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ABSTRACT 

Linear Models for Estimating the 

Nutritive Value of Sheep Diets 

by 

Michael L. Christiansen, Master of Science 

Utah State Univeristy, 1979 

Major Professor: Lorin E. Harris 
Department: Animal Science 

viii 

Digestibility data were determined in 2 replications of a 2 x 3 x 

2 x 2 factorial arranged experiment to: (1) determine the effects of 

forage type (grass~ alfalfa), forage maturity (late vegetative~ 

midbloom ~ fUllbloom), diet ingredients (forage only~ 50:50 forage 

plus corn), and diet texture (coarsely chopped~ pelleted) on the 

digestibility of diet chemical constituents by sheep; (2) develop 

equations to estimate digestibleenergy of sheep diets from nutrient 

content of the diet; and (3) compare popular chemical methods used 

to partition feed dry matter into fibrous and soluble components. Diets 

were fed to growing wether lambs. Crude protein (CP) and available 

carbohydrates (AC) cf diets were nearly 100% digestible (true digesti-

bility) regardless of diet source. However, the apparent digestibility 

of CP and AC varied significantly with concentration of these components 

in the diet. Apparent digestibility of cellulose (CL) was s i gnifi-

cantly different between grass and alfalfa , early and late maturity 

stages, and coarse and pelleted diet textures. Interactions between 
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forage type and stage of maturity and between stage of maturity and 

energy J.evel also significantly altered the apparent digestibility of 

all diet fibrous constituents except hemicellulose (HC). An energy 

level-by-diet texture interaction significantly affected the apparent 

digestibility of HC, CL, CW, NDF, ADF and CF. Simple (equation 1 ) and 

complex (equation 2) models were generated for estimating nutrient di­

gestible amounts (YN) or diet digesti.bl.e energy (DE) (YN) from nutrient 

content (XN) of the diet. Complex models were developed to adjust the 

estimation of the nutrient digestible amount or DE estimations for 

effects due to forage tyoe (ai)' stage of maturity (8j)' feed combin­

ation (yk) and texture (iil!)· Two-way interacti ons (a8ij' 8yk , . • • , 

y8kt) between qualitative variables were added in the equations when 

significant . Interactions between qualitative variables and the quan­

titative variable (aix1, sjx1 , ykx1 , otx1 , a8ijx1 , etc) were also 

tried but did not significantly change the precision of the equations. 

Complex models gave significantly better estimates of digestible CP, 

AC, total lipid (TL), HC, CL, CW, NDF, ADR or CF and DE than simpler 

models . DE in the diets was determined by two met hods: First, DE 

was estimated by the summation of the predicted decimal fraction of 

digested protein , carbohydrates, and l ipids times respective caloric 

values (Meal/kg) (equation 3). DE was also estimated direct ly from CL, CW, 

NDF, ADF, or CF content in the diet . Both appr oaches gave comparably pre­

cise estimations of diet DE when complex models were used. The CF 

(1) YN b
0 

+ b1XN 

(2) YN bo + blXN + ai + Bj + yk + ot + a8ij + ••. + yokt 

(3) DE 5. 65 (YCP) + 4.15 (YAC + YHC + YCL) + 9.40 (YTL ) 
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simple model gave poorer estimates of DE (R2 = . 56) than CL, CW , NDF, 

and ADF simple models (R2 = .69, .69, .71, and .71 respectively) . 

Added indicator variables compensated for differences between CF and 

other chemical parameters. CL, CW, NDF , ADF , and CF complex models 

were similar in estimation of DE (average R2 = .89 for DE complex 

models). Complex models could be effectively used in a computer progr am 

for balancing rations for sheep . Additional expePiments should be 

conducted to provide added information for comparison . 

(122 pages) 



INTRODUCTION 

Chemical analysis in combination with digestion trials has been an 

effective way of determining the nutritive value of livestock feeds. 

Numerous tables have been published containing nutrient digestibility 

information on a variety of feeds used in animal production . Tabula­

ted values, however, are average values only and may vary considerably 

from the actual digestibility value of a specific lot of feed. for this 

reason, researchers have sought accurate regression models as a means 

of rapidly estimating the digestibility of feeds. Though conducting 

digestion trials is the most direct and accurate way to determine feed 

digestibility, digestion trials are also costly and time consuming and 

therefore are not practical for routine feed evaluation. 

Schneider et al. (1951) developed regression equations which made 

adjustments to average digestion coefficients within feeds according 

to differences in proximate chemical composition. The variation be­

tween average di~estion coefficients and actual digestibility values 

was reduced by 25 to 45% w!Jen chendcal composition differences were 

considered. 

Schneider et al . (1952) also developed regression equations for 

predicting feed digestibility from proximate cOUJposition between feed 

types when no digestibility data were available. Considerably more 

variation was involved when predicting digestibility between feeds than 

within feeds. Schneider et al. (1950) reported that variations in the 

proximate composition accounted for less thaTJ half of the between-feed 

variance in digestibility. 
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Much of the variation connected with earlier regression models 

could be blaimed on inaccuracies in chemical techniques alone. Research 

has shown that crude fiber procedures mispartition partially digestible 

and readily digestible plant carbchydrates. Plant lignin is likewise 

mispartitioned between partially digestible and readily digestible 

fractions. The extent of this mispartitioning has been shown to be 

highly variable between feed types. 

Van Soest, in the 1960's, introduced a new approach to chemical 

partitioning of livestock feed by attempting to separate forage dry 

matter into plant cell walls and cell contents using a neutral detergent 

digest (Van Soest, 1963a). Digestion trials together with regression 

analysis indicate this approach to be more accurate than the crude fiber 

procedure in determining total feed fiber. 

Fonnesbeck and Harris (l970a) have modified the Van Soest procedures 

(pre-pepsin digestion and a detergent solution at pH 3.5) so that in 

addition to forages, high energy feeds and protein supplements could 

be analyzed by detergent techniques. 

Fonnesbeck (1976) has developed highly precise regression 

models using new chemical parameters for estimati~g digestible energy 

in sheep, swine, rabbit and rat diets. 

PPevious research using improved chemical methods by Fonnesbeck 

and Harris was conducted using experimental diets formulated to give 

specific cell wall and cell content values. This study was conducted to 

gather biological and chemical data on common livestock feeds. 

l~e main objectives of this research were to: 

Determine differences in the digestibility of diet chemical con­

stituents due to forage type, forage maturity, associative effects, and 



diet texture. 

Develop regression models for estimating the nutritive value of 

sheep diets from chemical compositional data. 

Compare chemical methods used to partition feed dry matter into 

fiber and soluble resi.dues. 

3 



REVIEW OF LITERATURE 

Chemical Analysis of Animal Feeds 

The Proximate Analysis system 

Historically, the Proximate System for separating animal feeds 

into components of crude fiber· (CF), nitrogen-free-extract (NFE), 

4 

crude protein (CP) , ether extract (EE) and ash was developed by 

Henneberg and Stohmann in \veende, Germany, 1860. Though these ea!"'ly 

scientists are often credited for the methodology of the proximate 

analysis, the procedures used were actually a combination of earlier 

ideas of Liebeg regarding division of food into carbohydrates, proteins, 

and fats with those of Einhoff r•egarding fiber as a special kind of 

carbohydrate (Henneberg and Stohmann , 1860, 1864). However, Henneberg 

and Stohmann should be recognized for perfecting known chemical 

methods and combining them into a system for routine feed analysis 

(Henneberg and Stohmann, 1860 and 1864). 

Following its proposal, the proximate approach grew rapidly in 

popularity. In 1891, the Association of Official Agricultural 

Chemists adopted the Proximate Analysis as an approved scheme for 

partitioning feed dry matter. Early animal scientists such as Henry, 

author of Feeds and Feedings, were instrumental in promoting the 

proximate technique into extensive application soon after its adoption 

(Henry , 1898). 

Even though the Proximate Analysis has been widely accepted 

throughout the world, its limitations should not be overlooked . 
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Theoretically, crude fiber contains the less digestible portion of 

the plant, namely cellulose, hemicellulose, and lignin. Nitrogen­

free-extract calculated as 100 - (C~k + C~f, + E~k + AS~k) is thought 

to contain the readily available carbohydrate fraction . However, 

animal experiments have given contradictory digestion data, where 

crude fiber is more digestible than NFE. Digestion coefficients 

calculated by Woodman (1930) for grass herbage fed to sheep, showed 

crude fiber having a greater digestibility than NFE and CP. A table 

published by Crampton and Maynard (1938) listed four feed types with 

the percentage of cases where the digestibilities of crude fiber were 

equal to or greater than those of nitrogen-free-extract: Dry feed 

(30%), succulent feed (20%), silage (28%), and concentrates (10%). 

Additional evidence showing the crude fiber and nitrogen-free-extract 

contradiction can be found in feed tables published by Morrison (1956). 

Twenty to 33% of the feeds listed show the digestibility of nitrogen­

free-extract to be less than crude fiber. 

The reason for the crude fiber and nitrogen-free-extract problem 

can be found by evaluating the effects of the acid and alkaline re­

agents used to determine crude fiber. Norman's (1935) study using 

bran, maize and bean straw revealed crude fiber to be almost exclu­

sively of cellulose and lignin. Cellulose recovery was 60-B~k, while 

that for lignin was highly variable, 4-67%. From comparisons of 

residue composition at different analytical stages, it was shown that 

lignin losses were brought about by the sodium hydroxide treatment. 

Hemicellulose was also lost due to the sulfuric acid hydrolysis. 

These findings were supported by Bondi and Myer (1943). They found 

that large percentages of pentosans (hemicellulose) and lignin were 
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extracted into the nitrogen-free-extract portion in both feed and 

feces, while most of the hexoses (cellulose) remained in the crude 

fiber fraction. Stallcup (1958) reported crude fiber lignin recovery 

for various grass and legume roughages was highly variable, a range 

of 18.35 - 70.9~~ . Cellulose recovery range was much smaller, 70.41 -

97.7~. 

Grasses as a whole contain more plant cell walls and less lignin 

than legumes. Eighty to 86% of the hemicellulose or pentosans is 

soluble in weak acid or alkali , while 60-8~~ of the lignin is disolved 

by alkali (Armstrong et al ., 1950; Kim et al., 1967) . Cereal seeds and brans 

have a high hemicellulose content, consequently , crude fiber recovers 

only 20-30% of the cell wall. Recovery in graminaceous roughages is 

40-60%. Legumes are proportionately lower in hemicelluloses and 

lignin solubility in alkali is low, therefore, recovery of the cell 

wall as crude fiber is 60-80% (VanSoest, 1974). 

Many other references of acid-alkali mispartitioning of important 

plant fiber components (hemicellulose and lignin) could be cited . 

However, the given examples are sufficient to demonstrate that large 

digestibility variations may arise between crude fiber and nitrogen­

free-extract digestion coefficients. 

Since it's implementation, scientists have sought alternatives to 

the crude fiber approach (Crampton and Maynard, 1938; Crampton and 

Whiting , 1943; Matrone~., 1946; Ely and Moore, 1954; Walker, 1959). 

However, a suitable replacement has been slow in coming. A substitute 

must not only be superior in partitioning of plant dry matter, but it 

must also be of comparable simplicity in operation. These two criteria 

have been difficult to meet. 
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Some researchers have suggested using a singular chemical entity 

like cellulose or lignin in hopes of reducing analytical time in 

isolating a fraction highly correlated with digestibility whose 

composition is comparable between feed types (Phillips and Smith, 1943; 

Sullivan, 1964). ~owever, chemical isolation of a uniform fraction 

by simple laboratory techniques has also been an illusive goal to 

reach. Several attempts at using cellulose as a digestibility 

predictor have shown it no better than crude fiber (Lancaster, 1943; 

Walker and Hepburn, 1955; Sullivan, 1964). This is due mainly to the 

large digestibility variation as a result of improper removal of 

hemicellulose and lignin from the cellulose fraction (Norman and 

Jenkins, 1933; Matrone et al ., 1946; Sullivan, 1955). 

Lignin has shown some promise as an indicator in estimating 

digestibility (Lancaster, 1943; Sullivan 1955; Sullivan, 1964). How­

ever, chemical isolation of a uniform lignin fraction has also proven 

to be difficult. Contamination of lignin with protein and carbohydrate 

residues has resulted in large lignin variations within and between 

feed types (Norman and Jenkin, 1934; Ellis~., 1946; Harwood, 

1954; Sullivan, 1955). In addition to the analytical problem, the 

feed sample drying process can also contribute to lignin contamination. 

The nonenzymatic browning reaction produces acid insoluble artifacts 

in lignin at temperatures above 50° C (Van Soest, 1962). 

Additional research has shown strong interactions between plant 

components (i.e. cellulose, hemicellulose, and lignin) suggesting that 

the digestion of a single chemical component is not sufficient to 

explain all the variability in feed digestibility (Van Soest, 1967) . 
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Most of the literature evaluation of the proximate analysis has 

been directed towards the crude fiber determination. However, a 

critique of the proximate scheme would not be complete without mention 

of the ether extraction of feed li~ids. 

Ether extract theoretically contains the digestible lipid portion 

of a feed sample. A critical evaluation, however, reveals error in this 

thinking. Nonnutritive lipids such as \<axes, sterols, pigments (i.e . 

chlorophyll), and essential oils are also extracted in combination with 

nutritive lipids by ether solvent (Fraps and Rather, 1912; Cook et al ., 

1952; Crampton and Harris, 1969; Roberts et al., 1963). Ethyl ether 

also does not extract all the digestible lipids of plants. Many lipids 

are bonded to proteins with water molecules involved in the union. 

Lipids are released from the lipoprotein molecule only if a dehydrating 

agent such as acetone, methanol or ethanol r·uptures the likage (Hanahan, 

1960). The ratio of nundigestible lipids to digestible lipids is 

highly variable among feeds. When the quantity of the nutrient portion 

is low compared to the indigestible portion, extreme error in the cal­

culation of ether extract digestibility occurs. 

The ether extract analysis probably has not been emphasized by 

most researchers because the ether extract content of most feeds is 

relatively small compared to other feed components, i.e. carbohydrates 

and proteins. 

Logic suggests that a chemical scheme can be a valuable tool in 

determining the nutrient value of feeds if it is capable of separating 

feed components along nutritive and nonnutritive lines. A review of 

the popular proximate analysis has r·evealed critical weaknesses in its 

abilitv to accurately partition feed dry matter. To further the 
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advancement towards accurately evaluating nutritional quality of all 

feeds, a replacement for the Weende method should be found. 

Van Soest's detergent procedures 

The use of detergents for extracting protein from plant cell wall 

constituents has proven to be an improvement over the harsher acid and 

alkaline treatments of the crude fiber analysis. 

Foster ~t al. in 1950 obtained an 85-9~~ protein extraction from 

corn by using a detergent solution of alkYl benzene sodium sulfonate 

plus a reducir~ agent, bisulfite . Faster et al. (1950), however, rr~de 

no mention of detergent effects on the plant fiber. In a 1956 review 

on hemicellulose chemistry, 1-lilliams and Benvue pointed out that 

detergents could be used in ridding carbohydrate fibrous residues of 

protein without appreciable losses in plant fiber. Benvue and Williams 

in 1959 published experimental results showing effective protein r·e­

moval by detergents from bean and pea fiber. It was shown that non­

ionic detergents wer·e not effective for protein extraction. However , 

92-95% extraction of nitorgen constituents was accomplished by using 

a11 alkYlaryl sulfonate sodium sulfonate detergent solution. Only a 

trace of hemicellulose loss was observed. In 1963, Van Soest proposed 

that detergents could be used in the routine analysis of feeding stuffs 

(Van Soest, 1963a,b) . Chemical and nutritional data has supported 

this proposal. 

From experiments conducted using alfalfa and grass forages, Van 

Soest sh~wed that a chemical digestion using a 3% buffered solution, 

neutral or slightly alkaline (pH 7.4- 7.0), of sodium lauryl sulfate 

detergent yields a low protein fiber residue (Van Soest, 1963a; 



Van Soest and Wine, 1967) . Tests also have suggested that sodium 

sulfite be added for increased protein removal (Van Soest and Wine, 

1967). 

The partitioning of plant dry matter into neutral detergent 

fiber (NDF) and neutral detergent solubles (NDS) has been presented 
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as an accurate separation between cell wall constituents (cellulose, 

hemicellulose and lignin) and the readily soluble portion contained 

within the plant cell (lipids, sugars, organic acids, nonprotein 

nitrogen , pectins, soluble proteins, etc.) (Van Soest, 1963a; Van 

Soest and Marcus, 1964; Van Soest and Morre, 1965; Van Soest, l965a). 

The validity of this partitioning has been supported by animal 

digestion trials together with chemical and regression analysis (Van 

Soest and Moore , 1965; Van Soest, 1965b; Van Soest et al. , 1966) . 

Studies involving the Lucas test (Lucas et al., 1961) , where NDS% content 

is regressed against ND~k digestible amount, have shown that the NDS 

fraction is chemically uniform, R = .99 (Van Soest and Moore, 1965; 

Van Soest, 1967; Fonnesbeck, 1969). The slope of the regression line 

also was nearly 1, giving evidence for the idea that NDS represents 

that part of the plant readily absorbed by the animal's digestive 

tract regardless of the feed type (Van Soest and Moore, 1965; Van 

Soest , 1967; Fonnesbeck, 1969). 

In addition to the neutral detergent separation, Van Soest (1963b) 

has suggested that plant fiber can be prepared for a lignin deter­

mination by using an acid detergent digest (lN sulfuri.c acirl plus 2% 

cetyltrimethyl ammonium bromide). The acid detergent fiber (ADF) 

residue is composed primarily of lignocellulose since most of the 

protein and hemicellulose is removed by the acidic detergent (Van 
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Soest, l963b; Van Soest, l965a; Colburn & Evans, 1967). This ex­

traction is thought to reduce the probability of high lignin values 

due to protein and carbohydrate artifacts (Van Soest , l963b; Van Soest , 

l965a; Van Soest and Moore, 1965). Lignin is determined by a 72% 

sulfuric acid digest followed by ashing (Van Soest, 1963b; Van Soest 

and Moore, 1965). A potassium permanganate digest of ADF has al so 

proven useful in calculating lignin percents (Van Soest and Wine , 

1968). 

The percentages of the individual carbohydrate components of t he 

cell wall, namely cellulose and hemicellulose, can be calculated by 

difference (Keys and Van Soest, 1970; Van Soest and McQueens, 1973) . 

Hemicellulose is calculated by NDP/o minus ADP/o and pePcent cellulose 

byADP/o.minusLignin%. However, accuracy of these calculations is 

varied depending upon hemicellulose and protein residue in NDF and ADF. 

Studies show that ADF does retain residual protein and hemi­

cellulose. The runount differing with feed type (Kim, 1967; Colburn 

and Evans, 1967). Some studies have shown ADF hemicellulose recovery 

to be around 14-16% and protein recovery from 5-16% (Colburn and Evans , 

1967; Kim~., 1967). 

An evaluation of the literature has shown Van Soest ' s detergent 

procedures to be a marked improvement over t he crude fiber analysis 

in partitioning plant dry matter of forages. Cell wall constituent s 

are separated from soluble cell contents in for ages without signi f icant 

mispartitionir~ as has been shown between crude fiber and nit rogen­

free-extract. 
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Improved feed analysis 

Fonnesbeck and Harris (lg70a,b) have proposed a revised chemical 

system for partitioning plant dry matter that shows certain advantages 

over the Van Soest system of analysis. 

Neutral detergent .Procedures by Van Soest (1963a) have been used 

to dissolve forage protein while separating forage plant material into 

cell walls and cell contents. Hmvever, studi es show NDF to retain a 

considerable amount of protein. Colburn and Evans (1967) have shown 

NDP to retain up to 30% of the sample protein. Several NDF analyses 

reported by Van Soest (IFI Data bank) contained over 50% of the protein. 

This protein residue is usually counted as NDF and could result in sig­

nificantly high cell wall estimates for high protein feeds. Filtering 

problems during the washing of NDF for protein supplements, energy feeds, 

mixed diets containing these ingredients, and feces from animals eating 

these diets have also been observed. (Van Soest, 1966b; Martinet al., 

1975; Robertson and Van Soest, 1977; P.V. Fonnesbeck, unpublished data, 

Rutgers University and Utah State University). 

NDF obtatned from samples exhibit ing filtering problems usually 

give higher results than expected . These analysis problems as mentioned, 

prompted studies by Fonnesbeck and Harris (1970a) to improve chemical 

procedures so all classes of feed could be accurately analyzed for cell 

walls and cell contents by the same procedure. 

Fonnesbeck and Harris (1970a) have recommended a 24 hour preliminary 

pepsin digest prior to the sodium lauryl sulfate reflux to rid cell 

walls of residual protein. Studies conducted using high protein sam­

pl es of alfalfa leaf meal and alfalfa hay showed that detergent alone 

removes only 66% of the sample protei n . The addition of the pepsin 
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step increased the r emoval of pr ot ein r esidue and also helped overcome 

filtering problems experienced in analyzing energy feeds and protein 

supplements. Additional forage, energy and protein supplements, and 

foods were analyzed by the oepsin-detergent method resulting in high 

protein removal (91-97%) and more precise cell wall values. 

Tests were conducted by Fonnesbeck and Harris (1970a) showing a 

sodium lauryl sulfate oH change from 7.0 to 3.5 was needed for maxi­

mum recovery of cell walls constituents. Barley straw was chosen to 

represent more mature cell walls and Kenturcky Blue Grass, early vege­

tative, was used to represent younger growi ng cell walls. Detergent 

cell wall samples were determined over a pH rar~e of 1 to 10. Maxi­

mum cell wall recovery was shown to occur at a pH of 3 to 4. A pH 

of 3.5 was chosen as a compromise for the pH values determined. Addi­

tional studies on alfalfa samples using the pepsin digest plus the 

detergent at pH 3.5 and pH 7.0 showed effective protein removal and a 

higher cell wall recovery at pH 3.5 . 

Van Soest and Wine (1967) suggested that a 2-3% sodium l auryl sul­

fate detergent concentration is sufficient for proper cell wall ex­

traction. This decision was based partly on preliminary experimental 

results (Van Soest, 1963a; Van Soest and Wine , 1967). Results by 

Fonnesbeck and Harris (1970a) have supported this proposal by showing 

that sodium lauryl sulfate concentrations ranging from 1.5-3% are 

adequate for plant cell wall determinations. 

Van Soest and Wine (1967) also recommended a one hour detergent 

reflux for NDF determinations. They observed no appreciable reduction 

in NDF recovery for a reflux between 30-90 minutes. A one hour 



refluxing was chosen in terms of economy of time, laboratory con­

venience and extent of sample extraction (Van Soest and Wine, 1967). 
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Studies by Fonnesbeck and Harris (1970a) snowed that significant 

reductions occur in cell wall recovery with increasing reflux time . 

Their studies involved reflux times of 0.5, 1.0, 2.0, and 4.0 hours . 

A one hour reflux was chosen as a compromise between high cell wal l 

recovery and high protein solublization. 

Further quantitative partitioning of plant cell walls i nto frac­

tions of cellulose, hemicellulose, lignin, and acid insoluble ash has 

been suggested by Fonnesbeck and Harris (1970b) and Fonnesbeck (1976). 

They have shown that a 4% sulfuric acid reflux for one hour is 

effective in separating hemicellulose from the cell wall residue. 

The cellulose portion of cell walls is determined by difference 

following a 3 hour 72% sulfuric acid digest of the 4% sulfur•ic acid 

residue. The lignin component of plant cell walls is calculated by 

difference after t he 7~~ sulfuric acid residue has been ashed . The 

recovered ash is termed acid insuluble ash . Acid insoluble ash 

represents that portion of the total feed ash not absorbed by the 

animal's digestive tract , primarily silica . The nutritive ash 

portion, soluble ash, is therefore calculated by subtracting acid 

insoluble ash from the total ash value. 

Modifications to Van Soest ' s 7~~ sulfuric acid lignin techniques 

(top filling, draining and stirring of the residue) were int roduced 

by Fonnesbeck and Harris (1970b) to solve filtering problems when 

digesting and washing the 7~/o sulfuric acid residue . Filtering 

difficulties wer·e alleviated by eliminati ng the stirring of the acid 

and residue al together . Instead, the lignocellulose containing 
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crucibles were set into beakers of acid, allowing the acid to seep up 

slowly through the fritted disc and wet the fibrous residue. 

As has been previously pointed out in discussing the proximate 

analysis, ethyl ether extraction of feed lipids underestimates the 

total lipids of feeds but overestimat.es the nutritive lipid of feeds 

due to the contaminating nonnutritive components extracted by ethyl 

ether. Fonnesbeck and Harris (1974) have modified the Blyth and Dyer 

(1959) solvent system (2:1, chloroform to methanol) to extract total 

lipids. The lipid extraction is nearly complete and contains both 

nutritive and nonnutritive lipid components . The solvent extract or 

total lipid fraction is then washed through a silica acid column using 

a 1:3 ether- hexane solution . Nearly all the nutritive lipids are 

separated from the nonnutritive portion. Phospholipids are not in­

cluded in the nutritive fraction due to the solvent concentrations . 

Adjustments could be made to recover them, but some nonnutritive lipids 

would escape to contaminate the nutritive portion; therefore , the 1:3 

ether-hexane ratio is preferred. 

Following the determination of total lipids, further partitioning 

of plant dry matter is possible by calculation only . The quantity of 

available carbohydrates or carbohydrates r eadily digested by enzymes 

produced by an animal ' s digestive tract is calculated as cell contents 

minus crude protein minus total lipids minus soluble ash . (Fonnesbeck, 

1976) 0 

Chemical procedures by Fonnesbeck and Harris (1970a,b) have 

shown an improvement over the NDF procedure by reducing the residual 

protein in cell walls and by increasing the recovery of cell wall, 

hemicellulose, lignin and ash. The improved procedures can also be 
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used in analyzing energy and protein feeds, as well as fibrous feeds with­

out the filtering difficulties shown by the NDF method . The addit ional 

partitioning of plant material into more simplified components of 

cellulose hemicellulose, lignin, acid insoluble ash, soluble ash , 

and available carbohydrates by simplified laboratory methods has also 

been shown by Fonnesbeck and Harris (1970a,b; 1974) . However, 

further research is needed to determine the accuracy of these 

proposed impirical analytical methods . 

Factors Tt,at Affect Feed Digestibility 

Forage type effects 

The literature contains a limited number of studies comparing 

in vitro or in vivo digestibility between grass and legume forages. 

However, a few research findings show that digestibility variation due 

to forage type alone may be significantly high . Consequently, this 

added variation could have a significant affect on the accuracy of 

equations used to estimate nutritive value of ruminant diets . 

Tomlin et al. (1962) showed lignin to be significantly correlated to 

in vitro cellulose digestibility for grass and legume samples. How­

eve~ separate equations were used for the forage types and were shown 

to be significantly different. Johnson et al . (1962) showed that the 

in vitro cellulose digestibility correlation with ~ vivo measurements 

was high for grasses alone (R= .95) but was lowered when alfalfa data 

were included in the analysis (R= .86) •. Additional studies by Johnson 

~. (1964) compared in vitro cellulose digestibility (IVCD), solu­

bility of cell ulose in cupriethylenediamine (CEDJ, and the solubility 

of dry matter in 1 N sulfuric acid (DMS) as estimators of in vivo dry 
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matter digestibility for grasses, legumes and mixed forages (grasses 

plus legumes) . Correlations between lab0ratory methods and in vivo 

digestibility measurements (DMD) varied considerably depending on 

which class of forage and which in vi tro measurement was used. The 

chemical predictants gave the lowest correlations when all forage 

classes were combined (correlation of . ~ID x DMS: R = .42; DMCl x CED: 

R = . 66). Regression equations were also developed using in vitro 

and chemical data as independent variables to predict forage digest i ­

bility. The kinds of independent variables used were extremely vari­

able between feed classes. Again suggesting noteable differences be­

tween grasses and legumes. 

Correlations were also calculated by Ho et al. (1966) comparing 

chemical predictants CED, DMS, ADF, lignin and NDF and in vitro dry 

matter digestibility (IVDMD) with grass and l egume in ~ivo dry matter 

digestibility. Again, a considerable amount of variation was observed 

among feed classes , especially for the chemical predictants (table 1). 

Low correlations observed when forages were combinedwere contributed to 

the higher chemical variability shm.n by the grasses. Correlations 

averaged much lower for the grasses than for the legumes . 

Gaillard (1962) determined correlations between holocellulose 

(cellulose plus hemicellulose) and hemicellulsoe and the i n vivo 

digestibility of organic matter in grasses and legumes. Low correla­

tions for both chemical fractions were observed when no distinction was 

made between forage types . Significantly higher correlat i ons , however, 

wel'e calculated when forage groups wer·e separated . Si nce t ile holo­

cellulose contai ned a considerable amount of hemicellulose, Gaillard 

proposed that differences noted between forage types was primarily due 
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Table 1. Simple correlation coefficients between in vivo dry matter 
digestibility and predict antsa 

Predictants 

Forage type CEO OMS ADF Li gnin NDF IVDMD 

All Forages . 67** .54** -. 53** -.46** -.47** .88** 

Grass . 69** .60** - .33** -. 62** -.48** .83** 

Legumes .69** .76** -.76** -.81** -.74** .97** 

Brame grass .82** .36 -.43 -.86** -. 08 .85** 

Orchard grass .72 .88* -.80* -.66 -.75 .98** 

Reed Canary grass .42 .49 - .68 -.95** -. 64 .84** 

Timothy .82 .60 -.43 -.80** -.54 .84** 

a From Ho et al. (1966). 

bCED: Solubility of cellulose in cupriethylenediamine 

OMS: Solubility of dry metter in 1 N sulfuric acid 

HDF: Ac~d detergent fiber 

Lignin: The difference between ADF and the ADF residue following 
a potassium permanganate treatement to dissolve lignin . 

