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Abstract
Severe acute respiratory syndrome (SARS) is a highly lethal emerging disease caused by coronavirus
SARS-CoV. New lethal animal models for SARS were needed to facilitate antiviral research. We
adapted and characterized a new strain of SARS-CoV (strain v2163) that was highly lethal in 5–6
week old BALB/c mice. It had nine mutations affecting 10 amino acid residues. Strain v2163
increased IL-1α, IL-6, MIP-1α, MCP-1, and RANTES in mice, and high IL-6 expression correlated
with mortality. The infection largely mimicked human disease, but lung pathology lacked hyaline
membrane formation. In vitro efficacy against v2163 was shown with known inhihibitors of SARS-
CoV replication. In v2163-infected mice, Ampligen™ was fully protective, stinging nettle lectin
(UDA) was partially protective, ribavirin was disputable and possibly exacerbated disease, and
EP128533 was inactive. Ribavirin, UDA and Ampligen™ decreased IL-6 expression. Strain v2163
provided a valuable model for anti-SARS research.
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Introduction
Severe acute respiratory syndrome (SARS) emerged in 2002 in the Guandong province of
southern China as a new infectious respiratory disease characterized by influenza-like
symptoms and signs, but with a very high mortality rate (Ksiazek et al., 2003; Peiris et al.,
2003b). A novel coronavirus termed SARS-CoV was identified as the etiological agent
(Drosten et al., 2003a; Drosten et al., 2003b). The World Health Organization (WHO) reported
8,098 SARS cases from November 2002 to July 2003, and approximately 10% of the patients
died (http://who.int/csr/sars/country/table2003_09_23/en/). Subsequent outbreaks including
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two laboratory events occurred, but they were rapidly contained. These outbreaks demonstrated
the need for strategies to treat sporadic cases of SARS disease, including economical lethal
rodent models that would simulate human SARS disease.

Studies on the molecular evolution of SARS-CoV suggested that the virus emerged from non-
human sources (Guan et al., 2003), although the natural reservoir of the virus has not been
positively identified. A current hypothesis is that the horseshoe bat is the main natural reservoir
of SARS-CoV-like viruses (Hon et al., 2008; Li et al., 2005b). A number of SARS-CoV-like
viruses have been isolated from bats, although the full lineage for the ancestors of SARS-CoV
remains uncharacterized (Hon et al., 2008). Virus transmission to humans may have occurred
when civet cats, infected by bats, were traded on Chinese wet markets (Guan et al., 2003).

Severe SARS-CoV infections in humans are characterized by diffuse alveolar damage and
sparse inflammatory infiltrates (Chen and Subbarao, 2007; Franks et al., 2003; Nicholls et al.,
2003). Hyaline membrane formation is a hallmark of SARS-CoV lung damage in humans
(Hsiao et al., 2005). In addition to the hyaline membrane formation in severe SARS cases,
findings could include serous, fibrinous and hemorrhagic inflammation in pulmonary alveoli
with capillary engorgement, including micro-thrombosis in some of these capillaries (Lang et
al., 2003). Pulmonary alveoli are thickened with interstitial mononuclear inflammatory
infiltrates. Desquamation of pneumocytes can be detected along with fibrinoid materials, and
erythrocytes in alveolar spaces (Lang et al., 2003). Cell types in the respiratory tract in which
SARS-CoV antigen has been detected include the following: alveolar epithelial cells (primarily
type II pneumocytes), bronchial epithelial cells, and alveolar macrophages (Ding et al., 2004;
Ye et al., 2007). These cell types all have the angiotensin-converting enzyme 2 (ACE2), which
has been identified as one of the receptors to which SARS-CoV binds in order to be taken up
into host cells (Li et al., 2005a; 2003).

A number of animal species have been proposed to model SARS infections in human, including
macaques (Fouchier et al., 2003), marmosets (Greenough et al., 2005), mice (Glass et al.,
2004; Roberts et al., 2005), golden Syrian hamsters (Roberts, 2006), rats (Nagata et al.,
2007), cats (Martina et al., 2003; van den Brand et al., 2008), and ferrets (Chu et al., 2008;
Martina et al., 2003; Subbarao and Roberts, 2006; van den Brand et al., 2008). The utility of
various animal models has been extensively reviewed by Roberts and Subbarao (2006). Briefly,
the non-primate models do not exactly model the lung pathology found in humans. For
example, hyaline membrane formation is not seen at all or rarely detected. In the rodent models,
fever is also not detected. Nevertheless rodent models may be the most utile of the models
because of low expense, ease of handling, defined genetics, and the possibility of doing large-
scale statistically significant studies. Because of these advantages, a lethal rodent model would
be extremely valuable in antiviral drug testing where the amounts of experimental compound
available for evaluation in animals are often limited.

Since early in the SARS outbreak, there has been a concerted effort by many laboratories to
evaluate vaccines (Du et al., 2009) or to develop clinically approved drugs for efficacy against
SARS-CoV to rapidly provide a treatment for SARS infections in humans (Tong, 2009a; Tong,
2009b). To date, there is no approved agent for treating SAR-CoV and no agent has reached
human clinical trials (Wong and Yuen, 2008). This is due to lack of animal model testing among
other reasons. Ribavirin had been used to treat SARS infections in 2003 and 2004, but its
efficacy is questionable and it may exacerbate disease in mice (Barnard et al., 2006b) and
humans (Stockman, Bellamy, and Garner, 2006). Wu and others have recently reviewed the
state of drug discovery for SARS-CoV antiviral agents (Pyrc, Berkhout, and van der Hoek,
2007; Stockman, Bellamy, and Garner, 2006; Tong, 2009b; Wu et al., 2006; Yeung and
Meanwell, 2007). In the current study, we report on the pathogenesis and genetic changes of
a SARS-CoV strain, called v2163, which was adapted from SARS-CoV Urbani by 25 serial
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passages to cause a lethal pulmonary syndrome in 5–6 week old mice. Using multiple drugs
with purported antiviral activity, the utility of the new strain as a model virus for evaluating
drugs in cell culture and in mice is shown.

RESULTS
Morbidity and virus titers in mice

The Urbani strain of SARS-CoV, which is not lethal to BALB/c mice, was serially passaged
25 times in BALB/c mice at 3 day intervals and resulted in a highly lethal strain we designated
as v2163. The v2163 virus caused severe signs of illness in 5–6 week old BALB/c mice
including ruffled fur and lethargy within 3–4 days and death by day 6. Another lethal mouse-
adapted strain designated as MA15 (Roberts et al., 2007) was tested in parallel for comparison.
Both mouse-adapted strains caused substantial weight loss and produced high virus titers in
the lungs of infected mice (Table 1). In contrast, SARS-CoV strain Urbani-infected mice had
no significant weight loss compared with uninfected controls, although they had moderate virus
titers in the lungs three days post virus exposure as shown previously by Barnard et al.
(2006a; 2006b). Lung virus titers at 3 days post virus inoculation (d.p.i.) were higher in v2163-
infected mice than in MA15-infected mice. Lung titers did not appear dependent on the level
of virus inoculum, but did differ depending on the virus strain. The v2163 virus and MA15
virus persisted in the lungs for 6 days, while Urbani strain was below detection limit by day 6.

Mortality and recovery in mice
Infection with v2163 resulted in 100% of the 5–6 week old mice losing 20% of their initial
weight, and 70% to 100% of mice dying depending on the infectious dose (Table 1). Nearly
all MA15-infected mice lost more than 20% of their initial weight when infected with 104.5 or
105.5 CCID50 (Table 1), confirming results observed in 6–8 week old mice by Roberts et al.
(2007). However, the v2163 strain killed more mice than strain MA15 regardless of the
inoculum used (Table 1). The v2163 virus was lethal at concentrations as low as 103.5

CCID50 per mouse. In a replicate experiment, results were similar to those in Table 1, except
6 of 10 mice receiving 104.5 CCID50 of MA15 died (Table 2). However, the MA15-infected
mice that died had a mean day of death (MDD) of 13.5 ± 6.9 days, compared with 5.9 ± 1.4
MDD for the corresponding v2163-infected group (Table 2). Overall, death of 6-week old mice
infected with v2163 was significantly greater (P <0.001) than MA15-infected mice (Figure 1).
Recovery from severe illness was more likely for MA15-infected mice than for v2163-infected
mice, and v2163 was lethal at a lower infectious dose. The average LD50 for v2163 was
103.3±0.3 CCID50 per mouse. These data were unique because, by special provision, animals
were not euthanized during severe illness but allowed to die or recover spontaneously.

Age variability
The animal experiment was repeated comparing 5–6 week old mice with 10–11 week old mice
(Table 2). The older mice infected with MA15 lost more weight by 4 d.p.i. than corresponding
v2163-infected mice, and their MDD was 2–3 days later than v2163-infected mice. Mortality
in 10–11 week mice was high for both mouse-adapted virus strains using 105.5 and 104.5

CCID50 inocula. However, only 10% of the MA15-infected mice receiving the 103.5 inoculum
died, while 100% of the corresponding v2163-infected mice died. No mice died from Urbani
infection. Interestingly, in one separate age experiment, only 20% (2/10) of mice 3–4 weeks
old died from a 104.0–4.5 CCID50 v2163 infection, while 100% of 7–8 week old mice died (data
not shown). This supported the notion that SARS-CoV was more lethal in older hosts.
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Genome sequence
The v2163 virus had 9 mutations, one of which affected two reading frames, resulting in
changes to 10 amino acid residues compared with the wild type Urbani. Four mutations
occurred in the spike protein (S) region (Figure 2). A putative G-A mutation was observed in
base pair 22722 with some replicates, but it was not found in RNA from infected mouse lungs.
The mutations were compared to the MA15 lethal strain (Roberts et al., 2007), revealing
interesting similarities and differences in the mutation spectra associated with mouse
adaptation in young Balb/c mice (Figure 2). In the structural genes, the Y436H mutation in the
v2163 spike region was conserved in strain MA15, and the M-mutation was in a similar location
on both lethal strains (S6L for v2163, E11K in MA15). In the replicase genes, the nsp9 mutation
(E4185D) was located near an nsp9 mutation (T4184A) found in strain MA15, and both lethal
strains had an nsp13 mutation.

Cytokines and chemokines
The mouse-adapted strains of SARS-CoV elicited expression of cytokines IL-1α and IL-6, and
chemokines MIP-1α, MCP-1, and RANTES in the lungs of mice 3 days after infection as
measured with the multiplex ELISA assay (Figure 3). Levels of IL-1β, IL-2, IL-3, IL-4, IL-5,
IL-9, IL-10, TNF-α, and GM-CSF were below the minimum detection level for all test groups
(≤38 pg/mL of lung homogenate). Low levels of INF-γ were observed with both mouse-adapted
strains but not detected with the Urbani strain. Two out of ten v2163-inoculated mice showed
low cytokine response, and were excluded from cytokine analysis because they also had little
or no virus detected in their lungs. The MA15 virus stimulated significantly more MIP-1α, and
RANTES compared with Urbani (P < 0.05), and the v2163 virus caused significantly greater
MCP-1 response than Urbani (P < 0.01). A significantly higher IL-6 response compared with
the wild type Urbani strain was observed from both v2163 and MA15 mouse-adapted strains
(P <0.001, P < 0.05 respectively). The v2163-infected mice expressed 6-fold more IL-6 than
the MA15-infected mice. At the infection level used in this experiment, 100% of v2163-
infected mice died and no MA15-infected mice died, showing a correlation between IL-6
concentrations in the lungs and mortality.

Histopathology
Three lung samples for each virus or control were evaluated for pathological changes 3 days
after inoculation by a board certified veterinary pathologist (Figure 4). Lungs of mice
inoculated with the Urbani strain of SARS-CoV showed no significant changes, and sham-
infected controls showed no marked changes except some scattered dense granulomas in one
of three lungs. All three MA15-infected lungs showed small numbers of foamy macrophages
and small numbers of neutrophils. Alveolar septae were seen in two of the three MA15-infected
lungs. One MA15-infected lung had rare individual bronchiolar lining cells that were swollen
and hypereosinophilic and degenerate. Pathological changes were observed in two of the three
v2163-infected lungs; one had moderate numbers of neutrophils, edema fluid surrounding
several large vessels, and rare granulomas containing refractile central fragments of foreign
material replacing groups of alveoli. Another v2163-infected lung showed small numbers of
alveolar macrophages throughout airspaces. In general, lungs infected with MA15 or v2163
showed acute to subacute alveolitis with some perivascular edema in some sections (Figure
4). Differences between the two mouse-adapted strains were minimal. Hyaline membrane
formation, as occurs in human SARS patients (Roberts et al., 2005), was not observed.

In vivo efficacy of drugs against v2163 infection
To demonstrate the utility of the lethal mouse model for antiviral drug testing, we evaluated
the known antiviral agents ribavirin, an antiviral nucleoside analog (Sidwell et al., 1972), and
Ampligen™(poly I:poly C12U), a synthetic dsRNA polymer that induces interferon production
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(Barnard et al., 2006a; Carter et al., 1972; Gowen et al., 2007). We also evaluated the novel
drugs EP128533, a dipeptidyl glutaminyl fluoromethylketone protease inhibitor (Zhang et al.,
2006), and UDA, a lectin that impedes viral fusion and egress (Keyaerts et al., 2007).
Ampligen™ (10 mg/kg/d) afforded mice complete protection against death, reduced virus titers
in the lungs, and significantly reduced lung scores and weight loss (Table 3). UDA treatment
of 5 mg/kg/day resulted in 50% protection from death up to 10 days after infection (Table 3),
but no reduction in lung virus titer. A replicate 21-day study showed 40% protection and no
measurable toxicity with 15 mg/kg/d of UDA (data not shown). Protease EP128533 was
inactive in BALB/c mice.

