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Models and microfluidic experiments are presented of an electrophoretic separation technique in which

charged particles whose mobilities exceed a tunable threshold are trapped between the crests of a

longitudinal electric wave traveling through a stationary viscous fluid. The wave is created by applying

periodic potentials to electrode arrays above and below a microchannel. Predicted average velocities agree

with experiments and feature chaotic attractors for intermediate mobilities.
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Separations of charged substances are important in pro-
teomics, molecular biology, cell biology, genetics, materi-
als synthesis, and bioengineering, and are integral to
microfluidic lab-on-a-chip devices that are being devel-
oped for rapid clinical and forensic analysis [1]. Over the
last 25 years, capillary electrophoresis (CE) has set the
standard for high-efficiency separations in solution [2].
This technique employs static, uniform electric fields to
separate ions with different charge-to-size ratios into dis-
tinct zones for analysis, with zone dispersion limited ulti-
mately by molecular diffusion.

In this Letter, we study an electrophoretic separation
technique that differs from CE by trapping ions whose
mobilities exceed a tunable threshold between the crests
of longitudinal electric field waves traveling through a
stationary solution. These waves are created by applying
oscillating potentials to interdigitated arrays of stationary
electrodes above and below a microfluidic channel (Fig. 1).
The trapping threshold depends on the ion mobility, the
electrode spacing, and the potential frequency and ampli-
tude, and allows modulation between separative and non-
separative transport by simply varying the frequency.
Separations by traveling-wave electrophoresis (TWE)
(Fig. 2) apply to ions, charged biomolecules, and micron-
sized charged particles, and might reduce zone dispersion
to below the diffusion limit.

Others use interdigitated electrode arrays on a single
surface to transport charged species via electrophoresis,
imposing static perpendicular gravitational or electric
fields to draw particles to the surface [3–5]. Our sandwich
architecture precludes such fields by bounding a micro-
fluidic channel by electrode-bearing surfaces above and
below. This design allows the use of low applied voltages
to avoid unwanted electrochemical effects while keeping
the electric field high to achieve rapid separations. Single-
surface architectures can also transport charged particles
via ac electroosmotic pumping [6,7] and neutral biopar-
ticles via dielectrophoresis [8].

We consider the motion of ions of charge q, hydrody-
namic radius r, and velocity v through a stationary electri-

cally conducting solution of viscosity � and mass density
� in response to oscillating electric potentials applied to
periodic arrays of electrodes. In contrast with studies of
oscillator synchronization [9], TWE potentials are external
functions of time. In contrast with electron trapping by
plasma waves [10], viscosity is essential to TWE trapping.
The 1–32 Hz frequencies of our applied potentials are too
small to induce ac electroosmotic pumping, which requires
frequencies of the order of 1 kHz [6].
Models presented here include only electric and Stokes

drag forces FE ¼ qE and FD ¼ �6��rv on the ions,
ignoring magnetic and gravitational fields, molecular dif-
fusion, charge redistribution, fluid flow, and ionic inertia.
Setting FE þ FD ¼ 0 immediately yields the associated
electrophoretic velocity

v ¼ �E (1)

with mobility � ¼ q=6��r and electric field E ¼ �r�.
Insight can be drawn from a 1D electric potential [11]

�ðx; tÞ ¼ �0 sinðkx�!tÞ (2)

with amplitude �0, wave number k ¼ 2�=�, angular fre-
quency! ¼ 2�=�, and electric field amplitude E0 ¼ k�0.
We define a convenient dimensionless measure of the
responsiveness of an ion to the wave as

R ¼ �E0

c
; (3)

the ratio of the characteristic electrophoretic velocity �E0

to the wave speed c ¼ !=k. Here, q > 0 and R> 0 for
cations and q < 0 and R< 0 for anions.
The steady-state solution to the 1D model yields, for

jRj � 1, the trapped velocity vx ¼ c, with trapped cations
traveling within potential wells and anions within peaks.
For jRj< 1, ions experience longitudinal oscillations of

angular frequency � ¼ !ð1� R2Þ1=2 but make net for-
ward progress with average velocity [12]

�vx

c
¼ 1� ð1� R2Þ1=2: (4)
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During each oscillation, an ion fails to catch a passing
wave and lags one cycle behind the wave, like a surfer
failing to catch a passing ocean wave.

Electrodes are needed to sustain traveling waves in
viscous solutions, waves that would attenuate otherwise.