NDF: Neutral detergent fiber 

IVOMD: In vitro dry matter digestibility 

* p < .05 

** p < .01 
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to digestibility differences between forage hemicellulose. Research by 

Sullivan (1964) showed that grasses exceeded legumes in appar ent di­

gestibilities of total dry matter and fiber fract ions such as crude 

fiber , true cellulose, al cohol-insoluble matter and non protein alcohol 

insolubl e matter . Van Soest ( 1964) , . Keys et al. ( 1969) , Mowat et al . 

(1969) , Moir (1972) and Donker et al. (1976), have also observed dis­

tinct fiber' digestibility differ ences between grasses and l egumes . 

This includes impirical fiber fractions of hemicellulose , cellulose, 

neutral detergent fiber, acid detergent fiber , and crude fiber. 

Information found in the literature i s not compl ete enough to 

pinpoint the source of the differences observed between grasses and 

legumes . However, from information given it is suggested that chemical 

and digestibility differences between grasses and l egumes are great 

enough to significantly reduce the accuracy of equations for predicting 

forage digestibility. A separation between forage type only (grass or 

legume) maybe adequate to avoid a significant reduction in predictability. 

Maturity effects 

1-'.aturity in forage plants has been studied intensively due to its 

marked effect on forage digestibility by ruminants . I t has been shown 

that maturity factors may account for nearly 80% of the variation in 

forage nutritional quality (Troelsen and Cambell, 1969). 

An experiment was conducted by Meyer et al . (1957) to examine matur­

ity effects on the feeding value of oat hay. The hay was harvested at 7 

different stages- 59% jointing , 16% flagleaf, 1~/o boot, 1% flower, 1~/o 

flower, milk, and dough stages . Holocellulose content was 3~/o in the 

j ointing st.age and plateauea at 5~/o in th~ milk stage . Lignin content 
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increased regularly to the milk stage (3.8% to 9.~/ol •. The ratio of lig­

nin to holocellulose increased from 10.9% to 17.3%. The added grain for­

mation in the dough stage served to lower lignin content of the hay to 

8.4%. Total digestible nutrients (TDN) decreased slowly from 6~/o in the 

jointing stage to 60% in the flower stage. However, a rapid decrease in 

TDN occurred to 5~/o in the milk stage followed by an upturn to 5~/o with 

gr-ain formation. Sheep gains followed the TDN pattern closely. Gains 

were significantly larger in the jointing stage, continued at a relatively 

constant rate through the intermediate stages, but dropped significantly 

loHer for both milk and dough stages . Lignin percentages were shown to 

be highly negatively correlated with TDN values (-.89). 

Maturity effects on .:!:.!! vitro digestibility (TVD) of plant parts 

(leaves, heads, and stems) were studied by Pritchard et al. (1962) in 

timothy, orchard, brome, reed canary, t.all fescue and mountain rye gras­

ses. All grasses were cut at 9 separate stages of maturity. It was 

observed that the IVD of stems was generally lower than IVD for the 

leaves. Also, IVD of the stems declined more rapidly with increased 

maturity than did the leaves. The cutting date was shown not to be a 

eood indicator of maturity across grass species, because a species dif­

ference in the rate of maturity was observed. A study by Johnson and 

White (1965) on orchard grass and rye grass also showed stem parts to be 

significantly lower in IVD tiBn leaf parts. Leaves were highest in IVD 

followed by leaf sheath parts. It HaS also shown that after the head 

emerged, the leaf portion contributed only 11-1~/o of the total plant dry 

matter, while the stem was calculated at 50-60% of the total dry matter. 

Sheath and head portions contributed 20% of the dry matter. It may be 

concluded from the preceeding data that digestibility changes in grass 
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sterns determine to a large extent the digestibility of the entire plant. 

Lignification of the leaves, sheaths, and stems followed digestibility 

patterns in which the sterns of lowest digestibility were more lignified 

than leaves or sheaths. Leaves contained the least amount of lignin and 

were the most digestible. Sterns also became lignified at a faster ~ate 

than leaves or sheaths . A species variation in rate of maturity was 

also observed . 

Ademonsum et al. (1968) ran a chemical and digestibility study on a 

sorghum- sudan grass hybrid at varying stages of maturity. Twelve cuts 

were made covering maturity stages of vegetative through more than 40% 

headed . Studies showed the crude protein percentage declined from 20% to 

about 10%, going from early to late stages . Neutral detergent , acid de­

tergent , and cellulose increased slowly to cut 9 but increased sharply to 

cut 12. Lignin increases showed a similar pattern . In vivo digestibility 

changed very little until the fourth cut, but declined between .50 and 

.65 percentage units per day from then on to cut 12. 

St anely et al . il968) determined NDF percentages in amclo clover in 

a study of maturity effects on hay quality. It was shown that in young 

vegetative forage, NDF compr ised less than 40% of the total yield . 

During flowering it increased to 4r/o and at maturity to more than 50%. 

The forage production and cell wall data, when combined with the 

weather data, indicated that during wet conditions forage yields in­

creased rather rapidly; and forage quality, as measured by cell wall 

percentages, will decrease more rapidly than forages under dry condi­

tions with lower yields. 

Anderson (1976) showed that a delay in cutting alfalfa brought an 

overall increase in total dry matter harves t ed . However, chemical 
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data showed this was due to an increase in the more fibrous parts of 

the plant, namely NDF and ADF. Noticeably, crude protein declined 

with age . The dry matter digestibility likewise declined as the forage 

matured. These findings by Anderson are supported by similar obser­

vations by Goering et al. ( 1976) • 

Cogswell and Kamstra (1976) studied matur ity effects on the 

chemical composition and digestibility of range grasses (blue grama, 

prarie sandreed, threadleaf sedge and needle- and-thread). Data 

showed increased holocellulose with advances in maturity. Similarly, 

hemicellulose increased but not as much as ADF and cellulose. At 

later collections the inclusion of lignin increased the ADF fraction 

to a greater extent than cellulose. Lignification increased in all 

the species with maturity. Crude protein percent dropped continually 

wi th increasing Inaturity and dry matter digestibility rapidly de­

clined with advanced maturity. 

It i s suggested in the research cited that digestibility 

variation in forages with maturity is essentially a result of 

quantitat ive changes between nondigestible , partially digestible, and 

readil y digestible chemical constituents for all forage plants . As 

grasses or legumes mature , lignin and fiber quantities increase while 

crude protein and other non cell wall components decrease . These 

conclusions are in agreement with those presented in a review on 

chemical composition of forage plants by Van Soest (1964). Subse­

quently, if plant maturity differences are adequately explained by 

chemical composition information, the precision of equations used to 

predict forage digestibility from compositional data snould not be 

affected by variations in forage maturity. 
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Associate effects 

Associative effects may be defined as feed interaction effects 

which al t er the digestibility of a given feed (or feeds ) when combined 

with one or more feeds in a mixed ration. In a review on associative 

effects or associ ative. digestibility Schneider and Flatt (1975) have 

presented the following ideas: 

Digestibility differences of a feed in a mixed ration may ari se 

because the combinat ion of feeds may represent a higher or lower plane 

of nutrition than the individual feeds fed alone. For example, in 

ruminants cellulose digestion of a given feed in a mixed rat i on may 

be enhanced due to an adequate supply of nitrogeneous substances or 

essential minerals that would otherwi se be in a deficient quantity if 

the feed had been fed individually. 

Apparent associative effects may a!'ise simply due to vari ation 

connected with average digestion values found in feed tables. Di­

gestion coefficients of rations obtained by f eedi ng those r at ions in 

digestion experiments often differ s ignificantly from the digesti­

bilities calculated using table values . "Average coefficients are 

useful to compute rations used in practical f eeding work , but they 

cannot be deemed accurate enough for calculating digestible nutrients 

i.n experimental rations already consumned. " Difficulties may be 

avoided by conducting diges tion trials to compute accurately the 

digestible nutrients for each animal for the combination of feeds used 

in an experiment. 

Varia tions associated with digestion coefficients for energy feeds 

also may be relatively higb . Energy feeds such as feed grains are 

generally not f ed alone when fed to ruminants to determine their 



24 

digestibility values. Rather, they are fed along with high cell wall 

basal feed of known digestibility . The digestibility of the basal 

feed is assumed to remain constant when fed alone or mixed with a test 

feed. As a result, the variation from the combination effect as well 

as from errors of experimentation are attributed to the added energy 

feed. 

Ruminants may digest some fibrous feeds poorly when they are fed 

in rations containing a large proportion of readily digested carbo­

hydrates. The microorganisms tend to utilize more of the soluble 

carbohydrates instead of attacking the cellulose or hemicellulose of 

feed fiber. 

Finally, associative digestibility may not occur at all . Some­

times the digestion coefficients of rations are almost exactly the 

weighted means of those individual feeds making up the rations. 

Whether or not there will be an associative effect between feeds and 

to what extent they will affect the nutrients of the individual feeds 

appears to be largely unpredictable. 

A few recent studies can be cited that show associat ive digesti ­

bility of feed nutrients may or may not occur in mixed rations . 

Clemens (1968) observed associative digestibility of nitrogen­

free-extract, ether extract, and crude protein in diets fed to sheep 

containing varying ratios of corn grain to dehydrated alfalfa meal. 

The digestibility of nitrogen-free-extract, ether extract , and crude 

protein increased curvilinearly with increasing corn in the ration . 

Crude fiber digestibility decreased linearly , demonstrating no asso­

ciative effects on fiber digestibility. 
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Associative effects were observed by Vance et al. (1972) in corn 

grain, plus corn silage rations eaten by hereford steer calves. When 

net energy per kilogram of dry matter (NE/kg DM) was regressed against 

percentages of grain and silage, the ration net energy for matinenance 

(N~) value increased linearly with increased corn percentages . This 

indicated that N~ content of each ration was constant and independent 

of the proportion of each feed ingredient of the ration. The ration 

net energy for gain (NEg) value, however, increased curvilinearly 

showing that the NEg was not constant but dependent on the feed propor­

tions in the ration. The NEg of corn grain decreased while that of 

corn silage increased as the increment of grain in the ration declined . 

Feeding sheep pelletedrations of corn and alfalfa similar to 

rations prepared by Clemens (1968), Kromann et al. (1975) also ob­

served interactional effects on the digestibility of nitrogen-free-

extract, crude protein , and ether extract with increasing corn content. 

Crude fiber also showed associative digestibility. Apparent digesti­

ble energy (DE), metabolizable energy (ME), and net energy for 

maintenance and productivity (NEm+p) showed no associat ive diges­

tibility. It was postulated that the physical form of the diet n~y 

have contributed to whether or not there was an associative effect on 

DE, ME, and NEm+p since Kromann (1967) observed an interactional 

effect on the same energy digestibility values for nonpelleted diets 

of similar ingredient composition. 

Kromann ~· (1977) fed four pelleted diets consisting of 

varying proportions of pea scalpings and straw to wether and ewe 

lambs. No associative digestibility was observed for nutrient levels 

of nitrogen-free- extract, ether extract and dry matter. Only a 
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linear increase in the digestibility for these nutrients was shown 

as the level of pea scalping increased in the diet. Crude fiber di­

gestibility was not affected by the diet ratios since crude fiber 

content was not significantly different between rations. DE and ME 

were shown to have a third order relationship with percent pea 

scalpings in the diet. NEm+p showed only a linear relationship to the 

pea-straw ratios. 

Studies by Houser et al . (1975) and Chimwano et al. (1976) showed 

that increasing levels of a grain supplement in ruminant rations 

lowered cellulose digestibility. However , a protein and energy sup­

plement was shown to have very little affect on grass crude fiber 

digestibility in a digestion trial conducted by Tagari and Ben-Ghendahi 

(1977). 

Johns and Holter (1975) fed Holstein heifers four rations con­

taining differing ratios of urea-treated corn silage to hay crop 

silage. The digccl ibility of gross energy , crude protein, dry matter, 

and ether extract was greater for the 100% corn silage diet than for the 

100% hay crop silage diet, the other two diets were intermediate. 

No positive associative effects between forages were observed. 

From the information given above , it may be readily concluded 

that associative effects when present may add considerable variation 

to the availability of digestible nutrients in ruminant feeds . Un­

fortunately, the occurance of associative digestibility is relatively 

unpredictable. Most equations used to predict feed digestibility 

are based upon single ingredient diets only; therefore, variati on from 

association effects has not been a factor for consideration . However , 

predicting equations for a single feed diet would not be useful in most 
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practical feeding regimes since mixed rations are most commonly used . 

Further research should be conducted to study the impact associative 

effects may have on the predictibility of regression equations and to 

determine the feasibility of developing equations for mixed diets . 

Texture effects 

The literature is quite complete with information on the effects 

grinding or pelleting have on feed digestibility. A thorough review 

of literature by Schneider and Flatt (1975) outlines the following on 

feed grinding and pelleting effects: 

Generally , the di gestibi lity of pelleted or ground hay is lower 

in digestibility than long or chopped hay. Experiments have shown 

that feed fiber digestibility is signifi cantly lowered by grinding or 

pelleting the hay. In mixed rations where a forage is supplemented 

with a whole or ground , high energy feed such as corn or barley, the 

crude fiber digestibility again is observed to be depressed by pel­

leting (the hay only or the complete ration) . However , the digesti­

bility of the entire ration is often not affected or may be slightly 

higher than unpelleted diets. Further research not reviewed by 

Schneider and Flatt also supports these ideas (Campl ing et al., 1963 ; 

Anderson et al ., 1975; Johnson~., 1964 ; Waldo et al ., 1971). A 

summary by Moore (1964), included in the review by Schneider and Flatt 

(1975), listed the following significant changes in ruminant digestive 

processes as a result of feedi ng ground or pelleted feeds: 

1 . Reduced time of prehension and mastication. 

2 . Probable reduced saliva secretion. 

3 . [):!crease in rumination. 
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4. Increase in rate of fermentation in the rumen. 

5. Increase in concentration of rumen volatile fatty acids one to 

four hours after feeding. 

6. Decrease in ratio of acetate to propionate in rumen. 

7. Decrease in rumen pH. 

8. Increased rateofdigestion in rumen . 

9 . Increased rate of passage of feed particles from the rumen. 

10. Decrease in dry matter and crude fiber digestibility usually but 

not always observed. 

11. No difference in net energy values with equalized feed intake. 

12. Increased dry matter intake. 

13. The fact that grinding the forage to make the pellets causes the 

effects of pelleting. 

14. Increased palatability and acceptability of pelleted forage . 

15. The finer the grinding of the forage prior to pelleting, the 

greater the effect. 

16. Variation in the fineness of grinding probably accounts for the 

variable results with pellets which are obtained in digestibility 

experiments. 

It has been adequately pointed out in the literature that the 

texture or physical form of a feed plays a significant role in deter­

mining its own nutritive value. Evidence shows that digestibility 

variation due to texture effects is due to changes in the ruminants 

digestive processes and is not related to feed chemical composition. 

Therefore, logically ·it may also be concluded that equations based on 

chemical predictants only would not be adequate for predicting feed 

digestibility across pelleted and nonpelleted diets . 



METHOD AND PROCEDURE 

Design of Experiment 

Twenty-four wether lambs weighing approximately 30 kg were 

randomly assigned to 2 replications of a 2 x 3 x 2 x 2 factorial 

design digestion trial . The treatment s includ~d 2 forage types, 
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3 stages of fo rage maturity, 2 diet energy levels and 2 diet t extures . 

Animals given high energy diets in the firs t replication were re­

assigned to all forage diets in the second replication. This was done 

to avoid possible rumen disorders due to prolonged exposure to low 

fiber diets. 

Composition of Diets 

Alfalfa and grass (40% brome grass, 6~/o orchard grass) were sel ec­

ted for the forage portion of the diets (tabl e 2) . For the study of 

maturity effects and to provide a wide range of cell wall percentages 

among diets, each forage was cut at late vegetative, midbloom and 

fullbloom stages . Forage was cut and crimped with a swather, suncured 

and harvested as baled hay. All stages of maturity were selected from 

the same field for each forage type except the late vegetative stage 

of grass . In order to have enough of the early s tage of grass , a 

second field was selected for a few additional bal es. Bales for each 

hay type and stage of maturity were selected at random from the field. 

The second cut of alfalfa was used to avoid annual weeds. The first 

cutting of grass was selected for mid- bloom and ful l-bloom st~es. 



Table 2. Forage harvest dates 

Forage type 

Alfalfa 

Alfalfa, hay, s-~, late vegetative, cut 2 (IFN 
l-00-054) 

Alfalfa, hay, s-c, midbloom, cut 2 (IFN l-00-063) 

Alfalfa, hay, s-c, fullbloom, cut 2 (IFN l - 00-068) 

Grass 

Orchardgrass - Brame, smooth, hay, s-c, late vege-
tative, cut 2 (IFN l-20-718) 

Orchardgrass - Brcme, smooth, hay, s-c, early bloom 
cut 1 (IFN 1-20-708) 

Orchardgrass - Brame , smvoth, hay, s-c, full bloom, 
cut 1 (IFN 1-20-708) 

30 

Date of Cutting 

July 9 

Jul y 23 

August 9 

July 26 

June 11 

July 26 

The second cutting of grass (grass aftermath) was used for the late 

vegetative stage. 

Energy leveJs in the experiment consisted of all forage diets and a 

50:50 mixture of corn grain to forage. 

Feed precessing for pelleted diets and diets containing long hay 

was accomplished using the department's California oellet mill and Gehl 

hay chopper . Bales were selected at random from the haystack before 

chopping. Hay for long hay diets was chopped through a 38.1 mm (l l/2 

inch) mesh screen. A 3.18 mm (l/8 inch) mess screen was used to prepare 

hay for the pelleted diets. Crushed com grain was used in beth pel­

leted and long hay mixed diets . Mixed diets to be pelleted were hand 
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mixed on the floor. Steam was used for binding pellets and pelleting 

was done through a 6.38 mm (1/4 inch) die. 

Individual rations were weighed and sampled prior to feeding, 

Mixed diets of long hay and corn were mixed uniformly and then sampled. 

A half a percent (.5%) granulated trace mineral salt was added to all 

daily rations. 

Digestion Trials 

A 21 day digestion and balance trial was conducted consisting of 

a 7-10 day adjustment period for adjusting lambs to the diets followed 

by a 7 day preliminary period and a 7 day collection period. Feed and 

water were given ad libitum. During the adjustment period the ration 

was reduced to the amount the individual animal would completely consume. 

Animals were !1oused in individual metabolism stalls following the 

adjustment period. Individual weights were taken prior to caging and at 

the end of each collection period. 

Total collection of feces and urine was made twice daily for the 

full 7-day collection period. All collections were kept cool in a 

refrigerated room at 1° C. 

Following each collec~ion period, individual feces and urine 

collections were each mixed and sampled for dry matter determination 

and chemical analysis. Feces samples were freeze dried for chemical 

analysis . Urine samples were frozen. 

Method of Analysis 

Feed and feces samples were ground through a Wiley mill in 

preparation for dry matter-determination and chemical ru1alysis . Feces 
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and alfalfa aiets were ground through a 2 mm screen. Grass diets were 

ground through a 1 mm screen to obtain samples more equal to alfalfa 

and feces samples in particle size. 

Procedures by Fonnesbeck and Harris (l970a,b; 1974) and Fonnesbeck 

(1976) were followed to chemically analyze feed and feces for percent 

cell walls, cellulose, hemicellulose, available carbohydrates, lignin, 

total lipids, acid insoluble ash, and soluble ash. Percent neutral 

detergent fiber was determined using procedures of Van Soest and Wine 

(1967) with modifications of Robertson and Van Soest (1977). Percent 

acid detergent fiber was determined by the method of Van Soest (l963b). 

Dry matter and crude protein content of feed and feces were determined 

using procedures outlined in Nutrition Techniques for Domestic and 

Wild Animals by Harris (1970). Likewise, all energy values; gross 

energy (GE) , digestible energy (DE) , and metabolizable energy (ME); 

were calculated following methods outlined by Harris ( 1970). ME values 

were calculated for 11se in research beyond this stucly . 

Computer programs by Hurst (unpublished 1978; Utah State University, 

Applied Statistic Department) were used for analysis of variance and 

stepwise regression analysis. 
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RESULTS AND DISCUSSION 

Chemical Methods 

Filtering problems 

Crucible filtering difficulties were experienced when nay-corn 

feed and feces samples were analyzed for neutral detergent fiber . 

Crucible filtering was usually too long for practicality. Completed 

samples gave high, wild values with low repeatability. Cell wall hay­

corn feed and feces samples were moderately slow to slow in filtering 

through the filter stick following the 24 hour pepsin digest, but 

filtering time was not unreasonably long. This involved feces samples 

primarily. Slow filtering was usually prevented by using a coarse 

filtering stick. Crucible filtering in cell wall analysis of hay- corn 

samples (primarily feces samples) was also slow , but not excessively 

s low as shown in the neutral detergent procedures . Completed cell wall 

samples gave reasonable values with good repeatability. 

Neutral detergent fiber filtering problems were prevented by the 

addition of an a-amylase digest as suggested by Robertson and Van Soest 

(1977). The grade of enzyme preparation used also contained some pro­

teinase. All hay- corn feed and feces samples were analyzed for 

neutral detergent fiber using the added a- amylase procedure . The use 

of a-amylase was not necessary in the cell wall analysis . 

A simple qualitative test was conducted to investigate the cause 

of the excessively slow filtering of neutral detergent fiber hay-corn 

samples compared to only moderately slow filtering of cell wall hay­

corn samples . 
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Separate l gram samples of a commercial corn starch were boiled in 

100 milliliters of water, neutral detergent, and cell wall detergent 

(sodium lauryl sulfate at pH 3. 5J for l hour using a reflux apparatus . 

Following the l hour reflux, samples were filtered through glass 

crucibles to compare ·filtering ease. 

Upon filtering, samples boiled in either detergent solution left 

behind a much larger· amount of residual starch than the sample boiled in 

water. Residual starch from the sample boiled in water was granular 

in appearance. However , both detergent solutions left a starch residue 

having a gummy, coagulated or curded appearance . Also, the quantity of 

curded starch was substantially greater for the neutral detergent 

sample than for the cell wall detergent sample. The addition of a few 

milliliter's of a-amylase solution recommended by Robertson and Van 

Soest (1976) dissolved the coagulated starch residue from both detergent 

solutions . 

Further, 1 gram starch samples were again refluxed for 1 hour in 

water, neutral detergent, and cell wall detergent (sodium lauryl sulfate 

solution, pH 3.5). In addition to starch, l gram portion of ground 

alfalfa was added to each sample solution. The addition of the alfalfa 

resulted in excessively slow filtering for the neutral detergent sample 

and moderately slow filtering for the cell wall detergent sample . No 

filtering problems were experienced on the sample boiled in water. 

It is concluded from the results of the simple test that excessively slow 

filtering on neutral detergent hay-corn samples is primarily a result of the 

coagulation of feed starch by the neut ral detergent . The coagulated 

starch residue acts in combination with fibrous particles to prevent 
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free passage of the sample liquid. Secondly, the coagulation of feed 

starch also occurs in the acid cell wall detergent but to a lesser 

degree than in neutral detergent. Thus, only a moderate filtering 

problem occurs in cell wall analysis. 

Neutral detergent fiber versus cell walls 

Neutral detergent fiber values averaged higher than cell wall values 

for all diet types (tables 4 and 5) . Differences ranged from .0~/o to 

3.~k with an average of 2.4% across all diet types. Differences between 

neutral detergent fiber and cell wall percentages were generally lower 

for the hay-corn diets, an average difference of 2.~k and 1.9% for all­

hay and hay- corn diets respectively. A comparison between grass and al­

falfa diets showed that differences between neutral detergent fiber and 

cell wall residues were nearly the same for the all-hay diets, averaging 

2.8% for grass and 2.7% for alfalfa. However, a greater difference was 

observed for the alfalfa hay-corn diets than for· the grass hay-corn 

diets, a 2.?/o and 1.6% average differences respectively . 

Generally, differences between neutral detergent fiber and cell 

wall extractions are partly a result of a higher content of residual 

protein in neutral detergent fiber fractions. Neutral detergent fiber 

may retain up to 33% of the forage protein, while cell wall procedures, 

utilizing a 24 hour pepsin digestion, have been shown to reduce protein 

residues by 9~k. Differences between neutral detergent fiber and cell 

wall values for this experiment equaled 27% and 15% of the total crude 

protein in grass and alfalfa all-hay diets respectively and 15% of the 

total crude protein in both the grass and alfalfa hay-corn diets. 



36 

Neutral detergent fiber to cell wall differences for the grass 

diets probably should have been greater than observed; however, the 

neutral detergent also removes silica, a significant constituent of 

grass dry matter. This would bring neutral detergent fiber values 

closer to cell wall values. Silica (acid insoluble ash) content corn-

prised an average of 3 . 4% of the grass all-hay diets and 2.0% of the 

hay-corn diets. 

Recovery of plant cell wall constituents 
in crude fiber 

Across all diets there was 61 . 6% recovery of plant cell wall con-

stituents in crude fiber. Crude fiber was 57.rk as great as neutral 

detergent fiber (table 3). Across forage type, the recovery of cell 

wall constituents in crude fiber was lowered l~k when corn comprised 

50% of the diet. A 12 to 1~/o drop in crude fiber recovery of cell 

wall constituents was observed when grass instead of alfalfa comprised 

the forage portion of the hay-corn diets . 

Data from this study is consistent with observations reported by 

other researchers. Substantial evidence has been reported to show 

that crude fiber is poor for recovering all cell wall fibrous con-

stituents, che recovery of lignin and hemicellulose generally being 

considerably lower than the recovery of cellulose (Hallab and Epps, 

1963; Stallcup, 1967). Van Soest (1967, 1974) has stated that crude 

fiber recovery of lignin and hemicellulose is significantly lower 

in grasses than in legumes. Crude fiber also recovers a low per-

centage of grain cell wall constituents (Van Soest, 1974) . 



Table 3. Comparison of crude fiber analyses to plant cell wall 
constituents 
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Ratio of crude fiber to other analyses 

CFa CFb 
Diets cw NDF 

Alfalfa 

All-hay .757 .692 

Hay-corn .635 .587 

Grass 

All-hay .585 .562 

Hay-corn .485 .466 

Average .616 .577 

aPlant cell walls determined using detergent procedures by 
Fonnesbeck and Harris (1970a). 

bNeutral detergent fiber. 

Chemical Composition of Diets 

To more easily see differences, compositional information (tables 

4 and 5) for all-hay diets only was used in discussing differences 

between forage types and stages of maturity. 