Ribavirin treatment of 75 mg/kg/d did not significantly protect mice from death (Table 3).
Virus lung titers from mice treated with ribavirin were no different than those detected from
control mice on 3 d.p.i., but at 6 d.p.i. the titers in ribavirin- treated mice were higher than those
detected in the control group, suggesting that ribavirin prolonged lung infection, although this
difference was not statistically significant (Table 3). Gross pathology (lung scores) at day 6
revealed substantial lung discoloration in ribavirin-treated mice. The MDD in mice treated
with ribavirin was reduced (Table 3), but the survivor curve was statistically similar to that of
PSS controls (Figure 4). In the second experiment, virus titers were lower than controls in
ribavirin-treated mice on day 6 (Table 4), but 50% of that group also died by 6 d.p.i. (data not
shown).

The IL-6 concentration in the lungs on 3 d.p.i., was significantly lower (P < 0.05) in mice
receiving Ampligen™ or ribavirin treatment, and slightly lower with UDA compared with
controls (Table 4). EP128533-treated mice showed no difference in IL-6 compared with
controls. The uninfected control group had IL-6 levels of 2200 ± 670 pg/mL, which could be
a result of stress induced by handling mice during daily weights and twice daily treatments.
Therefore, 2200 pg/mL was considered the baseline IL-6 concentration in this study.

Histopathology of mice with varied antiviral treatments showed neutrophil infiltration and
degenerate cells (Table 4). Lesions observed by a board certified pathologist were summarized
in tabular form, and all lesions observed were included. Lungs in mice treated with a protease
inhibitor, EP128533, and cremaphor solvent control appeared to have less overall lesions on
3 d.p.i. than lungs of mice in other treatment groups. Ribavirin-treated lungs had fewer overall
lesions than those of other groups on 6 d.p.i. Macrophage infiltration, lymphocyte infiltration,
and edema were not detected in infected lungs in this experiment, and no hyaline membrane
formation was observed. Histological changes were similar between Ampligen™ treated
groups and untreated control groups.

In vitro efficacy testing with strain v2163
The v2163 strain was tested in vitro for sensitivity to multiple antiviral compounds. Compounds
were chosen based on their mode of action or purported activity in previous literature. Vero-76
cells were treated with multiple concentrations of each compound then infected with virus, and
the 50% effective concentration (EC50), the 50% cytotoxic concentration (IC50), and the
selective index (SI) for each compound were calculated (Table 5). Compounds with a high
selective index were considered active. The antiviral activity of drugs against v2163 was similar
to that of the same compounds against the Urbani strain (P > 0.05). Infergen™, a consensus
interferon-α (Kumaki et al., 2008), was shown to be highly active, with a 90% effective
concentration of <0.65 μg/mL against both strains and SI values >490. Ribavirin, promazine,
an antipsychotic drug (Barnard et al., 2008), and calpain inhibitor VI (Barnard et al., 2004)
showed no appreciable activity above their cytotoxic concentration (Table 5). EP128533
(Zhang et al., 2006) and UDA were moderately active. Calpain inhibitor IV (Barnard et al.,
2004) was slightly active against both SARS-CoV v2163 and Urbani strains, with a 90%
effective concentration of 12 and 6.4 μg/mL and SI values of 3.9 and 8.1 respectively. The
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v2163 strain appeared less sensitive to calpain inhibitor IV and EP128533 than strain Urbani,
although the differences were not statistically significant.

Discussion
We have developed a new mouse-adapted strain called v2163 that causes increased morbidity
and mortality in BALB/c mice, which the parent Urbani strain does not do. Strain v2163 was
derived from the non-pathogenic Urbani strain of SARS-CoV by serial passage in BALB/c
mice. Mice infected with the v2163 strain were less likely to survive SARS-CoV infection than
Urbani-infected or MA15-infected mice. The MA15 strain appeared less lethal in the current
study than shown by Roberts et al. (2007). However, in the study previously reported, death
was based on 20% weight loss. When 20% weight loss was equated to mortality in the current
work, the results for MA15 were closely similar to previous reports (Table 1). Further, the prior
finding that an inoculum of 103.9 CCID50 of MA15 per mouse was sublethal (Roberts, et al.,
2007) was confirmed in the current work. The reduced lethality of strain MA15 in the current
experiments may also be attributed to the use of 5–6 week old mice rather than 6–8 week old
mice. In the current study, 5–6 week old mice were much less susceptible to MA15 than were
10–11 week old mice (Table 2). SARS-CoV is known to be more fatal in aged patients than
in younger patients (Chen and Subbarao, 2007). Age-related susceptibility to SARS-CoV in
mice has been shown previously with 4 week versus 6 month old mice (Nagata et al., 2008),
with 12–14 month old mice (Roberts et al., 2005), and between 10 week old and 1 year old
mice (Rockx et al., 2007). The lethality of the v2163 virus in younger mice is an advantage for
its use as a convenient model for evaluation of potential antiviral treatments.

The v2163 genome contained nine mutations compared with the parent Urbani strain, and these
resulted in 10 amino acid residue changes since bp 26133 affects two reading frames. Although
the v2163 strain was developed independently, its genome shared mutations with the
previously created mouse adapted MA15 strain (Figure 2). The spike mutation Y436H was
common to both lethal strains, and is within the receptor-binding motif (Roberts et al., 2007).
The Y436H mutation has been shown to enhance infectivity of recombinant viruses in mice
(Becker et al., 2008), presumably by providing a more favorable interaction with the mACE2
receptor for docking and entry. The v2163 strain had three mutations in the S (spike) region
that were not present in MA15, suggesting that the increased virulence observed with v2163
potentially may be due to binding properties. Moreover, Y442F is a contact interface residue
site that engages the ACE2 receptor, and passage of civet strain SZ16 K479N in human airway
epithelial cells selected for a similar change at this position, shown to enhance SZ16 S
interaction with the hACE2 receptor (Sheahan et al., 2008). Further, in separate work, a Y442L
mutation was seen on a third mouse-adapted strain (MA20) in the same amino acid residue as
the Y442F mutation of v2163 (Frieman, et al. publication in preparation). Interestingly, the
T1181L and N1169D alterations are in the heptad repeat elements in S2 where they could
promote fusion and entry or host range expansion (McRoy and Baric, 2008).

Mutations outside of the spike region also appeared to be important. The mutation in the M
glycoprotein gene (S6L) is near the MA15 E11K mutation that has been associated with
increased production of virus particles from infected cells, presumably by promoting more
efficient assembly and release, although the exact mechanism is unknown (Pacciarini et al.,
2008). The nsp9 E4185D mutation is located near the nsp9 T4184A mutation of MA15, and
likely confers a similar phenotypic difference, presumably increasing virulence. Both lethal
strains had an nsp13 mutation, although it is not known if they confer similar changes to the
protein structure. The fact that independent selections resulted in similar mutation profiles in
target genes supports their role in increased replication and/or pathogenesis. Elucidation of the
effects of these specific mutations may be key to understanding the genotypic variations that
lead to more lethal phenotypes of SARS-CoV and coronaviruses in general. Such knowledge
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could allow rapid synthesis of chimeric viruses for use in evaluating and developing effective
antiviral treatments.

Multiple cytokines and chemokines expressed in the lungs of BALB/c mice 3 d.p.i. infected
with mouse-adapted SARS-CoV were significantly higher than those found in lungs of mice
infected with the Urbani strain of SARS-CoV (Figure 3). IL-6 and MCP-1 were more strongly
expressed in v2163-infected mice than in MA15-infected mice. IL-6 and MCP-1 have been
observed in human SARS patients (Chen and Subbarao, 2007), and one human study
determined that IL-6, IL-8 and MCP-1 indicated a high risk of death (Jiang et al., 2005).
Therefore, MCP-1 and IL-6, are likely good early indicators of disease outcome in mice. In
contrast, cytokines MIP-1α and RANTES were more elevated in MA15-infected groups than
v2163-infected groups. Since MA15-infected mice had lower mortality than v2163-infected
mice, MIP-1α and RANTES may not be good indicators of disease outcome. When comparing
the mouse cytokine profile to that detected in human SARS patients, the majority of human
studies showed the same profile as seen in mice for IL-2, IL-4, IL-6, IL-10, IFN-γ, TNF-α,
IP-10 and MCP-1 (Cameron et al., 2008;Chen and Subbarao, 2007;Hsueh et al., 2004;Zhu,
2004)(Table 6). In contrast, IL-1β was not elevated in mouse lungs or in human lungs, but 3
of 5 serum studies reviewed showed elevated IL-1β in human patients. RANTES was elevated
in mouse lungs but not in the human sera. However, uninfected controls had elevated RANTES
levels in mice as well, so the response was not considered important. IFN-γ was detected in
lethally infected mouse lungs but not in human lungs. Nevertheless, the IFN-γ findings were
considered consistent with human data since the IFN-γ level in mice was low, and IFN-γ has
been found in human serum in some studies but not others. The two mouse-adapted SARS-
CoV strains in this study both resulted in similar cytokine profiles (Figure 3).

IL-6 levels were of particular interest. The increase in IL-6 corresponded directly with an
increase in mortality in the respective experimental groups. Mice infected with the wild-type
Urbani strain showed no signs of disease or death, and they had no IL-6 detected in the lungs,
while v2163-infected mice expressed high levels of IL-6. In one replicate study, 100% of
v2163-infected mice died, and the average IL-6 level for lung homogenates in that group was
2750 pg/mL with only one mouse lower than 2700 pg/mL. The corresponding MA15-infected
group in the same study had 100% recovery after severe illness, and those mice had an average
IL-6 concentration of only 520 pg/mL with no sample higher than 900 pg/mL. Similarly, one
clinical study found that patients with the poorest outcomes also had high levels of IL-6
secreting cells (Jones et al., 2004). In the current work, infected mice receiving PSS, cremaphor
and EP128533 groups showed higher IL-6 concentrations than the ribavirin, Ampligen™ and
UDA groups (Table 4). The lower IL-6 concentration on 3 d.p.i. coincided with treatments that
afforded at least some protection against death in the survival study (Table 3).

The role of IL-6 in SARS-CoV infection merits further investigation. IL-6 is critical in B-cell
maturation and acute-phase responses (Kopf et al., 1994), and it is critical in coordination of
immune response (Gowen et al., 2006). Conversely, a study reported by Hegde, Pahne, and
Smola-Hess (2004) suggests that IL-6 also has immunosuppressive properties. However, high
expression of IL-6 may exacerbate disease. In SARS patients, damage to the lung seems to be
primarily by viral destruction of alveolar and bronchial epithelial cells and macrophages (Chen
and Subbarao, 2007). However, elevated IL-6 levels and concomitant lung damage continued
even after peak virus production, which suggests that IL-6 contributes to disease progression
(Wang et al., 2004). Furthermore, a SARS patient study showed altered liver function,
leucopenia, lymphopenia, thrombocytopenia, and subsequent respiratory distress syndrome,
suggesting that there was inflammatory damage resulting from SARS-CoV infection (Peiris
et al., 2003a). Studies with other viruses also suggest that excess production of IL-6 may
exacerbate disease. For example, a study of herpes simplex virus (HSV) suggested that
exuberant production of IL-6 in neonates may explain why sepsis syndrome is more common
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with HSV infection in neonates than in adults (Kurt-Jones et al., 2005). A study of phlebovirus
infection also proposed that IL-6 contributes to pathogenesis (Gowen et al., 2006). Regardless
of the cause-effect relationship, we found that IL-6 is strongly expressed in the lungs during
infection with mouse-adapted SARS-CoV virus and may be an effective predictor of disease
outcome.

The histopathology of SARS is difficult to distinguish because most lesions observed with
SARS can be found with many infections. The main distinguishing histopathological factors
in human SARS disease are consolidation, edema, and hyaline membrane formation (Guo et
al., 2008). Also, inflammatory infiltrates, usually comprised of mostly macrophages and
lymphocytes, are disproportionately low in number with respect to the alveolar damage, and
sometimes absent (Chen and Subbarao, 2007; Cheung et al., 2004; Guo et al., 2008). In the
current study, lungs infected with mouse-adapted strains of SARS-CoV showed acute to
subacute alveolitis with some perivascular edema in some sections. Mice lungs had slight to
moderate neutrophil and macrophage infiltration, but lymphocytes were not observed.
Erythrocyte infiltration and some fibrinous material were observed with v2163 in some
experiments not shown. No hyaline membrane was formed in the mouse lungs. Since lung
pathology differed from human disease, and since mice groups that died from infection had
similar pathology to that of treated mice that survived infection (Table 5), we submit that
histopathology will not be an important marker in this SARS model.