Our 2D model accordingly assumes an array of long con-
ducting cylindrical electrodes [Fig. 1(c)] held at synchro-
nized potentials �0ðtÞ, �1ðtÞ, �2ðtÞ, and �3ðtÞ given by

�iðtÞ ¼ �0 sinðkxi �!tÞ; (5)

where xi ¼ i�=4 denotes the axial position of electrode
i ¼ 0, 1, 2, 3 and � ¼ 2�=k is the electrode pattern wave-
length (Fig. 1). We retain the definition of R given by
Eq. (3) and assume that the bulk solution is electrically
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FIG. 2 (color online). Simulated separation of two ions with
different mobilities and the same initial positions based on the
2D model, obtained by applying the potentials of Eq. (5) to the
electrode pattern of Fig. 1(c). Shown are snapshots taken over
one period � of the wave motion, at times t=� ¼ 0=8, 1=8, etc.
The color bar represents values of the electric potential �ðx; y; tÞ
relative to its amplitude �0. Dashed lines identify crests of the
potential that travel along the channel at average speed c ¼ f�,
where f ¼ 1=� is the electrode oscillation frequency. A
‘‘trapped’’ high-mobility anion with responsiveness R ¼ �3
[A, Eq. (3)] keeps pace with this crest, on average, traveling
one wavelength during each period of the wave motion. A
‘‘localized’’ low-mobility anion with R ¼ �1 (B) is unable to
keep pace with the wave, oscillating instead about a single
electrode. Cations with R ¼ 3 and R ¼ 1 follow the same
trajectories as these anions if released at the same initial position
after a phase shift of 180�. The ion velocity vector v has a time
average �v ¼ cx̂ for trapped cations and anions and �v ¼ 0 for
localized ions.
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FIG. 1 (color online). (a) Exploded view of sandwich archi-
tecture for traveling-wave electrophoresis. A microchannel is
formed between two glass plates (transparent) and two poly-
dimethylsiloxane (PDMS) spacers of height h ¼ 15 �m (gray).
Photolithographically patterned interdigitated arrays of gold
electrodes on the bottom surface of the top plate are held at
oscillating electrical potentials �0ðtÞ and �2ðtÞ. Similar arrays
atop the bottom plate are held at potentials �1ðtÞ and �3ðtÞ.
(b) Side view of the channel showing two replicates of the four-
electrode pattern, of wavelength � ¼ 80 �m. The experimental
device has 50 replicates of this pattern and electrode cross
sections of half width a ¼ 1 �m and thickness b ¼ 150 nm.
The fabrication process leaves a PDMS layer (gray) of thickness
comparable to b on the bottom plate. The potential of each
electrode leads its neighbor to the right in phase by 90�,
producing a wave propagating to the right that can trap ions
whose mobilities exceed a tunable threshold. (c) Detailed view
of the cylindrical electrodes of radius a ¼ 1 �m used for the 2D
model, whose four-electrode pattern is replicated indefinitely.
Positions on electrode surfaces (points A and B) are specified by
contact angles � satisfying 0 � � � �.
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neutral, an improvement upon the non-neutral 1D model.
We solve Laplace’s equation to obtain the 2D potential
�ðx; y; tÞ within the bulk solution, with the four potentials
serving as boundary conditions at the impenetrable elec-
trode surfaces and with impenetrable channel boundaries at
y ¼ 0 and y ¼ h. This solution is a sum of logarithmic
potentials for pairs of cylindrical electrodes [13] that in-
cludes image electrodes to satisfy the boundary conditions.
We integrate the associated 2D nonlinear nonautonomous
system of ordinary differential equations,

_x ¼ vxðx; y; tÞ; (6)

_y ¼ vyðx; y; tÞ; (7)

using a fifth-order Runge-Kutta-Fehlberg method with
adaptive stepsize control [14], with wavelength � ¼
80 �m, electrode radius a ¼ 1 �m, and channel height
h ¼ 15 �m pertinent to experiments. The time depen-
dence of the velocity components vx ¼ ��@�=@x and
vy ¼ ��@�=@y requires a 3D phase space for this sys-

tem, the minimum dimensionality needed for chaos [15].
Previous studies of 2D nonautonomous systems [16] ex-
clude impenetrable barriers such as our electrodes.

Relative to the 1D model (Fig. 3, dashed trace), the
average axial steady-state velocity �vx for the 2D model
(Fig. 3, solid trace) exhibits (i) a larger trapping threshold
Rt ¼ 2:58 reflecting incomplete penetration of the poten-
tial into the channel and (ii) a nonzero localization thresh-
old Rl ¼ 1:10 below which low-mobility ions oscillate
about electrodes ( �vx ¼ 0). The 2D wave traps ions whose