Forage type 

Grass showed much more chemical variation than did alfalfa 

(compare tables 4 and 5). Across maturity and texture levels, grass 

cell walls ranged from 49.T/o to 70 . ~/o with a mean of 6~/o, while alfalfa 

cell walls ranged from 37.5% to 42.9% with a mean of 40.6%. Grass cell 

wall variation was due mainly to variations in cellulose and hemi-

cellulose content . Grass was higher in cellulose but much higher i n 



Table 4 . Chenucal composition of alfalfa diets 

--
Cell contents 0:111 ·.;all con::;tituents 

Avail- Acid Neutral Acid 
able Hemi- insol- deter- deter-

Crud• cacbo- Soluble Total Cellu- cellu- uble Cella """' gent Crude l>ry DE /£ 
protein hydrate aoh lipids lose lo.."'e lignin ash walls fiber fiber fiber Ash matter sheep sheep GE 

Treatrrlents '" '" "' "' '" ") "' '" "' '" "' 
,., ,., 

"' (Heal/kg) (t1cal/kg) (Heal/kg) 

Alfalfa ro/ 

Late vegetative 

Coacse 21.2 21.4 10 .8 6 .1 25.7 7.9 6.7 . 2 lt0.5 4J .8 J7 . 5 3U . 1 11.1 90.7 2.72 2 . 23 4,44 

Pelleted 21.7 21.2 10 . 6 6. 2 25.7 7 -1 6.5 .4 40 . 3 4).) 36.3 29 .9 11.1 89 .8 2 . 45 1.94 4,47 

Avg. 21.5 21.3 10 . 7 6.2 25 .7 ).8 6.6 .6 40,4 43.6 36 .9 )0 .0 11.1 ';IO.J 2.59 <.' . 09 4 . 46 

MidMoan 

Coarse 19. 4 24 . 3 9.9 5.6 26 .4 ) .7 6.6 .1 4().8 41.5 J6.6 31.6 lU .O 90 . 6 2.81 2 . 30 4 . <.B 

Pellete<l 19.1 2tl.l 9 . 7 5. 6 23.7 7.4 6.1 .3 37.5 3\:1 .8 33.7 27 . 5 10.1 90 . 5 2.86 2 . 21 4 . 45 

Avg . 19.3 26 .2 9.8 5.6 25.1 ) .6 6.4 .2 39.2 40.7 35.2 29 . 6 10.1 '1().6 2.84 2.29 4.47 

F'ullbloan 

Coa rse 14.1 29 . 9 1 .7 5.'• 25 .8 9.8 7 .1 .2 42 . 9 4'! . 1 35.9 31.1 7.9 ')0 . 4 2 . 74 2 . 24 •.50 
Pellet ed 14 . 3 30 . 4 7 . 3 6.5 24 . 5 9 . 8 6 .9 .3 41. 5 l.t4,1 )4,6 29 .1 7.6 90 . 4 ~.7U 1.88 4 . 45 

Avg. 14 . 2 :.10 . 2 ) . 5 6.0 2S.2 9 .8 7 .0 . ) 42.2 45.6 35 . 3 30 .1 7.7 '1().4 2.72 2 .06 4.48 

Alfalfa hayb plus come 

Late vegetative 

""''"" 16.6 44.9 7 .2 4.2 14.8 8.0 4.1 .2 27 . 1 31.2 21.9 17.9 7.6 89 .7 3. 05 2 . 56 4.42 

Pelleted 16 . 7 44.6 6.6 4.2 15 . 2 8 . 4 3 . 9 ·' 27 . 9 31.1 22 . 9 17.0 7.1 89 . 5 J .04 2 . 74 4.<.6 

Avg. 16 . 7 44.!; 6.9 4.2 15 . 0 8.2 4. 0 .3 27.5 31.2 22 . 4 17.5 7 .4 89 . 6 3 .05 2 .65 4.44 

Midblocxn 

Coarse 15 . 2 45 .8 6.5 4.8 15.0 8 . 2 4.2 .3 27.7 29 . 3 21. 5 16.6 6.8 89.6 2 . 94 2.43 4,43 

Pelleted 14 . 7 48 . 2 >.6 4.8 13 . 6 9 . 2 3. 7 .2 26.'1 26 . 5 19.7 15.tl 5 . 9 </(J.l 3 . 19 2 . 67 4 . ~7 

Avg . 15 . 0 ~7 .0 6.1 ..• 14.3 8.7 • . 0 .3 27.2 2i . '-J 2C . 6 16.2 6 . 4 39.9 J . 07 2 . 55 4.45 

fullb1ocxn 

Coarse 12 . 5 47 .8 5.2 6.8 13.8 8.8 4.7 . 4 27.8 J0.2 23 . 2 18 6 5.6 89.9 3 . 14 2 .6J 4 . 51 

Pelleted 12 . tl 51.5 4.7 5. 9 13.9 7.0 3.9 . 3 25.1 27 . 4 21.2 17.0 4., 90 .1 3 . 26 2. 77 .. . 47 

Avg, 12.7 49 . 7 5.0 6.4 13.9 7.9 u .4 26.5 ,. .8 22.2 17.8 5.3 ')().0 J . 20 2 . 70 4.49 

- -
a?lant cell walls as determined using detergent procedu."eS by fonnesbeck and Harris 119"10 a). 

bAlfalfa, hay , s -c, late vegetative, cut 2 (IfN 1-00-0')4); Alfalfa , nay , s-c, Midblocxn, cut 2{1FN 1-00-003); Alfalfa, hay, s -c, f'Ull-blocxn, cut 2 (!Fli 1- 00-0&3) . 

cCo1·n dent yellow grain llfN 4-02- 935 1. w en 



Table 5. Chemical composition of grass diets 

Cell content.s Cell wall constituents 

Avail- Acid Neutral Acid 
able Hemi- inso1 - deter- deter-

Crude carbo- Soluble Total Cellu- cellu- uble ~~i!a gent .~, C""Jde Dry DE , .• 
protein hydrate ~h lipids 1a" 1"" Li;orin "" fiber fiber fiber ""' matter 

_, 
"'~' G:C 

Treatments <<l ,., <11 (\) "' "' "' «1 "' «I '" ('.4J <'1 "' (Mcal/k£) (1-Y:al/kg) (Meal/kg) 

Grass hal 
Late vegetative 

Coacse ll . 5 23 . 7 ., .a 5 .6 25.3 16.6 6 .0 3.5 51.4 55 .5 36 . 9 27.0 11.3 92.3 2.4<:1 1.98 4.38 
PellP.ted 12 . 1 21. , ) 8.2 5.7 24 .5 lb.l 5.5 3.6 49 . 7 53 .3 Y..5 27.5 11.1:! ,o, 2.34 1.92 4.39 
Avg. 11.8 24 .0 8.0 :> .7 24 .~ 16.4 5 .8 J.6 50. 6 54.4 35 . 7 27.3 11.6 91.4 2 . 38 1.95 4.39 

Midblocmc 

Coarse 11 .8 6. 2 5.8 b.O )4 .9 2),4 9.0 2.9 70 . 2 72 . 7 4~.) 46.7 8.7 92.1 2 . 33 1.89 •.40 
Pell~ted 12.0 7.8 5.9 6.0 J:J . 6 23 .3 8 .1 3. 3 68.3 72.8 <o4,9 48."/ 9.1 91.6 2.19 1.68 4.45 
Avg . 11.9 7.0 '·' 6.0 )I,,J 23 . 4 8.6 3.1 69.3 72.8 1.5 .1 ;.7 . 7 8.9 Y2.0 2 .26 1.79 4 ,4) 

Fullbl0001 

Coarse 7 . 6 19 . 3 6 .5 5 .5 31.4 19.4 7 .0 3 .3 61.1 62 .8 42.3 JJ.l 9.8 91.9 2.16 1.74 uo 
PellP.ted 8.0 20.1 7.0 5.5 J<J.7 18 .8 6. 5 3.3 59.3 59 .8 40.3 )1.5 10.3 91.5 2.03 1.60 4.37 
Avg. 7. 8 1~ . 7 6.8 5.5 31.1 l\1.1 6 .8 3.3 60.2 61.3 41.3 32.4 10.1 91.7 2.10 1.67 ,,)4 

Grass hayb plus com d 

Late vegetative 

Coarse 11 . 4 42.0 6.2 5.3 16 .0 12.9 4 .1 2.1 35.1 38.5 ;,>4 , 5 17.3 8. 3 90 . 7 2.76 l.)l ,,)6 

Pell~ted ll.U 44 , 7 5 . 7 5.4 15.3 12.4 3. 5 2.0 33 . 2 j4 . 1 21.0 15.5 7.7 8<). 7 3.13 2.66 '< .47 
Avg . 11 . 2 lo).4 6 .0 5.4 15.7 12.7 3.8 2 .1 34 . 2 36 . 3 22.8 16.4 8.o 90.2 2.95 2.49 4.42 

Midblocm 

Coo~e u.o 34 . 3 5.4 4.8 21.1 16.0 5. 9 1.5 4Lo.5 47.1 ,.,, 21.9 6.9 'Jl.2 2.74 2.29 4 ,)8 

Pelleted 12.1 35 .0 •. 5 4,9 <!0.7 15.9 4 .9 2.0 43 .5 45 .8 27 . 7 20.7 6.5 9().3 2.87 2.4U 4.52 
Avg . 11 .6 )4 . 7 5 .0 4.9 20.9 16.0 5 .4 1.8 44 . 0 46 .5 28.1 21.3 6.7 90 .8 £.81 2.35 4 . 45 

Pullblocrn 

Coarse 9.3 "·' 5 .1 5.3 19 .4 13.9 4,4 2.2 3':1.9 39 .8 26.u l<,! .) '.2 91.1 2.12 2.30 uo 
Pell .. teC 9.5 39 .7 5.8 5. 4 18 .9 14 .5 4,1 2. 1 39.6 40.3 26.6 19 . ~ ' .9 "'·' 2.84 2.19 1.,)~ 

Avg . 9 . 4 40 . 1 5.5 5 .4 19 . 2 14 .2 4.3 2. 2 )9 .8 40.1 26 . 3 19.6 • .6 90 .8 2.78 2.25 1 •. ]) 

a Plant ceil walls as determined using detergent procedures oy Fonnesbeck and HarTis !1970 aJ . 

b Orclklr'dgrass-Brone , SIIOOth , hay, s-c, late vegetative, cut 2 (IF'N 1- 20- 718); Orchardgrass- BI"'t''e , smooth, hay, s-c, early blXllll, cut 1 (IFN 1- 20- 708); Orchardgrass- Brcme , SIIIOOth, nay, s-c. 
fUllbloan, cut 1 (lfN 1- 20- 709!. 

c Rain damage to m1dblOC'JM grass hay between cutting and baling redu<.:ed t.l3ter soluble constituents (available carhohydrates and ash) with a consequent increase of t.l3ter insoluble constituents 
(protein , cell wall constituent:~ and lipidsl. 

d Corn dent yellow grain ( IFN lo-02-935 >. w 
"' 
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hemicellulose than alfalfa. Grass cellulose content ranged from 34.9% 

to 24.5% with a mean of 30.1% across maturity and texture levels. 

Alfalfa cellulose content ranged from 26.4% to 23.7% with a mean of 

25.3%. Hemicellulose content in grass ranged from 16.1% to 23 . 4% 

with a mean of 19.6% while hemicellulose content in alfalfa ranged 

from only 7 .4% to 9.~/o with a mean of 8 . 4%. 

Alfalfa forage was shown to be slightly more lignified than grass. 

Averages were 6.7% and 7.1% for alfalfa and grass resp8ctively. How­

ever, acid insoluble ash (silica) averaged considerably great er in 

grass (3.3%) than in alfalfa (0.4%). A largesilicacontent is common 

for grasses (Jones and Handreck, 1967). 

Crude protein and available carbohydrate content both showed 

typical trends between forage types. Crude protein averaged much 

higher in alfalfa (18.3%) than in grass (10.5%). Available carbohydrate 

also was considerably higher for alfalfa (25.9%) than for grass (16.~/o), 

Stage of maturity 

Alfalfa showed only a slight chemical variation between stages of 

maturity (table 4). Midbloom alfalfa averaged the lowest in cell walls 

(33.2%) over texture levels. This was partly a result of a relatively 

large cell wall difference between texture levels . The midbloom 

pelleted diet appeared consistantly lower than the mi dbl oom coarse di et 

in cell wall, neutral detergent fiber, acid detergent fiber and crude 

fiber chemical residues . Therefore, it was concluded that differences 

in cell wall constituents between text ur e levels was due to an actual 

compositional difference of the sample rather than an error in chemical 

analysis. 
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Alfalfa hemicellulose percentages remained relatively constant for 

late vegetative (7.8'k) and midbloom (7.6%) maturity stages, but increased 

approximately 2.~k for tne fullbloom (9.8%) stage . Changes in hemi­

cellulose content contributed to most of the difference between stages 

of maturity for alfalfa cell wall content. 

Lignin content in alfalfa showed only a slight change between 

mat.urity levels . The midbloom stage appeared lowest i n lignin followed 

by the late vegetative and fullbloom stages respectively. The dif­

ferences in lignin content between midbloom texture levels resulted in 

making midbloom alfalfa average lowest in lignin between the three 

maturity levels. 

Crude protein content in alfalfa followed an expected trend for ma­

turing forages, decreasing with increasing maturity from 21.5% to 19.3% to 

14.2% for late vegetative, midbloorn, and fullbloom stages respectively. 

Available carbohydrates followed a reversed pattern to that of crude 

protein, increasing with increasing maturity from 21.3% to 26.2% to 

30.2% for late vegetative, midbloom, and fullbloom stages respectively. 

Grass chemical composition was observed to change considerably 

between stages of maturity (table 5). Cell wall percentages did not 

increase consistantly with increasing nBturity. Cell wall content was 

lowest for the late vegetative stage (50.6%) followed by the fullbloom 

(60.~kl and midbloom (69.~k) stages. 

Midbloorn grass was higher in cell wall content than the full­

bloom grass mainly as a result of excessive lea:.:hing of available 

carbohydrates when the grass was harvested. Midbloom grass was shown 

to be significantly lower in available carbohydrates compared to other 

maturity stages . TI1e midbloom grass was rained on while in the windroH and 
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still contained excessive moisture when baled. Bales were stacked 

loosly until dry. The loose stacking prevented molding, but did not 

prevent added losses of available carbohydrates. The fullbloom grass 

showed a lower cell wall content than expected due to vegetative 

regrowth at the base of the mature plant. Since stages of maturity of 

forage is based primarily on subjective measurements, the fullbloom 

grass was not cut until a substantial amount of regrowth had occur8d. 

The regrowth added a larger portion of leaves to the mature plant con­

tributing to an overall lower cell wall percentage in the fullbloom 

grass. 

The leaching problem and regrowth problem as mentioned, re-empha­

size the significant role stage of maturity and method of harvest play 

in determining hay quality. 

Grass cellulose, hemicellulose, and lignin content increased in 

the same pattern between maturity stages as was shown by cell wall 

content. 

Crude protein r emained relatively constant between late 

vegetative (11.8%) and midbloom (11.9%) grass stages, but decrease 

markedly in the mature stage (7.~h). Crude protein content in midbloom 

grass was probably little affected by the moisture problem. 

Grass insoluble ash was observed to decrease only slightly with 

increasing maturity. 

Energy level 

Generally, the -addition of corn in the diet served to reduce 

cell wall constituents and in turn, significantly increase available 

carbohydrate and total lipid content in the diet (table 4 and 5). 
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Specifically, since alfalfa was relatively low in hemicellulose, 

the addition of corn grain with alfalfa only slightly changed hemicellu­

l ose values from those observed in alfalfa all-hay diets . However, mixing 

corn grain with grass lowered the hemicellulose content by 30% of 

values shown for grass all-hay diets, since grass all-hay diets were 

particularly high in hemicellulose content. Cellulose content in the 

diec was reduced 40% from values in all-hay diets when corn grain was 

mixed with either grass or alfalfa. 

The addition of corn generally lowered the crude protein content 

of the diet from that shown in the all-hay diets for both forage types. 

But, since fullbloom grass was so low in crude protein (7.8%) the 

mixing of corn grain with the fullbloom grass increased average crude 

protein content to 9.4% for the hay-corn diet. 

Texture level 

Generally, there was no significant compositional difference ob­

served between pelleted and coarse diets (tables 4 and 5). However, 

one exception was observed for the midbloom alfalfa all-hay diet. See 

the section on maturity differences for the discussion of this problem. 

Digestibility of Diet Chemical Constituents 

An analysis of variance (table 8) was used to evaluate treatment 

main effects and two-way interaction effects on the apparent digesti­

bility of each feed component (tables 6 and 7). A preliminary analysis 

of variance showed no significant three or four-way interaction effects; 

therefor·e, the variation and degree of freedom from these effects was 

pooled with the error variation of the two-way interaction effects. 



Table 6 . Appar ent digest i on coeff ici ent s for chemical constituents i n alfalfa di ets 

Cell content Cell wall constituents 

Avail- Acid Neutral Acid 
able Hemi- insol - deter- deter-

Crude carbo- Soluble Total Cellu- cellu- uble ~~i!a gent gent Crude Dry 
protein hydrate Ash lipids lose lose Lignin ash fiber fitx:!r fiber Ash matter GE 

Treatments 1%1 (%) 1%1 1,1 1%1 l%1 l%1 l%1 1%1 1%1 1%1 1%1 1%1 i%1 1%1 

Alfalfa h~b 

Late veget a tive 

Coarse 75.4 85.9 64.7 42 .0 52.5 51.0 19 .6 -88.9 43.8 47.9 47 .8 44 .0 62.1 61.9 61.0 
Pellet~ 71.5 81.3 57 . 3 48.;.> 40.3 37 .8 -7 .4 - 4.8 31.0 34.5 34.9 32.1 55.3 54 . 6 54.8 

MidblOO'Il 

Coarse 75 .1 87 . 4 58.8 40.7 54.2 49 . 0 l7 .l -10 . 5 46 .7 45 . 4 50 .8 48 .5 56 . 9 63 .0 62.7 
PdlPteC 74.9 88.2 63 .9 4) ,'l 47.1 48 . 5 6 . 7 -13 . 4 40.0 42.0 42 . 7 38.8 62 .8 63.0 61.9 

Fullblocm 

Coar s e 66 . 6 91.5 50 . 4 42.fi 44.0 56.6 - 1.3 - 37 . 7 40 . 2 43 . 9 39 .3 39.0 48.8 60 . 5 6<J.7 
Pelleted 63 . 5 90 . 7 47.2 40 .3 28.7 47.1 - 7.5 40 . 7 27.6 29.5 24 .9 19.3 47.0 54.3 53 .2 

Alfalfa hayb plus Come 

Late vege t a tive 

Coarse 70.1 92 . 2 58.7 44.A 43.4 49.5 14.6 0 .2 37 .8 43 . 1 110 . 5 43 . 4 50.8 69 . 3 68.8 
Pellet~ 70 . 9 93 . 0 63 . 1 4? . 4 49 .0 57 .9 13 .0 21. 7 46.1 45.5 46 . 7 39.4 60.6 72 . 3 71.9 

Midbloon 

Coarse 60.8 88 . 5 41 .8 45."l 35.2 'i2.5 7.8 - 40.6 31.9 26.8 31.1 30 . 9 37 . 5 63 . 6 66 .4 
PelletP.d 68.6 ')3 . 4 55 . 5 51.1 39 . 4 58.1 6 . 0 - 21.2 40 . 6 40.6 35 .9 33 . 1 52 .6 72.9 71.7 

Fullbl oon 

Coarse 66 . 3 92.0 46 .8 74.0 34.9 54.9 17.8 29 . 5 36.8 38 . 2 40. 7 38 . 2 38 .7 70.1 6~ . 8 

Pellet~d 70 . 5 95.1 64 . 1 62 , 'j 43.3 48.3 11.5 9 .8 39.1 38.6 40 .0 32 . 3 32.3 74.4 72 .8 

aPlant cell wa lls as determined using detergent procedures by Fonnesbeck and Harris 1197C·a}. 

b4lf~lfa , hay, ~-c, late vegetative, cut 2 ( IFN 1- 00- 054 l; Alfalfa , hay, s-c , midblOCllll, cut 2 (IF'N 1-00-063!; Alfalfa , hay , s-c , full - blocm , cut 2 ( IFN 1-00- 068 l . 

cCom dent ye llow grain (IFN 4-02- 9351 . 
_,. _,. 



Table 7 . Apparent digestion coefficients for chemical constituents in grass diets 

-
Cell contents Cell wall constituents 

Avail- Acid Neutral Acid 
able Hemi- insol- deter- deter-

Crude carbo- Soluble Total Cellu- cellu- ~~~e w;~i!a gent gent Crude Dry 
protein hydrate ash lipids lOSE lose i..ignin fiber fiber fiber Ash matter GE 

Treatments 1%1 1%1 1%1 \~) 1%1 1% 1 1%1 1%1 1%1 1%1 l%i 1%1 1%1 111. 1 l%1 

Grass hay b 

Late vegetative 

Coarse 59 .7 80.2 53.0 23 .5 53.8 55.9 21.1 8.4 47.8 51.8 45. 7 50.6 39.3 55 .0 55.0 
Pelle ted 62 . 6 75.0 52.1 38 . 2 53 .6 55.4 14 .9 15.8 47 .o 43.1 40.5 47.4 41.1 55.3 53.3 

Mid bloom 

Coarse 58.8 20.9 48 . 3 42 .4 62 . 1 65 .5 3?.8 9 .7 5"1 .7 61.5 55.2 69 .6 35 .4 54.1 52.8 
Pelleted 54.5 29.7 46 .6 39 .0 54.2 56.1 34.1 15.1 49 .8 55 .1 48 .6 47.2 28 .6 47.8 49.2 

Full bloom 

Coarse 52 .3 78 .9 55 .5 43.2 49.8 50.7 11.6 0.5 "43.0 45 .7 41.4 45.5 9.8 51.4 50.1 
Pelleted 50 . 6 74. 5 47.0 37 .8 41.6 41.6 7 .1 3.6 35.7 36.4 32.3 37.5 33.1 45.4 46. 3 

Grass hay plus Corne 

Late vegetative 

Coarse 56.2 81.1 44.0 44.1 58 .0 57 . 0 30 .6 3.4 51.3 50 .3 50.0 48.4 34 .0 63.6 63.3 
Pelleted 62.3 91.4 48.6 48 .6 54 .8 59 . 2 24 . 1 20 .6 51.2 48.8 48.0 47.1 47.0 70.5 69.9 

Midblo.E 

Coarse 52.7 83.9 43. 2 43.2 55 .5 54.6 47 . 3 - 17 .4 51.9 53.8 50.7 51.6 32.5 62.2 62.5 
Pelleted 59 . 2 90.3 51.2 51.2 48. 4 53 .4 33.2 16.0 47.1 49.4 45.7 46.1 36.7 62 . 7 b3 .5 

F'ullbloan 

Coarse 50.9 88 . 2 56 . 7 56 .7 48.6 52 .0 23.3 9 .2 44 .8 42.2 42.0 42.4 32 .9 63. 5 63 . 1 
PP.lleted 59 .7 90 . 6 23 . 5 23 .5 53 .8 55 .9 21.1 8.4 47.8 35.5 34.7 32 . 7 38.5 60.8 60.9 

3Plant cell wa lls as determined using detergent procedures by Fonnesbeck and Harri s {l97Da) . 

bOrchardgrass- Brome, sl!KXlth, hay, s - c, late vegetative , cut 2 {IFN 1-20- 7181 ; Orchardgrass- Brome, smooth , hay , s - c , early bloom, fullblocm , cut 1 
( IFN 1- 20- '(08); Orchardgrass-Brome, smooth , hay, s-c . full bloom, cut 1 ( IFN 1- 20- 709 J. 

""' cCorn dent yellOW' grain (!fN 4-02- 935 J • 
U1 



Table 8. Analysis of variance: mean squares of digestion coefficients 

Cell contents Cell wall constituents 

Avail -
able Acid 

carbo- Hemi - insol- Neutral Acid 
Crude hy- Soluble Total Cellu- cellu- uble ,_;~~!a detergent detergent Dry protein drates ash lipids lose lose Li(;nin ash fiber fiber Ash matter DE 

&:lurce df 1~1 I <I 1%1 "' 1%1 1%1 1%1 t%1 "' (~) l<l l<l 1%1 (Heal/kg) 

fol,'ll 47 {0.59 351.0 83 .94 189 .6 88 .35 87.14 269 .7 1976 75.89 79 .79 69 .72 136 .6 66 . 23 .1392 

Reps 8. 944 241 .6 69 . ~4 
1111 

2420 . .1850 23 . 45 • 2610 122Jo*** 6.113 5.638 39 .28 205 .7' 3. 786 .0653 

forage (f) <087 
... 

3266 . 
... 

832.9 
... 

35'{ , 7 875.2
11*' 265.6 2390 **' 371'{ 87J .4 111 907.0 1 *' 29':> .2 111 329"~ **' 621~1 ... 1. 543 111 

Maturity (HJ 1 16'( , *'* 1071 
... 

232.9
1 

319.5
1 

48J .) 
. 

2!! .58 ll'Ki UI 1746 267 .4 14 323 .6 ... 330 .7 111 21<t .6 1 .. 31.27 .0682 

eo ... n (C) 1 35 .67 3080 
... 

167 . 7 1555*" 114 . 0 66.00 316.4 823 .6 3.045 79 .70 .1387 47.68 160"{ 1** J . J·ry *'' 

Tex t ure (Tl 34.41 30.19 49 .35 16 .95 276 .0 1 
.. 32 . 10 1301 *** 5267 139.8 11 15L5 1 294. 8 ** 2<:12.6 *** 2.297 . 0003 

FXl1 2 6 .195 931.7 **' 1;1 . 005 54.64 27 .89 117.7 854 . 1 * 1568 63.39 187 .9 11 78.!::11 29 .78 43. 68 .0911 ... 
F".<C ~ -36 1488. 3J .55 .0574 3.070 15 .63 73.01 600.9 .1131 11.93 12.98 123.1 7 .616 .0181 

m 7 . 084 9 . 337 104 . 1 4.380 50 .84 5 .207 lt).47 1965 22 . 45 20 .45 6.705 75 .95 7 .238 .0056 

MXC < 68.99 1 731.9 1 39 .11 204 . 7 138. 1 1 79 .24 119 .0 2117 115.2 111.0 . 222 .8 111 59 .10 39 . 70 .0459 

'~T 2 1.766 22.90 24 .47 199.9 24 .03 42.50 110.0 419 .2 21t .56 58 .83 25 .09 1 .921 14 . 88 .0342 

CXT 143 .8 111 74.23 275 .4 1 9 .630 166. 1 * 3')3,0 ' 26./Q 348 .8 250 .5 11 233.8 .. 219.5 11 552 .6 111 175.1*' .3232' 11 

Error 32 15 . 12 87 . 31l 56 . 37 93.45 41.27 a·r .JB 127.0 1758 38 .26 30 .54 34 . 17 38 .07 13. 41 .0227 

aPlant cell walls as determined using deter gent procedures by Fomesbeck and Harris . 

p < . 05 .. 
p < .01 

_,. 
"' ... 

p < , 001 
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Precautions were taken in interpret ing treatment effect s, since 

apparent di gestion coefficients of son1e chemical cons tituent s have been 

shown to vary primarily as a r·esult of changes in the percentage of the 

component in the diet (Van Soest , 1967; Fonnesbeck, 1969) . A s ta-

t i stical test by Lucas et al . (1961) was used to determine whether the 

nutritional availability or true di gestibility of a given feed con­

s tituent was the same regardless of the diet source . This gave an 

estimate of how much of the variation associat ed with the apparent 

digestion coefficients was due to actual true digestibility differences 

rather than changes only in the amount of the component in the diet. 

The Lucas test involves the use of the simple regression model 

Y = b
0 

+ b
1 

X
1

; where Y equals the apparent digest i ble amount 

(digestion coef. x % content) of a given nutrient and X equals the 
100 l 

nutrient percent. content in the diet (tabl e 10) . The regression co-

effici ent (b
1

) is the estimate of the nutrient true digestibility , 

the regression constant (b
0

) estimates the nutrient endogenous excretion, 

and the standard deviation of the regression coefficient (Sb) together 

with the coefficient of determination (R2 ) estimates how uniformily 

the nutrient was digested (true digestibilit y) over the diets analyzed. 

Results of the Lucas test 

Crude protein and available carbohydrates were shown to be highly 

uniform in true digesti bility across all diet treatments (R2 = .97, 

2 Sb = 2.~/,; R = .98, Sb = 2.1% for crude protein and available carbo-

hydrates respectively; table 10) . 

The estimated true di gestibility for both crude protein and 

avail able carbohydrates was near 1, showing that crude protein and 
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availabl e carbohydrates are nearly lOO'k digested by sheep for all diets 

considered. High crude protein and soluble carbohydrate true diges­

tibility and nutritional uniformity across gr ass and l egun1e all-hay 

diets has been shown by Van Soest (1967) for cattl e and sheep and by 

Fonnesbeck (1969) for horses . 

Though crude protein and available carbohydrate true digesti­

bilities were near lOO'k, t heir apparent digestibilities were shown to 

be much lower (tables 6 and 7). Known endogenous crude protein or 

metabolic fecal crude protein from secreted enzymes, sluffing tissue 

cells, microcrganisms, etc . i s responsible for differences between crude 

protein true and apparent digestibilities. Blaxter and Mitchell (1948) 

reported 2 .8% metabolic fecal protein for ruminants. The Lucas model 

estimated endogenous crude protein to be 3.5% for this study for sheep 

(table 10). As a result of metabolic crude protein, crude protein 

apparent digestibility is shown to decrease with a decreasing crude 

protein content in the diet or increase with an increasing crude pro­

tein content in the diet. 

The endogenous residue for available carbohydrate was estimated as 

5 .1% (table 10). Fonnesbeck (1969) likewise estimated a 5.1% endogenous 

material for soluble carbohydrates using the Lucas test involving 

forages fed to horses. The possibl e source and composition of an 

endogenous soluble carbohydrateresiduehas not been adequately studied 

by researchers. However, since the available carbohydrate fraction is 

determined by difference !available carbohydrates = cell contents -

(total lipids+ crude protein+ soluble ash)) soluble chemical components 

not detected by the total lipids,crude protein, and sol ubl e ash pro­

cedures would be counted as part of the available carbohydrate fraction. 
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Soluble, short chained fatty acids and carbohydrates that result from 

microbi al breakdown of feed fibers in the lower digestive tract may 

contribute to an available carbohydrate endogenous fraction. Soluble 

microbial cell components could likewise add to an endogenous available 

carbohydrate residue. 

The Lucas models for cellulose, cell wall, neutral detergent fiber, 

and crude fiber showed much higher true digestibilities than their· 

average apparent dtgestibilities (table 10). A significant large en­

dogeneous value was also shown for each of these fibrous components. 

These deviations illustrate that the diet type did indeed have a signifi­

cant affect in changing the digestibility of feed fiber. Distinct dif­

ferences between forage types were observed (tables 4, 5, 6, and 7). 