SARS infects multiple tissues in humans, including spleen, intestines, kidneys, liver, adrenal,
parathyroid, pituitary, cerebrum, and pancreas and neurons of CNS (Chen and Subbarao,
2007; Guo et al., 2008). With v2163, infectious virus was consistently found in the lung and
snout of v2163 inoculated mice on day 3 and day 6 post inoculation, but was only rarely seen
in serum. Virus was not recovered from kidney, brain, spleen, intestine, liver, or heart of v2163-
infected mice with limits of detection of 2.1 log CCID50 for kidney, and 1.1 log CCID50 for
brain, spleen, and heart, and 4.1 log CCID50 for liver and intestine (data not shown). With
MA15, Roberts et al. (2007) reported low titers of infectious virus found in lung, brain, spleen
and liver of mice infected with MA15.

Ribavirin, Ampligen™, EP128533, and UDA treatments were selected to assess the new v2163
strain of SARS-CoV as a model for in vivo evaluation of potential antiviral drugs. These drugs
where chosen to represent a variety of modes of action.

Ribavirin is a known antiviral compound (Sidwell et al., 1972) with multiple modes of action,
most of which stem from inhibition of inosine monophosphate dehydrogenase (IMPDH)
leading to depressed intracellular GTP levels (Streeter et al., 1973). We had previously found
in a mouse virus lung replication model of SARS-CoV that ribavirin extended the time that
virus could be detected in the lungs of mice (Barnard et al., 2006b), and this was also observed
in one trial of the current study (Table 3). The prolonged high lung titers observed suggested
that ribavirin may contribute to the pathogenesis of SARS-CoV by prolonging and/or
enhancing viral replication in the lungs, allowing continual stimulation of the inflammatory
response, which may contribute to pathogenesis (Perlman and Dandekar, 2005). Also, ribavirin
is known to be somewhat toxic, causing hemolytic anemia and other adverse side effects
(Wong and Yuen, 2008), so ribavirin would presumably exacerbate disease if there were no
concomitant antiviral effect. Interestingly, exacerbation of viral disease by ribavirin has also
been shown with West Nile Virus, resulting in increased mortality in hamsters (Morrey et al.,
2004) and possibly in human patients (Chowers et al., 2001). In contrast, the second experiment
in the current work showed significantly decreased IL-6 concentrations on 3 d.p.i. and
somewhat decreased virus titers in ribavirin-treated animals on 6 d.p.i., suggesting some effect
of ribavirin in mice (Table 4). The IL-6 reduction with ribavirin was interesting in light of
previous reports that ribavirin inhibited IL-6 production in respiratory epithelia cells infected
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with RSV virus (Jiang, Kunimoto, and Patel, 1998) and endothelial cells infected with Dengue
virus (Huang et al., 2000). However, IL-6 was not reduced by ribavirin in activated T-cells
(Hultgren et al., 1998), and ribavirin treatment did not reduce SARS-CoV viral load or IL-6 in
human SARS patients (Wang et al., 2005). Ribavirin has not been shown to be effective against
SARS in humans. In 2006, systematic review and comprehensive summary of treatments used
for SARS patients found that 26 studies with ribavirin were inconclusive and that four showed
possible harm (Stockman, Bellamy, and Garner, 2006). However, a 2008 review stated that
ribavirin treatment combined with protease inhibitors could be useful clinically, although
randomized controlled trials were still needed (Wong and Yuen, 2008). Another study showed
synergy with ribavirin in combination with IFN-β in vitro (Morgenstern et al., 2005).
Additional research is required to draw more certain conclusions about ribavirin in mice,
including age-related studies and drug combination experiments using the lethal v2163 virus
as a model.

Ampligen™, poly(I:C(12)U), is a synthetic dsRNA polymer that stimulates production of
interferon (Carter et al., 1972; Gowen et al., 2007). Ampligen™ has been shown to be effective
in vivo against multiple viruses, including Coxsackie virus (Padalko et al., 2004), Venezuelan
equine encephalitis (VEE) virus (Julander et al., 2008), punta toro virus (Sidwell et al.,
1994), Modoc virus (Leyssen et al., 2003), duck hepatitis B virus (Niu et al., 1993), Banzi virus
(Pinto, Morahan, and Brinton, 1988), herpes simplex type 2 (HSV-2) virus (Pinto, Morahan,
and Brinton, 1988), and Pichinde virus (Smee et al., 1993). In a virus replication model,
Ampligen™ at 10 mg/kg was previously found to afford protection against SARS-CoV
replication in the lungs (Barnard et al., 2006a). SARS-CoV is known to be sensitive to type I
interferons, IFN-α/β (Cinatl et al., 2003; Stroher et al., 2004). Normally, in the presence of
double-stranded RNA or 5′-triphosphorylated ssRNA such as in viral infection, IFNs are
synthesized and secreted by infected cells and stimulate expression of potent antiviral proteins
(Sadler and Williams, 2008; Samuel, 2001). However, IFN pathways are blocked in cells
infected with SARS-CoV (Frieman, Heise, and Baric, 2008), thus making the host more
susceptible to infection. We believe that exogenous stimulation of IFN pathways with
Ampligen™ overcomes the evasion of virus sensing and signaling pathways. Furthermore,
Kuri et al. suggested that “priming” with small amounts of IFN helps the cells themselves
restore their normal IFN response to SARS-CoV (2009). In the current study, Ampligen™
appeared not to affect virus replication initially, but led to more rapid decline of virus in the
lungs compared with untreated animals by 6 d.p.i. (Table 3). The study showed that
Ampligen™ protected against death and gross damage to the lungs in the presence of lethal
SARS-CoV.

Stinging nettle lectin (Urtica doica agglutinin, UDA) is an N-acetyl glucosamine-specific lectin
that was reported as efficacious against HIV (De Clercq, 2000). More recently, UDA was
reported to inhibit coronaviruses in vitro with some selectivity (van der Meer et al., 2007a).
Keyaerts et al. (2007) showed that UDA was a potent and selective inhibitor of SARS-CoV
strain Frankfurt-1. Plant lectins like UDA probably target viral attachment and fusion, and
exocytosis or egress of the virus from the cell (Balzarini, 2007; van der Meer et al., 2007b).
The reduction of IL-6 in lungs at 3 d.p.i. along with 50% survival of mice in this study provide
evidence to support further investigation of UDA treatment regiments as potential antiviral
therapies.

Zhang et al. (2006) reported the design and synthesis of a SARS-CoV protease inhibitor
EP128533, 4-(Z-Val-amido)-6-fluoro-5-oxohexanoic acid dimethylamidea, chemical formula
C21H30FN3O5 and molecular weight 423. It was shown to inhibit replication of SARS-CoV
strains FFM1 and 6109 in Vero and CaCO2 cells. In the current study, EP128533 was active
in cell culture against the Urbani and v2163 strains of SARS-CoV (Table 5), but it was not
efficacious in preventing death or reducing the disease signs measured in BALB/c mice (Tables
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3 and 4). Since EP128533 is relatively insoluble, the lack of activity is likely because it is not
bioavailable in the animal. EP128533 in uninfected mice was not toxic, and replicate trials
using DMSO as the solvent yielded similar results as with cremaphor (data not shown).
Nevertheless, based on in vitro results, this compound may be a foundation for an effective
antiviral protease if a prodrug is developed to make it more soluble and bioavailable.

In vitro sensitivity to antiviral compounds of the v2163 strain was similar to that of strain
Urbani (P > 0.05) when the two strains were tested in parallel against multiple compounds. In
vitro data confirmed recent findings by Barnard et al. (Barnard et al., 2008; Barnard et al.,
2006b) that promazine, an antipsychotic drug, and ribavirin, a nucleoside analog, were not
effective against SARS-CoV in vitro. Findings with v2163 supported prior findings that
Infergen™ was active in vitro against SARS-CoV Urbani (Kumaki et al., 2008). Protease
inhibitor EP128533 was active in vitro, as shown previously (Zhang et al., 2006). The current
in vitro results showed no marked activity with a calpain inhibitor VI, and slight to moderate
activity with calpain inhibitor IV. A previous report showed greater antiviral activity with
calpain inhibitor VI than with calpain inhibitor IV (Barnard et al., 2004), and the differences
were attributed to greater cell sensitivity to drug toxicity in the previous work, inoculum
variation between studies, and stronger virus replication in mammalian cell culture during the
current study. UDA was found to be moderately active with antiviral selectivity (SI = 19–22),
as with previous work (Keyaerts et al., 2007). Therefore, the v2163 strain was shown to be
effective for evaluating antiviral compounds in vitro using microscopic cytopathic effect,
neutral red assays, and virus yield reduction tests. Using the v2163 strain in various in vitro
assays allowed detection of a highly active compound and various inactive compounds. This
will facilitate future analysis of antiviral compounds, since they can be screened in vitro with
the v2163 strain and tested in vivo with the same strain.

In conclusion, the new v2163 mouse-adapted strain of SARS-CoV was highly virulent in
BALB/c mice 5–6 weeks old, even with infectious doses as low as 103.5 CCID50 per mouse.
Infection with v2163 caused signs of disease, a strong immunological response, and lung
pathology. The v2163 infection largely simulated human disease, except that hyaline
membrane formation was not detected in the lungs, and infectious virus was not found in tissues
outside of the respiratory tract, as is characteristic in human infection (Chen and Subbarao,
2007). Mutations in the virus were consistent with those seen in another mouse-adapted strain,
and these may be useful in identifying genotypic markers for lethality. The v2163 strain
propagated well in cell culture and was shown to be suitable for in vitro screening of potential
antiviral compounds against SARS-CoV. Strain v2163 was used effectively as an in vivo model
to evaluate SARS-CoV therapies, showing that Ampligen™ pretreatment was active against
lethal SARS-CoV infection, and that UDA may have antiviral effects as well. This new model
will facilitate identification of valuable antiviral compounds against SARS-CoV and against
future emerging pathogens related to SARS-CoV.

Materials and Methods
Mice, cells, media

Female BALB/c mice were obtained from Charles River Laboratories (Wilmington, MA).
They were maintained on Wayne Lab Blox and tap water ad libidum. They were quarantined
for >24 h prior to use. Cells used were Vero-76 (ATCC CRL1587), Vero E6 (ATCC CRL1586),
and Vero (ATCC CCL81) cells maintained in MEM supplemented with 10% fetal bovine
serum (FBS) and no antibiotics. For virus titer tests, MEM with 2% FBS and 50 μg/mL
gentamicin was used.
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Test compounds
Ribavirin was provided by ICN Pharmaceuticals (Costa Mesa, CA). Calpain inhibitor IV and
calpain inhibitor VI were obtained from CalBiochem (San Diego, CA). Infergen™ was
interferon alfacon-1 lot 002586 kindly provided by Intermune, Inc. (Brisbane, CA) in 27 μg/
mL solution and held frozen until tested. Ampligen™ from Hemispherx Biopharma, Inc. was
obtained through the NIAID Antiviral Substances Program. Promazine HCl was obtained from
Sigma Chemical Corporation (St. Louis, MO). EP128533 was obtained from Epicept
Corporation (San Diego, CA) and through the NIAID Antiviral Substances Program. Stinging
nettle lectin (UDA) was obtained from EY Laboratories, Inc. (San Mateo, CA). Compounds
were suspended in DMSO or purified water at 20 mM, then diluted in minimal essential
medium (MEM) as needed for in vitro assays. Compounds for in vivo assays were diluted in
saline, except protease inhibitor EP128533, which was diluted in a cremaphor vehicle (10%
cremaphor, 10% ethanol, 80% purified water).

Viruses
MA15 virus—The MA15 strain of SARS-CoV mouse-adapted virus was kindly provided by
Dr. Kanta Subbarao, National Institute of Health, NIAID, designated “MA-15 3A-1 P1 in Vero
cells 4/25/2005.” For cytokine and lung pathology, MA15 virus was infected into BALB/c
mice, then the mouse lung homogenates containing the virus were filtered and subcultured
again in Vero (ATCC CCL-81) cell culture for 2 days. Cell culture homogenates were sonicated
then frozen at −80°C. For all other in vivo work, the MA15 virus was subcultured in Vero E6
cells in MEM with 10% FBS, 1 mM sodium pyruvate and 0.1 mM non-essential amino acids.
After a two day incubation, cell culture homogenates were sonicated, centrifuged to clarify the
solution, then aliquotted and held frozen at −80°C. Subcultured stocks were verified by PCR
using primers flanking characteristic mutations.

Urbani virus—Severe acute respiratory syndrome coronavirus (SARS-CoV), strain Urbani
(200300592), was obtained from the Centers for Disease Control and Prevention (CDC,
Atlanta, GA) and routinely passaged in Vero 76 cells.