mobilities j�j exceed the tunable threshold mobility �t

defined by Rt ¼ �tE0=c.
These 2D predictions agree with measurements of the

velocities of fluorescein plugs traveling along the TWE
channel of Figs. 1(a) and 1(b) with fixed �0 ¼ 0:5 V and
variable frequency f ¼ 1=� (Fig. 3, data points). Plugs
containing 20 �M fluorescein and 10 �M sodium phos-
phate were injected electrokinetically into the channel,
which was filled with a 10 �M sodium phosphate running
buffer. A six-step stepwise-constant periodic potential that
mimics Eq. (5) was then applied to the electrodes. Average
plug velocities �vx were determined microscopically by
measuring the time of passage of the peak fluorescein
intensity between two fixed locations separated by at least
400 �m. Values of c follow from c ¼ f� and values of R
from Eq. (3) using the fluorescein mobility � ¼ �2:8�
10�4 cm2=V s determined from CE experiments. Each
data point in Fig. 3 is centered at the average of two
independent measurements of �vx=c, with the ends of the
error bars showing these two measurements when they
differ by more than the diameter of the plotting symbol.
TWE might reduce the dispersion of trapped analyte

plugs to below the diffusion limit. At f ¼ 1 Hz, a fluo-
rescein plug takes t ¼ 50 s to travel the length of the
4 mm TWE channel. During this time, molecular diffusion
would increase the full width at half maximum of the plug

by [2] �	 ¼ ð2DtÞ1=2 ¼ 0:2 mm, where D ¼ kBT�=q ¼
3:56� 10�6 cm2=s is the fluorescein diffusivity, q ¼
�3:2� 10�19 C is its charge, kB is Boltzmann’s constant,
and T ¼ 295 K is the temperature. Preliminary measure-
ments show that fluorescein plugs of initial width 1.3 mm
spread less than 0.2 mm, indicating that TWE might elute
bands with little or no dispersion.
Partially trapped ions exhibit (i) periodic and narrow

band chaotic attractors with commensurate velocities
�vx=c ¼ 1=5 and 1=9, (ii) broadband chaotic attractors
with incommensurate velocities, and (iii) period-doubling
cascades to chaos (Fig. 4). Illustrated in the inset of Fig. 4
are a period-1 attractor, a narrow band chaotic attractor,
and a broadband chaotic attractor. Ions on the period-1
attractor follow identical paths between adjacent elec-
trodes, apart from simple translations and reflections,
each path including one lag cycle and contacting an elec-
trode at a specific angle, � ¼ 0:65�. Ions on the narrow
band chaotic attractor follow similar paths and contact
electrodes somewhere in the range 0:49< �=�< 0:88.
Ions on the broadband chaotic attractor travel between
electrodes in a variety of ways and sample the entire range
of angles, 0< �<�. Such broadband chaotic attractors
exhibit self-similar nested sequences that converge at un-
stable trapped orbits [17].
Future explorations might include experiments with

charged tracer particles and models that include ion diffu-
sion, fluid flow, and charge redistribution. Neglecting dif-
fusion is justified by the large Péclet numbers P ¼ �c=2D

FIG. 3. Ratio of the steady-state average axial ion velocity �vx

to the wave speed c vs the responsiveness R, from Eq. (4) for the
1D model (dashed trace), for the 2D model (solid trace), and for
microfluidic experiments (data points accompanied by numerical
values of the frequency f). In the experiments, ions are trapped
for f ¼ 1, 1.5, and 2 Hz, partially trapped for f ¼ 3, 4, and 8 Hz,
and localized for f ¼ 16 and 32 Hz. The 2D model captures the
localization threshold and underestimates the trapping threshold.
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satisfying 10<P< 300, though diffusion might refine
predictions of the trapping threshold. Our low frequencies
f preclude net electroosmotic pumping of fluid along the
microchannel axis [6], but might allow localized circula-
tory electroosmotic flow (EOF) because � ¼ 1=f � 0:1 s
is large compared with the characteristic EOF response

time �EOF ¼ 4h2�=� � 0:0003 s [18]. We intend to study
the extent and effects of such flows via models and experi-
ments with uncharged tracer particles.
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FIG. 4. (a) Details of �vx=c vs R from the 2D model (heavy
trace, A) and steady-state values of the electrode contact angle �
for simulations at fixed R (B). Chaotic attractors feature scattered
values of � whose specific positions vary from simulation to
simulation. Periodic attractors feature one or more isolated
values. (b) Detail near jRj ¼ 2 showing a period-doubling cas-
cade with �vx=c ¼ 1=5 (I), narrow band chaos with periodic
windows with �vx=c ¼ 1=5 (II), and broadband chaos with in-
commensurate velocities (III). Inset: Steady-state trajectories
wrapped to the interval 0 � x � �, including a period-1 attractor
for jRj ¼ 1:94, a narrow band chaotic attractor for jRj ¼ 1:97,
and a broadband chaotic attractor with �vx=c ¼ 0:283 for jRj ¼
2:00.
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