Grass generally was higher than alfalfa in fibrous constituents (i.e., 

cellulose, hemicellulose, cell walls, neutral detergent fiber, acid de­

tergent fiber, and crude fiber) and was also shown highest in fiber di­

gestibility. Withjn grass, the midbloom grass was highest in cell wall 

constituents compared to the other grass maturity stages and also highest 

in the digestibility of cell wall components. These digestibility dif­

ferences as mentioned, together with other fiber digestibility variation 

that occured due to other treatment factors (table 7) resulted in high 

regression slopes and non-theor etical endogenous fiber values. Theo­

retically, fiber true digestibility should be close to apparent diges­

tibility since no endogenous fiber residue is expected. 

Slopes for hemicellulose and acid detergent fiber Lucas models 

were closer to apparent digestibility values (table 10) than was shown 

by other fibrous components . Hemicellulose apparent digestibility was 

not significantly affected by most of the treatment factors (tables 
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8 and 9) •. The hemicellulose model endogenous value was also close to 

zero (b
0 

= .8). Acid detergent fiber showed a relatively high endo­

genous value (b
0 

= 2.0). The affects of diet treatments on the 

apparent digestibility of acid detergent fiber were comparible to those 

shown by cellulose, cell walls, and neutral detergent fiber (table 7). 

Though moderate to high R2 values were shown for the Lucas models 

for all fibrous constituents, these values were still considerably less 

than R2 values for the crude protein and available carbohydrate models. 

Lignin was shown to have a low true digestibility (b1 = .16) and an 

endogenous residue close to zero (b
0 

= -.02). Yet, nutritional uni­

formity was extremely low (R2 = .05, Sb = 10.6). This was a result of 

large variations shown in lignin apparent digestibility values within 

and between alfalfa and grass diets (tables 6 and 7). 

Feed total lipids was also shown to be low in true digestibility 

and nutritional uniformity. (b1 =.57; R2 = .19, Sb = 18.0). This was 

expected, since the total lipid fraction contained nonnutritive as well 

as nutritive lipids . Total lipid. apparent digestibility varied 

considerably between all-hay and hay-corn diets (tables 8 and 7). 

Total lipid apparent digestibility was affected by the addition of corn 

since the added corn-oil increased the nutritive portion of the total 

lipid fraction in the diet. Also , the total lipid apparent digestibility 

was affected by an increase in the total lipid content in general due 

to affects of a metabolic lipid residue (i.e. bile) (Schneider and Flatt, 

1970) • Analytical problems experienced in lipid extraction may have also 

contributed substantially to variation in total lipid digestibility 

values. 



Table 9. Treatment means of apparent digestion coefficients (main effects) 

-----------
Cell content Cell wall constituents 

~.vail - Acid Neutral Acid 
able Henri- insol- deter- deter-

CF11e caroo- Soluble Total Cellu- cellu- uble Cell gent gent Dry 
prottin hydrate ash lipids lose lose Lignin ash walls3 fiber fiber Ash matter CE 

Treatments !%J !%J !%J !%J (%) !%J (%) (>) (\) (~) (%) (%) !>) (~) 
--· ----- -------
~ 

Grass 56.6f 7] , 7 f 49 . 2b 4l.Ob 52.8f 54 .8b 25.t/ 7 . 8b 47 .9r 47 ./ 1,4,6f 34.0f ?7./ 57.5f 

Alfalfa h9 .5g R<J . gs 56.0b 48.6b 42.7g 50.1• s.t' -9.6b J8 . 5s 39 . 6g 39 .6g 52.gS 65.o& 64 .6g 

F'o~e maturit:t 

Late vcr;r:tative f)6.lf 85 . 0f 56 . 2b 42 . lb 50.7f 5J.Ob l3.9r - 6 . 0b 44,,d 45.5f 44.l 48.8f 62.8b 62.2b 

MidblOOOl FJJ .lr 72.s" so.ac 44.6b 49.C!" 53 .5b 23 . 5g -·r.ab 45.7d 46.l 45./ 42 .gS 61.2b 6l.4b 

FullblOCt"l 60.o& A7.7f so.g' 47 .6c 43.lg 50 .9• 12.9f B.Ob 39 . 5c 38.s" 37 .o& 38.8h 60.0b 59.6b 

EnerG:[ level 

il.ll hay diets 63.8b 73.l 53.8b 40.2f 48.5b 5l.3b 12 .6b - 5.15b 42.5b 44,"(b 4z .ob 4J.4b 55.5f 55.lf 

Com- hay diets 62 . 4b go.o& ?1.5b 49 . 4g 47.0b 53.6b 20.9b 3 . 3b 4) . gb 42 .7b 42.2b 43.6b 67 .2'< 67 ·' ' 150,501 

Texture 

Cvarse fi2.lb 80 .9• ,o .gb ~.+5.3b 59 .3r 5J . Jb 20 . 4f - lLZb 44.4° 45.7b 44,6b 39 .9f 61.5° 6l. 4b 

Pellet eO f14.0b Rz .ab 54 .4b 44.3b 46.t' 51.7b lJ.lg 9.5• 42 .0c 41.6c 39.6c 47.lg 61.2b 60 .8b 

3Plant cell walls as determined using detergent procedures by F'onnesbeck and Harris ( 19703 ) · 

b,Sleans of t he sarne nutrient r:crnponent and the same factor with the same superscript are not significantly different; p < .05 

d ' e,.lcans of the sa'lle n•<tri ent r:mponent and the same factor with the same superscript are not significantly different; p < . 01 

f, g , ~·eYIS of the sa:ne nutri ent. cc:xnponent and the same factor with the same superscript arc not significantly different ; p < .001 

V1 ,... 



Table 10. Simple regression of apparent digestible amo~~t with chemical content of the diet 

Standard 
Avg. Esti.ma- Estima- deviation 

apparent Avg. ted ted true of the R'esidual 
Avg . digestibile apparent genous digesti- regression Standard 

content amount digesti- excretion bility coefficient deviation 
R2 Chemical fraction x y bility (bol (bll (Sb1 1 (S;r: 

Fibrous fraction: 

Cell walla 41.7 18.2 43 .2 -4. 9 55 . 5 4.0 3.5 . 808 

Cellulose 22.1 10.6 47.8 - 2.5 58 . 9 4.5 2.0 .790 

Hemicellulose 12,6 6 . 8 52.4 - 0 . 8 60.4 3.2 l.l .888 

Lignin 5.4 0.8 16 . 8 - 0 . 02 16.0 10.6 1.0 . 048 

Soluble fraction: 

Available carbohydrate 32.6 28 . 4 81.8 - 5.1 103.0 2.1 1.8 . 981 

Crude protein ( N x 6 . 25 I 13.6 8 . 6 63 .1 - 3.5 90.3 2.3 0.5 . 971 

Total lipids 5.5 2.5 44.8 - 0 . 7 57.0 18.0 0 . 8 . 189 

Soluble ash 6.9 3. 7 52 . 6 --1.4 72.5 4.3 0 . 5 .862 

Other fractions: 

Neutral detergent fiber 44.1 19.9 45.1 - 7.8 63.0 4.1 3 . 7 .837 

Acid detergent fiber 31.0 13.2 42.6 -2.0 49.0 4.9 2.7 .686 

Crude fiber 25.1 10 . 9 43.4 - 5 . 9 67 . 1 5 . 5 3 .1 .762 

aP1ant cell wall residues were determined using procedures by Fonnesbeck and Harris ( l970a 1. Vl 

"' 
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Feed ash was shown to be relatively uniform nutritionally (R2 

.86, Sb = 4.3) i nspite of the fact it also was composed of a nonnutritive 

portion, insoluble ash (silica) and a nutritive portion, soluble ash . 

The estimated true digestibility for ash was also high (b1 = .73). The 

apparent digestibility of ash is also affected considerably by changes 

in the ash content of the diet alone as a result of a substantial ash 

endogenous residue (Schneider a~d Flatt, 1975). 

Results of the analysis of variances 

Forage type. Highly significant apparent digestibility 

differences between the forage types were observed for nearly all of 

the fibrous components (tables 8 and 9). Cell walls, neutral detergent 

fiber, acid detergent fiber and cellulose were shown to be more diges­

tible in grass than alfalfa (P < .001 ). Hemicellulose was more diges­

tible in grass than in alfalfa by sheep but was not significantly dif­

ferent in digestibility. Moir (1972), working with temporal and tropical 

species of grasses and legumes also fed to sheep , showed that on the 

average grass cell walls were 40 . 0% digestible versus 19.8% digestible 

for legume cell walls. 

A considerable amount of variability was observed between l ignin 

digestion coefficients within and between forage types (tabl es 6 and 7). 

Grass lignin was more digestible than al falfa lignin for all maturity 

levels . In the all-hay diets only, the grass lignin digestibility coef­

ficients were surprisingly high, ranging from 25.8'~ to 7.1% with a mean 

of 20 .8% . No negative digestion coefficients were observed for the grass 

diets. However , several negative lignin digestibility coefficients were 

calculated for the alfalfa diets. Alfalfa ligni n digestibility ranged 

from 17 .1% to -1. ~~ with an average of 4.5%. 
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It is difficult to pinpoint the source of the high lignin diges­

tibility variation, since several avenues for variation are available. 

High lignin digestibility variation may partly arise from inaccuracies 

in the chemical extraction of lignin. Earlier criticisms of the 7~/o 

sulfuric acid extraction of lignin were that the lignin residue was 

contaminated with protein and carbohydrate (hernicelluloses) residues 

(Norman and Jenkins, 1933). Lignin contamination resulted in highly 

variable lignin percentages between feed types. Ellis et al. (1946) 

introduced a pre-pepsin digest in combination with a pre 5% sulfuric 

acid extraction in addition to the 7~/o sulfuric acid procedure which 

serve to eliminate much of the proble1n of protein and carbohydrate 

residues contaminating the final lignin sample. Sullivan (1955), how­

ever , reported high lignin digestibility variations for lignin inspite 

of theirnproved lignin extraction procedures. Procedures by Fonnesbeck 

and Harris (1970) used to determine lignin composition in this study 

are very similar to t hose proposed by Ellis et al . (1946). Yet, a large 

lignin digestibility variation was also shown. 

It may be speculated that lignin digestibility variations may also 

be a result of feed lignin reacting differently to the chemical extrac­

tion than lignin in the feces. Gordon (1975) has shown that the alkali 

recovery of lignin is significantly different between legumes and 

grasses and between feed and feces for the respective forage types. 

Of the lignin extracted with alkali, some is lost as ferulic and p-courn­

aric acid and some core lignin is lost in the supernatant liquor with 

hemicellulose . Lignin in feces and feed may likewise differ in reacti­

vity to strong acid. 
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Though lignin has been theoretically dubbed an indigestible com­

ponent of forage, the possibility of actual lignin digestibility must 

not be discounted until more accurate experiemental techniques sub­

stantially prove otherwise. In this experiment, it was shown that the 

digestibility of cell walls in alfalfa followed the classic pattern by 

decreasing with increasing lignin content (table 5). However, the 

digestibility of grass cell walls more closely followed the digesti­

bility pattern of lignin (table 6). The calculated digestibility of 

cell wall residues would not be affected by errors in the chemical 

extraction of lignin. 

Crude protein, available carbohydrate, dry matter and gross energy 

were shown to be significantly r.Dre digestible in alfalfa (tables 8 and 

9). 

Studies by Keys et al. (1969) and Donker et al. (1976) showed no 

s ignificant difference between grass and alfalfa dry matter apparent 

digestibilities by sheep, but showed a significantly higher apparent 

digestibility for alfalfa crude protein. 

Since alfalfa was higher in crude protein and available carbo­

hydrate content than grass, it naturally would follow that crude 

protein and available carbohydrate apparent digestibilities for alfalfa 

would also be higher than in grass. This is true since crude protein 

and available carbohydrate apparent digestibilities are highly dependent 

on composition~l changes • 

The alfalfa diet dry matter averaged 66.~k in cell contents while 

grass dry matter averaged 50.3% in cell contents . This showed that the 

alfalfa was substantially higher than grass in a rich source of energy 

from readily available lipids, carbohydrates, and protein and helps 



expl ain why alfalfa was significantly higher than grass in dry r.atter 

and gross energy apparent diges tibility. 
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Stage of maturity . Forage maturity was also s hown to be a 

significant factor in altering ap?arent dlgestibilities for most of the 

feed constituents. 

There was no significant difference in the apparent digestibility 

of cell walls between late vegetative and midbloom stages (table 9). 

However, the fullbloom stage was significantly lower than the l ate 

vegetative or midbloom stages in cell wall digestibility. This pattern 

also held true for neutral detergent fiber and acid detergent fiber 

apparent digestibilities as well. 

Comparing maturity effects on the apparent digestibility of cellu­

l ose , hemicellulose, and lignin; no significant maturity effects were 

observed for hemicellulose apparent digestibility between any of the 

maturity levels . Maturity significantly affected the apparent digesti­

bility of cellulose in the same manner as was shown for cell walls, 

neutl'al detergent fiber, and acid detergent fiber. Lignin apparent 

digestibility was significantly higher in the midbloan stage than in the 

late vegetative stage or fullbloom s tages. No significant difference 

was shown between 1ate vegetative and fullbloom stages. 

A cancellation effect was observed when grass and alfalfa data 

were combined to determine the maturity main effects on cell walls, 

neutral detergent fiber, and acid detergent fiber apparent digesti­

bilities . It is observed in the forage type-by-stage of maturity 

two-way tables (appendix tables 28, 30, and 32) that the apparent di­

gestibility of cell walls, neutral detergent fiber, or acid detergent 

fiber in midbloom grass is much greater than in late vegetative or 
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fullbloom grass (a significant difference was calculated for neutral 

detergent fiber only). However, in alfalfa; cell walls, neutral deter­

gent fiber, and acid detergent fiber apparent digestibility decreased 

with each increasing maturity stage. When grass values were added to 

alfalfa values, the higher fiber (cell walls, neutral detergent fiber, 

or acid detergent fiber) digestibility values for midbloom grass 

combined ;1ith the low midbloom alfalfa values to give average digesti­

bility values acrossed forages nearly equal to those for the late 

vegetative stage. However, cell wall, neutral detergent fiber or acid 

detergent fiber digestibility for the fullbloom stage remained signifi­

cantly lower than for the late vegetative stage or midbloom stages. A 

similar cancellation effect was also observed for cellulose. 

A look at the forage type-by-stage of maturity two-way table for 

lignin shows that lignin in midbloom grass was unusually high in 

apparent digestibility (37.6%). When grass and lignin apparent di­

gestibility values were combined to determine maturity main effects , the 

low lignin digestion coefficients for alfalfa combined with the higher 

lignin digestion coefficients for grass resulting in no significant 

difference in lignin digestibility between late vegetative and fullbloom 

stages. But, mid bloom forage lignin remained significantly high in 

apparent digestibility due to the extremely high lignin apparent 

digestibility in midbloom grass (see also table 9). 

Crude protein was shown to be significantly lower in apparent 

digestibility in diets containing fullbloom forage than in diets con­

taining late vegetative or midbloom for·age (table 9) • No significant 

difference was shown between late vegetative and midbloom crude protein 

apparent digestibilities (table 9). The decrease in crude protein 
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content was relatively small between late vegetative and midbloom 

stages within alfalfa or grass diets (tables 4 and 5). However, both 

forage types showed a large drop in crude protein content for the full­

bloom stage resulting in a significantly lower crude protein apparent 

digestibility in the fullbloom stage. 

Available carbohydrate digestibility was shown to be significantly 

lower in the midbloom maturity stage than in the late vegetative or 

fullbloom stages (table 9) •. The available carbohydrate difference 

between late vegetative and fullbloom stages was not significant. The 

extremely low available carbohydrate concentration in midbloom grass 

was the principle cause of the significantly low available carbohydrate 

apparent digestibility in midbloom diets. 

Dry matter and gross energy apparent digestibilities decreased 

with increasing matu1·ity ; however , differences were not significant. 

Energy level • Significant appar ent digestibility differen­

ces between all-hay and hay-corn di ets wer e shown available carbo­

hydrate and total lipid constituents only (table 9). Available carbo­

hydrate and total lipid apparent digestibilities were significantly 

higher for the hay-com diets. 

Available carbohydrate digestibility increases for the hay-corn 

diets were again a result of an increase in the available carbohydrate 

content. The addition of corn containing large amounts of starch and 

other readily soluble carbohydrates significantly increased the 

available carbohydrate content of the diet (tables 4 and 5). 

The increase in total lipid apparent digestibility for corn-hay 

diets was partly a result of an increase in lipid content from added 

corn oil. The added corn oil, however, also increased the nutritive 



portion of the total lipid fraction making the total lipid fraction 

more digestible. 
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Texture level. Pelleting the diet was shown to significantly 

lower the appai •ent digestibility of cellulose, lignin, cell walls, 

neutral detergent fiber, and acid detergent fiber (tables 8 and 9). 

Hemicellulose apparent digestibility was not significantly affected by 

pelleting, though hemicellulose values were lower in p)leted diets. 

The apparent digestibility of ash was also significantly lowered 

by pelleting. This was unexpected since a significant digest ibility 

difference was not shown for the soluble ash fraction between texture 

levels. 

Since chemical composition was not significantly different between 

texture levels, it may be safely concluded that differences in diet 

digestion coefficients between pelleted and coarse diets were due to 

feed processing only. 

It was observed that crude protein and available carbohydrate 

apparent digestibilities were not significantly affected by feed pel­

leting. This supports the previous conclusion that crude protein and 

available carbohydrate apparent digestibility is primarily affected by 

a change in the cruce protein and available carbohydrate composition 

of the diet only. 

Forage-by-maturity interactions. A significant forage- by-

maturity interaction effect on the apparent digestibility of neutral de~ 

tergent fiber and lignin was observed (table 8). If the forage-by-mat ur ­

ity tables for cell walls, neutral detergent fiber and acid detergent 

fiber are examined (appendix tables 28, 30, and 32 respectivel y), it is 

shown that generally apparent digestibilities of these fibrous constituents 
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in alfalfa decreased with increasing maturity; however, this trend was 

not maintained in grass. Cell walls, neutral detergent fiber, and acid 

detergent fiber in midbloom grass were much more digestible than in the 

late vegetative and fullbloom grass stages. Forage-by-maturity inter­

action effects observed for cell walls and acid detergent fiber were 

not ~ignificant but were comparable to forage-by-maturity differences 

shown for neutral detergent fiber. 

The forage-by-maturity table for cellulose (appendix table 23) 

shows that cellulose apparent digestibilities in late vegetative and 

midbloom grass were nearly equal. But, if cellulose digestible amounts 

(% content x digestio~O~oefficient) are calculated, cellulose in mid­

bloom grass appears more digestible than in late vegetative and full-

bloom grass. Therefore, cellulose apparent digestibility followed the 

same forage-by-maturity pattern as cell walls, neutral detergent fiber, 

and acid detergent fiber. Hemicellulose apparent digestibility also 

followed a like pattern. 

Lignin apparent digestibility appeared to be a key factor behind 

the forage-by-maturity interaction affect on the apparent digestibility 

of f i brous constituents. In a forage-by-maturity table for lignin 

(appendix table 27) it is shown that lignin was much higher in apparent 

digestibility in midbloom grass than in late vegetative and fullbloom 

grass. Differences in lignin digestibility between alfalfa maturity 

levels were small. 

The available carbohydrate content in midbloom grass was much 

lower than in the late vegetative and full bloom grass (table 5) . This 

resulted in an extremely low available carbohydrate digestibility in 

midbloom grass (table 7). Hence, a highly significant (P < .001) 
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forage- by-maturity interaction was observed to affect available carbo­

hydrate apparent digestibility (table 8 and appendix table 21) •. 

Forage- by-energy level interactions. A forage-by-energy l evel 

interaction significantly aff ect ed available carbohydrate apparent di­

gestibil ity only (table 8) . When the forage-by-energy level table i s 

examined a significantly large difference in available carbohydrate ap­

parent digestibility between grass energy l evels is observed, compared 

to t he much smaller difference between the alfalfa energy levels. As 

was shown for the forage-by-maturity interaction, the extremely low 

available carbohydrate content of the midbloom grass was probably 

primarily r esponsible for the forage-by-energy level interaction effect 

on available carbohydrate digestibility. 

Forage- by-texture interactions. No significant forage-by-texture 

interaction effects were observed (table 8). 

Maturity-by-energy level interactions. A significant maturity-by­

energy level interaction affected the apparent digestibility of crude 

protein , available carbohydrat es , cellulose, neutral detergent fiber, 

a~d acid detergent fiber (table 8) . 

In the maturity-by-energy l evel t ables for cellulose, neutral 

detergent fiber, and acid detergent fiber (appendix tables 24, 31, and 

33) it i s shown that the digestibility of these fibrous components in 

hay-corn diets decreased with increasing maturity. However, this 

digestibility pattern did not occur in the all-hay diets. The apparent 

digestibility of neutral detergent fiber, acid detergent fiber, and 

cellulose was substantially greater in the midbloom all-hay diets than 

in the late vegetative or fullbloom all-hay diets. Also, it is 

observed that, though the fibrous components in the hay-corn diets 
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tended to be of greater digestibility than in the all-hay diets at the 

late vegetative and fullbloom stages, the opposite was true at the mid­

bloom maturity stage. 

As was shown in previous sections, fibrous constituents in mid­

bloom grass were much more digestible than in late vegetative or full­

bloom grass. This condition was probably the major cause of the sig­

nificant maturity-by-energy level differences among the fiber con­

stituents. 

Hemicellulose and cell wall apparent digestibilities followed a 

like pattern as other fibrous constituents, though differences were not 

significant. 

The crude protein apparent digestibility pattern between all-hay 

and hay-corn diets was altered by an increase in crude protein content 

in the fullbloom hay-corn diet (table 7). The fullbloom grass was so 

low in crude protein that the addition of corn with fullbloom grass 

significantly incr eased the crude protein content of the diet. The 

crude protein maturity-by-energy level table (appendix table 20) shows 

a change in the crude protein digestibility trend between all-hay and 

hay-corn diets at the fullbloom maturity level. Crude protein became 

more digestible in the hay-corn diets at the mature level. 

In the maturity-by-energy level table for available carbohydrates 

(appendix table 22) it is shown that the available carbohydrate apparent 

digestibility difference between the all-hay and hay-corn diets was 

distinctly greater at the midbloom stage than at the late vegetative or 

fullbloom stages. As was mentioned earlier, the extremely low avail able 

carbohydrate concentration in the midbloom grass resulted in a very low 

.digestion coefficient for available carbohydrate in midbloom grass. 
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The midbloom grass coefficient was so low that the higher available 

carbohydrate coefficient for midbloom alfalfa was not enough to offset 

the low grass value when digestibility was averaged across forage 

types. 

Maturity-by-texture interactions. No significant maturity-by-

texture interaction effects were observed (table 7l .. 

Energy level-by-texture interactions. A significantly large de­

crease in apparent digestibility of all fibrous constituents (cellulose, 

hemicellulose, cell walls, neutral detergent fiber, and hemicellulose) 

with pelleted diets is shown in the energy level-by-texture tables 

(appendix tables 24, 26, 29, 31, and 33). Significance is clearly 

shown in tables 8 and 9 showing texture level main effects. Pelleting 

forage diets increased the rate of passage of digesta through the 

sheep GI tract, limiting fermentation time and resulting in a lowered 

fiber digestibility (Blaxter et al., 1956). 

The energy l evel-by-texture tables also show clearly that combining 

corn with coarse hay also reduced fiber apparent digestibility con­

siderably. However, the opposite phenomena was observed for hay-corn 

pelleted diets. Fiber digestibility increased going from pelleted 

all-hay diets to pelleted hay-corn diets. A significant lowering of 

fiber digestibility by combining corn with hay was not indicated 

in tables 8 or 9 because differences due to the energy-level-by-texture 

interaction cancelled one another out when digestion coefficients 

were averaged over coarse and pelleted diets. 

An energy level-by-texture interaction also significantly affected 

the apparent digestibility of diet crude protein, soluble ash, ash, 

dry matter, and gross energy (tables 8 and 9). 



Regression Analysis 

Estimating nutrient digestible amount 
from nutrient percent content 
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Simple equations. Equations of the form Y = b
0 

+ b1X1 were gener­

ated for separate nutrient components of the experimental diets, where 

Y equaled the nutrient digestible amount and X equaled the nutrient per­

cent content (table 10) . This statistical model was used by Lucas et al., 

(1961) in estimating the true digestibility (b1 ) of a given chemical 

component in animal feeds. For the results and discussion of these 

procedures see Digestibility of Diet Chemical Constituents, p 43. 

Complex equations. Two types of multivariant equations were 

generated by using indicator or dummy variables1 in addition to the 

nutrient percent content to predict nutrient digestible amount. The 

indicator variables were added to the model to adjust for variability 

due to the treatment main effects and interaction effects. The analysis 

of variance was used as a guide in picking the treatment factors that 

showed a substantial influence on the digestibility of a given feed 

component. 

Linear models were explored first and showed such high precision 

in predictability that curvilinear models were not considered. 

The first type (Type I) of complex model generated , contained the 

quantitative variable (X = nutrient percent content) together with 

added qualitative variable (indicator variable) main effects (ai, ~j' 

yk' and o~ and interactions (aSij' aoik' ~yjk' aoik' Sojk' and yotk) 

1rndicator variable : a quantitative indicator used in a regres­
sion model to identify the classes of a qualitative variable (Neter 
and Wasserman, 1974, p. 298. 
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Table 11. Type I regression models for estimating nutrient digestible 
amount (%) from nutrient content (%) 

----- ------ -----

lt•'f'l 

l•q-"'-"ltun (,1fl31.Jill 
fi,.,T,_-,,;1~"'1'1 ~Ol·ffiCif'nl 

~clju;; tco;:nt :\ tQ rcr;rcs­
:-.wtt UX'l~t or\t for· s~­
<1 !'ic:ttion of dirt·~ 

AHJlf.1 

St.-1g(' uf M..1tur1ty 

£.cody 

Mid 

I by 

flay .. corn 

Textui"'J 

Coarse 

PC'llcted 

Dietintcr1Cti~s 

Alf:~lfa x early o.Sll 

Alfalf,t x mid n~12 
Alfalfa x late ot!u 

Grass x early ns21 
Grass x mid uS;:>z 

Grass x late caB
23 

f..arlyxhay 8y
11 

Mid x hay BYzl 

Latexhay Sy
31 

Early x nay • com Byl? 

Mid x hay • com Br
22 

Late x h:ty .. com l!y
32 

Early x coarse B6
1 1 

Ml.d x coo rsc B6
21 

Late x coarse M
31 

L..!ldy x ~Ll et.ed ao
12 

Mid X pellet.ed 86
22 

Latex pelleted 86
32 

flay x coarse y6
11 

Hay x pellet.ed y6
12 

Hay + com x coarse y6
21 

Hay .. com x pclleted y6
22 

Coefficient of determa- R2 

tion 
Residual standard devi- ('~) 
at ion 
Coefficient of variation (%) 

Av.oll- N•'•ttral Aoi,J 
nUL~ Hcmi- dd ,·•·-

Crude carbo- Tot.JI cellu~ CelJb ~~o.::11t. 1'n1t 
pr-otein hydmtes Upi(~;: __ c_:_d_:_l"_'_= __ l_"'_' __ w_"_'' __ r_u,.,_., __ r,_l)(T 

- ) . 750" -2.0~91 -2 . 53'>1 -6.28(>1. 
.9251 .9359 .92W .762lo 

1. 2951 

- 1. 2'951 

.1607 -.2563 

- . 1607 .2583 

-.0384 -.15D -.14')'/ 1.0519 

- .2557 - . 5203 -.0132 .lo815 

.2941 .6716 . 1629 -l.53Jlo 

-. 0075 - . 7739 -. 1,862 -1.2699 

.0075 . 7739 ,lo862 1.2699 

-.0515 -. 1302 -.001 6 -.5788 

.0515 .1J02 .0016 .5788 

-.5974 

.1589 

. lo385 

.597" 

- .1589 

-.43135 
-.0961 -.1532 

.1923 . 7779 

-.0962 -. 62lo7 

.0961 .1532 

-.1923 -. 7779 

.0962 .6247 

- .1761 - . 2lo29 

-. 07J.6 -.0879 

.2lo71 .3308 

.1761 .2lo29 

.0716 .0879 

-. 2477 -.).108 

. 2:?'?9 ,4829 -. 0011 .4568 

- .2:?99 -.4829 .0011 -. 4568 

-.2389 -.4829 .oou - . 4568 

.2389 .4829 -. 0011 . 4568 

-981 

.5 

5.7 

.989 .552 .9lolo 

1 .5 . 6 1.2 

5 . 3 23. 9 ll.lo 

-2.'1957 -10.'·70') ..t . "l\tl8 -'J._klllj -1? .8d':)ll 
. 756~ .6882 ,t•lo98 ' (,'"(:! .9'-'08 

. 7398 .2759 -.lo240 -. 0390 

-.73'}tl -.2"(59 .t+2lo0 .OJ'}() 

• .J9lo6 1.2903 1.1362 -9152 l.C02'( 

.0378 1.1022 1. 5118 1.0262 .6197 

- . lo32lo -2 . 392'5 -2. t.>480 -1.94llo -1.8224 

-.3893 -2.1786 -1. 1302 -2 . 1838 -2 .9lo92 

.3893 2. 1786 1.1302 2. 1838 2 . 9lo92 

.1191 .7850 .8lo03 .7356 .6227 

-. 1191 -.7850 -. 8403 -. 7356 -. 6227 

- . 3575 -1.0258 - . lo817 -.lo689 -.65lo5 

-. 023 lo -.2035 -1.1152 -.1935 .1928 

.3784 1.2293 1.5969 .6624 .lot>l7 

. 3575 1.0256 .lo817 .lo689 .65lo5 

.023lo .2035 1.1152 .1935 - . 1928 

-.J784 -1.2293 -1. 5969 -.6624 -.lo61 7 
.0031 -.)0)0 -.4062 -.2892 -.1 868 

.3751 1.4040 1.5761 !.3163 l.Ol&J 

-.3543 -1.1010 1.1699 -1.0271 -.8320 

-. 0033 .3030 .4062 .2892 .1866 

-. 3751 - l.40lo0 -1. 5761 -1.3163 - 1.0188 

.35lo3 1.1010 -1.1699 1.0271 .8320 

-.1929 

-.5566 

. 7lo95 

.1929 

.5566 

-.7lo95 

.3252 .93lo7 1.0286 . 7lol0 . 5994 

-. 3252 - . 9347 - 1.0286 - . 7410 -. 599" 

-. 3252 -.9)lo7 -1.0286 -. 7lol0 -.599" 

. 3252 .93lo7 1.0286 . 7lo10 . 599lo 

. 936 .945 .958 .926 .955 

.9 2 .1 2.2 1.5 1.5 

13.3 11.5 11.0 11.4 13 .7 

aEquations are of the fonn Y = b0 • b1X1 + '\ • ej + lk • 61 + o3ij + Byjk + B6jl • y.Skt; where Y 19 the predicted 

dige3tible iliOOUnt. , and x1 is the percent. nutrient. content with the respective regression constant (b
0

) and regression co­

effic~ent !b1J. The regression constant is fUrther adjusted by qualitative indicators (o
1

, aj' . .. y6kl) according to t.he' 

dcscrl{'tion of the ingredient or diet. All indicators 1111st be used as they apply. for example, if the diet was alfalfa hay 
!o 11, late rraturity (63 1, fed alone !y1J , and pelleted !52 1; the calculation for percent digestible CL for a feed containing 

20'% CL would be: Y = b0 + (b1X1 J -+- a 1 ~ B3 + ll + 62 • os31 • Sy31 + 65
32 

... y5
12 

= - 6.286 • { ( . 762) !201 I - .258 - 1.533 
-1.270 - .579 •. 439 - .625 - . 331 - ,!.57 = 4,)% 

bPlant ce ll walls as detennincd using procedures by fonnesbeck and Harris !1970a l. 
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only. A type I equation was generated for each nutrient that con-

tributed to the energy value of a given diet and was of the form: Y 

b0 + b1Xn + ai + Bj + yk + ol + ayij + Bojl + aoil + Bojl +yolk' 

A stepwise regression process was used to select the combination 

of indicator variables (main effects and interactions) that accounted 

for the most variation in predictibility. 