Mouse-adapted SARS-CoV v2163—Three BALB/c mice were anesthetized with
Ketamine/Xylazine mixture (approximately 100 mg/kg + 5 mg/kg respectively) and infected
with 50 μL or 100 μL of SARS-CoV Urbani virus solution by nasal inhalation. Three or five
days after infection, mice were euthanized, and the lungs were removed and homogenized in
5 mL of MEM + 10% FBS. The homogenate was tested for virus titer by CPE endpoint dilution
assay, then re-infected into a subsequent group of mice. These infection steps continued for 25
passages, five passages with the homogenate diluted 1/5, then 20 additional passages without
dilution of the lung homogenate between groups. This was determined to be valid because
control mice demonstrated no notable effect from inhalation of uninfected lung tissue. One
interim passage, P-12, was plaque purified. Passages ceased when increased virus titer in the
lungs and signs of illness were observed in the infected animals. Lung homogenate from
passge-25 mice was filtered and subcultured in Vero 76 cells, then diluted and plated to isolate
single plaques. Plaque purification in Vero76 cells was repeated 3 times. Four isolated plaques
were subcultured in Vero-76 cells then compared by infecting into BALB/c mice. The most
virulent isolate was selected. Aliquots of the virus stock were incubated in MEM medium for
seven days and demonstrated no growth of extraneous bacteria or fungi. RNA was isolated
from the virus stock using the RNA-easy kit (Qiagen, Alameda, CA) and tested by qRT-PCR
with two primer pairs to verify the presence of SARS-CoV sequences (Accession
#AY278741). The presence of SARS-CoV antigen in the virus stock was also demonstrated
using the SARS-CoV Ag Detection kit (Wantai Inc., China). The new virus stock was
designated “SARS-CoV USU strain v2163” and was used for subsequent studies. It is hereafter
referred to as v2163.
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Genome sequence
Sequence analysis was then performed at the University of North Carolina. RNA was purified
from the cell lysate of Vero-76 cells infected with SARS-CoV V2163 using the RNAeasy kit
(Qiagen, Alameda, CA) followed by first-strand cDNA synthesis by reverse transcription using
Superscript II (Invitrogen, Carlsbad, CA) as per the manufacturers’ protocol. Reverse
transcription was performed with an initial incubation of 65 °C for 5 min then cooled on ice
followed by a 50-min incubation at 42 °C and a 5-min denaturation at 70 °C. Two microliters
of each cDNA reaction were amplified by PCR using Accuprime High Fidelity Taq Polymerase
(Invitrogen, Carlsbad, CA). Fifteen pairs of primers were used to generate the overlapping PCR
products spaced every 2.5 Kb generating DNA fragments with 500 bp overlap at each end.
Amplification products were visualized on agarose gels and purified by use of the QIAquick
Gel Extraction Kit (Qiagen, Alameda, CA). PCR products were sequenced in both forward and
reverse directions with primers spaced every 500 bp along the genome. Automated sequencing
was performed utilizing the BigDye Terminator version 3.1 Cycle Sequencing Kit (Applied
Biosystems, Foster City, CA) as per manufacturer’s instructions on an ABI Prism 3730 DNA
Analyzer (Applied Biosystems). Sequences were assembled and analyzed with Vector NTI
and Auto Assembler DNA Sequence Assembly Software (ABI Prism; Applied Biosystems).
When a mutation was identified in comparison with the SARS-CoV published sequence
(Urbani accession #AY278741), independent RT-PCR reactions were run and subsequent RT-
PCR products were sequenced through the region containing the putative mutation to confirm
the mutation.

Mouse virulence studies
Mice 5–6 weeks old (14–16 grams) were separated into groups of 10 mice for sacrifice on days
3 and 6 post infection, and 9 or 10 mice for weight and survival data. Mice were anesthetized
by 0.1 mL intraperitoneal injection of ketamine (100 mg/kg)/xylazine (5 mg/kg) and then
infected intranasally with a 50 μl suspension of the virus. Mice were inoculated with
approximately 105.5, 104.5, and 103.5 CCID50 of v2163 or MA15. Plaque assays were
performed in Vero 76 cells on the actual inocula after infection and showed that the MA15
virus titer was equal or higher than that of the corresponding v2163 titer for both replicate
experiments. As a wild type control and for comparison, mice were inoculated with
approximately 105 CCID50 of the Urbani SARS-CoV strain. Groups of 5 and 10 mice were
sham infected with MEM as a negative control. The groups of 10 survival mice were weighed
individually to the nearest 0.1 gram each day, and observed daily for death. Animals were held
until death naturally occurred or up to 21 d.p.i. Three days and 6 d.p.i., 5 survivors in each
group were euthanized and the lungs removed. Lungs were then diluted 1:20 in MEM + 10%
FBS, homogenized, and held at −80 °C for virus titer testing. Lung homogenates were later
thawed and serially diluted in MEM + 2% FBS in triplicate in 96-well plates to obtain
CCID50 values by the endpoint dilution method described below for virus yield reduction
assays. The mean day of death (MDD) was calculated using mice that died and excluding
survivors. The study was repeated in 5–6 week old mice and also performed once in 10–11
week old (17–21 gram) mice. Another study was performed as above, with just the 104.5

inoculum in BALB/c mice of various ages to determine the age-dependent susceptibility to
lethal infection.

Cytokine and chemokine analysis
Groups of 15 mice (14–18 g) were inoculated intranasally with the three virus strains suspended
in 50 μL of MEM solution, and controls were mock infected with saline. Inocula (CCID50 per
mouse) were 4.1 ± 0.3 log CCID50 for Urbani, 4.2 ± 0.4 for v2163, and 4.0 ± 0.5 for MA15.
On day 3 post virus exposure, five surviving mice were euthanized and the lungs harvested.
Remaining mice were held for measurements of weight loss and death. Lung sections were
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saved for histopathology in formalin solution. The remaining lung section was diluted 1:20 in
MEM solution and homogenized, then held frozen at −80 °C. Samples were then tested for
cytokines IL-1α, IL-1β, IL-2, IL-3, IL-4, IL-5, IL-6, IL-9, IL-10, TNF-α, GM-CSF and INF-
γ, and for chemokines MIP-1α, MCP-1, and RANTES using the Q-Plex™ mouse cytokine
array screen (Quansys Bioscience, Logan, Utah), a quantitative ELISA-based test with multiple
distinct capture antibodies absorbed to each well of a 96-well plate in a defined array. Cytokines
were quantified by relative luminescence of each spot in the array, and values (pg/mL)
calculated using the concurrently-run Quansys Bioscience™ standard curve and the
QuansysAnalysys™ software (version 3.4). In one replicate some MCP-1 and RANTES values
exceeded the standard curve range and were estimated by extrapolation (Figure 3). Two of ten
v2163-inoculated mice had abnormally low cytokines and were excluded as outliers because
they had little or no virus detected in the lungs. The cytokine results from all mice from the
two experiments were combined for averages, standard deviation, and Kruskal-Wallis analysis
of variance followed by Dunn’s multiple comparison test compared to Urbani-infected mice.

Histopathology
Groups of animals were infected as described for the cytokine assay above. After three days,
lungs from sham controls and mice exposed to 104 CCID50 Urbani, 104 v2163, 105 MA15 and
were formalin-fixed. Three lungs from each group were sectioned and stained with H&E stain
and evaluated by a board certified veterinary pathologist for histopathological changes.

In vivo efficacy of drugs against v2163 infection
Groups of mice (16–19 g) were inoculated with 50 μL containing 104.0–104.4 CCID50 of v2163
virus by the i.n. route. Groups of mice were administered 100 μL of the following drugs by the
intraperitoneal (i.p.) route: ribavirin 32.5 mg/kg twice a day 8 hours apart for 4 days beginning
4 hours prior to exposure to virus; Ampligen™ at 5 mg/kg for 4 treatments 12–16 hours apart
beginning 16 hours before virus exposure; and physiological saline solution (PSS) as a placebo
using the dosing regimen described for ribavirin. In separate studies, 16–18 g mice were treated
with UDA at 5 mg/kg/d using the treatment regiment described above for ribavirin, and 18–
20 gram mice were treated with 30 mg/kg/d of EP128533 protease suspended in 10%
cremaphor administered b.i.d. as above for 5 days beginning at time of infection. Mice for
toxicity controls were treated with PSS or cremaphor diluent using the treatment regimes
described above but without virus exposure. Mice were observed daily, and group weights
were taken periodically throughout the test period. The average weight loss was calculated on
3 d.p.i., and significance between treatments evaluated by one-way analysis of variance
followed by Newman-Keuls multiple comparison test. Compound toxicity in uninfected mice
was evaluated in terms of weight change and adverse events, and no drug toxicity was observed
in this study.

On days 3 and 6 post infection, three to five surviving mice from each treatment group were
sacrificed. The remaining mice were held and observed for death up to day 14 post virus
exposure (10 days for UDA). Animals that lost greater than 30% of their initial body weight
in this experiment were humanely euthanized and the day of euthanasia was designated as the
day of death. Lungs from sacrificed mice were observed for gross pathology and discoloration
and assigned a score ranging from 0 (normal appearing lung) to 4 (maximal plum coloration
in 100% of lung). Mouse lung samples from each test group were pooled and homogenized in
MEM solution and assayed in duplicate for infectious virus using the method described below
for virus yield assays using triplicate wells of Vero 76 cells. Titers were compared to controls
by analysis of variance on log-transformed values assuming equal variance and normal
distribution.
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The procedures above were repeated in 15–18 gram mice for IL-6, histopathology, and virus
titers in lungs and multiple tissues on 3 and 6 d.p.i. Lung sections were placed in formalin and
examined for histopathology as described above. Remaining lung portions were homogenized
individually in 2 mL of MEM + 10% FBS and held frozen at −80°. Samples were thawed,
mixed, and then tested for IL-6 levels using the eBioScience (San Diego, CA) IL-6 ELISA kit
per manufacturer’s instructions. Samples size was three per treatment group for histopathology,
4 or 5 for IL-6 and virus titer depending on number of survivors remaining. Values in pg/g of
lung were converted to pg/mL corresponding with the 1/20 dilution used in the initial untreated
mice (Figure 3). A low outlier in saline day 3 (655 pg/mL) was included in results but excluded
from statistical analysis. IL-6 levels in treated groups were compared to untreated controls by
ANOVA with Newman-Kuels pairwise comparisons. Individual tissues were harvested with
separate sterile instruments to ensure that each tissue was isolated from the lung during
necropsy. Tissues were homogenized and titers performed as described for lungs above.

In vitro efficacy testing with strain v2163
The antiviral activity of test compounds was evaluated using the v2163 mouse-adapted virus
strain as an in vitro model compared with strain Urbani run concurrently. Antiviral activity
was measured by inhibition of virus-induced cytopathic effect (CPE) (Sidwell and Huffman,
1971), neutral red (NR) dye uptake (McManus, 1976), and also by virus yield reduction assays.
Vero-76 (ATCC CRL 1587) cells grown in MEM with 10% fetal bovine serum (FBS) were
seeded into 96-well plates at a concentration of 2 × 104 cells per well and grown overnight at
37°C with 5% CO2. Test compounds were dissolved in DMSO or water, then serially diluted
in MEM by half-log dilutions in triplicate wells. Test wells were infected with a multiplicity
of infection (MOI) of less than 0.007 CCID50 per cell, sufficient to cause near complete
cytopathic effect (CPE) in three days, which was 1.6 to 2.1 log CCID50 per well for Urbani,
and 1.0 to 2.4 log CCID50 per well for v2163. The test medium was MEM with 2% FBS and
50 μg/mL gentamicin. Toxicity of compounds was assayed in duplicate wells without virus.
Plates were incubated as above for three days, then each well read microscopically for CPE.
Cells were incubated with 0.011% NR dye for two h at 37 °C. Free dye was removed from the
wells, then the uptaken dye was eluted with 50% ethanol in Sorensen citrate buffer for >30
min. Absorbance was then measured as described by Finter (1969), with an Opsys MR
microplate reader (Dynex, Chantilly, VA) at 540 and 405 nm. Absorbance values and visual
CPE were expressed as percentages of cell controls and untreated virus controls, adjusted for
toxicity. The 50% effective concentration (EC50) and 50% inhibitory concentration (cytotoxic,
IC50) values were calculated by regression analysis.

Virus yield reduction assays were performed using the cell culture 50% infectious dose
(CCID50) assay essentially as described previously (Smee et al., 1992). Briefly, supernatants
from each well were serially diluted in triplicate wells of 96-well plates containing Vero-76
cells. Plates were incubated six days and then checked for virus-induced CPE. Quantitation of
virus yield titers was by the end point method of Reed and Muench (1938). The EC90 value
was calculated using linear regression to estimate the concentration necessary to inhibit virus
yield by 90% or a one log10 decrease in virus titer. Results of at least three assays were averaged
and activity with the two virus strains was compared by student’s t test.

Statistical analyses
Statistical analyses were performed using PRISM™ 5.01 for Windows, PRISM™ 4.0c for
MAC (GraphPad Software, Inc., La Jolla, CA), and Microsoft Excel 11.5. Comparisons not
otherwise detailed were performed by the student’s two-tailed t-test assuming normal
distribution and equal variance, and more sophisticated analyses performed if differences were
observed. The Kolmogorov-Smirnov test (KS test) for normal distribution and Bartlett’s test
for equal variance were performed as applicable. MDD, cytokine values, and gross lung score
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data were analyzed by Mann-Whitney pairwise comparisons or the Kruskal-Wallis test
followed by Dunn’s multiple comparison test as applicable. Surviving animals were not
included in MDD calculations. Raw survival numbers were compared by the Fisher exact test.
Survivor curve analysis (as in Figure 1) was done using the Kaplan-Meier method and a log
rank test. When that analysis revealed significant differences among the treatment groups,
pairwise comparisons of survivor curves were analyzed by the Gehan-Breslow-Wilcoxon test,
and the relative significance was adjusted to a Bonferroni-corrected significance threshold for
the number of treatment comparisons made. Differences in percent weight loss were tested by
one-way ANOVA with Newman-Keuls multiple comparison test, assuming equal variance and
normal distribution. For lung titer data, we performed a KS test for normality, then used non-
parametric Kruskal-Wallis test with Dunn’s multiple comparison test for groups that were not
normally distributed, and a one-way ANOVA with Newman-Keuls multiple comparison test
for groups that were normally distributed. LD50 was calculated using Probit analysis (StatPlus:
MAC 2009).

