson [1984,
chap. 12].
[40] Functional CCA provides a similar tool for investi-

gating the relationship of the variability of functions. It
helps to identify the modes of variability in the two sets of
curves that are associated with each other most strongly.
[41] Suppose, we observe N pairs of curves (Xi(t), Yi(t)).

Let (x, h) denote canonical variate weight functions defined
such that the correlation between canonical variates

R
xXi

and
R
hYi is the highest. As first observed by Leurgans et al.

[1993] and discussed by Ramsay and Silverman [2005,
chap. 11], to find a meaningful correlation an appropriate
smoothing is essential. We are interested in comparing the
canonical correlations for different methods and different
data sets, therefore, we used the same smoothing parameter
for all the data. The choice of the smoothing parameter does
not change the overall conclusion.
[42] In our application, the Xi represent the daily preindex

curves at one station (e.g., HON) and Yi the preindex curves
at another station (e.g., HER). These curves can be com-

puted using our method or WISA. If the canonical correla-
tion for the curves computed using the new method is
higher than for the curves obtained from the WISA proce-
dure, it means that the new method isolates more features
that are common for the Xi and the Yi, e.g., for HON and
HER.
[43] The next section describes such comparison.

4.2. Quantitative Comparison of Different
Methodologies

[44] In this section we present the results of the compar-
ison of preindexes produced using the new improved
method and WISA. We do not perform any direct compar-
ison to the Dst. However, since WISA is statistically
indistinguishable from Dst [see Jach et al., 2006], the
conclusions we make about the WISA apply to the Dst
index as well.
[45] A method produces a ‘‘cleaner’’ preindex (and index

eventually) if local features are removed in a more efficient
way. Therefore, the association of the preindexes of differ-
ent stations should be strong. Using FCCAwe show that our
new technique isolates the effect of a storm better than the
WISA procedure.

Figure 7. Improved preindex (solid line) and Ds,P (dashed line) for HON station during (top) disturbed
and (bottom) quiet periods.
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Figure 8. Canonical correlations for the new method (star), new method without centering (cross), and
WISA (circle), applied to all combinations of four Dst stations (see Table 3).
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Figure 9. Canonical correlations for the new method (star), new method without centering (cross), and
WISA (circle), applied to all combinations of second set of four stations (see Table 4).
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Figure 10. Canonical correlations for the new method (star), new method without centering (cross), and
WISA (circle), applied to all combinations of six stations (see Table 5).
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Figure 11. Canonical correlations for the new method (star), new method without centering (cross), and
WISA (circle), applied to all combinations of (top) the first set of stations (combinations are given in
Table 3), (middle) the second set of stations (combinations are given in Table 4), and (bottom) the third
set of stations (combinations are given in Table 5).
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Figure 12. Canonical correlations for the new method (star), new method without centering (cross), and
WISA (circle), applied to all combinations of (top) the first set of stations (combinations are given in
Table 3), (middle) the second set of stations (combinations are given in Table 4), and (bottom) the third
set of stations (combinations are given in Table 5).
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[46] Denote by Ds,8,W, Ds,9,W,, Ds,10,W the details with the
constant periodic component removed, as described by Jach
et al. [2006, paragraph 42]. Thus,

Rs;W ¼ Ds;8;W þ Ds;9;W ; þ Ds;10;W ð6Þ

is the WISA-based preindex.
[47] We treat the preindex Is defined in (5) and WISA

preindex defined in (6) as functional data in UT. Let,

r s1; s2ð Þ ¼ ccorr Is1 ; Is2ð Þ; ð7Þ

rW s1; s2ð Þ ¼ ccorr Rs1;W ;Rs2 ;W

� �
ð8Þ

be the canonical correlations between preindexes at stations
s1 and s2 computed using improved methodology and the
WISA approach.
[48] Since the index of the storm activity is designed to

capture global storm signature, the correlation between
preindexes at different stations should be higher for the
method that removes daily periodic component in a more
efficient way. Figures 8–12 contain the canonical correla-
tions for different combinations of stations (see Tables 3–5)
during various periods of time. One can see that correlations
for our proposed method r(s1, s2) (star) are systematically
higher than the correlations for WISA preindex rW(s1, s2)
(circle).
[49] In order to check the effect of the averaging over all

stations we constructed an alternative preindex, Is*, where
no averaging over all stations was performed, i.e., skipped
step 2. The canonical correlations for this method are
labeled with crosses in Figures 8–12. In most cases the
resulting correlations are lower than the ones for WISA-
based preindex. Therefore, we conclude that averaging over
all stations effectively extracts storm signature.

5. Conclusions

[50] We propose an improved procedure for removing the
daily periodic component which uses statistical filtering

techniques and functional principal component analysis
procedures. As an initial step we use multiresolution anal-
ysis to isolate the daily periodic component. To extract the
storm signature we use the data from multiple stations.
Principal component approach is applied to remove the
nonconstant daily variation. Our procedure produces an
index which is cleaner than the WISA and the Dst both of
which contain significant residual daily variation.
[51] Functional canonical correlations were used to com-

pute a quantitative measure of the level of improvement. We
showed that there is a significant improvement from exist-
ing WISA and Dst, since WISA index is statistically
indistinguishable from Dst. We conclude that our proposed
methodology produces an index that isolates the global
storm activity in a more efficient and cleaner way.
[52] The method of deconvoluting the daily variation in

the presence of a storm offers a potential tool to study its
temporal and spacial behavior. Follow-on research will
refine the technique of the analysis of the dynamic daily
variation to study the relationship between the Sq, storm
dynamo, and partial ring currents. Such an analysis is
beyond the intended scope of this contribution which
emphasizes isolating global rather than local features.

[53] Acknowledgments. Research supported by NSF grants DMS-
0413653 and DMS-0804165. Data were provided by USGS via the global
network of observatories INTERMAGNET.
[54] Zuyin Pu thanks Wenyao Xu and another reviewer for their

assistance in evaluating this paper.
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