An adjustment to the regression constant (b
0

) was brought about by 

the added indicator variables (see footnote a of table 11). 

The second type of (Type II) complex models differed from Type I 

models in that they contained interactions between the quantitative and 

qualitative variables (aix1, BjXretc.) in addition to the variables 

already shown for Type I equations. Type II equations were of the 

form: y = b 
0 + b1X1 + ai + Bj + yk + ol + aBij 

olxl + aBijxl + •.. + yoklxl. 

The added qualitative-by-quantitative variable interactions af-

fected the predictability of the equation by making adjustments to the 

regression coefficient (b1 l (see footnote a of table 12). A stepwise 

regression process was also used to select the combination of variables 

that accounted for the most variation in prediction. 

All Type I equations showed a significant improvement over the 

simple equations in estimating the digestible amount of each nutrient 

in question (compare tables 10 and 11). All Type I equations showed 

higher coefficients of determination (R2 ) than those shown by the 

simple equations (crude protein, .98 ~ .97; available carbohydrate, 

.99 ~ .98, total lipids, .55 ~ .19; hemicellulose, .94 ~ .89; 

cellulose, .94 y_~ .79; cell walls, .95 ~ .81; neutral detergent fiber, 

• 96 ~ .Bit; acid detergent fiber, • 93 ~ • 69; crude fiber, • 94 ~ • 76). 
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Table 12. Type II regression models for estimati ng digestible amount 
(%) from nutrient content (%) 

--~~----· 

feed nutl'ient;~ 

Ni:'Utr:tl Acid 
Crude Hemi -

Cell Wallsb 
detert.;cnL d.:"l<..'r"(:l'tll Cf\Kk 

ll<..'fll protein Cellulose cellulOS(' fiber rttler fib<T 

flti T'L'~:.l iOO COIISl.l!lt bo - 3.941.1 2 . 1611 -6 . 346'..) - 27.0561 2ti . J977 -11. 56?3 - l':; . rJ]]') 

Rc.yr<.'s:; ion cocffident '1 . 9382 , 4688 1.0490 1.0716 -. 2471 . 7993 l. U') 1.t 

1\djU:> ttr••fll.S tu rc&rc:>J!JJOO 
cons tmt lbol fur specl fl-
C'l tiVIl l>fd i c t a 

ror·.o,:(' type 

Alf-ll fa "1 -. 26')4 2 , 11)) ) , 7873 -8,60(>1, .0925 1.2900 
Gn,;s "2 

,,., -2.11)) -3 . 7873 8.606'< -. 0925 -1 .2<}00 

Stare of naturity 

l).wly '1 .0124 14.2851 2 .4706 1. 6760 - 12 .8500 . 7461 2.0065 

M!O '2 -.3535 - 7.3318 -8 . 140 - .1535 43. 9395 1.9309 1.5'!60 

l.dtc ., .3411 ..-6.9533 - 1.6566 -1.5226 -31 .08')5 -2 .677C -3 . 5825 

Ener.zy level 

""' '1 .3052 9 -9'-19 1.5251 -4, 7457 -8.5685 - 2. S655 - 3 . 647lo 

Hay + corn '2 -. 3052 - 9.9419 - 1 . 5251 4 .7457 8 . 5685 2 . 5655 3 . 6474 

To:>)CtUre 

Coor·se '1 - 1.5635 -. 6490 - 1.4071 1.5298 1.4205 - 1 . 6289 

PclleteO '2 1 . 5635 . 6490 1.4071 - 1.5298 -1.4205 1.6289 

Diet interactions 

Alfal fa)Cearly o.Bll -6.8831 - 14. 0684 5 . ?902 -. 6172 - .9695 

Alfalfaxmld .. 12 1.4088 17.0324 - 5.1219 -.1022 .4615 

Alfalfa x l a te a6
13 

5.4743 - 2 .9640 -. 1683 .7194 .5080 
Grass x early «821 6.8831 14. 0684 - 5.2902 . 6172 .9695 

'1mss x mi d n82? - 1.4088 17.0324 5.1219 . 1022 -, 4615 

Crass x late •' " 
-5 . '•743 2 .9640 , lr:.S3 -.7194 -. 5080 

Early x hay •n1 . 2258 24 .8169 - 1 .4994 - 15. 5917 - 2.7986 -1 . 4593 1.7301 
Mid X hay '"'1 -1 . 3993 - 9 . 5070 -. 3396 18 .5059 9 .4927 5.6044 5 .8289 
Late x hay em 1.1735 - 15.3099 1.8386 - 2.9142 -6.6941 -4.1451 - 7 . 5590 
Early x hay+ corn 8)12 -. 2258 - 24.8169 1.4994 15.5917 2.79U 1 .4593 -1. 7301 
Mid x hay .. corn 8)22 1.3993 9 . 5070 .3396 - 18.5059 ...(),4927 - 5 . 6044 - 5 .8289 
Late x hay • corn ,,2 - 1.1735 15.'3099 -l. RJ&> 2 .9142 6.694! 4 .14~1 7 . 559G 
Early x coarse se:u .0719 

"'" -. 4974 
l..ilte x coarse 8031 .4255 
Early x pel!eted 8612 -. 0719 
Mid X pelleted ''z2 . 4974 
Late x pelleted ,.,2 

-.4255 
llay x coarse ''n 2.1669 3.1469 .5692 4,0431 
Hay x pelleted Y612 - 2 .1669 -3 . 1469 -.5692 -4, 0431 
!lay .. com x coar se Y621 -2.1669 -3.1469 - .5692 - 4.0431 
!lay • com x pelleted Y6zz 2 . 1669 3.1469 .5692 4.0431 

Adjustments to regression 
coeff icient (b1l for spe-
c iflcatioo o f dieta 

CP x hily '1x1 -.0329 

CP x hay .. com Y2Xl . 0329 

rP x {ca r lyx tmy) llyllxl -. 0099 

CP X lmi d X hay) [~y21 X l .1205 

CP x Clu te x hay ) !ly3lxl - . 1106 

cr x learly x hay • coml 8\ ll . 0099 

CP X {mid x hay + com) By2i<1 -. 1205 

CP xI late x h<cy .. coml 6'~'z}l .1106 
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ll,xe<~rly l\X1 
Cl x mid BzX-

1 
Ct.. x 111te syc 1 
Q. x hay YlXl 

Cl.. x 11.1y ~ com Yfl 

Q. x -~W:;e 6lXl 

CL X ~~-llo;,ted 6~1 

CL x (t .lrly X h<ly) SyllXl 

Ct. x li"!ld y h.-!.yl BY
21

x
1 

CL x I Lltc x I lily ) Br
31

x
1 

a. x (c:wly x hay .. com) BY1z"1 
CL x {lnHI x 1\ly • coro) BYzz"l 

a. x I latex hay .. com) Bv3f 1 
a.. x (hav x coarse ) Y'\

1
X

1 
CL x (hay x ,>elleteG) y6li<l 

a. x (hay • com x coarse) y6
21

x
1 

Ct. x :~~) com x pel- y62;t:1 

HC K hay YlXl 
HC x twy .. com '•"" HC x coarse ylXl 
HC x pelleted 62Xl 
HC x ('l.lfalfa x early! al)lXl 
IICx lalfalfaxm!d) nBli"l 
tiCxlalfalfaxlate) od

13
x

1 
HC x (gl'ass x early) a62lxl 
IIC X (grass X m.id) 

(l
3zi"I 

UC x (grass x late ) a p23xl 
I!Cx( earlyxhay) s"'txl 
HC X (mid X hay) 8"Jfl 
!IC x lh•..e xhay) SyJlxi 
HC x (early x hay ... corn) 8\zXI 
HC K (mid x hay • com) 8"~'zi"t 
IIC xI late x hay ~ com) Byd1 
CW x coorse 

"'' CW x pc>lleted 'h 
C'n' x (<llfalfa x e2rlyl ~lxl 
CW x (;'llfa lfa x midi "'\,X, 
CW x !alfalfa x ld1.e) (l.f\3Xl 
CW x !grass x early) ~lxl 
CW X fol'r'ISS X mid) ""zh 
CW x (grass x lat.e) ~Jxl 
CW x !early x h<ly) ByllXl 
CW x (mid x hay) 8lz1X1 
CW x ! latex hay) B1Ixl 
nl x (early x hay + corn) 6\zxl 
c .. • x (mid x hay . com) '>h 
c~· x (llte x hay + corn) 81h 
CW x (hay x coarse) Y\1Xl 
CW x fh..ly x pclkt~) Y~z"l 
CW x (nay .. com x coarse) y~/1 

68 

Fee<! nut!'lcnta 

N'•utrnl 
C'I'"Jde lk'mi -

Cell Wall:;b 
detergt:~~t 

;.rotc in ~llulose cell ulose fiber 

- . 3778 

.2723 

. 1055 

•• 4804 

.4004 

.126< 

-.1264 

-1. 1323 

.4484 

. 5839 

1.1323 

-.4484 

-. 6839 

-.1062 

.1062 

.1062 

- .1062 

-. 1769 

.1769 

.0626 

-. 0626 

.5446 

-.1019 

-.4427 

-.54'•6 

.1 019 

. 4427 

.1704 

.'J414 

- .2118 

-. 170" 
- .Ot.14 

. 2118 

.0625 

- .0625 

. 3064 

-. 3940 

.0676 

-. 3064 

.3940 

-.0876 

. 4062 

-. 4),24 

.0262 

-. 4062 

.4321, 

- .0262 

- .0653 

.0653 

.0653 
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Table 12 . (Cont i nued) 

Feed nutrient3 

Nt:utrol--AcTd 
Cn..tde Homi-

Cell Wa1I s 0 
detergent detergent CM.Jde 

It~ protein Cellulose cellulose fiber fiber fiber 

(.."~.,! ,. (hay .. com x pelleted) y62f 1 - .0653 

NOf x ear ly slxl . 273'5 

NDf )( mid 'z\ - 9.268 

NDF' x late BJ\ . 6533 

NOfKhay "t\ .3530 

NDf x hay + com 'z\ -. JSJO 

N~F x la<.falfa x ear•ly ) ceu:s . 0102 

NDF x !alfalfa x mid) 0~2xl -. 2082 

NDf x. (alfalfa x late) oB13x1 . 1980 

Nnf'" (grass x early) o.e.21x1 - . 0102 

NDF X (grass x mid) o622x1 .2082 

NDF x (grass x late) o6zJxl - .1980 
ADF x (early x hay) Syll),'l .OJ86 
A.Df X (mid X hay) 8"zt xl - .1365 

ADF X (late X hay) ByJlxl .0949 
AOf x (early K com .. hay) 8"12x1 - .0386 

ADf X (mid X COrtl • hay) BYzzXl .1 365 
ADf x (late x com • hay) SyJi<I -. 0979 

ADf x (early x coarse ) B611x1 -.0359 

ADf x (mid x coarse) B621xl .Ot.79 

ADf x I late x coarse I B6
31

x
1 .0070 

ADf x (early x pelleted l 86tll .0359 

ADF x (mid x pelletedJ B62zXl -. 0429 

1\Df x (late :t pelleted) BCJfl -. 0010 
ADf x tt·.ay x coarse) -r611Xl -.1072 

ADf" X (hay X pellet.ed) yOlll . 1072 

ADf )( (hay ~ CO I'I'l X coarse) "~' 621x1 . 1072 

ADf x (hay + com X pelleted)y6~~~ -.}072 

cr x al falfa -,xl -.06lo3 

CF x grass "1'1 .0643 

CF x coarse ylXl .0678 

CF x pelleted ':h - .0678 

CF X (early X ha~·) ByllXl - -0771 

Cf X (mid X hay) 6Y21x1 -.1929 
cr x (late x hay) ByJlxl .;noo 
CF x (eal'ly x hay • com! 8Y1i1 .0771 

CF x (mid x hay + com) 11Y2f1 .1929 
CF x (late ~ hay ~ corn) 6Y2}1 - .2700 

Coefficient o f dcter:nin- ,z . 982 .962 .958 . 958 . 973 .940 . 971 
at ion 
Residual s tandard de•liation "' . 5 1. 0 .8 2.01 1 . 8 1. 5 1.) 

Coefficient of var•iation "' 6.1 9.5 11.8 li .O 9.0 11.4 11.9 

aEquatioos are of the fornJ 'I~ b0 + b1X1 + o1 • Bj • yk • 61 + aB1j .. .. , • y6kl. .. a 1X1 • B/1 + ylXl + 6kXl 

.. aBi/l .. .. . + y6klxl ; wtlcre Y is the predicted digestible amount , and x1 is the nutrient content with the respecti ve 

regression constant ( b0 ) and regressioo coefficient (b1 J. The resression constant i s adjusted by qualitative variabl es 

(ai' Bj ' . . . , y6ktJ accordif'l8 to the description of the ingredient or diet . The regression coefricient is also adjusted 

by qualitative-quantitative vari able tnteracticns. (oiX1 , ejx1 , • • . y6ki.Xl ) according to the description of the ingre­

dient or diet and the specific feed nutrient in question . All indicators ~st be used as they apply . For e xample , if the 
diet was a lfalfa hay ( ~l , l ate mturity !63 ), fed alone (y1 J, and pelleted C6

2
J; the calculat ion for per cent digestible CL 

for a fe-ed containing 20% CL would be: Y = (b0 • '\ + s
3 

+ yl + 62 + By31 • yo12J .. (b
1 

+ s
3
x

1 
• r1X

1 
• 6zX1 + Sr31x1 • 

y61zX1 1 x
1 

~ (2.161 - .256 - 6 .953 + 9 -9"2 • l.56t.- 15 . 310 - 2 . 167) .. (.lo69 • . 106 - .t.&:l - . 126 .. . 684 • . 1061 20 = 4.2S 

bPlant cell walls as det.ennined using detergent procedures by Fonnesbeck and Harris 0970a ) . 
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The improvement of the Type I equations was further substantiated by an 

observed decrease in the error variations between Simple and Type I 

models. An F test comparing the error-sum•of-squares (SSE) between 

the Simple and Type I models revealed a significant reduction in the 

unexplained or residual variation when qualitative factors were added 

to the linear mcdel (table 13). Even the Type I equations for crude 

protein and available carbohydrate showed a significant reduction in 

the error variation though only a slight improvement was shown in the 

R2 values. 

Type II equations for hemicellulose, cellulose, cell walls, neutral 

detergent fiber, acid detergent fiber, and crude fiber showed only a 

slight increase in the R2 value from that shown by the Type I equations 

(hemicellulose, .96 ~ .94; cellulose , .96 ~ .94; cell walls, .96 ~ 

.95; neutral detergent fiber, .97 ~ .96; acid detergent fiber, .94 ~ 

93; and crude fiber, .97 ~ .96). The F test between the error sum-of­

squares showed a very small but statistically sjgnificant reduction in 

the unexplained variation for hemicellulose, cellulose , neutral 

detergent fiber, and crude fiber Type II equations only (table 13). The 

type II crude protein equation showed no improvement in the R2 value 

and very little reduction in the error term over the Type I model. In 

developing a Type II equation for available carbohydrates and total 

lipids, all quantitative-by-qualitative interactions were eliminated in 

the stepwise regression process without showing an improvement over the 

Type I equations. Therefore, no available carbohydrate or total lipid 

Type II equations were generated. 

Generally, it was shown that the complex equations, Type I and II, 

for the fibrous constituents contained dummy variable main effects and 



Table 13. Statistical comparison between the error sum-of-squares (SSE) 
of Simple (A), Type I (B), and Type II (C) Models for esti-
mating apparent digestible amounts 

Feed nutrient 

Avail-
able Hemi-

Crude carbo- Total cellu- Cell 
Item protein hydrates lipids Cellulose lOS€ walls a 

dfA 46 46 46 46 46 46 
(A) 

SSEA 17.43 152 . 62 28 . 65 56 . 72 183 .92 559.34 

df8 39 '<0 38 36 34 36 
(B) 

SSE8 11.56 84.52 15.84 32.31 48.98 159.98 

(C) dfc 38 - 33 31 31 30 

SSEC 10.83 - 16 .01 21.42 33 .50 121.33 

Fb 2.83 5.37 3 .84 2 .72 7.81 8.99 
B versus A 

p < . 025 .001 .001 . 01 .001 .001 

C versus 8 
Fe 2 . 56 - - 3 .15 4. 77 1.59 

p < NS - - . 025 .025 NS 

aP1ant cell walls determined using detergent procedures by Fonnesbeck a11d Harris 11970 a). 

b F : (SSEA - SSEs)/d . f ' A - d.f. 8 

SSEB/d .f. 

c F : (SSEs - SSEC)/ d . f. 8 - d .f.C 

SSEC/d.f . C 

Neutral 
deter-
gent 

fiber 

46 

622.41 

34 

158.29 

31 

101.06 

8 .31 

.001 

5 .85 

.005 

Acid 
deter-
gent 

fiber 

46 

336.04 

36 

79 . 08 

29 

64 .22 

11.70 

.001 

0.96 

NS 

Crude 
fiber 

46 

448.05 

36 

84.51 

31 

55.06 

15 . 48 

. 001 

3.32 

.025 

..__, 
f-' 
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interactions corresponding to the treatment effects, as shown by the 

anal ysis of variance, having relatively high mean squares, though mean 

squares were not always significantly high. 

The improved precision of the complex equations (type I and II) 

was also shown by calculating DE from the estimated digestible amounts 

of crude protein, available carbohydrates, total lipids, cellulose , and 

hemicellulose using the Simple, Type I and II equations. DE was calcu-

lated using the equation DE = 5.65 (YCP) + 4 .15 (YAC + YCL + YHC) + 9.40 

YTL; where YN equals the decimal fraction of the estimated nutrient di­

gestible amount. The 5.64, 4.15 and 9.40 were assigned caloric values 

(Meal/kg) for feed protein, carbohydrates, and lipids respectively (see 

appendix tables 38, 39, and 40 for estimated nutrient digestible amounts, 

estimated DE and observed DE). 

From the regression of the observed DE (Y) against the estimated 

DE (X), it was shown that DE estimated using Type I equations was nearer 

to observed DE than OE estimated using simpl e equations (table 14). 

Also, since it was shown in table 13 that hemicellulose and cellulose 

Type II equations had a significantly lower residual sum-of-square than 

corresponding Type I equations, DE was also estimated using hemicellu-

lose and cellulose digestible amounts from Type II equations. How-

ever, no advantage was shown for using hemicellulose and cellulose 

Type II equations when estimating DE from estimated digestible amounts 

(table 14). 

Generally, it must be considered that though most of the Type II 

equations showed a significant reduction in che unexplained variation 

(SSE) compared to the Type I equations, this reduction was very small. 

2 Also, only a very slight improvement in the R value was shown by the 
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Table 14. DE (Meal/kg) estimated indirectlya; using Simple, Type I and 
Type II equations; regressed against DE (Meal/kg) ob::;erved 

Residual Coefficient 
Coefficient standard of 

of deviation variation 
Equation type determination (Meal/kg) % 

Simpleb .71 .20 7.5 

Type Ic .82 .16 5.9 

Type Id and Type IId .82 .16 5.9 

aDE was estimated using the equation: DE = 5.65 (YCP) = 4.15 (YAC 

+ YCL + YHC) + 9.40 Y TL; whereYN equals the decimal fraction (CP - crude 

protein, AC - available carbohydrate, CL = cellulose, HC = hemicellulose, 
or TL = total lipids) of the nutrient digestible amount as predicted 
from Simple, Type I or Type II models. The 5.65, 4.15, and 9.40 are 
assigned caloric values for protein, carbohydrates, and lipids (Lloyd 
et al., 1978 ). 

bCP, AC, CL, HC and TL diges tible amounts predicted with Simple 
equations. 

cCP, AC, CL, HC and TL digestible amounts predicted with Type I 
equations . 

dCP, AC, and TL digestible amounts predicted with Type I equations 
and CL and HC digestible amounts predicted with Type II equations. 

Type II equations. Therefore , from a practical standpoint, the use of 

the more complex Type II equation over the Type I model may not be 

justified from the data of this experiment. 

Estimating digestible energy from nutrient 
percent content 

Simple equations. Equations of the form Y = b
0 

+ b1X1 , were also 

used to estimate DE directly for sheep diets; where Y equaled estimated 

DE and Y equaled the diet percent content of available carbohydrate, 

cellulose, cell walls, neutral detergent fiber, acid detergent fiber or 

crude fiber (table 15). Van Soest (1965) proposed the use of the 



Table 15. Simple regression modelsa for estimating DE (Meal/kg) di­
rectly from nutrient content (%) 

Available 
carbo- Cellb 

Item hydrate Cellulose walls 

Regression constant bo 1.928 3. 754 3 . 719 

Regression coefficient bl .0235 -. 0475 - . 0244 

Coefficient of detennination R2 .614 .689 .696 

Residual standard deviation (Meal/kg) .23 .21 .21 

Coefficient of variation (%) 8.7 7.8 7 . 8 

feed Nutrient 

Neutral Acid 
detergent detergent Crude 

Ac fiber fiber fiber 

3. 762 3.887 3.552 -. 974 

- .0240 - . 0382 - . 0339 .0041 

. 709 . 680 . 558 . 500 

. 20 .21 .25 . 27 

7 . 5 7.9 9 . 3 9 . 9 

3 Equations are of the fonn Y = b
0 

+ b1X1 ; where Y is the predicted digestible energy (Meal/kg), and x1 is the nutrient 
content (%) of the diet. 

bPlant cell walls determined using detergent proc,;dures by Fonnesbeck and Harri s (1970 a) . 

c A = 100 - (100 L/S ), where L equals the percent lignin content (%) of a given di et and S equals percent neutral detergent 
solubles (% cell contents) . 

....., 
.t-
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predictant A(%); . A= 100- (100 L/S), where L equals the percent (%) 

lignin content of the diet and S equals the percent (%) neutral deter­

gent solubles (cell contents). A Simple model utilizing the predictant 

A(%) was also generated for comparison (table 15) . 

Overall, the precision of the Simple models was shown to be average 

to poor in estimating DE (table 15). R2 values ranged from .71 to .50 

with residual standard deviations ranging from .27 Meal/kg to .20 Meal/ 

kg. It appeared that cellulose, cell walls, neutral detergent fiber and 

acid detergent fiber were quite comparable as DE predictants, though 

the chemical composition between these separate fractions was noteably 

different. Neutral detergent fiber was shown to be the most accurate 

as a predictant. Available carbohydrate, crude fiber, and A models 

were markedly lower in precision for estimating DE than cellulose, cell 

wall, neutral detergent fiber, and acid detergent fiber models. 

The extra low available carbohydrate values for midbloom grass 

may account for much of the variation associated with the available 

carbohydrate model. Variation connected with the crude fiber was ex­

pected to be high since it has been adequately shown in the literature 

and in the chemical analysis section of this study that crude fiber 

recovery of cell wall fiber is highly variable between diet types. 

Van Soest's proposed equation utilizing the predictant A is based 

on the theory that lignin is a nonnutritive component of forage cell 

walls and is the primary factor limiting the digestibility of cell wall 

carbohydrates (Van Soest and Moore, 1965). It is fUrther stated that, since 

lignification is negatively related to forage digestibility and the cell 

contents are positively related to digestibility, the ratio of L/S would 

be a good indicator of indigestibility. However, in the present study 
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it was shown that fiber digestibility in the grass diets did not follow 

the hypothetical pattern. Lignin was apparently substantially 

digestible in grass. Midbloom grass was highest in cell wall contents 

and also highest in lignin digestibility. This deviation from the 

hypothesis by Van Soest would account for much of the variation shown 

for the Van Soest model. The extra low available carbohydrate values 

for midbloom grass also may have added substantial variation to the 

model. 

Complex eguations. Type I and II multivariant models were developed 

for estimating DE directly using the diet percent content of cellulose, 

cell walls, neutral detergent fiber, acid detergent fiber, or crude 

fiber as the only quantitative independent variable in the equation. 

Type I equations for each predictant mentioned were shown to be 

significantly better in DE predictability than corresponding Simple 

models (compare tables 15 and 16) •. This was shown by a distinct in­

crease in R2 values (cellulose, .88 !2. .69; cell walls , .88 vs • 70; 

neutral detergent fiber, ,go Yl2_ .71; acid detergent fiber, .88 vs .68; 

and crude fiber, ,go Yl2_ .56) and a decrease in the residual standard 

deviation of regression (cellulose, .15 Meal/kg vs .21 Meal/kg; cell 

walls, .15 Meal/kg Yl2_ .21 Meal/kg; neutral detergent fiber, .14 Meal/kg 

Yl2_ .20 Meal/kg, acid detergent fiber, . 15 Meal/kg vs .21 Meal/kg; and 

crude fiber, .14 Meal/kg vs .25 Meal/kg). An F test comparing the un­

explained variation (SSE) in estimating DE using simple and complex 

models showed that the Type I complex models significantly reduced the 

SSE (table 18) • 

Type I models also estimated closer DE values to observed DE than 

simple models (table 19 and appendix tables 41 and 42). DE predicted 
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Table 16. Type I r egression models for estimating DE (Meal/kg) di r ectl y 
from nutrient content (%) 

flcr:ressi<ll'l constant 

Rci;~"Si •.>t1 coefficient 

Mjustme11ts to the regression 
const<J.nt for specification of 
diet<~. 

Forage type 

Alf<J\fa 

Crase; 

:;tap,eoftr.aturity 

Early 

Energy Level 

Textur>.'! 