Ethics and biosafety
This study was conducted in accordance with the approval of the Institutional Animal Care
and Use Committee of Utah State University dated 21 September, 2004. The work was done
in the AAALAC-accredited Laboratory Animal Research Center of Utah State University. The
U. S. Government (National Institutes of Health) approval was renewed 27 February 2002
(Assurance no. A3801-01) in accordance with the National Institutes of Health Guide for the
Care and Use of Laboratory Animals (Revision; 1996). By special provision, animals for
lethality comparisons were allowed to survive without compassionate euthanasia until death
naturally occurred in order to distinguish weight loss and mortality. All experiments involving
infectious SARS-CoV were carried out in BSL-3+ laboratories, and all personnel wore
complete body protective coverings and HEPA-filtered powered air purifying respirators.

Acknowledgments
We thank Dixon Grant, Justin Madsen, John Woolcott, Miles Wandersee, and Kevin Bailey for technical assistance;
Justin Hoopes and Brian Gowen for professional consultation; Larry Blatt and Scott Seiwert for providing Interferon™.
This study was supported by contracts NO1-A1-30048 (Institute for Antiviral Research, IAR), NO1-AI-15435 (IAR),
and 5P01AI059443 (Univ. No. Carolina) from Virology Branch, National Institute of Allergic and Infectious Diseases,
NIAID.

BIBLIOGRAPHY
Balzarini J. Carbohydrate-binding agents: a potential future cornerstone for the chemotherapy of

enveloped viruses? Antivir Chem Chemother 2007;18(1):1–11. [PubMed: 17354647]
Barnard DL, Day CW, Bailey K, Heiner M, Montgomery R, Lauridsen L, Chan PK, Sidwell RW.

Evaluation of immunomodulators, interferons and known in vitro SARS-coV inhibitors for inhibition
of SARS-coV replication in BALB/c mice. Antivir Chem Chemother 2006a;17(5):275–84. [PubMed:
17176632]

Barnard DL, Day CW, Bailey K, Heiner M, Montgomery R, Lauridsen L, Jung KH, Li JK, Chan PK,
Sidwell RW. Is the anti-psychotic, 10-(3-(dimethylamino)propyl)phenothiazine (promazine), a
potential drug with which to treat SARS infections? Lack of efficacy of promazine on SARS-CoV
replication in a mouse model. Antiviral Res 2008;79(2):105–13. [PubMed: 18423639]

Barnard DL, Day CW, Bailey K, Heiner M, Montgomery R, Lauridsen L, Winslow S, Hoopes J, Li JK,
Lee J, Carson DA, Cottam HB, Sidwell RW. Enhancement of the infectivity of SARS-CoV in BALB/
c mice by IMP dehydrogenase inhibitors, including ribavirin. Antiviral Res 2006b;71(1):53–63.
[PubMed: 16621037]

Barnard DL, Hubbard VD, Burton J, Smee DF, Morrey JD, Otto MJ, Sidwell RW. Inhibition of severe
acute respiratory syndrome-associated coronavirus (SARSCoV) by calpain inhibitors and beta-D-N4-
hydroxycytidine. Antivir Chem Chemother 2004;15(1):15–22. [PubMed: 15074711]

Day et al. Page 15

Virology. Author manuscript; available in PMC 2010 December 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Becker MM, Graham RL, Donaldson EF, Rockx B, Sims AC, Sheahan T, Pickles RJ, Corti D, Johnston
RE, Baric RS, Denison MR. Synthetic recombinant bat SARS-like coronavirus is infectious in cultured
cells and in mice. Proc Natl Acad Sci U S A 2008;105(50):19944–9. [PubMed: 19036930]

Cameron MJ, Bermejo-Martin JF, Danesh A, Muller MP, Kelvin DJ. Human immunopathogenesis of
severe acute respiratory syndrome (SARS). Virus Res 2008;133(1):13–9. [PubMed: 17374415]

Carter WA, Pitha PM, Marshall LW, Tazawa I, Tazawa S, Ts’o PO. Structural requirements of the rI n
-rC n complex for induction of human interferon. J Mol Biol 1972;70(3):567–87. [PubMed: 5083149]

Chen J, Subbarao K. The Immunobiology of SARS. Annual Review of Immunology 2007;25(1):443–
472.

Cheung OY, Chan JW, Ng CK, Koo CK. The spectrum of pathological changes in severe acute respiratory
syndrome (SARS). Histopathology 2004;45(2):119–24. [PubMed: 15279629]

Chowers MY, Lang R, Nassar F, Ben-David D, Giladi M, Rubinshtein E, Itzhaki A, Mishal J, Siegman-
Igra Y, Kitzes R, Pick N, Landau Z, Wolf D, Bin H, Mendelson E, Pitlik SD, Weinberger M. Clinical
characteristics of the West Nile fever outbreak, Israel, 2000. Emerg Infect Dis 2001;7(4):675–8.
[PubMed: 11585531]

Chu YK, Ali GD, Jia F, Li Q, Kelvin D, Couch RC, Harrod KS, Hutt JA, Cameron C, Weiss SR, Jonsson
CB. The SARS-CoV ferret model in an infection-challenge study. Virology 2008;374(1):151–163.
[PubMed: 18234270]

Cinatl J, Morgenstern B, Bauer G, Chandra P, Rabenau H, Doerr HW. Treatment of SARS with human
interferons. Lancet 2003;362(9380):293–4. [PubMed: 12892961]

De Clercq E. Current lead natural products for the chemotherapy of human immunodeficiency virus (HIV)
infection. Med Res Rev 2000;20(5):323–49. [PubMed: 10934347]

Ding Y, He L, Zhang Q, Huang Z, Che X, Hou J, Wang H, Shen H, Qiu L, Li Z, Geng J, Cai J, Han H,
Li X, Kang W, Weng D, Liang P, Jiang S. Organ distribution of severe acute respiratory syndrome
(SARS) associated coronavirus (SARS-CoV) in SARS patients: implications for pathogenesis and
virus transmission pathways. J Pathol 2004;203(2):622–30. [PubMed: 15141376]

Drosten C, Gunther S, Preiser W, van der Werf S, Brodt HR, Becker S, Rabenau H, Panning M,
Kolesnikova L, Fouchier RA, Berger A, Burguiere AM, Cinatl J, Eickmann M, Escriou N, Grywna
K, Kramme S, Manuguerra JC, Muller S, Rickerts V, Sturmer M, Vieth S, Klenk HD, Osterhaus AD,
Schmitz H, Doerr HW. Identification of a novel coronavirus in patients with severe acute respiratory
syndrome. N Engl J Med 2003a;348(20):1967–76. [PubMed: 12690091]

Drosten C, Preiser W, Gunther S, Schmitz H, Doerr HW. Severe acute respiratory syndrome:
identification of the etiological agent. Trends Mol Med 2003b;9(8):325–7. [PubMed: 12928032]

Du L, He Y, Zhou Y, Liu S, Zheng BJ, Jiang S. The spike protein of SARS-CoV--a target for vaccine
and therapeutic development. Nat Rev Microbiol 2009;7(3):226–36. [PubMed: 19198616]

Finter NB. Dye uptake methods for assessing viral cytopathogenicity and their application to interferon
assays. J Gen Virol 1969;(5):419–427.

Fouchier RA, Kuiken T, Schutten M, van Amerongen G, van Doornum GJ, van den Hoogen BG, Peiris
M, Lim W, Stohr K, Osterhaus AD. Aetiology: Koch’s postulates fulfilled for SARS virus. Nature
2003;423(6937):240. [PubMed: 12748632]

Franks TJ, Chong PY, Chui P, Galvin JR, Lourens RM, Reid AH, Selbs E, McEvoy CP, Hayden CD,
Fukuoka J, Taubenberger JK, Travis WD. Lung pathology of severe acute respiratory syndrome
(SARS): a study of 8 autopsy cases from Singapore. Hum Pathol 2003;34(8):743–8. [PubMed:
14506633]

Frieman M, Heise M, Baric R. SARS coronavirus and innate immunity. Virus Res 2008;133(1):101–12.
[PubMed: 17451827]

Glass WG, Subbarao K, Murphy B, Murphy PM. Mechanisms of host defense following severe acute
respiratory syndrome-coronavirus (SARS-CoV) pulmonary infection of mice. J Immunol 2004;173
(6):4030–9. [PubMed: 15356152]

Gowen BB, Hoopes JD, Wong MH, Jung KH, Isakson KC, Alexopoulou L, Flavell RA, Sidwell RW.
TLR3 deletion limits mortality and disease severity due to Phlebovirus infection. J Immunol 2006;177
(9):6301–7. [PubMed: 17056560]

Gowen BB, Wong MH, Jung KH, Sanders AB, Mitchell WM, Alexopoulou L, Flavell RA, Sidwell RW.
TLR3 is essential for the induction of protective immunity against Punta Toro Virus infection by the

Day et al. Page 16

Virology. Author manuscript; available in PMC 2010 December 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



double-stranded RNA (dsRNA), poly(I:C12U), but not Poly(I:C): differential recognition of
synthetic dsRNA molecules. J Immunol 2007;178(8):5200–8. [PubMed: 17404303]

Greenough TC, Carville A, Coderre J, Somasundaran M, Sullivan JL, Luzuriaga K, Mansfield K.
Pneumonitis and multi-organ system disease in common marmosets (Callithrix jacchus) infected
with the severe acute respiratory syndrome-associated coronavirus. Am J Pathol 2005;167(2):455–
63. [PubMed: 16049331]

Guan Y, Zheng BJ, He YQ, Liu XL, Zhuang ZX, Cheung CL, Luo SW, Li PH, Zhang LJ, Guan YJ, Butt
KM, Wong KL, Chan KW, Lim W, Shortridge KF, Yuen KY, Peiris JS, Poon LL. Isolation and
characterization of viruses related to the SARS coronavirus from animals in southern China. Science
2003;302(5643):276–8. [PubMed: 12958366]

Guo Y, Korteweg C, McNutt MA, Gu J. Pathogenetic mechanisms of severe acute respiratory syndrome.
Virus Res 2008;133(1):4–12. [PubMed: 17825937]

Hegde S, Pahne J, Smola-Hess S. Novel immunosuppressive properties of interleukin-6 in dendritic cells:
inhibition of NF-kappaB binding activity and CCR7 expression. FASEB J 2004;18(12):1439–41.
[PubMed: 15247147]

Hon CC, Lam TY, Shi ZL, Drummond AJ, Yip CW, Zeng F, Lam PY, Leung FC. Evidence of the
recombinant origin of a bat severe acute respiratory syndrome (SARS)-like coronavirus and its
implications on the direct ancestor of SARS coronavirus. J Virol 2008;82(4):1819–26. [PubMed:
18057240]

Hsiao CH, Wu MZ, Chen CL, Hsueh PR, Hsieh SW, Yang PC, Su IJ. Evolution of pulmonary pathology
in severe acute respiratory syndrome. J Formos Med Assoc 2005;104(2):75–81. [PubMed: 15765160]

Hsueh PR, Chen PJ, Hsiao CH, Yeh SH, Cheng WC, Wang JL, Chiang BL, Chang SC, Chang FY, Wong
WW, Kao CL, Yang PC. Patient data, early SARS epidemic, Taiwan. Emerg Infect Dis 2004;10(3):
489–93. [PubMed: 15109419]

Huang YH, Lei HY, Liu HS, Lin YS, Liu CC, Yeh TM. Dengue virus infects human endothelial cells
and induces IL-6 and IL-8 production. Am J Trop Med Hyg 2000;63(1–2):71–5. [PubMed:
11357999]

Hultgren C, Milich DR, Weiland O, Sallberg M. The antiviral compound ribavirin modulates the T helper
(Th) 1/Th2 subset balance in hepatitis B and C virus-specific immune responses. J Gen Virol 1998;79
(Pt 10):2381–91. [PubMed: 9780043]

Jiang Y, Xu J, Zhou C, Wu Z, Zhong S, Liu J, Luo W, Chen T, Qin Q, Deng P. Characterization of
Cytokine/Chemokine Profiles of Severe Acute Respiratory Syndrome. Am J Respir Crit Care Med
2005;171(8):850–857. [PubMed: 15657466]

Jiang Z, Kunimoto M, Patel JA. Autocrine regulation and experimental modulation of interleukin-6
expression by human pulmonary epithelial cells infected with respiratory syncytial virus. J Virol
1998;72(3):2496–9. [PubMed: 9499112]

Jones BM, Ma ES, Peiris JS, Wong PC, Ho JC, Lam B, Lai KN, Tsang KW. Prolonged disturbances of
in vitro cytokine production in patients with severe acute respiratory syndrome (SARS) treated with
ribavirin and steroids. Clin Exp Immunol 2004;135(3):467–73. [PubMed: 15008980]

Julander JG, Skirpstunas R, Siddharthan V, Shafer K, Hoopes JD, Smee DF, Morrey JD. C3H/HeN mouse
model for the evaluation of antiviral agents for the treatment of Venezuelan equine encephalitis virus
infection. Antiviral Res 2008;78(3):230–41. [PubMed: 18313150]

Keyaerts E, Vijgen L, Pannecouque C, Van Damme E, Peumans W, Egberink H, Balzarini J, Van Ranst
M. Plant lectins are potent inhibitors of coronaviruses by interfering with two targets in the viral
replication cycle. Antiviral Res 2007;75(3):179–87. [PubMed: 17428553]

Kopf M, Baumann H, Freer G, Freudenberg M, Lamers M, Kishimoto T, Zinkernagel R, Bluethmann H,
Kohler G. Impaired immune and acute-phase responses in interleukin-6-deficient mice. Nature
1994;368(6469):339–42. [PubMed: 8127368]

Ksiazek TG, Erdman D, Goldsmith CS, Zaki SR, Peret T, Emery S, Tong S, Urbani C, Comer JA, Lim
W, Rollin PE, Dowell SF, Ling AE, Humphrey CD, Shieh WJ, Guarner J, Paddock CD, Rota P,
Fields B, DeRisi J, Yang JY, Cox N, Hughes JM, LeDuc JW, Bellini WJ, Anderson LJ. A novel
coronavirus associated with severe acute respiratory syndrome. N Engl J Med 2003;348(20):1953–
66. [PubMed: 12690092]

Day et al. Page 17

Virology. Author manuscript; available in PMC 2010 December 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Kumaki Y, Day CW, Wandersee MK, Schow BP, Madsen JS, Grant D, Roth JP, Smee DF, Blatt LM,
Barnard DL. Interferon alfacon 1 inhibits SARS-CoV infection in human bronchial epithelial Calu-3
cells. Biochem Biophys Res Commun 2008;371(1):110–3. [PubMed: 18406349]

Kuri T, Zhang X, Habjan M, Martinez-Sobrido L, Garcia-Sastre A, Yuan Z, Weber F. Interferon priming
enables cells to partially overturn the SARS-Coronavirus-induced block in innate immune activation.
J Gen Virol. 2009

Kurt-Jones EA, Belko J, Yu C, Newburger PE, Wang J, Chan M, Knipe DM, Finberg RW. The role of
toll-like receptors in herpes simplex infection in neonates. J Infect Dis 2005;191(5):746–8. [PubMed:
15688290]

Lang Z, Zhang L, Zhang S, Meng X, Li J, Song C, Sun L, Zhou Y. Pathological study on severe acute
respiratory syndrome. Chin Med J (Engl) 2003;116(7):976–80. [PubMed: 12890365]

Leyssen P, Drosten C, Paning M, Charlier N, Paeshuyse J, De Clercq E, Neyts J. Interferons, interferon
inducers, and interferon-ribavirin in treatment of flavivirus-induced encephalitis in mice. Antimicrob
Agents Chemother 2003;47(2):777–82. [PubMed: 12543691]

Li F, Li W, Farzan M, Harrison SC. Structure of SARS coronavirus spike receptor-binding domain
complexed with receptor. Science 2005a;309(5742):1864–8. [PubMed: 16166518]

Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, Somasundaran M, Sullivan JL, Luzuriaga
K, Greenough TC, Choe H, Farzan M. Angiotensin-converting enzyme 2 is a functional receptor for
the SARS coronavirus. Nature 2003;426(6965):450–4. [PubMed: 14647384]

Li W, Shi Z, Yu M, Ren W, Smith C, Epstein JH, Wang H, Crameri G, Hu Z, Zhang H, Zhang J,
McEachern J, Field H, Daszak P, Eaton BT, Zhang S, Wang LF. Bats are natural reservoirs of SARS-
like coronaviruses. Science 2005b;310(5748):676–9. [PubMed: 16195424]

Martina BE, Haagmans BL, Kuiken T, Fouchier RA, Rimmelzwaan GF, Van Amerongen G, Peiris JS,
Lim W, Osterhaus AD. Virology: SARS virus infection of cats and ferrets. Nature 2003;425(6961):
915. [PubMed: 14586458]

McManus NH. Microtiter assay for interferon: microspectrophotometric quantitation of cytopathic effect.
Appl Environ Microbiol 1976;31(1):35–8. [PubMed: 182074]

McRoy WC, Baric RS. Amino acid substitutions in the S2 subunit of mouse hepatitis virus variant V51
encode determinants of host range expansion. J Virol 2008;82(3):1414–24. [PubMed: 18032498]

Morgenstern B, Michaelis M, Baer PC, Doerr HW, Cinatl J Jr. Ribavirin and interferon-beta
synergistically inhibit SARS-associated coronavirus replication in animal and human cell lines.
Biochem Biophys Res Commun 2005;326(4):905–8. [PubMed: 15607755]

Morrey JD, Day CW, Julander JG, Blatt LM, Smee DF, Sidwell RW. Effect of interferon-alpha and
interferon-inducers on West Nile virus in mouse and hamster animal models. Antivir Chem
Chemother 2004;15(2):101–9. [PubMed: 15185728]

Nagata N, Iwata N, Hasegawa H, Fukushi S, Harashima A, Sato Y, Saijo M, Taguchi F, Morikawa S,
Sata T. Mouse-Passaged Severe Acute Respiratory Syndrome-Associated Coronavirus Leads to
Lethal Pulmonary Edema and Diffuse Alveolar Damage in Adult but Not Young Mice. Am J Pathol
2008;172(6):1625–1637. [PubMed: 18467696]

Nagata N, Iwata N, Hasegawa H, Fukushi S, Yokoyama M, Harashima A, Sato Y, Saijo M, Morikawa
S, Sata T. Participation of both host and virus factors in induction of severe acute respiratory
syndrome (SARS) in F344 rats infected with SARS coronavirus. J Virol 2007;81(4):1848–57.
[PubMed: 17151094]

Nicholls JM, Poon LL, Lee KC, Ng WF, Lai ST, Leung CY, Chu CM, Hui PK, Mak KL, Lim W, Yan
KW, Chan KH, Tsang NC, Guan Y, Yuen KY, Peiris JS. Lung pathology of fatal severe acute
respiratory syndrome. Lancet 2003;361(9371):1773–8. [PubMed: 12781536]

Niu J, Wang Y, Dixon R, Bowden S, Qiao M, Einck L, Locarnini S. The use of ampligen alone and in
combination with ganciclovir and coumermycin A1 for the treatment of ducks congenitally-infected
with duck hepatitis B virus. Antiviral Res 1993;21(2):155–71. [PubMed: 7687840]

Pacciarini F, Ghezzi S, Canducci F, Sims A, Sampaolo M, Ferioli E, Clementi M, Poli G, Conaldi PG,
Baric R, Vicenzi E. Persistent replication of severe acute respiratory syndrome coronavirus in human
tubular kidney cells selects for adaptive mutations in the membrane protein. J Virol 2008;82(11):
5137–44. [PubMed: 18367528]

Day et al. Page 18

Virology. Author manuscript; available in PMC 2010 December 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Padalko E, Nuyens D, De Palma A, Verbeken E, Aerts JL, De Clercq E, Carmeliet P, Neyts J. The
interferon inducer ampligen [poly(I)-poly(C12U)] markedly protects mice against coxsackie B3
virus-induced myocarditis. Antimicrob Agents Chemother 2004;48(1):267–74. [PubMed:
14693549]

Peiris JSM, Chu CM, Cheng VCC, Chan KS, Hung IFN, Poon LLM, Law KI, Tang BSF, Hon TYW,
Chan CS, Chan KH, Ng JSC, Zheng BJ, Ng WL, Lai RWM, Guan Y, Yuen KY. Clinical progression
and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective
study. The Lancet 2003a;361(9371):1767–1772.

Peiris JSM, Lai ST, Poon LLM, Guan Y, Yam LYC, Lim W, Nicholls J, Yee WKS, Yan WW, Cheung
MT, Cheng VCC, Chan KH, Tsang DNC, Yung RWH, Ng TK, Yuen KY. Coronavirus as a possible
cause of severe acute respiratory syndrome. The Lancet 2003b;361(9366):1319–1325.

Perlman S, Dandekar AA. Immunopathogenesis of coronavirus infections: implications for SARS. Nat
Rev Immunol 2005;5(12):917–27. [PubMed: 16322745]

Pinto AJ, Morahan PS, Brinton MA. Comparative study of various immunomodulators for macrophage
and natural killer cell activation and antiviral efficacy against exotic RNA viruses. Int J
Immunopharmacol 1988;10(3):197–209. [PubMed: 3182149]

Pyrc K, Berkhout B, van der Hoek L. Antiviral strategies against human coronaviruses. Infect Disord
Drug Targets 2007;7(1):59–66. [PubMed: 17346212]

Reed LJ, Muench M. A simple method of estimating fifty percent end points. Am J Hyg 1938;(27):493–
498.

Roberts A, Deming D, Paddock CD, Cheng A, Yount B, Vogel L, Herman BD, Sheahan T, Heise M,
Genrich GL, Zaki SR, Baric R, Subbarao K. A Mouse-Adapted SARS-Coronavirus Causes Disease
and Mortality in BALB/c Mice. PLoS Pathogens 2007;3(1):e5. [PubMed: 17222058]

Roberts A, Paddock C, Vogel L, Butler E, Zaki S, Subbarao K. Aged BALB/c mice as a model for
increased severity of severe acute respiratory syndrome in elderly humans. J Virol 2005;79(9):5833–
8. [PubMed: 15827197]

Roberts A, Subbarao K. Animal models for SARS. Adv Exp Med Biol 2006;581:463–71. [PubMed:
17037579]

Roberts A, Thomas WD, Guarner J, Lamirande EW, Babcock GJ, Greenough TC, Vogel L, Hayes N,
Sullivan JL, Zaki S, Subbarao K, Ambrosino DM. Therapy with a Severe Acute Respiratory
Syndrome-Associated Coronavirus-Neutralizing Human Monoclonal antibody Reduces Disease
Severity and Viral Burden in Golden Syrian Hamsters. J Infect Dis 2006;193:685–692. [PubMed:
16453264]

Rockx B, Sheahan T, Donaldson E, Harkema J, Sims A, Heise M, Pickles R, Cameron M, Kelvin D,
Baric R. Synthetic reconstruction of zoonotic and early human severe acute respiratory syndrome
coronavirus isolates that produce fatal disease in aged mice. J Virol 2007;81(14):7410–23. [PubMed:
17507479]

Sadler AJ, Williams BR. Interferon-inducible antiviral effectors. Nat Rev Immunol 2008;8(7):559–68.
[PubMed: 18575461]

Samuel CE. Antiviral actions of interferons. Clin Microbiol Rev 2001;14(4):778–809. [PubMed:
11585785]table of contents

Sheahan T, Rockx B, Donaldson E, Sims A, Pickles R, Corti D, Baric R. Mechanisms of zoonotic severe
acute respiratory syndrome coronavirus host range expansion in human airway epithelium. J Virol
2008;82(5):2274–85. [PubMed: 18094188]

Sidwell RW, Huffman JH. Use of disposable micro tissue culture plates for antiviral and interferon
induction studies. Appl Microbiol 1971;22(5):797–801. [PubMed: 4332040]

Sidwell RW, Huffman JH, Barnard DL, Smee DF, Warren RP, Chirigos MA, Kende M, Huggins J.
Antiviral and immunomodulating inhibitors of experimentally-induced Punta Toro virus infections.
Antiviral Res 1994;25(2):105–22. [PubMed: 7847873]

Sidwell RW, Huffman JH, Khare GP, Allen LB, Witkowski JT, Robins RK. Broad-spectrum antiviral
activity of Virazole: 1-beta-D-ribofuranosyl-1,2,4-triazole-3-carboxamide. Science 1972;177(50):
705–6. [PubMed: 4340949]

Day et al. Page 19

Virology. Author manuscript; available in PMC 2010 December 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Smee DF, Gilbert J, Leonhardt JA, Barnett BB, Huggins JH, Sidwell RW. Treatment of lethal Pichinde
virus infections in weanling LVG/Lak hamsters with ribavirin, ribamidine, selenazofurin, and
ampligen. Antiviral Res 1993;20(1):57–70. [PubMed: 8384433]

Smee DF, Morris JL, Leonhardt JA, Mead JR, Holy A, Sidwell RW. Treatment of murine
cytomegalovirus infections in severe combined immunodeficient mice with ganciclovir, (S)-1-[3-
hydroxy-2-(phosphonylmethoxy)propyl]cytosine, interferon, and bropirimine. Antimicrob Agents
Chemother 1992;36(9):1837–42. [PubMed: 1329629]

Stockman LJ, Bellamy R, Garner P. SARS: systematic review of treatment effects. PLoS Med 2006;3
(9):e343. [PubMed: 16968120]

Streeter DG, Witkowski JT, Khare GP, Sidwell RW, Bauer RJ, Robins RK, Simon LN. Mechanism of
action of 1- -D-ribofuranosyl-1,2,4-triazole-3-carboxamide (Virazole), a new broad-spectrum
antiviral agent. Proc Natl Acad Sci U S A 1973;70(4):1174–8. [PubMed: 4197928]

Stroher U, DiCaro A, Li Y, Strong JE, Aoki F, Plummer F, Jones SM, Feldmann H. Severe acute
respiratory syndrome-related coronavirus is inhibited by interferon- alpha. J Infect Dis 2004;189(7):
1164–7. [PubMed: 15031783]