Coar·se 

Pelleted 

Diet Interactiorrs 

Alfal fa x early 

Alflllfaxnrid 

All'alfaxlate 

Grass x early 

Grass x mid 

Grass xlate 

Early x hay 

Midxh<ly 

La texh.1 y 

Early x hay • com 

Mid x hay ..- corn 

L..o1te x hay • com 

Early x coarse 

Mlx x coarse 

Late x coarse 

Early x pelleted 

Mid X pelleted 

Late x pelleted 

Hay Y. coarse 

Hay x pelleted 

Corn + hay x coarse 

Com + hay x pelleted 

Coefficient of determination 

Residual standard deviation 

Coefficit>.nt of variation 

Feed nutrient:... 
---·-···-· 

Ncutr·<Jl. Aci.l 

Cellu­
lose 

3.3991 3.277~ 

-.0315 - .0138 

.1097 

-.1097 

.0694 

-.0694 

deter­
gent 

fiber 

),661!3 

.0217 

-.OClJl .0025 -.0074 

.0692 . 0652 . 0842 

- . 0661 -. 0671 - . 0768 

- . 0897 

.0897 

- .1486 

.1466 

.0130 .0182 

- . 0130 - . 0182 

- .0705 

.0705 

. 0212 

-.0212 

~1 - .0110 -,0318 .0006 

~2 - .0385 -.0358 -.0892 

Cll\) .0'•95 .0676 .0886 

~~ .0110 .0318 -.0006 

oa22 .0385 .oJSB .0892 

0$23 -.01·95 - . 0676 -.0086 

!3r11 -.0319 - .0307 -.Olol5 

8y2l .0729 .0703 . 0756 

By31 . 0119 - . 0396 -. OJ4l 

By12 .0319 . 0307 .O-ilS 

Br22 -.0729 - .0703 - . 0756 

By32 -.Oll9 .0396 . 0341 

8611 -. 0354 -.0306 - . 0264 

8021 -.0147 - .0226 -.0307 

B<'i31 . 0501 . 0532 . 0571 

861? . 0354 .0306 .0264 

8022 ,0147 .0226 . 0307 

8632 - .0501 - . 0532 -.0571 

·r5a .0866 .oeso .0€18 

y1Sl2 - .0886 - .0850 -. 0818 

y621 -.0866 -. 0850 - . 0818 

y022 . 0886 . 0850 . 0818 

R2 .878 .883 .896 

(Meal/kg) .15 .15 ,14 

(%) 5 . 6 5.6 5 . 2 

;_:cnt 
ritx·r 

3.64 1.? 

-.0)02 

.1107 

-.urn 

.0084 

. 0581 

-.0665 

-. 0472 

. 0472 

.0220 

- .0220 

-.Oll9 

- . 0455 

. 057'• 

.Oll9 

. 0455 

-.0574 

-.0273 

.079) 

.1066 

.0273 

-.0793 

-.1066 

-.02:{6 

-. 0238 

.0514 

.0276 

.0238 

-.0514 

.0880 

-. 0880 

- .0880 

.0880 

.883 

. 15 

5.6 

Crude• 
fib•:r 

J . ~ ;:4o 

- .0287 

, 1)47 

-. 1347 

- .0142 

. 0904 

- .0762 

-. 065lo 

.0654 

.0276 

-.0276 

-.0107 

- . 0707 

. 0814 

.0107 

. 0707 

- , 0814 

-,04)9 

.1095 

-.0656 

.0439 

-.1095 

.0656 

-. 0433 

-. 0019 

.0452 

.0433 

. 0019 

- .0452 

. 0934 

-. 093-'< 

- .0934 

. 0934 

.897 

. 14 

5.2 

aEquations are of the f onn Y = b0 • b1X1 + Cli • BJ + yk • 51 + a.Bij • Byjk • SOJ + y6k1 ; 

where Y i.s the predicted digest ible energy (Meal/kg) and x
1 

is the nu t rient percent cootent 1%) 

with the re~pective regression constant and regressi oo coe f ficient . The regression coostant is 
adjusted by qualitative indictat ors (u

1
, Sj , . y <Sk1 ) according t o the descript ion of the 

ingredient or diet , All indi cator s must be used as they apply , for example , if the diet was 
alfalfa hay (a1 1, l ate maturi t y (8

3
1, fed alone {y1 1, and pelleted (0

2
1; the calculat ion fo r 

digestible ener gy in a f eed containing 4~ CW would be : Y = b
0 

• l b1X
1

1 • Cl l • s
3 

+ Y1 • 62 + 

Cl813 + 8y)l + 8632 • y612 = 3 , Cf7 + [( - .01381 (421) + . 069- .068- . 1-'<9- . 018 .. , 068 - . 040 + 

. 053 - .085 = 2.-'<2 Meal/kg. 

b?crccnt cell walls detennined u.'>ing detergent procedures by Fonnesbeck and llarris ~1970a) . 
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directly with Type I models was only slightly closer to observed DE 

than DE estimated indirectly using Type I predicted digestible amounts 

and physiological fuel values (compare table 14 to table 19). 

Indicator variables selected for the most efficient Type I model 

were identical between cellulose, cell wall, neutral detergent fiber, 

acid detergent fiber, and crude fiber models (table 16). Though the 

maturity-by-texture interaction did not significantly affect the apparent 

digestibility of cellulose, cell walls , neutral detergent fiber, or acid 

detergent fiber; it was shown important in all Type I equations (table 8). 

The forage-by-maturity interaction also appeared important to all Type I 

equations, but significantly affected neutral detergent fiber apparent 

digestibility only (table 8) . Selected independent variables in are­

gression model do not always fit observed phenomena . No matter how 

strong the statistical relationship may be, a cause-and-effect pattern 

is not necessarily implied by the regression equation . 

The dummy variables selected for Type I e~uations to estimate DE 

nearly matched the dummy variable selection for corresponding Type I 

equations for estimating digestible amounts (compare tables ll and 16). 

Cell wall, neutral detergent fiber and crude fiber Type I equations for 

estimating digestible amounts, however, did not contain the maturity­

by-texture interaction s own necessary in the Type I DE estimating 

equations. 

Type II equations for cellulose, cell walls , neutral detergent 

fiber, acid detergent fiber, and crude fiber showed very little 

improvement over Type I equations in estimating DE (compare tables 16 

and 17). The F test comparing the error-sum-of- squares (SSE) showed 

a significant reduction in the unexplained variation for the acid 
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detergent fiber Type II model only (table 18). The regression of 

estimated DE against observed DE showed no advantage in using Type II 

over Type I equations for estimating DE (table 19). 

The order of accuracy in equations for estimating DE changed be­

tween cellulose, cell walls, neutral detergent fiber, acid detergent 

fiber, and crude fiber going from Simple to Type I models. The model 

using neutral detergent content was the most precise for the Simple 

models followed by cell walls, cellulose, acid detergent fiber, and 

crude fiber simple models respectively (table 11). However, the Type I 

equations for crude fiber and neutral detergent fiber were similar in 

precision and were the most accurate (table 16). Cell wall and acid 

detergent equations were comparable in precision and were second in 

predictability followed by the cellulose equation . 

From a practical standpoint complex regression equations similar to 

those developed in this study would be useful in a computer program for 

calculating least- cost rations for growing and fattening lambs. Nearly 

all equations developed by previous researchers use chemical parameters 

for estL~ting digestible dry or organic matter for forage rations only. 

It is recommended that regression models by generated capable of pre­

dicting diet digestible energy for all-forage diets as well as mixed 

diets containing forages, high energy feed, and protein supplements. 

Though indicator variables increase the precision of a predicting 

equation, they also limit the equation to specific diet treatments . 

However, with further research using additional forage types, grain 

types and grain to forage mixtures; more flexible models can be devel­

oped still utilizing the indicator variable concept. 
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Table 17. Type II regression models for estimating DE (Meal/kg) 
directly from nutrient content (%) 

Feed Nutrient3 

Neutral Acid 
Cellu- w;~i!b detergent detergent Crude 

lose fiber fiber fiber 
Item (CLI (CW) (NDF) IADFI (CF) 

Regression constant bo 2.5902 1.0856 5 .0935 3.1574 3.8360 

Regression coefficient b1 .0054 . 0387 - .0593 - .0019 -. 0566 

Adjustments to the regression 
constant ( b ) 
of d~et3 0 

for specification 

Forage type "1 .1859 .4974 -. 2397 .1221 .2060 

Alfalfa "1 .1859 . 4974 - .2397 . 1221 . 2060 

Grass "'2 - .1859 -. 4974 .2397 - .1221 -. 2060 

Stage of maturity 

Early 61 -. 0216 -. 2006 -. 0202 -. 2906 1.8365 

Mid ~ . 1135 1.5800 . 1708 . 2891 - 1.1826 

Late ~ -. 0919 -1. 3794 -.1506 .0015 . 6539 

Energy level 

Hay y1 . 2777 .4957 -. 6368 -. 7805 -. 6131 

Hay + corn y2 -. 2777 -.4957 .6368 0 7805 .6131 

Texture 

Coarse '1. . 0016 .0236 .1366 ,0085 .0274 

Pelle ted 62 -. 0016 -. 0236 -.136( - .0085 -. 0274 

Diet interactions 

Alfalfa x early aB11 -. 0942 - 1.9752 .0702 -. 0611 -. 8504 

Alfalfa x mid ~2 . 0202 .719 1.1382 -. 0177 .9208 

Alfalfa x late 0~3 . 0740 1.2555 - 1.2084 .0788 - .0704 

Grass x early "~1 .0942 1.9752 -.0702 .0611 .8504 

Grass x mid a822 -. 0202 - .7197 - 1.1382 .0177 -. 9208 

Crass x late "~3 -. 0740 -1. 2555 1.2084 -. 0788 .0704 

Early x hay 6y11 - .3428 - 2.4472 -. 0709 -1. 3945 

Mid X hay BY21 .452Y 1.3441 1.4514 1.1265 

Late x hay By31 -.1101 1.1031 -1. 4905 . 2680 

Early x hay + corn By12 .3428 2.4472 .0709 1. 3945 

Mid x hay + corn By22 . 4529 -1. 3441 -1. 5614 -1.1265 

Late x hay + com By32 . 1101 -1. 1031 1.4905 -. 2680 
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Table 17 . (Continued) 

F'eed nutrient3 

Neutral Acid 
Cellu- Cell detergent detergent Crude 

lose Walls fiber fiber fiber 
Item (CL) (CW) (NDFI (AOF) (CF) 

Early x coarse Bo 11 - .0275 -. 0386 .1605 

Mid x coarse Bo21 -.0248 - .1738 -. 1828 

Late x coarse Bo 31 .0523 .2124 .0223 

Early x pelleted Bol2 .0275 .0386 -.1605 

Mid x pelleted Bo 22 .0248 .1738 . 1828 

Late x pelleted Bo 32 - .0523 - .2124 -. 0223 

Hay x coarse y6 11 . 0846 .2353 .0819 .0726 .0565 

Hay x pelleted yo 12 -.0846 -. 2353 -.0819 - .0726 -. 0565 

Hay + corn coarse yo 21 - .0846 - .2353 - .0819 -. 0726 - .0565 

Hay + com pelleted yo 22 .0846 .2353 .0819 .0726 .0565 

Adjustments to regression co-
efficient ( b1 l 
of diet3 

for specification 

CL x (early x hay) By nxr .0155 

CL x (mid x hay) By 21 xl -.0175 

CL x (late x hay) By 3lxl .0020 

CL X (early x ha}' + corn) By 12x1 - .0155 

CL x {mid x hay + corn) By 22x1 .0175 

CL X {late x hay + corn) By 32xl -.0020 

CW x early BlXl .0040 

CW x mid 82Xl -. 0385 

CW x late 8lr 
.0345 

CWx (alfalfa x early) aell xr .0480 

CWx {alfalfa x mid) ae12xr -.0246 

CWx (alfalfa x late) ae13x1 
-. 0234 

CW x (grass x early) ae21 xl -.0480 

CWx (grass x mid) oll2fl .0246 

CWx (grass x late) ct32Jxl .0234 

CWx (early x hay) ByllXl . 0~34 

CWx (mid x hay) 8'21 xl -.0253 

CWx (late x hay) 8'3rxl - .0~81 

CWx (early x hay + corn) Brr;t<1 -.0634 

CWx (mid x hay + corn) By2:h .0253 

CWx {late x hay + corn) 8y3<h .0381 

CWx (hay x coarse) yonxr - .0036 

CWx (hay x pelleted) ror;t<l .0036 

CWx (hay + corn x coarse) 
' 621x1 .0036 

CWx (hay + corn x pelleted) yo211 - .0036 



Table 17 . (Continued) 

Item 

NDF X hay Y1 1) 
NDF x hay + corn Y21) 
NDF' x coarse ~I) 
NDF X pelleted ~x1 
NDF X (alfalfa x earl y ) Blll) 
NDF X (alfalfa x mid) 1121) 
NDF x (al f a lfa x late) 

11l1 
NDF x (gr·ass x early) ~11) 
NDF x (grass x mid) 8221) 
NDF X (grass x late) 8231) 
NDF x (early x hay) ByllX1 
NDF X (mid x hay) Br21 x1 
NDF X (late x hay) 8Y31x1 
NDF x (early x hay + corn) BY21x1 
NDF X (mid X hay + corn) llY2i1 
NDF x (late x hay + corn) lly2l1 
ADF X hay ylX1 
ADF x hay + com y2X1 
ADF x (early x hay) By1l1 
ADF x {mid x hay) Br21x1 
P.DF x (late x hay) 8Y31x1 
ADFx (early x hay + com) sr1r1 
ADF x (mid X hay + COJ 'n) lly201 
ADF x {late x hay + corn) ByJrl 
CF X ear ly B1X1 
CF X mid Bi'J 
CF x late B3Xl 
CF x hay ylXl 
CF x hay + com Yi'J 
CF x (early X hay) llyllXl 

CF X (mid x hay) lly2l1 
CF X (late X hay) Br31x1 
CF x (early x hay + corn) 12x1 
CF x (mid x hay + corn) 2l1 
CF x (late x hay + corn) 32x1 

Feed nutrient3 

Neutral 
Cellu-
lose w;~i!b detergent 

fiber 
ICLI (CWJ INOF) 

.0209 

- .0209 

-.0020 

. 0020 

.0014 

-. 0321 

.0307 

- .0014 

.0321 

- .0307 

. 0006 

- . 0349 

. 0343 

- . 0006 

.0349 

- .0343 

Acid 
detergent 

fiber 
IAOFI 

.0223 

-. 0223 

.0462 

- .3047 

- .0211 

- .0462 

. 0347 

. 0122 

82 

Crude 
fibe r 
(CF) 

-.0949 

. 0659 

. 0290 

. 0303 

-.0303 

. 0607 

··. 0522 

-.0085 

-. 0607 

.0522 

.0085 
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Table 17. (Continued) 

F'eed nutrient8 

Neutral Acid 
Cellu- Cell detergent detergent Crude 

lose Walls fiber fiber fiber 
Item ICLI ICWI (NDf'l IADf'l (Cf') 

Cf' X (early x coarse) Bo11x1 
-. 0058 

Cf' X (mid x coarse) Bo21x1 .0052 

CF X (late x coarse) Bo31xl . 0006 

Cf' X (early x pelleted) Bo12x1 .0058 

CFx (mid x pellet€d) 662l1 - .0052 

CF X (late x pelleted) 86Jl1 - .0006 

Coefficient of detennlnation R2 . 88"( . 913 . 917 .910 .913 

Standard dev i ation (rt::a1/kgl .15 .14 .13 .14 .14 

Coefficient of variation 1%1 5 . 6 5.2 4.8 5.2 5.2 

aEquations are of thie f onn '( = b0 + b1X1 + ~ + Bj + yk + 6£ + oBi.i + • • + y6ki + 

o.1x1 + 6l1 + oixl + o:S1} 1 + ••• + y6ktX1 l; where Y i s the predicted digestible energy 

(Meal/kg) and x
1 

is the nutrient percent content {%) with the respect ive regression constant b0 
and regression coefficient b1 . The regress:lOn constant is adjusted by qualitative variables 

( o1 , B j' . . . , y6k.2.) acccrding to the description of the ingrel!ient or diet. The regression 

coefficien t is also adjusted by qualitative-quantitative varible interactions ( o1 x1 , 6 jXl. • 

yOk£) according to the description of the ingredient or diet and the specific feed nutrient. 

All indicators must be used as they apply. For example, if the diet was alfalfa (a1 ), late 

maturity ( a
3

) , feed alone {)-1 l , and pelleted (61 ) the calc•1lation for digestible energy in a 

feed containing 4?/o CW would be: Y = (b0 + "J. + 83 + r 1 + 02 + aB13 + By31 + y012 J + (b1 + 

a
3
x1 + ae

13
x1 + sr

31
xJ + yo12x1 J x1 = (1.086 + .497 - 1.379 - .496 - .024 + 1.256 + 1.103 - .2351 

+ ( . 039 + .035 - .023- .038 + . OOt.) 42 = 2 . 52 Meal/kg . 

bPlant cell N:Jlls determined using procedures by Fonnesbeck and Harris (1970a). 



Table 18. Statistical comparison between the error-sum-of-squares (SSE) of Simple (A), Type I (B), and 
Type II (C) models for estimating DE 

Feed nutrient 

Neutral Acid 

Cell wallsa 
detergent detergent 

Item Cellulose fiber fiber Crude fiber 

d.f.A 46 46 46 46 46 
(A) 

SSEA 2 .033121J4 l. 98772670 1.90462540 2.09384692 2 .88973978 

d .f.B 34 34 34 34 34 
(B) 

SSE8 . 79621268 • 76534000 .6824ll62 . 76230754 . 67327922 

d .f.c 32 29 30 31 29 

(C) 
SSEC . 74203360 .56734469 .54003210 . 58628223 .56992076 

B versus A Fb 4,40 4.53 5.07 4.95 9.33 

p .001 .001 .001 .001 .001 

C versus B Fe 1.17 2 .02 1.98 3.10 1.05 

p NS NS NS .05 NS 

aPlant cell walls determined using detergent procedures by Fonnesbeck and Harris (l970a). 

b 
F = (SSEA - SSE8 )/dfA - dfB 

SS~/df8 
c (SSEB - SSEC)/df8 - dfC 
F = SSE I df c c 

OJ 
-t-
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TABLE 19. DE estimated directly; using Simple, Type I, and Type II 
~q4ations ; regressed against DE observed 

Coeffici ent 
Coefficient Standard of 

Equation of deviation variation 
Predictant type determination (Meal /kg) (%) 

Simple .69 .21 7.7 

Cellulose I .88 .13 4.8 

II .88 .13 4.9 

Simple .69 .21 7.7 

Cell wallsa I .88 .13 4.8 

II .91 .11 4.1 

Simple ·71 .20 7.4 

Neutral detergent I .89 .12 4.4 
fiber 

II .92 .11 4.1 

Simple .71 .21 7 .7 

Acid detergent I .89 .13 4.8 
fiber 

II .92 .11 4.1 

Simple .56 .25 9.2 

Crude fiber I . go .12 4.4 

II .91 .11 4.1 

~lant cell walls determined using procedures by Fonnesbeck and 
Harris (1970 a) • 
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SUMMARY AND CONCLUSIONS 

l. Lambs were fed in a factorial designed experiment to collect 

information on the digestibilitY of diet chemi cal attributes as in­

fluenced by forage type, forage maturity, ... ingredient mixture, and 

feed texture. 

2. Crude protein and available carbohydrate true digestibility 

was near 100% regardless of diet source. True digestibility of fibrous 

constituents (cellulose, hemicellulose, cell walls, neutral detergent 

fiber, acid detergent fiber and crude fiber) was dependent on diet 

source. 

3. The apparent digestibility of fibrous constituents in grass 

diets was significantly greater than in alfalfa diets. Herrucellulose 

was more digestible in grass than in alfalfa, but the difference was 

not significant. Crude protein and available carbohydrates were more 

apparently digestible in alfalfa diets . 

4. Forage maturity significantly lowered the apparent digesti­

bility of all diet fibrous components except hemicellulose at the 

fullbloorn stage. Fibrous constituent apparent digestibility differ­

ences between late vegetative and midbloom stages were not signifi­

cantly different because of a significant interaction between forage 

type and stage of maturity. Crude protein and avail abl e carbohydrate 

were significantly lower in apparent digestibility in the fullbloorn 

and rnidbloorn diets respectively. 

5. The apparent digestibility of fibrous constituents was not 

significantly different between all- hay and hay- corn diets. A 



significant interaction between diet energy level and texture level was 

responsible for hiding differences in fiber apparent digestibility when 

corn was added to the diet. The apparent digestibility of available 

carbohydrates and total lipids significantly increased when corn was 

added to the diet. 

6. Pelleting significantly lowered the apparent digestibility of 
I 

all fibrous components except hemi.cellulose, although hemicellulose 

apparent digestibility was lower in pelleted diets. 

7. Significantly higher apparent digestibility for grass fibrous 

residues and significantly lower available carbohydrate and crude pro-

tein apparent digestibility in grass resulted in significant forage 

type-by-forage maturity and forage type-by-energy level interaction 

effects on the apparent digestibility of fibrous, available carbohy-

drate, and crude protein diet constituents. 

8. An interaction between forage type and diet energy level sig-

nificantly affect ed available carbohydrate apparent digestibility. 

This interaction effect together with the maturity-by-energy level 

effect on available carbohydrate digestibility occured as a result 

of an extremely low available carbohydrate content in midbloom grass. 

9. An interaction between diet energy level and texture sig-

nificantly altered the apparent digestibility of all fibrous resi-

dues. A significant reduction in the apparent digestibility of fibrous 

components in coarse hay-corn diets was cancelled out when differences 

were averaged over coarse and pelleted textures. 

10. Simple and complex linear models were developed for estim-

ating nutrient digestible amount (%) from the nutrient content (%) i n 

the diet. The complex equations differed from simpler models in that 
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the complex models contained added indicator variables representing 

variation due to treatment main effects and two-way interactions not 

explained by the single chemical parameter. The complex equations 

were significantly better than simple models in estimating digestible 

amounts of diet chemical constituents. Caloric values were applied 

to the digestible amounts of carbohydrates, proteins, and lipids to 

calculate digestible energy. EstjnEted DE was closer to observed DE 

when complex models .were used . 

11. Simple and complex models were also developed for estimating 

DE directly from the percent content of cellulose, cell walls, neutral 

detergent fiber, acid detergent fiber, and crude fiber. Indicator 

variables were also used in complex equations. Complex equations were 

significantly more precise in estimating DE than simple equations. DE 

estimated directly from nutrient content was nearly the same as DE 

estimated indirectly using estimated digestible amounts and caloric 

values. 

12. The results of this study indicate that indicator variables 

are useful in developing regression models to accurately estimate 

nutritional quality of animal diets. Digestibility variation between 

forages, stages of maturity, diet energy levels, and diet textures not 

explained by chemical parameters may be explained by appropriate 

qualitative indicators . 

13. It was unfortunate that the rain damaged midbloom grass had 

such a dominant effect on the overall apparent digestibility of diet 

chemical constituents. Some of t.he significant main effects and two­

way interactions affecting apparent digestibility may not have occured 

had this damage been avoided. It is recommended that the experiment 
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be repeated using more careful control over the growing and harvesting 

of forages . 

14 . The crude fiber model gave the poorest prediction among the 

simple models using f ibrous parameters to estimate DE, R2 = . 56 . Other 

models gave R2 values near .70. This indicates that new chemical 

methods do partition plant dry matter more accurately than crude fiber 

procedures. 



90 

LITERATURE CITED 

Ademonsum, A. A., B. R. Baurngardt and J. M. Scholl. 1968. Evaluation 
of a soghum-sudan-grass hybrid at varying stages of maturity on 
the basis of intake, digestibility and chemical composition. J. 
Anim. Sci. 27:818. 

~ Anderson, M. J. 1976. Factors that influence nutritive value of 
irrigated alfalfa forages. First International symposiu~, Feed 
Composition, ftnimal Nutrient Requirements, and Computerization of 
Diets. (Edited by P. V. Fonnesbeck, L. E. Harris, and L. C. Kearl) 
Utah Agr. Exp. Sta., Utah State University, Logan, UT. 

Anderson, M. J., G. E. Stoddard, c. H. Mickelson, and R. C. Lamb. 1975. 
Cubed versus valed alfalfa for dairy cows. J. Dairy Sci. 58:72. 

A.O.A.C. 1891. Methods of analysis of commercial fertilizers, 
foods, feedstuffs, dairy products, fermented liquors and sugar. 
U.S.D.A. Chern. Eul. 31:190. 

A.O.A.C. 1970. Off icial Methods of Analysis (11th Ed.) Association 
of Official Analytical Chemists, Washington 4, D.C. 

Armstrong, D. G., H. Cook and B. Thomas. 1950. The lignin and 
cellulose contents of certain grassland species at different 
stages of maturity. J. of Agr. Sci. 40:93. 

Bevenue, A. and K. T. Williams. 1959. Note on the use of detergents 
for removal of nitrogen from plant materials. J. Assoc. Official 
Anal. Chern. 42:441. 

Blaxter, K. L., N. McC. Graham and F. W. Wainman. 1956. Some obser­
vations on the digestibility of food by sheep, and on related 
problems. Brit. J. Nutr. 10:69. 

Blaxter, K. L. and H. H. Mitchell. 1948. The factorization of the 
protein requirements of ruminants and of the protein values of 
feeds, with particular reference to the significance of the 
metabolic fecal nitrogen. J. Anim. Sci. 7:351. 

Bondi, A. and H. Meyer. 1943. On the chemical nature and digesti­
bility of roughage carbohydrates. J. Agr. Sci. 33:123. 

Campling, R. C., M. Freer and C. C. Balch. 1963. Factors affecting 
the voluntary intake of food by cows. A preliminary .experiment 
with ground, pelleted hay. Brit. J. of Nutr. 17:263. 



91 

Chimwano, A.M., E. R. Orskov and C. S. Stewart. 1976. Effect of 
dietary proportions of roughage and concentrate on rate of di­
gestion of dried grass and cellulose in the rumen of sheep. 
Nutr. Soc. Proc. 35:101A. 

Clemens, E. T. 1968. Energy values as related to the ration compo­
sition. M. S. Thesis. New Mexico State University, Las Cruces. 

Cogswell, C. and L. D. Kamstra. 1976. The stage of maturity and its 
effect upon the chemical composition of four native range species. 
J. Range Mngt. 29:460. 

Colburn, M. W. and J. L. Evans. 1967. Chemical Composition of the 
cell wall constituents and acid detergent fiber fraction of 
forges. J. Dairy Sci. 50:1130. 

Cook, C. w., L. A. Stoddart and L. E. Harris. 1952. Determining the 
digestibility and metabolizable energy of winter range plants by 
sheep. J. Anim. Sci. 11:578. 

Crampton, E. W. and L. E. Harris. 1969. 
Applied Animal Nutrition (2nd Ed.). 
San Francisco, CA. · 

The Proximate Analysis. 
W. H. Freeman and Company. 

Crampton, E. W. and L. A. Maynard. 1938. The relation of cellulose 
and lignin content to the nutritive value of animal feeds. J. 
Nutr. 15:383. 

Crampton, E. W. and F. Whiting. 1943. A proposed scheme of feeding­
stuffs analysis. J. Anim. Sci. 2:278. 

\) Danker, J.D., G. C. Maren, R. M. Jordan and P. K. Bhargava . 1976. 
~ Effects of drying on forage quality of alfalfa and reed canary 

grass fed to lambs . J. Anim. Sci. 42:180. 

Ellis, G. H., G. Matrone, L. A. Maynard. 1946. A 72 percent sulfuric 
acid method for determination of lignin and its use in animal 
nutrition studies. J. Anim. Sci, 5:285-297. 

Ely , R. E. and L. A. Moore. 1954. Yields of holocellulose prepared 
from various forages by acid chlorite treatment. J. Agr. Food 
Chern. 2:826. 

Fonnesbeck, P. V. 1969. Partitioning the nutrients of forage for 
horses. J. Anim. Sci. 28:624. 

Fonnesbeck, P. V. 1976. Estimating nutrient value from chemical 
analysis. First International Symposium, Feed Composition, 
Animal Nutrient Requirements, and Computerization of Diets (Edited 
by P. V. Fonnesbeck, L. E. Harris, and L. C. Kearl). Utah Agr. 
Exp. Sta., Utah State University, Logan, UT. 



92 

Fonnesbeck, P. V. and L. E. Harris. l970a. Determination of plant cell 
walls in feeds. Proc. Western Sec. Amer. Soc. Anim. Sci. 21:153. 

Fonnesbeck, P. V. and L. E. Harris. 1970b. Determination of halo­
cellulose, lignin and silica of plant cell walls. Proc. Western 
Sec. Amer. Soc. Anim. Sci. 21:162. 

Fonnesbeck, P. V. and L. E. Harris. 1974. Determining solvent extract 
and nutritive lipid. Proc. Western Sec. Amer. Soc. Anim. Sci . 
25:313. 

Foster, J. E., J. T. Yang and N.H. Yui. 1950. 
phoretic analysis of the protein of corn. 

Extraction and el ectro­
Cereal Chern. 27:477 . 

Fraps, G. W. and J. B. Rather. 1912. Composition .and digestibility of 
ether extract of hays and fodders. Texas Agr. Exp. Sta. Bul. 150:5. 

Gearing, E. K., J . C. Derbyshire, C. H. Gordon and D. R. Waldo. 1976. 
Digestion and intake of alfalfa hay and silage with maturity. J. 
Anim. Sci. 43: 263 . 

Gaillard, B. D. E. 1962. The relationssip between the cell wall con­
stituents of roughages and the digestibility of the organic matter. 
j. Agr. Sci. 59:369. 

Gordon, A. J. 1975. A comparison of some .chemical and physical pro­
perties of alkali lignins from grass and lucerne hays before and 
after digestion by sheep. J. Sci, Food Agr. 26:1551 . 

Hallab, A. H. and E. A. Epps. 
mination of crude fiber. 

1963. Variables affecting the deter-
J. Assoc. Official Anal. Chern. 46:1006. 

Hanahan, D. J. 1960. Lipid Chemistry. John Wiley and Sons, New York. 