Subbarao K, Roberts A. Is there an ideal animal model for SARS? Trends in Microbiology 2006;14(7):
299–303. [PubMed: 16759866]

Tong TR. Therapies for coronaviruses. Part 2: Inhibitors of intracellular life cycle. Expert Opin Ther Pat
2009a;19(4):415–31. [PubMed: 19441924]

Tong TR. Therapies for coronaviruses. Part I of II -- viral entry inhibitors. Expert Opin Ther Pat 2009b;
19(3):357–67. [PubMed: 19449500]

van den Brand JM, Haagmans BL, Leijten L, van Riel D, Martina BE, Osterhaus AD, Kuiken T. Pathology
of experimental SARS coronavirus infection in cats and ferrets. Vet Pathol 2008;45(4):551–62.
[PubMed: 18587105]

van der Meer FJ, de Haan CA, Schuurman NM, Haijema BJ, Peumans WJ, Van Damme EJ, Delputte
PL, Balzarini J, Egberink HF. Antiviral activity of carbohydrate-binding agents against Nidovirales
in cell culture. Antiviral Res 2007a;76(1):21–9. [PubMed: 17560666]

van der Meer FJ, de Haan CA, Schuurman NM, Haijema BJ, Verheije MH, Bosch BJ, Balzarini J,
Egberink HF. The carbohydrate-binding plant lectins and the non-peptidic antibiotic pradimicin A
target the glycans of the coronavirus envelope glycoproteins. J Antimicrob Chemother 2007b;60(4):
741–9. [PubMed: 17704516]

Wang CH, Liu CY, Wan YL, Chou CL, Huang KH, Lin HC, Lin SM, Lin TY, Chung K, Kuo HP.
Persistence of lung inflammation and lung cytokines with high-resolution CT abnormalities during
recovery from SARS. Respiratory Research 2005;6(1):42. [PubMed: 15888207]

Wang WK, Chen SY, Liu IJ, Kao CL, Chen HL, Chiang BL, Wang JT, Sheng WH, Hsueh PR, Yang CF,
Yang PC, Chang SC. Temporal Relationship of Viral Load, Ribavirin, Interleukin (IL)-6, IL-8, and
Clinical Progression in Patients with Severe Acute Respiratory Syndrome. Clinical Infectious
Diseases 2004;39(7):1071–1075. [PubMed: 15472864]

Wong SS, Yuen KY. The management of coronavirus infections with particular reference to SARS. J
Antimicrob Chemother 2008;62(3):437–41. [PubMed: 18565970]

Wu YS, Lin WH, Hsu JT, Hsieh HP. Antiviral drug discovery against SARS-CoV. Curr Med Chem
2006;13(17):2003–20. [PubMed: 16842194]

Ye J, Zhang B, Xu J, Chang Q, McNutt MA, Korteweg C, Gong E, Gu J. Molecular pathology in the
lungs of severe acute respiratory syndrome patients. Am J Pathol 2007;170(2):538–45. [PubMed:
17255322]

Yeung KS, Meanwell NA. Recent developments in the virology and antiviral research of severe acute
respiratory syndrome coronavirus. Infect Disord Drug Targets 2007;7(1):29–41. [PubMed:
17346209]

Zhang HZ, Zhang H, Kemnitzer W, Tseng B, Cinatl J Jr, Michaelis M, Doerr HW, Cai SX. Design and
synthesis of dipeptidyl glutaminyl fluoromethyl ketones as potent severe acute respiratory syndrome
coronovirus (SARS-CoV) inhibitors. J Med Chem 2006;49(3):1198–201. [PubMed: 16451084]

Zhu M. SARS Immunity and Vaccination. Cell Mol Immunol 2004;1(3):193–8. [PubMed: 16219167]

Day et al. Page 20

Virology. Author manuscript; available in PMC 2010 December 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
Percent survival of 5–6 week old BALB/c mice infected with SARS-CoV strains Urbani,
v2163, and MA15. ***P <0.001 MA15 compared with v2163.
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Figure 2.
Mutations found in v2163 and MA15 mouse-adapted strains of SARS-CoV compared with the
Urbani strain.
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Figure 3.
Average cytokines detected in BALB/c mice lungs 3 days after infection with various strains
of SARS-CoV (n ≥ 8). Black bars are v2163, gray bars are MA15, striped bars are Urbani, and
white bars are uninfected controls. *P < 0.05, **P < 0.01, ***P < 0.001 MA15 compared with
Urbani.
aLower limit of detection
bThe v2163 and MA15 averages included some extrapolated values that were minimum
estimates.
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Figure 4.
Histological slides showing representative lung pathology; a) Urbani- infected lung with no
significant changes (40×); b) MA15-infected lung with small numbers of foamy macrophages
that widen scattered alveolar septae (40×), c) MA15-infected lung with rare individual
bronchiolar lining cells that were swollen and hypereosinophilic, and scattered alveolar septae
widened by foamy macrophages (40×), d) v2163-infected lung with moderate numbers of
neutrophils and edema fluid surrounding several large vessels (40×), e) v2163-infected lung
with small numbers of alveolar macrophages throughout airspaces (60×), and f) uninfected
lung with no significant changes (40×).
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Figure 5.
Effects of Ampligen™, ribavirin, EP128533, and UDA on survival of BALB/c mice infected
with SARS-CoV strain v2163.

Day et al. Page 25

Virology. Author manuscript; available in PMC 2010 December 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Day et al. Page 26
Ta

bl
e 

1

M
or

ta
lit

y,
 lu

ng
 v

iru
s t

ite
r, 

an
d 

w
ei

gh
t l

os
s o

f 5
–6

 w
ee

k 
ol

d 
B

A
LB

/c
 m

ic
e 

in
fe

ct
ed

 in
tra

na
sa

lly
 w

ith
 th

e 
U

rb
an

i s
tra

in
 a

nd
 tw

o 
m

ou
se

-a
da

pt
ed

 st
ra

in
s o

f
SA

R
S-

C
oV

.

SA
R

S 
St

ra
in

In
oc

ul
um

 (~
C

C
ID

50
)

Su
rv

iv
or

s
M

ic
e 

lo
si

ng
 2

0%
 o

f
W

ei
gh

t
%

 W
ei

gh
t C

ha
ng

e 4
 d

pi
L

un
g 

T
ite

r 
3 

dp
i (

L
og

 C
C

ID
50

/
g)

L
un

g 
T

ite
r 

6 
dp

i (
L

og
 C

C
ID

50
/

g)

v2
16

3
10

5.
5

0/
10

10
/1

0
−2

4 
± 

5.
7

7.
4 

± 
1.

1
nt

a
v2

16
3

10
4.

5
2/

10
10

/1
0

−2
3 

± 
1.

1
7.

8 
± 

0.
3

6.
2 

± 
2.

6
v2

16
3

10
3.

5
3/

10
10

/1
0

−2
4 

± 
4.

9
7.

9 
± 

0.
3

7.
3 

± 
0.

6
M

A
15

10
5.

5
7/

10
**

9/
10

−2
2 

± 
8.

3
6.

6 
± 

0.
3

nt
a

M
A

15
10

4.
5

9/
10

**
8/

10
−2

1 
± 

3.
0

6.
7 

± 
0.

1*
4.

8 
± 

1.
1b

M
A

15
10

3.
5

10
/1

0**
4/

10
−1

9 
± 

3.
3

6.
9 

± 
0.

2
6.

3 
± 

0.
7

U
rb

an
i

10
5.

0
10

/1
0

0/
10

2.
2 

± 
8.

5
5.

8 
± 

1.
1

<3
.8

U
ni

nf
ec

te
d

N
on

e
5/

5
0/

10
1.

3 
± 

4.
1

<3
.8

<3
.8

* P 
< 

0.
05

,

**
P 

< 
0.

01
 fo

r M
A

15
 c

om
pa

re
d 

w
ith

 c
or

re
sp

on
di

ng
 d

ilu
tio

n 
of

 v
21

63

a N
ot

 te
st

ed
 d

ue
 to

 e
ar

ly
 d

ea
th

 a
t t

hi
s v

iru
s c

on
ce

nt
ra

tio
n

b A
ve

ra
ge

 c
on

ta
in

s o
ne

 v
al

ue
 b

el
ow

 th
e 

lim
it 

of
 d

et
ec

tio
n

Virology. Author manuscript; available in PMC 2010 December 20.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Day et al. Page 27
Ta

bl
e 

2

D
ea

th
 a

nd
 w

ei
gh

t c
om

pa
ris

on
s o

f 5
–6

 w
ee

k 
an

d 
10

–1
1 

w
ee

k 
ol

d 
B

A
LB

/c
 m

ic
e 

in
fe

ct
ed

 in
tra

na
sa

lly
 w

ith
 v

21
63

, M
A

15
, o

r U
rb

an
i s

tra
in

s o
f S

A
R

S-
C

oV
.

5–
6 

w
ee

k 
ol

d 
m

ic
e

10
–1

1 
w

ee
k 

ol
d 

m
ic

e

SA
R

S 
St

ra
in

In
oc

ul
um

 (~
C

C
ID

50
)

%
 W

ei
gh

t C
ha

ng
e (

4 
dp

i)
Su

rv
iv

al
M

D
D

b
%

 W
ei

gh
t C

ha
ng

e 
(4

 d
pi

)
Su

rv
iv

al
M

D
D

a

v2
16

3
10

5.
5

−2
4 

± 
3.

6
0/

10
4.

5 
± 

0.
7

−1
8 

± 
1.

2
0/

10
4.

8 
± 

1.
8

v2
16

3
10

4.
5

−2
3 

± 
3.

8
1/

10
5.

9 
± 

1.
4

−1
7 

± 
5.

0
1/

10
5.

7 
± 

1.
0

v2
16

3
10

3.
5

−2
6 

± 
3.

1
2/

10
6.

4 
± 

1.
9

−2
0 

± 
2.

0
0/

10
7.

3 
± 

0.
7

M
A

15
10

5.
5

−2
5 

± 
3.

5
8/

10
*

3.
5 

± 
3.

5
−2

2 
± 

2.
1

1/
10

6.
8 

± 
1.

4
M

A
15

10
4.

5
−2

8 
± 

1.
6**

4/
10

13
.5

 ±
 6

.9
−2

3 
± 

2.
4**

*
3/

10
8.

6 
± 

3.
9

M
A

15
10

3.
5

−2
3 

± 
3.

4
10

/1
0**

*
N

/A
−2

4 
± 

1.
4*

9/
10

**
*

14
 (n

 =
 1

)
U

rb
an

i
10

5.
0

−0
.5

 ±
 2

.3
10

/1
0

N
/A

−2
.3

 ±
 2

.2
10

/1
0

N
/A

U
ni

nf
ec

te
d

N
on

e
0 

± 
2.

4
5/

5
N

/A
−2

.3
 ±

 2
.5

5/
5

N
/A

* P 
< 

0.
05

,

**
* P 

< 
0.

00
1 

M
A

15
 c

om
pa

re
d 

w
ith

 c
or

re
sp

on
di

ng
 d

ilu
tio

n 
of

 v
21

63

a M
ea

n 
da

y 
of

 d
ea

th
; a

ni
m

al
s s

ur
vi

vi
ng

 to
 th

e 
en

d 
of

 th
e 

st
ud

y 
w

er
e 

ex
cl

ud
ed

Virology. Author manuscript; available in PMC 2010 December 20.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Day et al. Page 28
Ta

bl
e 

3

Su
rv

iv
al

, m
ea

n 
da

y 
of

 d
ea

th
, l

un
g 

sc
or

es
, w

ei
gh

t c
ha

ng
e,

 a
nd

 v
iru

s t
ite

rs
 in

 B
A

LB
/c

 m
ic

e 
in

fe
ct

ed
 w

ith
 m

ou
se

-a
da

pt
ed

 S
A

R
S-

C
oV

 v
21

63
 a

nd
 tr

ea
te

d 
w

ith
rib

av
iri

n 
or

 A
m

pl
ig

en
™

.

T
re

at
m

en
t

Su
rv

iv
or

s/
T

ot
al

M
ea

n 
D

ay
 o

f D
ea

th
 ±

SD
L

un
g 

sc
or

e 
6 

dp
i

W
ei

gh
t c

ha
ng

e 
(g

ra
m

s)
a

L
un

g 
T

ite
r 

3 
dp

i (
L

og
C

C
ID

50
/g

)
L

un
g 

T
ite

r 
6 

dp
i (

L
og

C
C

ID
50

/g
)

N
or

m
al

 S
al

in
e

0/
10

6.
2 

± 
1.

7
3.

2 
± 

0.
58

−3
.4

 ±
 2

.7
7.

0 
± 

0.
11

5.
9 

± 
1.

4
R

ib
av

iri
n 

75
 m

g/
kg

/d
ay

3/
10

4.
5 

± 
0.

84
*

2.
5 

± 
0.

94
−1

.6
 ±

 1
.4

*
7.

0 
± 

0.
24

7.
0 

± 
0.

82
A

m
pl

ig
en

™
10

 m
g/

kg
/d

ay
10

/1
0**

*
>1

4**
*

0.
90

 ±
 0

.8
9*

0.
50

 ±
 0

.7
8**

*
7.

6 
± 

0.
52

4.
3 

± 
0.

16
U

D
A

b  5
 m

g/
kg

/d
ay

5/
10

*
6.

6 
± 

2.
0

2.
17

±0
.2

9
−2

.3
 ±

 0
.1

4
7.

32
± 

.0
7

6.
6 

± 
0.

93

C
re

m
ap

ho
rc

1/
15

4.
3 

± 
1.

3
N

T
−2

.6
 ±

 0
.3

5
8.

1 
± 

0.
23

N
T

EP
12

85
33

c  3
0 

m
g/

kg
/d

ay
0/

10
4.

5 
± 

1.
4

N
T

−3
.2

 ±
 0

.2
8

8.
2 

± 
0.

14
N

T

* P<
 0

.0
5,

**
* P<

0.
00

1 
co

m
pa

re
d 

w
ith

 sa
lin

e 
or

 c
re

m
ap

ho
r c

on
tro

l N
T 

= 
no

t t
es

te
d,

 a
ll 

m
ic

e 
di

ed
 b

ef
or

e 
da

y 
6

a M
ea

n 
w

ei
gh

t d
iff

er
en

ce
 e

va
lu

at
ed

 o
n 

da
y 

3 
po

st
 v

iru
s e

xp
os

ur
e

b Se
pa

ra
te

 e
xp

er
im

en
t w

ith
 1

0 
da

y 
du

ra
tio

n 
ve

rs
us

 n
or

m
al

 2
1 

da
ys

c Se
pa

ra
te

 e
xp

er
im

en
t w

ith
 1

0%
 c

re
m

ap
ho

r a
s d

ilu
en

t i
ns

te
ad

 o
f s

al
in

e

Virology. Author manuscript; available in PMC 2010 December 20.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Day et al. Page 29
Ta

bl
e 

4

Lu
ng

 IL
-6

 le
ve

ls
 a

nd
 p

at
ho

lo
gy

 in
 B

A
LB

/c
 m

ic
e 

3 
da

ys
 a

nd
 6

 d
ay

s a
fte

r i
nf

ec
tio

n 
w

ith
 S

A
R

S-
C

oV
 st

ra
in

 v
21

63
 a

nd
 tr

ea
tm

en
t w

ith
 A

m
pl

ig
en

™
, r

ib
av

iri
n,

U
D

A
, o

r E
P1

28
53

3.

Su
m

m
ar

y 
of

 H
is

to
pa

th
ol

og
y 

(in
cl

us
iv

e)

T
re

at
m

en
t

D
ay

a
IL

-6
 (p

g/
m

L
)

L
un

g 
T

ite
r 

(L
og

C
C

ID
50

/g
)

N
eu

tr
op

hi
ls

b
H

is
tio

cy
te

sc
W

id
en

ed
 A

lv
eo

lid
D

eg
en

er
at

e/
N

ec
ro

tic
e

Sa
lin

e,
 U

ni
nf

ec
te

d
3

22
00

 ±
 6

70
<2

.8
0

0
0

0
Sa

lin
e

3
38

80
 ±

 2
21

0
7.

7 
± 

0.
63

3
3

2
3

R
ib

av
iri

n 
(7

5 
m

g/
kg

/d
)

3
22

30
 ±

 6
10

*
7.

7 
± 

0.
21

2
2

2
1

A
m

pl
ig

en
™

 (1
0 

m
g/

kg
/d

)
3

16
50

 ±
 5

80
*

8.
0 

± 
0.

39
3

3
3

0
U

D
A

 (5
 m

g/
kg

/d
)

3
33

30
 ±

 1
34

0
7.

9 
± 

0.
84

3
3

3
2

EP
12

85
33

 (3
0 

m
g/

kg
/d

)
3

46
90

 ±
 1

52
0

8.
2 

± 
0.

14
0

1
0

1
C

re
m

ap
ho

r c
on

tro
l

3
50

00
 ±

 1
99

0
8.

1 
± 

0.
23

1
1

1
1

Sa
lin

e 
C

on
tro

l
6

21
40

 ±
 5

60
6.

8 
± 

0.
85

2
2

1
0

R
ib

av
iri

n 
(7

5 
m

g/
kg

/d
)

6
23

20
 ±

 8
20

5.
0 

± 
1.

7
0

2
0

0
A

m
pl

ig
en

™
 (1

0 
m

g/
kg

/d
)

6
15

90
 ±

 3
80

6.
2 

± 
1.

5
3

3
3

0
U

D
A

 (5
 m

g/
kg

/d
)

6
25

30
 ±

 1
76

0
7.

0 
± 

0.
32

3
3

3
0

EP
12

85
33

 (3
0 

m
g/

kg
/d

)
6

nt
nt

nt
nt

nt
nt

C
re

m
ap

ho
r c

on
tro

l
6

nt
nt

nt
nt

nt
nt

* P 
< 

0.
05

,

**
P 

< 
0.

01
, b

y 
W

ilc
ox

on
 a

na
ly

si
s c

om
pa

re
d 

to
 u

nt
re

at
ed

 c
on

tro
l (

ex
cl

ud
in

g 
65

5 
pg

/m
L 

ou
tli

er
 in

 P
SS

 d
ay

 3
) n

t =
 n

ot
 te

st
ed

 b
ec

au
se

 a
ll 

m
ic

e 
fr

om
 th

is
 g

ro
up

 d
ie

d 
be

fo
re

 d
ay

 6

a D
ay

s p
os

t i
no

cu
la

tio
n

b Sm
al

l t
o 

m
od

er
at

e 
nu

m
be

rs
 o

f n
eu

tro
ph

ils
 in

 a
lv

eo
li 

or
 su

rr
ou

nd
in

g 
sc

at
te

re
d 

ve
ss

el
s

c Sm
al

l t
o 

m
od

er
at

e 
nu

m
be

rs
 o

f h
is

tio
cy

te
s i

n 
al

ve
ol

i

d W
id

en
ed

 g
ro

up
s o

f a
lv

eo
la

r s
ep

ta
e

e Te
rm

in
al

 b
ro

nc
hi

ol
es

 c
on

ta
in

 lu
m

in
al

 d
eg

en
er

at
e 

an
d 

ne
cr

ot
ic

 c
el

lu
la

r d
eb

ris
, o

r a
re

 li
ne

d 
by

 in
di

vi
du

al
 d

eg
en

er
at

e 
or

 n
ec

ro
tic

 e
pi

th
el

ia
l c

el
ls

 a
nd

/o
r n

ec
ro

tic
 c

el
l d

eb
ris

Virology. Author manuscript; available in PMC 2010 December 20.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Day et al. Page 30
Ta

bl
e 

5

In
 v

itr
o 

an
tiv

ira
l a

ct
iv

ity
 o

f v
ar

io
us

 c
om

po
un

ds
 in

 v
itr

o 
ag

ai
ns

t S
A

R
S-

C
oV

 U
rb

an
i a

nd
 a

 m
ou

se
-a

da
pt

ed
 st

ra
in

 o
f S

A
R

S-
C

oV
.

V
is

ua
l A

ss
ay

N
eu

tr
al

 R
ed

 A
ss

ay
V

ir
us

 Y
ie

ld
 R

ed
uc

tio
n

V
ir

us
 S

tr
ai

n
C

om
po

un
d

In
oc

ul
um

a
E

C
50

b  μ
g/

m
L

IC
50

c  μ
g/

m
L

SI
E

C
50

 μ
g/

m
L

IC
50

 μ
g/

m
L

SI
E

C
90

d  μ
g/

m
L

SI
e

v2
16

3
R

ib
av

iri
n

10
2.

2
66

 ±
 4

3
>1

00
0

15
80

 ±
 7

4
20

0 
± 

92
2.

5
83

 ±
 6

3
2.

4
U

rb
an

i
R

ib
av

iri
n

10
1.

9
63

 ±
 3

6
>1

00
0

16
86

 ±
 5

0
99

 ±
 5

1
1.

7
10

4 
± 

84
1.

4
v2

16
3

Pr
om

az
in

e
10

2.
2

2.
6 

± 
1.

1
6.

4 
± 

2.
3

2.
5

8.
0 

± 
7.

2
7.

3 
± 

4.
2

0
3.

9 
± 

2.
2

1.
9

U
rb

an
i

Pr
om

az
in

e
10

1.
9

2.
1 

± 
1.

0
7.

9 
± 

3.
4

3.
8

3.
4 

± 
2.

1
8.

1 
± 

3.
0

2.
4

3.
1 

± 
2.

1
2.

6
v2

16
3

C
al

pa
in

 V
I I

nh
ib

ito
r

10
2.

2
14

 ±
 5

.4
>3

7
2.

6
17

 ±
 7

.3
37

 ±
 5

.1
2.

1
24

 ±
 7

.9
f

1.
5

U
rb

an
i

C
al

pa
in

 V
I I

nh
ib

ito
r

10
1.

9
13

 ±
 2

.9
f

>3
7

2.
8

14
 ±

 1
0f

27
 ±

 4
.4

1.
9

15
 ±

 1
.0

f
1.

7
v2

16
3

C
al

pa
in

 IV
 In

hi
bi

to
r

10
2.

2
4.

1 
± 

3.
5

>5
6

14
9.

5 
± 

9.
2

48
 ±

 1
9

5.
1

12
 ±

 2
.6

f
3.

9
U

rb
an

i
C

al
pa

in
 IV

 In
hi

bi
to

r
10

1.
9

0.
87

 ±
 0

.1
3

>5
6

64
4.

3 
± 

4.
5

52
 ±

 1
8

12
6.

4 
± 

2.
6f

8.
1

v2
16

3
In

fe
rg

en
™

10
1.

9
<0

.1
2

>3
20

>2
70

0
<0

.1
1

>3
20

>2
80

0
<0

.6
5

>4
90

U
rb

an
i

In
fe

rg
en

™
10

1.
6

<0
.2

9
>3

20
>1

10
0

<0
.3

1
>3

20
>1

00
0

<0
.6

5
>4

90
v2

16
3

A
m

pl
ig

en
™

10
1.

7
>2

40
>2

40
1.

0
>2

40
>2

40
1.

0
>2

40
1.

0
U

rb
an

i
A

m
pl

ig
en

™
10

1.
7

>2
40

>2
40

1.
0

>2
40

>2
40

1.
0

>2
40

1.
0

v2
16

3
U

D
A

10
1.

7
0.

70
 ±

 0
.2

2
>1

0
14

0.
86

 ±
 0

.3
9

21
 ±

 9
.5

24
1.

1 
± 

19
19

U
rb

an
i

U
D

A
10

1.
7

0.
62

 ±
 0

.2
6

>1
0

16
0.

76
 ±

 0
.2

2
21

 ±
 9

.5
27

0.
95

 ±
 0

.3
6

22
v2

16
3

EP
12

85
33

10
2.

0
1.

4 
± 

1.
1

>1
00

>7
1

1.
6 

± 
1.

6
>1

00
>6

1
12

 ±
 9

.4
>8

.5
U

rb
an

i
EP

12
85

33
10

1.
8

0.
56

 ±
 0

.5
7

>1
00

>1
80

1.
3 

± 
2.

1
>1

00
>7

5
5.

3 
± 

3.
7

>1
9

a A
ve

ra
ge

 C
C

ID
50

 v
iru

s p
er

 w
el

l f
ro

m
 3

 re
pl

ic
at

es
.

b 50
%

 e
ff

ec
tiv

e 
an

tiv
ira

l c
on

ce
nt

ra
tio

n.

c 50
%

 c
el

l i
nh

ib
ito

ry
 c

on
ce

nt
ra

tio
n 

of
 d

ru
g 

w
ith

ou
t v

iru
s.

d In
 v

itr
o 

90
%

 e
ff

ec
tiv

e 
an

tiv
ira

l c
on

ce
nt

ra
tio

n 
by

 v
iru

s y
ie

ld
 a

ss
ay

.

e Se
le

ct
iv

e 
in

de
x:

 S
I =

 IC
50

/E
C

50
, a

nd
 v

iru
s y

ie
ld

 S
I =

 IC
50

/E
C

90
.

f Tw
o 

re
pl

ic
at

es
 o

nl
y.

Virology. Author manuscript; available in PMC 2010 December 20.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Day et al. Page 31

Table 6

Cytokine responses during SARS-CoV infection of lethally-infected mice compared to humans with SARS
disease.

Cytokine Lungs of lethally-infected
mice

Human lungsa (number of studies) Human Serumb (Number of studies
reviewed)

IL-1α + ND ND

IL-1β 0 0 (1) 0 (2)
+ (3)

IL-2 0 0 (1) 0 (5)
+ (2)

IL-3 0

IL-4 0 0 (1) 0 (5)

IL-5 0 ND ND

IL-6 + + (1) 0 (2)
+ (6)

IL-9 0 ND ND

IL-10 0 0 (1) 0 (6)
+ (1)

IFN-γ + 0 (1) 0 (2)
+ (4)

TNF-α 0 0 (1) 0 (7)
+ (3)

GM-CSF 0 ND ND

MCP-1 + + (1) 0 (1)
+ (4)

MIP-1α + ND ND

RANTES + ND 0 (4)

IP-10 +c + (2) + (5)
+ = cytokine elevated 0 = cytokine not elevated ND = not determined

a
Source: Chen and Subbarao, 2007

b
Sources: Hsueh et al., 2004; Cameron et al., 2008, Review of Chen and Subbarao, 2007, review of Zhu, 2004.

c
Separate study currently in press.
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