Harris, L. E. 1970. NutrHion Research Techniques .for Domestic and 
Wild Animals: An international record system and procedures for 
analyzing samples. Vol. 1 Lorin E. Harris, Logan, UT. 

Harwood V. D. 1954. Analytical studies on the carbohydrates of grasses 
and clovers. V. Development of a method for the estimation of cell 
wall polysaccharides J. Sci. Food Agr. 5:270. 

Henry, W. A. 1898. Feeds and feeding (7th Ed.). W. A. Henry, Madison, 
WI. 

Henneberg, W. and F. Stohmann. 1860. Begruendung einer rationellen. 
Fue Herung der Wiederkauer. Vol. I. Schwetschtuker u. Sohn, 
Braunschweig. 

Henneberg, W. and F. Stohmann. 1864. Berguendung einer rationellen. 
Fue .Herung der Wiederkauer. Vol, II. Schwetschtker u. Sohn, 
Braunschweig. 



93 

Houser, R. H., E. Moore, and C. B. Ammerman. 1975. Intake and utiliza­
tion of low-quality forages supplemented with nitrogen and energy. 
J. Anim. Sci. 41:336. 

Johns III, W. and J. B. Holter. 1975. No associative feeding effects 
between corn and hay crop silages for dairy heifers. J. Dairy 
Sci. 58:392 • . 

Johnson, R. R., B. A. Dehority, K. E. McClure and J. L. Parsons. 1964. 
A comparison of in vitro fermentation and chemical solubility 
methods in estima~ing forage nutritive value. J. Anim. Sci. 
23:1124. 

Johnson, R. R., B. A. Dehority, J. L. Parsons and H. W. Scott. 1962. 
Discrepances between grasses and alfalfa when estimating nutritive 
value of forage from in vitro cellulose digestibility by rumen 
microorganisms. J. Anim. Sci. 21:892. 

Johnson, R. R., G. E. Ricketts, E. W. Klosterman, A. L. Moxon. 1964. 
Studies on the utilization and digestion of long, ground, and 
pelleted alfalfa and mixed hay. J. Anim. Sci. 23:94 . 

Johnson, M. J. and R. White. 1965. Studies in the lignification of 
grasses. I. perennial rye-grass (524) and cocksfoot (537). J. 
Agr. Sci. 64:211. 

Jones, L. H. and K. A. Hand!'eck. 1967. Silica in soils, plants and 
animals. Advances in Agronomy. 19:107 . 

Keys, J. E., P. A. Van Soest and E. P. Young. 1969. Comparative 
study of the digestibility of forage cellulose and hemicellulose 
in ruminants and nonruminants. J. Anim. Sci. 29:11. 

Kim, J. T., J. T. Gillingham and C. B. Loadholt. 1967. Differences in 
composition between crude filter and acid detergent fibre. J. 
Assoc. Official Agr. Chern. 50:31tO. 

Kromann, R. P. 1967. A mathematical determination of energy values 
of ration ingredients. J. Anim. Sci. 26:1131. 

Kromann, R. P., E. T. Clemens and E. E. Ray. 1975. Digestibility, 
metabolizable and net energy values of corn grain and dehydrated 
alfalfa in sheep. J. Anim. Sci. 41:1752. 

Kromann, R. P., K. 0. Warner, T. R. Wilson, E. L. Martin and J. K. 
Hillers. 1977. Digestible, metabolizable and net energy values 
of pea scalpings and wheat straw in lambs. J. Anim. Sci. 45:855. 

Lancaster, R. J. 1943. Metabolism trials with New Zealand feeding 
stuffs. IV. The relative significance of lignin, cellulose, and 
crude fiber in the evaluation of feeds. N. Zealand J. Sci. Tech. 
25A:l36. 



94 

Loyd, L. E., B. E. McDonald and P. W. Crampton. 1978. Fundamentals 
of Nutrition: Coefficients of apparent digestibility. W. H. 
Freeman and Company, San Franci sco, CA. 

Lucas , H. L., W. W. G. Smart, M. t. Cipolloni and H. D. Gross. 1961. 
Report to the 5-45 Technical Committee. North Carolina State 
College, Raleigh. 

Martin, G. C., R. D. Goodrich, A. R. Schmid, J. C. Meiske, R. M. Jordan 
and J. G. Linn. 1975. Evaluation of laboratory methods for de­
termining quality of corn and sorghum silages: II. Chemical methods 
for predicting in vivo digestibility. Agronomy J. 67:247. 

Matrone, G., G. H. Ellis and L. A. Maynard. 1946. A modified No~an­
Jenkins method for the determination of cellulose and its use in 
the evaluation of feedstuffs. J. Anim. Sci. 5:306. 

Meyer, J. H., W. C. Weir, L. G. Jones ('and J. L. Hull. 1957. The in­
fluence of the stage of maturity on the feeding value of oat hay. 
J. Anim. Sci. 16:623. 

Moir, K. W. 1972. An assessment of the quality of forage from its 
cell wall content and amount of cell wall digested. J. Agr. Sci. 
78:355. ~ 

Moore, L. A. 1964. Symposium of forage utilization: Nutritive value 
of forages as affected by physical form. Part I. General prin­
ciples involved with ruminants and effect of feeding pelleted or 
wafered forage to dairy cattle. J. Anim. Sci. 23:230. 

Morrison, F. B. 1956. Feeds and Feeding (22nd Ed.). The Morrison 
Publishing Company, Ithaca, NY. 

Mowat, D. N., M. L. Kwain and J. E. Winch. 1968. Lignification and 
in vitro cell wall digestibility of plant parts. Can. J. Plant 
Sci-;---zi§: 499. 

Norman, A. G. 1935. The composition of crude fiber. J. Agr. Sci. 
25:529. 

Norman, A. G. and S. H. Jenkins. 1933 . . A new method for the deter­
mination of cellulose, based upon observations on the removal of 
lignin and other encrusting materials. Biochem. J. 27:818. 

Norman, A. G. and S. H. Jenkins. 1934. The determination of lignin . 
II . Errors introduced by presence of proteins. Biochem. J. 28: 
2160 . 

Oh, H. K., B. R. Baumgardt and J. M. Scholl . 1966. Evaluation of 
forages in the laboratory, V. Comparison of chemical analysis , 
solubility tests, and in vitro fermentation. J. Dairy Sci . 49:850. 



Phillips, T. G. and T. 0. Smith. 
Part I. Young grass and hay. 
Bul. 81:16. 

95 

1943. The composition of timothy . 
New Hampshire Agr. Exp. St a . Tech. 

Pritchard, B. I., L. P. Felkins and W. J. Pigden . 1962. The in vitro 
digestibility of whole grasses and their parts at progressiv-e---­
stages of maturity. Can. J. Plant Sci. 43:79 . 

Roberts, W. K., J. A. McKirdy and E. W. Stringam. 1963. Utilization of 
rapseed oil, sunflowerseed oil and animal tallow by cattle. J. 
Anim. Sci . 22:846. 

Robertson, J. B. and P. J. Van Soest.. 1977. Dietary fiber estimation 
in concentrate feedstuffs. paper 646. Presented at. the 69th 
meeting of the American Society of Animal Science. University of 
Wisconsin, Madison. 

Schneider, B. H. and H. L. Lucas. 1950. The magnitude of certain 
sources of variability in digestibility data. J. Anim. Sci. 9:504. 

Schneider, B. H. and W. P. Flatt . . 1975. The Evaluation of Feeds Through 
Digestibility Experiments: Factors affecting digestibility. The 
University of Georgia, Athens. 

Schneider, B. H., H. L. Lucas, M.A. Cipolloni and H. M. Pavlech. 1952. 
The prediction of digestibility of feeds for which there are only 
proximate composition data. J. Anim . Sci . 11:77. 

Schneider, B. H., H. L. Lucas, H. M. Pavlech and M.A. Cipolloni. 1951. 
Estimation of the digestibility of feeds from their proximate 
composition data. J. Anim. Sci. 10:706. 

Stallcup, 0. T. 1958 . Composition of crude fiber in certain roughages. 
J. Dairy Sci. 41:963. 

Stallcup, 0 . T. 1967. The fiber fraction of feedstuffs. Feedstuffs 
39 (11) :18 . 

Stanley, R. L., E. R. Beaty and D. N. Palmer . 1968. Effect of age at 
harvest on yield and cell wall content of amclo clover. Agron . J. 
60:343. 

Sullivan, J. T. 1955. Cellulose and lignin in forage grasses and their 
digestion coefficients. J. Anirn. Sci. 14:710. 

Sullivan, J. T. 1964 • . Chemical composition of forages in relation to 
digestibility by ruminants. Agr. Res . Service , A77.16, 34-62, 
U.S. D.A., Wassington, D.C. 

Tagari, H. and D. Ben-Ghadalia. 1977. The digestibility of rhodes 
grass (Chloris gayana) in relation to season and pr·opor•tion of the 
diet of sheep. J. Agr. Sci . 88:181. 



96 

Tomlin, D. C. , R. R. Johnson and B. A. Dehority. 1962. Relationships 
of lignification to in vitro cellulose digestibility of grass and 
legumes. J. Anim. Sci.~l6l. 

Troelsen, J. E. and J. B. Camp~ll. 1969. The effect of maturity and 
l eafiness on the intake and digestibilities of alfalfas and 
grasses fed to sheep. J. Agr. Sci. 73:145. 

Vance, R. D., R. R. Preston, V. R. Cahill and E. W. Klosterman. 1972. 
Net energy evaluation of cattle-finishing rations containing 
varying proportions of corn grain and corn silage. J. Anim. Sci. 
34:851. 

Van Soest, P. J. 1962. The estimation of forage protein digestibility 
and determination of effects of heat-drying upon forages by means 
of the nitrogen content of acid detergent fiber. J. Dairy Sci. 
45:664. 

Van Soest, P. J. 1963a. Use of detergents in the analysis of fibrous 
feeds. I. Preparation of fiber residues of low nitrogen content. 
J. Assoc. Official Anal. Chern. 46:835. 

Van Soest, P. J. 1963b. Use of detergents in the analysis of fibrous 
feeds. II. A rapid method for the determination of fiber and 
lignin. J. Assoc. Official Anal. Chern. 46:829. 

Van Soest, P. J. 196~. Symposium on nutrition and forage and pastures: 
New chemical procedures for evaluating forages. J. Anim. Sci. 
23:838. 

Van Soest, P. J. 1965a. Symposium on factors jnfluencing the voluntary 
intake of herbage by ruminants: Voluntary intake in relation to 
chemical composition and digestibility. J. Anim. Sci. 24:834. 

Van Soest , P. J. 1965b. Comparison of two different equations for 
prediction of digestibility from cell contents , cell wall consti­
tuents , and lignin content of acid detergent fiber. J. Dairy Sci. 
48:815. Abstr. 

Van Soest, P. J. 1967. Development of a comprehensive system of feed 
analysis and i.ts application to forages. J. Anim. Sci. 26:119. 

Van Soest, P. J. 1974. Physio-chemical aspects of fiber digestion. 
Fourth International . Symposium on Ruminant Physiology. Sydney, 
Australia. (Edited by I. W. McDonald and A. C. I. Warner) 
University of New England Publishing Unit., 1975. 

Van Soest, P. J. and W. C. Marcus. 1964 . . Method for the determination 
of cell wall constituents in forages using .detergent .and the 
relationship between this fraction and voluntary intake and di­
gestibility . J. DairJ ScJ. 47:704. 



97 

Van Soest , P. J. and R. W. McQueen . 1973. The chemistry and estim­
ation of f ibre . Proc. Nutr. Soc. 32:123. 

Van Soest , P. J. and L. A. Moore . 1965. New chemical methods for 
analysis for forages for the purpose of predicting nutritive value. 
Proc. IV International Grasslands Congress. Sao Paulo, Brazil. 
Paper 424. 

Van Soest P. J. and R. H. Wine. 1967. Use of detergents in the analysis 
of f ibrous feeds. IV. The determination of plant cell wall con­
stituents. J. Assoc. Official Chern. 50:50. 

Van Soest , P. J. and R. H. Wine. 1968. Determination of lignin and 
cellulose in acid detergent fiber with permanganate. J. Assoc . 
Official Anal. Chern. 51:780 . 

Van Soest, P. J. and R. H. Wine and L. A. Moore. 1966. Estimation of 
t he true di.gestibility of forages by the in vitro digestion of 
cell walls . Proc. X. International Grasslands Congress. Helsinki, 
Finland. 

Waldo , D. R., J. E. Keys, Jr. and C. H. Gordon. 1971. Effect of 
physical form of grass forage on growth and intake by dairy heifers . 
J. Dairy Sci. 54:805 . Abstr. 

Walker, D. C. 1959. A note on the composition of normal-acid fiber. 
J. Sci. Food Agr. 10:415. 

Walker, D. M. and W. R. Hepburn. 1955 . The nutritive value of rough­
ages for sheep. I. The relationship between the gross digestible 
energy and the chemical composition of hays. ,J . Agr. Sci . 45:298. 

Williams, K. T. and Benvue , A. 1956 . Problems and techniques in the 
analysis of plant material for hemicelluloses . J. Assoc. Official 
Anal. Chern. 39:901 . 

Woodman, H. E. and R. E. Evans. 1930. Nutritive value of pasture. VI. 
The utilization by sheep of mineral deficient herbage. J. Agr. 
Aci. 20: 587 . 



APPENDIX 



99 

Table 20 . Crude protein apparent digestibility interactions between 
forage maturity and diet energy level and between diet 
texture and energy level 

Energ;t level 
Item All-hay Hay-corn Average 

Stage of rnaturit~ 

Late vegetative 67.3a 64.9 66.1 
(8) (8) (16) 

Mid bloom 65.8 60.3 63.1 
(8) (8) (16) 

Full bloom 58.2 61.9 60.0 
(8) (8) (16) 

Average 63.8 62 .4 
(24) (24) 

Texture 

Coarse 64.7 59.5 62.1 
(12) (12) (24) 

Pelle ted 62 .9 65.2 64.0 
(12) (12) (24) 

Average 63 .8 62.4 
(24) (24) 

aAverage apparent digestion coefficient with total observations 
i.n parenthesis. 
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Table 21. Available carbohydrate apparent digestibility interactions 
between forage type and stage of maturity 

Forage type 

Stage of Maturity Alfal fa Grass Average 

Late vegetative 88.la 81.9 85.0 
(8) (8) (16) 

Mid bloom 89 .4 56.2 72.8 
(8) (8) (16) 

Full bloom 92.3 83.1 87.7 
(8) (8) (16) 

Average 89.9 73 . 7 
(24) (24) 

aAverage apparent digestion coefficient with total observations 
in parenthesis. 
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Table 22. Available carbohydrate apparent digestibility interactions 
between forage maturity and diet energy level and between 
for age type and diet energy l evel 

Energy level 

Item All-hay Hay-corn Average 

Stage of maturity 

Late vegetative 80.6a 89 .4 85 .0 
(8) (8) (16) 

Midbloom 56.6 89.0 72.8 
(8) (8) (16) 

Full bloom 83 .9 91.5 87.7 
(8) (8) (16) 

Average 73.7 90.0 
(24) (24) 

Forage type 

Alfalfa 87 .5 92 .4 90.0 
(12) (12) (24) 

Grass 59.9 87.6 73.8 
(12) (12) (24) 

Average 73.7 90.0 
(24) (24) 

aAverage ~pparent digestion coefficient with total observations 
i n parenthesis. 
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Table 23 . Cellulose apparent digestibility interactions between 
forage type and stage of maturity 

Forage type 

Stage of maturity Alfalfa Grass Average 

Late vegetative 46.3a 55 .1 50.7 
(8) (8) (16) 

Mid bloom 44.0 55. 1 49.6 
(8) (8) (16) 

Full bloom 37.7 48.5 '+3 .1 
(8) (8) (16) 

Average 42 .7 52.8 
(24) (24) 

aAverage apparent digestion coefficient with total observations 
in parenthesis . 
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Table 24. Cellulose apparent digestibility interactions between forage 
maturity and diet energy level and between diet texture and 
energy level 

Energy level 

Item All-hay Hay-corn Average 

Stage of matur:i!:.Y. 

Late vegetative 50.la 51.3 50.7 
(8) (8) (16) 

Mid bloom 54.4 44.6 49.6 
(8) (8) (16) 

Full bloom 41.0 45.2 43.1 
(8) (8) (16) 

Average 48.5 47.0 
(24) (24) 

~ 

Coarse 52.7 45.9 49.3 
(12) (12) (24) 

Pelle ted 44.2 48.1 46.2 
(12) (12) (24) 

Average 48.5 47.0 
(24) (24) 

aAverage apparent digestion coefficient with wtal observations 
in parenthesis . 
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Table 25 . Hemicellulose apparent digestibility interactions between 
forage type and stage of maturity 

Forage type . 

Stage of maturity Alfalfa Grass Average 

Late vegetative 49.la 56.9 53.0 
(8 ) (8) (16) 

Mid bloom 49.5 57.4 53.5 
(8) (8) (16) 

Full bloom 51.7 50.1 50.9 
(8) (8) (16) 

Average 50.1 54.8 
(24) (24) 

aAver3ge apparent digestion coefficient with total observations 
in parenthesis . 



105 

Table 26. Hemicellulose apparent digesitibility interactions between 
forage maturity and diet energy level and between diet 
texture and energy level 

Energy level 

Item All-hay Hay-com Average 

Stage of maturity 

Late vegetative 50.oa 55.9 53.0 
(8) (8) (16) 

~1idbloom 54.8 52.2 53.5 
(8) (8) (16) 

Full bloom 49.0 52.8 50.9 
(8) (8) (16) 

Average 51.3 53.6 
(24) (2~) 

Texture 

Coarse 54.8 51.8 53.3 
(12) (12) (24) 

Pelleted 47.8 55.5 51.7 
(12) (12) (24l 

Average 51.3 53.6 
(24) (24) 

aAverage apparent digestion coefficient with total observations 
in parenthesis. 
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Table 27 . Lignin apparent digestibility i nteractions between forage 
type and stage of maturity 

Forage type 

Stage of maturity Alfalfa Grass Average 

Late vegetative 5 . la 22.7 13.9 
(8) (8) (16) 

Midb1oom 9.4 37.6 23.5 
(8) (8) (16) 

Fullb1oom 10.0 15.8 10.0 
(8) (8) (16) 

Average 8.2 25.4 
(24) (24) 

aAverage apparent digestion coefficient with total observations 
in parenthesis. 
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Table 28 . Cell walla apparent digestibility interactions between forage 
type and stage of maturity 

Forage type 

Stage of maturity Alfalfa Grass Average 

Late vegetative 39.7b 49.3 44.5 
(8) (8) (16) 

Midbloom 39.8 51.6 45.7 
(8) (8 ) (16) 

Full bloom 36.1 42.8 37.5 
(8) (8) (J.6i 

Average 38.5 47.9 
(24) (24) 

aPlant cell walls determined using detergent procedures by 
Fonnesbeck and P~rris (1970 a) . 

bAverage apparent digestion coefficient with total observations 
in parenthesis. 
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Table 29. Cell walla apparent digestibility interactions between forage 
maturity and diet energy level and between diet texture and 
energy level 

Energy level 

Item All-hay Hay-com Average 

Stage of maturity 

Late vegetative 42.4b 46.6 44.5 
(8) (8) (16) 

Mid bloom 48.6 42.9 45.7 
(8) (8) (16) 

Full bloom 36.6 42.3 39.5 
(8) (8) (16) 

Average 42.5 43.9 
(24) (24) 

~ 

Coarse 46.5 42.4 44.4 
(12) (12) (24) 

Pelle ted 38.5 45.4 42.0 
(12) (12) (24) 

Average 42.5 43.9 
(24) (24) 

aPlant cRll walls determined using detergent procedures by 
Fonnesbeck and Harris (l970a). 

bAverage apparent digestion coefficient with total observations 
in parenthesis. 
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Table 30 . Neutral ~etergent fiber apparent digestibility interactions 
between forage type and s t age of maturity 

Forage type 

Stage of maturity Alfalfa Grass Average 

Late vegetative 42.5a 48.5 45.5 
(8) (8) (16) 

Midbloom 38.7 54.7 46.7 
(8) (8) (16) 

Full bloom 37.6 39.9 38.8 
(8) (8) (16) 

Average 39.6 47.7 
(24) (24) 

aAverage apparent digestion coefficient with total observation 
in parenthesis . 
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Table 31 . Neutral detergent fiber appar ent digestibility interaction 
between forage maturity and diet energy level and between 
diet texture and energy level 

Energy level 

Item All-hay Hay-corn Average 

Stage of maturity 

Late vegetative 44.la 46.9 45.5 
(8) (8) (16) 

Mid bloom 51.0 42.4 46.7 
(8) (8) (16) 

Full bloom 38.9 38.'{ 38 .8 
(8) (8) (16) 

Average 44.7 42.7 
(24) (24) 

Texture 

Coarse 49.2 42.2 45.7 
(12) (12) (24) 

Pelle ted 40.1 43.1 41.6 
(12) (12) (24) 

Average 44.6 42.6 
(24) (24) 

aAverage apparent digestion coefficient with total observations 
in parenthesis. 
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Table 32. Acid detergent fiber apparent digestibility interactions 

between forage type and stage of maturity 

Forage type 

Stage of maturity Alfalfa Grass Average 

Late vegetative 42 .5a 46.1 44.3 
(8) (8) (16) 

Mid bloom 40.1 50 .1 45.1 
(8) (8) (16) 

Full bloom 36 .2 37.6 37.0 
(8) (8) (16) 

Average 39 .6 44.6 
(24) (24) 

aAverage apparent digestion coefficient with total observations 
in parenthesis . 
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Table 33. Acid detergent fiber apparent digestibility interactions 
between fora~e maturity and diet energy level and between 
diet texture and energy level 

Energy level 

Item All-hay Hay-corn Average 

Late vegetative 42.2a 46.3 44.2 
(8) (8) (16) 

Mid bloom 49.3 40.9 45.1 
(8) (8) (16) 

Full bloom 34.5 39.4 37.0 
(8) (8) (16) 

Average 42 . 0 42.2 
(24) (24) 

~ 

Coarse 46.7 lj2 .5 44.6 
(12) (12) (24) 

Pelleted 37.3 41.8 39.6 
(12) (12) (24) 

Average 42.0 42.2 
(24) (24) 

aAver-age apparent digestion coefficient with total observations 
in parenthesis. 
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Table 34. Dry matter apparent digestibility interaction between forage 
type and stage of maturity 

Energy level 

Stage of maturity Alfalfa Grass Average 

Late vegetative 64 .5a 61. 1 62 .8 
(8) (8) (16) 

Midbloom 65.6 56.7 61.2 
(8) (8) (16) 

Full bloom 64.8 55.3 60 .1 
(8) (8) (16) 

Average 65.0 57.7 
(24) (24) 

aAverage apparent digestion coefficient with total observations 
in parenthesis. 
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Table 35 . Dry matter apparent digestibility interactions between forage 
maturity and diet energy level and between diet texture and 
energy level 

Energy l evel 

Item All-hay Hay-corn Average 

Late vegetative 56.7a 68.9 62.8 
(8) (8) (16) 

Mid bloom 57.0 65.4 61.2 
(8) (8) (16) 

Full bloom 52.9 67 .2 60 .0 
(8) (8) (16) 

Average 55.5 67.2 
(24) (24) 

Texture 

Coarse 57 . 6 65 .4 61. 5 
(12) (12) (24) 

Pelleted 53.4 68.9 61.2 
(12) (12) (24 ) 

Average 55 .5 67.2 
(24) (24) 

aAverage app~rent digestion coefficient with total observations 
in parenthesis . 
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Table 36. Gross energy apparent digestibility interactions between 
forage type and stage of maturity 

Forage type 

Stage of maturity Alfalfa Grass Average 

Late vegetative 64 .la 60.4 62.2 
(8) (8) (16) 

Mid bloom 65 . 7 57.0 61.4 
(8) (8) (16) 

Full bloom 64 .1 55.1 59.6 
(8) (8) (16) 

Average 57 .5 64.6 
(24) (24) 

aAverage apparent digestibility coefficient with total observations 
in parenthesis. 
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Table 37. Gross energy apparent digestibility interactions between diet 
texture and energy level 

Energy level 

Texture All-hay Hay-corn Average 

Coarse 57.la 65.7 6L4 
(12) (12) (24) 

Pelleted 53.1 68.5 60.8 
(12) (12) (24) 

Average 55.1 67.1 
(24) (24) 

aAverage apparent digestion coefficient with total observations 
in parenthesis. 
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Table 38. Computer estimated nutri ent digestibl e amounts and D~ using 
s i mpl e model s compared to observed DE 

Estimated nutrient. digestible amounts 

Crude 
protein 

% 

Avail ­
able 

ca rbo­
hydrat es 

• 
7. 303 3.391 

7 .481; 2.3'11 

7.312 21.15 

7.683 21.57 

11.37 41.70 

11.73 37.75 

6 .689 39 .76 

&.d97 J&.n 

7-574 31.87 

7 . 39'+ )0.23 

15 .96 18 .93 

16.36 15 . 74 

10.34 41.19 

9.209 48.35 

6 .482 41.40 

6 . ' ·45 40 . 44 

) . 935 17 .02 

3 . 664 16 . 48 

7 . 656 42.35 

6 . 041; 41.90 

14. 21 23 . 45 

13.'•3 2'+. 93 

15.06 17 . 72 

15 . 78 16 . 96 

6.572 29 .12 

6 . 454 30 . 99 

IO . IS 42 . 22 

10 . 44 42 . 06 

8 .577 25.60 

10 . 01 26 . 70 

3.501 15 . 81 

3.203 13 .134 

4.258 1.412 

7.114 1.175 

12.95 21.39 

15 . 21 18.32 

5. 172 35 . 75 

5. 145 35 .96 

6 .762 19.95 

7.005 28 .65 

11.07 42.29 

12 . 24 38 . 74 

9 .335 26.30 

9 . 615 26.31 

4.847 37.62 

4.982 35.68 

8 . 225 47.22 

8.053 48.87 

flemi­
cellu­

looe 

DE DE 
Total 

lipids 
Cel lu- estl.Jna- ob-

lose 

• 
ted served 

• • l1:a 1/kg Meal/kg 

2 .823 17 . 12 13.33 2 .08 

2 .865 12.58 13 . 15 2 .07 

2.670 12.18 8.906 2 . 41 

2.6ll 11.98 8 .822 2 .44 

1.732 6.279 3.755 2 .95 

1.762 6 .267 4. 256 2 .83 

2 .434 6 .803 6.545 2 .81 

2.428 7.1 .. 5 7 -324 2 .74 

2.157 9 .668 8 .459 2 .71 

2 . 175 9 .821 9 .003 2 .66 

2.9::.2 12 .60 2.873 2.60 

2 .941 12.78 4.473 2.57 

2.110 5.766 6.122 2 .99 

2 . 110 5 .312 3 .254 3.08 

2 .452 6 .663 6 .279 2.85 

2.499 6.503 6 .97 4 2.84 

2. 552 15 .51 10 .41 2.24 

2 .564 15.72 10.55 2 .22 

3.224 5 .737 4,437 2 .92 

3.324 5 .601 4.455 2.92 

2. 593 11.35 3.694 2 .65 

2 .540 11.61 3.380 2.65 

2 .882 12 .56 4.262 2 .59 

2.906 12.81 3 . 543 2 .55 

2.157 10.08 9 . 377 2 .59 

2 .122 9 .874 8.824 2. 63 

2 .104 6 .279 4.486 2 .97 

2. 139 6. 438 3.72'5 2 . Q6 

2 .405 1] .45 5 . 1.85 2.55 

2 .481 12.07 1.,781 2. 61 

2.540 15.51 10.89 2.19 

2 .552 ::.6.56 10.8j 2 . 13 

2.829 17 .81 13.53 2 .03 

2 .841 18.46 12 . ~8 2.02 

2. 517 13.27 3.755 2 .56 

2.617 12.92 3.857 2. 56 

2 .434 8 .678 7.831 2.69 

2 .475 8 .613 7.988 2 .70 

2.558 12.15 9 . 359 2 .34 

2 .593 12.70 9.009 2.73 

1.756 6 . 462 3.936 2 .98 

1.756 6.857 4. 449 2.93 

3.077 11.96 5.253 2. 62 

) . 159 11.94 4.866 2 .63 

2. 428 8.796 7 -227 2 .73 

2 .434 9.085 7.837 2 .69 

2.7B8 5.937 3.447 3.08 

2 .776 6.090 3 .260 3 . 13 

2. 02 

2.36 

2 . 28 

2.40 

2.76 

3.33 

2.95 

2.57 

2.82 

2 .92 

2.28 

2 .61 

3 . 12 

3 .25 

3.31 

2.94 

2. 03 

2.02 

J.l6 

3 . 13 

2.65 

2 . 86 

2.61 

2.82 

2.81 

2 .67 

2.95 

2.93 

2.75 

2.72 

2 . 17 

2.14 

2.33 

2.32 

2.76 

2.86 

2.45 

2.85 

2.44 

2.39 

3 . 09 

3.32 

2.41 

2.33 

2.60 

2.84 

3.28 

3. 23 

Diet description 

Grass, midbloom , all-hay, 

pelleted 

Grass , late vegetative, 

all-hay, pelleted 

Alfalfa, late vegetative, 

hay- com, coarse 

Grass, late vegetative, 

hay-com , coarse 

Grass, midblocm, hay- com 

pelleted 

Alfalfa, late vegetative, 

all-hay , pelleted 

Alfalfa, midblocm , hay- com , 

pelleted 

Grass , late veg etat ivE; hay­

com, pelleted 

Grass , fullblocm, all-hay 

pelleted 

Alfalfa, fullbloom, hay -

com, coar se 

Alfal fa, midb1o:m, hay­

com , pell~ted 

Alfalfa, late vegetati ve , 

all - hay, coarso::: 

Grass, midbloom, hay-com 

Alfal fa, midCloan, hay-com, 

Alfalfa, f'ullblocm , all-hay 

Grass , fullblocm, all - hay 

Grass, midbloan , all-hay 

Alfalfa, midblocm , all- hay 

Grass , f'ullblocm, hay-com, 

pelleted 

Grass , late vegetative, all­

hay, coarse 

Alfalfa, late vegetative, 

hay-com, pelleted 

Alfalfa, f'ullblocm , all­

hay, pelle ted 

Crass, fullbloan , hay- com , 

Alfalfa , fullbloan, hay­

com, pelleted 

aDE was estimated using the equation: DE :: 4 .65 (YCP) • 4 .15 (YAC • YOw • YHCI • 9 . 40 YTL ; 

where YN equals the decimal frac tioo of the nutrient (CP :: crude protein, AC :: availabl e carbo­

hydrates, CL :: cellulose, HC :: hemicellulose , or TL = total lipids) di8estible anount as estimated 
using Simple models . The 4.65, 4 . 15 , and g.too are ass1gned caloric values for die t proteir., carbo­
hydrates , and lipids respectively . 
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Table 39 . Computer estimated nutrient digestible amounts and DEa using 
Type I models compared to observed DE 

Estimated nu trient digestible amounts ~ 

Crude 
protein 

~ 

Avail ­
a ble 

carbo­
hydrates 

~ 

7.009 2. 7.1jl 

7 . 194 1.841 

6.947 19 . 24 

7.326 19.63 

11. 20 41.78 

11.57 38 . 20 

6 .413 27 ,4) 

6.625 34.66 

7 . 39'< 31.13 

7 .209 29 .63 

15 . 80 19.82 

16.22 16.92 

10.23 42.18 

9 . 069 41. 69 

6.78! 40.15 

6 . 71.4 39 . 28 

3.824 16.32 

3.542 15 .83 

7.735 43 .20 

8 . 133 42 . 79 

14.09 23 . 55 

13.28 21.90 

15.87 19 . 42 

16 . 00 18. 74 

5.787 27 . 41 

5 . 666 29.10 

9 . 487 41.78 

9 . 746 41.74 

8 .949 27 . 41 

10 .42 27 . 41 

3.852 15. 92 

).445 14.14 

7. 337 1.657 

7.189 1.441 

13 .17 22 .39 

15.48 19 . 61 

5.772 35.84 

5 .744 36 .03 

6.757 18.86 

7.007 16 . 76 

11.48 43.55 

12.68 40.72 

9 . 351 27.34 

9 .638 27.35 

4.848 36 . 31 

4.997 34 .55 

8.899 48.85 

8 . 723 50 . 35 

Total 
lipids 

~ 

Cellu­
lose 
~ 

Hemi­
cellu­

lose 
~ 

DE DE 
estima- ob-

ted served 
Heal/kg Meal/kg 

2.410 18.24 13 .87 2.07 2.02 

2.475 18.84 13.65 2 .06 2.36 

2. 139 12. ] 4 8 .636 2.26 2. 28 

2.046 12.08 8 . 530 2.28 2. 40 

1.611 6.518 3.941 2.95 2. 76 

1.657 6.503 4. 570 2 .85 3.33 

2.387 8.908 6 .680 2 .79 2 .95 

2.377 9.350 7 .659 2 .74 2 .57 

2 . 339 10.50 8 .434 2 .72 2.82 

2.366 10 .69 9.117 2 .68 2.92 

2.838 11.17 1.823 C. ';>L 2.28 

2.884 11.41 3.833 2.52 2.61 

2.586 5.114 6.932 3 .07 3 . 12 

2 .586 4.557 3.329 2 .81 3.25 

2.768 8.891 6 . 759 2 .96 3.31 

2 .841 8.761 7.631 2 .96 2.94 

1.843 11.94 8.577 1.92 2 .03 

1.861 12 .20 8.752 1.90 2.02 

4.680 5 .365 5.091 3.10 3.16 

4.836 5.190 5 .114 3 . 12 3.13 

2.372 10 .47 3 .45'-t 2 . 57 2.65 

2 .299 10.81 2.810 2 .44 2.86 

2.434 12.71 4.456 2.6L.. 2 .61 

2.471 13.03 3.554 2 .60 2.82 

2. 194 11.10 9 . li5 2 .51 2.81 

2.139 10.83 7.820 2. 50 2.67 

2.433 5.875 4.460 2.93 2.95 

2. 488 6.081 3.508 2 .94 2.93 

2.42'+ 12.46 5.397 2 . 61 2.75 

2. 5«'1 10.69 4.638 2 .60 2.72 

2.314 14.66 10 . 06 2. 12 2 .17 

2 .333 16.02 9.989 2.08 2 . 14 

2.211 21.02 15.01 2.19 2.33 

2.289 21.86 14.33 £ . 18 2.32 

2.103 14 .85 4.168 2 . b6 2. 79 

2.260 14 .39 4 .297 2.68 2.86 

2.269 7.798 7.524 2 .66 2 .45 

2. 693 7.714 7.227 2 . 11 2.85 

1.606 13 .89 10.09 2.31 2.44 

1.661 14.61 9.653 2.24 2.39 

2.001 6.997 4.580 2.94 3.09 

2.001 7 .507 5 .225 3 . 12 3.32 

2.985 7.808 4. 341 2.44 2.41 

3 . 114 7. 785 3 .856 2 .46 2.33 

3.114 8.856 6.354 2. 70 2.60 

3.123 9 .229 7.120 2 .69 2 .84 

3 . 503 4. 719 4.259 3.23 3.28 

3 . 485 4.918 4.024 3 .28 3.23 

Piet descr·iption 

Grass , midbloo:n, all - hay , 

pelleted 

Grass, late vegetaU ve , 

all-hay, pelleted 

Alfalfa, late vege t a t ive , 

hay-com , coarse 

Grass, late vegetative , 

hay-com , coarse 

Grass, mid!'Jloo:n , hay-corn , 

pelleted 

Alfal fa , l ate v~I:St:tative, 

all - hay , pelleted 

Alfalfa, midbloom , hay- com, 

pelleted 

Grass, late vegetat ive , hay­

com , pelleted 

Grass, fu.llbloan , all-hay 

pelleted 

Alfalfa , fu.llbloom, hay ­

com , pelleted 

Alfalfa , miabloom, hay - com 

pelleted 

Alfalfa, late vegetat i ve, 

all- hay, coor!.e 

Grass, midbloo:n, hay-corn , 

Alfalfa, midbloo:n, hay-com, 

Alfalf::1, r\1J \bloom, all- hay 

Grass , fullbloom, all-hay 

Grass , midbloom, all - hay , 

Alfalfa, midbloan, all-hay 

Grass , fullbloom, hay-corn, 

pelleted 

Grass , late vegetative, all­

hay , coarse 

Alfalfa, late vegetative, 

hay-com, pelleted 

Alfalfa , f'Ullbloom, all-hay, 

pellet ed 

Grass , fu.llbloom , hay-com , 

Alfalfa , full bloom , hay­

com, pelleted 

aDE was est imated usi ng the equation: DE = 4. 65 (Ycp i + 4.1 5 (YAC +- YCL + YHcl ~ 9. 40 YTL ; 

where YN equals the decimal fraction of the nutrient (CP = crude prot ein , AC = ava ilabl e car bo­

hydrates , CL = cellulose, UC = hemicellulose, or TL = total lipids) diges tible amount a s estimat ed 
ustng iype I models . The 4 .65 , 4.15, and 9.40 are assigned caloric values for diet protein, CJ.rbo­
hydrates, and lipids respect ively. 
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Tabl e 40. Computer estimated nutrient digestible amounts and DEa using 
Type I and Type II models compared t o observed DE 

Estimated nutrient digestible amounts ~ 

Crude 
protein 

" 
7.009 
'{ ,194 

6.947 

7 .326 

11.20 

11.57 

6.413 

6.525 

7 . 394 

7.209 

15.80 

16.22 

10.23 

9.069 

6.781 

6.744 

3.824 

3.542 

7.738 

8 . 133 

14.09 

13.28 

15.87 

16 .00 

'J.787 

5.666 

9 .487 

9 .746 

8.949 

10 .42 

3.852 

).445 

7.337 

7.189 

13 .17 
15.48 

5.772 

5.744 

6 . 757 

7.C07 

11 . 48 

12.68 

9 . 351 

9 . 638 

4 .858 

4.997 

8.899 
8.723 

Type I equat ion 

Avail-

Type U eqna ti.on 

able 
carbo­

nydrates 

" 
2 . 741 

1.841 

19.24 

19.63 

41.78 

38.20 

37.43 

Jt, ,U 

31 . 13 

29.63 

19.82 

16 .92 

42.18 

41.69 

40.15 

39.28 

16.32 

. 4.83 

43.20 

42.79 

23 . 55 

21.90 

19 .42 

18.71• 

;:, ... 1 

29.10 

41.89 

41.74 

27 .4 1 

27.41 

15.92 
14 . 14 

1.657 

1 .441 

22.39 

19 . 61 

35.64 

36.03 

18.86 

16.76 

43 .55 

40 .72 

27.34 

27.35 

36.31 

34.55 
48 , b4 

50.35 

Total 
lipids 

" 
2.410 

2.475 

2.139 

2.046 

1.611 

1.657 

2 . 387 

2.377 

2 . 339 

2.366 

2.838 

2.884 

2 . 586 

2.586 

2 .768 

2.841 

1.843 

1.861 

4.680 

4.836 

2.372 

2.289 

2 .434 

2 .471 

2.194 

2.139 

2.433 

2.488 

2.424 

2 . 544 

2 . 314 

2.333 

2 . 271 

2.289 

2 . 103 

Cellu­
lose 
% 

17.81 

18 . 35 

12.56 

13.08 
6.417 

6 . 378 

3.6~3 

9.776 

9 . 507 

9 . 647 

10 . 95 

10 .47 

5.415 

4.99'? 

8.302 

8.052 

12.60 

12 . 86 

4.982 

4.~4 

10.55 

10,85 

13. 28 

12.65 
12. 32 

11.97 

5,322 

5.594 

11.73 

9.867 

15 . 03 

16.45 

21.20 

22, 00 

15.07 

2.260 14.&4 

2.269 7.177 

2.693 7.161 

1.606 14 . 84 

1.661 13.43 

2.001 7.436 

2 . 001 8.422 

2 . 985 7.521 

3.114 7.498 

3.114 8.627 

3.123 8 .922 

3 . 503 6 . 021 

3.485 6.057 

Hem!· 
cellu­

lose 

" 
13.51 

13 . 24 

8.598 

8.53? 

3.349 

4 . 729 

7.239 
7.979 
7.640 

8.741 

1.419 

5 . 459 

'{ . 596 

2.751 

6.008 
7.324 

7.814 

8.053 

4.826 

4 , 857 

4. 0'(6 

3.L39 

lo,686 

2 . 723 

10 . 32 

7.879 
4.638 

3.196 

5 . 190 

lt,9l0 

9 . 769 

9 . 652 

15.51 

14 . 54 

3.559 

3.707 

7.817 

8.289 

9.741 

9.416 

4.155 

5.462 

5.16.J 

5.064 

6.373 

8 . J:l6 

3.500 
3 . 210 

DE 
estima­

ted 
Meal/kg 

2 . 04 

2.01 

2.27 

2 . 36 

2.92 

2.86 

2 . 00 

2.'?7 

2.64 

2 .62 

2,')0 

2.55 

3 . 11 

2.81 

2.94 

2 . 92 

1.91 

1.90 

3.08 

3.09 

2 . 60 

DE 
ob-

served 
Meal/kg 

2.02 

2 . 36 

2.24 

2 .40 

2.76 

3 . 33 

2.95 

2 . 57 

2.82 

2 . 92 

2.28 

2 . 61 

3 .12 

3 . 25 

3.31 

2.94 

2 . 03 

2 .02 

3.16 

3.13 

2 . 65 

2.47 2.86 

2.68 2.61 

2.55 2 . 82 

2.61 2.81 

2.55 2.67 

2 . 92 2.95 

2.88 2.93 

2 . 57 2.75 

2 . 58 2.72 

2.10 2.17 

2 .08 2 . 14 

2.22 2 . 33 

2.20 2.32 

2.64 2 . 76 

2.66 2.86 

2 . 65 2.45 

2. 7l 2.85 

2.34 2.44 

2 .20 2.39 

3.13 3.09 

3 .17 3 . 32 

2.46 2 . 41 

2 .49 2.33 

2. 70 2.60 

2 . 72 2.84 

Diet description 

Grass , midblocxn , all - hay, 

pell .?ted 

Grass, late vegetative, 

all -hay, pellettd 

Al falfa, late vegetative, 

hay-com, coarse 

Crass, !ate vegetative, 

hay-<"om, coarse 

Grass, midbloom, hay-com 

ptllt::ted 

Alfalfa, late vegetative, 

all - hay, pelleted 

Alfalfa , midbloo:n, hay-corn, 

pellctcd 

Grass , late vegetative , hay­

corn , pelleted 

Grass , t\Jllblocxn, all-hay 

pelleted 

Alfalfa, t\Jllbloom, hay­

corn, pelleted 

1\lfalfa, midbloom, hay-com 

pelleted 

Alfalfa , late vegetati1e, 

all - hay , coarse 

Grass, midbloa::~ , hay-com 

Alfalfa , mldbloa::J , hay-corn , 

Alfalfa , fullbloorn, all- hay 

Grass , fullbwom, all - hay 

Grass, midbloan , all-hay, 

Alfalfa, m!dbloom, all-hay , 

Gr~ss, fullbloom , hay- com, 

pelleted 

Grass , late vegetative, all­

hay, coarst 

Alfalf'a , late vegetative , 

hay-com, pellete<l 

Alfalfa, fullblocxn, all-hay , 

pelleted 

Grass, f\Jllbloom , hay-corn, 

3 . 21 3.28 Alfalfa, t\Jllbloom, hay-com , 

J . 29 __ ,_.2_J __ pe_l1_e_te<J __ _ 

aDE was estimated using the equation: DE = 4.65 f'tcpl + 4 . 15 (YAC + YCL + YHC) + 9 . 40 Yn.i 

where YN f'Ciuals the decimal fr,]ction of the nutrient (CP = cl"lKKe protein , AC : available carbo­

hvdrates , 0. = cellulose, HC : hemicellulose , or TI. = total lipids) digestible amount as estilmted 
using.Type I and Type II !OCidels. The 4.65 , 4.15, and 9.40 are assigned caloric values for diet 
protew , car bohydrates , and lipids respecti vely . 



Table 41. DE predicted directlya with s imple models compared to 
observed DE 

DE {Meal/Kg) est i.JnatPd using diet percent content o f: 

Neut ral Acid 

Cellulose ~~~~b de;~;!~nt cte;r~;nt ~~t!; 
DE 

ob:;erved 
f'tll/ kg Di et description 

2 . 18 

2 . 14 

2.57 

2.59 

3 .05 

) . 05 

3.01 

2 . 98 

2 . 78 

2.76 

2.54 

2.53 

3 .09 

3.13 

3.02 

3.0) 

2.31 

2 .29 

3.09 

3.10 
2,6£, 

2 . 62 

2.54 

2. 52 

2 . 74 

2.76 

3.05 

3 . 04 

2.47 

2 .58 

2 . 31 

2.22 

2.12 

2.07 

2 . 49 

2.51 

2.86 

2 . 86 

2.58 

2.53 

) . 04 

3.00 

2.59 

2. 59 

2.85 

2.82 

3.08 

2.07 

2.06 2.01 2.18 2 .09 2 .02 Grass , midbloan, :111-tto.y , 

2.05 2. 01 2.11 2 .38 2. 36 pelleted 

2.51 2.47 2.57 2.57 2.28 Grass, late vegetative, all -hay 

2.51 2. 50 2 .57 2.68 2.40 pelleted 

3.07 3. 02 3.05 2.92 2 .76 Alfalfa, late vegetative , hay-

3.04 3 .00 3.05 2.97 3.33 corn, coarse 

2.90 2 .88 3 .03 2 .97 2 . 95 Grass , late vegetat:.iv~, h3y-corr.. , 

2.83 2.80 2 .88 2. 96 2.57 

2 . 68 2.66 2.86 2.85 2.82 Crass , midbloom , hay-corn , 

2.64 2.66 2.80 2.85 2 .92 pcllctcd 

2 .78 2 . 73 2.57 2.55 2.28 Alfalfa , late vegetative , all-hay , 

2 . 73 2.72 2.44 2 .53 2 .61 pelleted 

3.01 3 . 1? 3.15 3.02 3.12 Alfalfa , midbl.xxn , hay-com , 

3.14 3 . 13 3.12 3. 01 3.25 pelleted 

2.92 2.95 3 .03 3.02 3.31 Grass , late veget ative , hay-corn, 

2.91 2.93 3 .05 3.04 2 .94 pelleted 

2. 28 2 . 34 2 . 37 2. 49 2.03 Grass , f\l llbloom, all - hay, 

2.27 2.32 2 . J3 2.47 2 .02 pelleted 

3. 04 3 .04 2.98 2.87 3.16 Alfalfa, f\lllbloom, hay -com ) 

3.05 3 .04 3 .03 2.97 3.13 coarse 

2.81 2.79 2.60 2.60 2.65 Alfalfa, midbloom, hay-corn, 

2 .82 2.82 2.61 2.64 2.86 pelleted 

2.74 2 .69 2 .48 2.50 2.01 Alfd.lfa , late vegetative , all- hay, 

2 .75 2 . 73 2,44 2.57 2.82 

2.61 2.64 2.81 2.80 2 .81 Gr"d.ss , midbloom, hay-corn, 

2 .65 2. 62 2.80 2.82 2 .67 

3 .05 3.08 3.05 2 . 98 2.95 Alfalfa , midblocm, hav-corr. , 

3.05 3.04 3 .07 3.00 2.93 coarse 

2.64 2.59 2.46 2.44 2.75 Alfalfa , f\lllbloom, all-hay, 

2.72 2.68 2.57 2.56 2 . 72 coarse 

2. 26 2.28 2 . 30 2.43 2.11 Grass , f\lll bloo:n , all-hay , 

2 . 21 2.23 2. 25 2.43 2 .14 coarse 

2.01 2.01 2 . :4 2.01 2 .33 Grass , midbloo;n, all-hay, 

2.00 2.03 2 .18 1.93 2.32 

2.72 2.77 2.46 2.41 2.76 Alfalfa, midbl oom, all - hay, 

2.73 2.76 2 . 53 2. 55 2 .86 

2.76 2 . 71:3 2.84 2 .87 2.45 Grass , f'ullbloorn , hay-com , 

2 .75 2.61 2 .91 2 .90 2.85 pelleted 

2.47 2.44 2.50 ~ . 64 2.44 Grass, late vegetative, a ll-hay, 
2.45 2.42 2. 46 2.64 2.39 

3 .06 2.99 3.02 2.98 3.09 Alfa lfa, late vegetative, hay-<:orn , 

J. Ol 3. 04 3.01 2.97 3.32 pelleted 

2.70 2.73 2.62 2.57 2 .41 Alfalfa, tullbloom, all-hay, 

2 .72 2 .68 2. 52 2.57 2 .33 pelletcd 

2.77 2 .81 2.90 2.90 2 .60 Grass, f\lllbloom, hay-com, 

2 .73 2.81 2.89 2.90 2.84 coarse 

3 . 10 3.11 3 .07 2.95 3.28 Alfalfa , f'llllblocm, hay-com, 

3 . 10 __ 3_.,_o ___ 3_.o_9 __ 3_.oo ____ 3._23 _ ___:pe_l_l_et_e_d ---------

a DE was estimated using equations of the form Y = b
0 

+ bl
1

; whe re Y i s the estimated 

digestible energy (Meal/kg), and X1 i s the nutrient content (%) of the diet (st.>e also table 15). 

bPlant cell walls was determined using detergent procedures by F'onnesbeck and Harri s (l970a). 

12'0 



Table 42. DE predicted directlya with Type I models compared to 
observed DE 

---------------,---------------
DE (1-kal/kj~) est imat ed using diet percent cont ('nt of~ 

Neutral Acid 

Cellulose wa~L' b de~1:!~nt de~~~~nt ~~~~ 

2 . 25 

2 . 22 

2 . 3) 

2 . 14 

3 .04 

3 .04 

2.81 

2 .80 

2 .86 

2.85 

2 . 50 

3 . 21 

3 . 23 

] . 05 

) . 05 

1.93 

1.':}2 

3 . 17 

3 . 17 

2 . 70 

2.68 

2.6i+ 

2 .63 

2.66 

2 . 67 

3.00 

2 .99 

2 . 66 

2 . 74 

2.24 

2 . 18 

2 .39 

2 . )5 

2 . 77 

2.79 

2 .74 

2 .1" 

2 .46 

2 .43 

3. 2'.5 
3 .23 

2 . 44 

2 . 44 

2 . 68 

2. 66 

3 . 20 

2 . 19 

2 . 2? 

2 . 21 

2 . 31 

2 . 31 

3.03 

3.01 

2 . 85 

2 . 82 

2.90 

2.87 

2 .54 

2 . 51 

3.15 

3.22 

3.07 

3 .07 

1.92 

1.92 

3.13 

].14 

2 . 71 

2 .72 

2. 65 

2.65 

2 .67 

2 .69 

2.98 

2. 98 

2 . 70 

2.75 

2 . 21 

2 .18 

2 . 34 

2.34 

2.81 

2.81 

2 . 74 

2 . 74 

2 . 43 

2 .41 

3 .23 

3.20 

2.43 

2 . 44 

2.70 

2.68 

3. 20 

3 . 21 

2 .18 

2.17 

2 .28 

~ . 31 

3. 02 

3 .00 

2 .87 

2.80 

2 .91 

2 .91 

2. 54 

2,53 

).17 

3. 18 

3 .11 

3 .09 

1.93 

1.91 

3 . 13 

3. 13 

2 . 72 

2 . 75 

2 .66 

2. 69 

2 . 72 

2.69 

2. 95 

2 . 92 

2. 68 

2 .76 

2 . 20 

2 . 15 

2. 31 

2. 33 

2.84 

2 .84 

2.71 
2 .73 

2. 41 

2.39 

3 . 16 

3 . 21 

2 .48 

2 .44 

2 . 72 

2 . 72 

3 . 20 

3.20 

2 . 23 

2 . 22 

2. 35 

2 .35 

3 . 07 

3.07 

2 .85 

2.73 

2 .88 

2 .03 

2 . 55 
2 . 44 

3 . 24 

3 .22 

2 .C4 

2 .06 

1.94 

1.91 

3.11 

3 . 15 

2 . 69 

2 . 70 

2. 64 

2 . 61 

2 .66 

2 . 65 

2.98 
3.00 

2 .68 

2 .76 

2.?.1 

2.17 

2. 37 

<:- . 40 

2 .75 

2 .80 

2.69 

2 .74 

2.46 

2 . 43 

3.23 

3.23 

2 . 48 

2 . 40 

2.71 
2 . 70 

3.21 

3.23 

2 . 13 

2.38 

2 .26 

2 . 35 

3 .00 

3 . 04 

2 .79 

2 .79 

2.88 

2 .88 

2.50 

2.48 

J.l5 

3 . 15 

3 .05 

3 .07 

1.93 

1.92 

3.10 

3.18 

2.70 

2.7J 

2. 61 

2.67 

2. 70 

2.72 

2 . 98 

3.00 

2.65 

2.76 

2 .21 

2 .21 

2.31 

2.24 

2.'(7 

2 . 89 

2. 70 

2.73 

2.48 

2. 48 

3.27 

3 .26 

2.43 

~ . 4) 

2.69 

2 .69 

3 . 21 

3 . 25 

DE 
obxrved 
11:al/kg 

2 .02 

2 .36 

2 .28 

2 .40 

2. 76 

3.33 

2 .95 

2 .57 

2.82 

?.'J2 

2 . 28 

2.61 

3.12 

3 .25 

3 . 31 

2 . 94 

2.03 

2 .02 

3 . 16 

3.13 

2 .65 

2 .86 

2 .61 

2 .82 

2 .81 

2 .67 

2 .95 

2.93 

2. 75 

2 . 72 

2.17 

2 . 14 

2 .33 

2 . 32 

2 .76 

2 .86 

2 . 45 

2.85 

2 .44 

2 . J9 

3 .09 

3.32 

2 .41 

2.J3 

2.60 

2 .84 

3 . 28 

3.23 

Oi et descri 11tion 

Grass , midb1oan, all-h<~v 

pelleted 

Grass , late vegetative , all ­

my , pelleted 

Alf:~l fa, late ver,o.::tati ve, tk1y-

corn , coarGc 

Grass, l a te veget:tti ve , hay- corn, 

Gri'iSS , midbloan, hay-com, 

pellcted 

Alfa lfa, late veGetative , all­

hay, pellr>t('r1 

Alfa lfa, midbloan, hay-com, 

nelleted 

Crass , !.ate veget;:tive , hay-cor n , 

pelleted 

Gr ass , t'ullbloom, all-hay, 

pelleteo 

Alfalfa, t'ullblcxxoJ , hay -corn, 

Alfalfa , midblc:om , hay-com , 

pelleted 

Alfalfa , late vegetative , all ­

hay, coarse 

Grass , midblcom , hay-ce r n , 

Alfalfa , midblCI<Xl, hay-com, 

Alfalfa, 1\Jllbloom, all - hay 

Grass, fullblocm , all - hay , 

Graso; 1 rrlidblocrn, all - hay 1 

Alfalfa , midbloorn, all - hay, 

Grass , t'ullbloan, hay-com 

pelleted 

Grass , late vegetative, all- hay, 

coarse 

Alfalfa , latiO! vegetative , hay­

com, pelleted 

Alfalfa, fullblocm , all-l'.av, 

pelleted 

Grass, t'ullblocm, hay-corn, 

coarse 

Alfal fa , fullbloom, hav-com , 

pelleted 

3
DE was estimated using euqations of the forn~ Y "" b0 + b1 x1 + a 1 + B j + yk + '\ + a.Bij + 

Syjk + B6ji + y6kt; wtJere 'lis the pr-edicted digestible ~::nergy (Heal/kg) and x
1 

is the nutrient 

per cent content (%) the r'E!gression coostant (b0 ) is adjusted by qualitative i ndicators (a11 Bj' 

• y6K 2.) according to the de3cr'iption of the i ngredient or diet. (see also table 16 ) 

bPlant cell walls was determined using detergent ~rocedures by Fonnesbeck and Harris 11970al . 
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Table 43 . DE predicted directlya with Type II models compar ed to 
observed DE 

1E P-lnl/k[') e i.r.latcd u.>ing diet. percent contr· • o f; 

te1\uloo(> 

, ,,J 

2 . 30 

2 . 31 

3.09 

3 . 09 

? .85 
2 .8] 

2 . 87 

2. 84 

3. 18 

) . 22 

3 . 01 

3 . 01 

1.96 

1.98 

) . 12 

3. 11 

? . 75 

2.73 

2 .67 

2 . 65 

2 . 68 

2 . 70 

2 . 09 

2 .01 

2.73 

2.63 

2.16 

2 . 24 

2.38 

2 . 31 

2 . 75 

2 . 79 

2 .75 

2 . 75 

2 . 50 

2 . 46 

3.21 

3 . 19 
2 .lo) 

2 .1+) 

2.62 

2.61> 

3.27 

3.28 

2 . '5 

2. ?5 

2. ~z 

2.?3 

2 . ')6 

3.01 

2 . '}0 

2.72 

2 . 79 
2 . "H 

2 . 31 

2 . 01 

3.17 
3.18 

3.13 

3.10 

l.'l7 

2.00 

).18 

3.:6 

2. 74 

2. 78 

2. ' 5 

2 .73 

2.82 

2 .74 

2.95 

2.95 

2.68 

2.66 

2.12 

2 . 23 

2 .26 

2. 26 

2 . 79 

2 . 82 

2 .73 

2. 75 
2 . 46 

2 . 51 

3.20 

3 . 25 

2.45 

2 . 44 

2 . 54 

2.75 

3.22 

3 . 21 

Nrutra· 
detergenL 

fiber 

2 .19 

2.18 

2.28 

2.33 

3 .14 

3.07 

2.88 

2.62 

2 .85 

2.85 

2 .47 

2 .46 

3.16 

3.18 

3.18 

3.11 

2 . 06 

2 .03 

3.07 

3 .09 

2 . 67 

2.81 

2.68 

2. 73 

2 . 76 

2.75 

J .Ol 

2.!39 

2 . 67 

2 . 76 

2.17 

2.09 

2.31 

2.35 

2.84 
2.81 

2 .59 

2 . 76 

l.4b 

2.42 

3.04 

3.22 

2.36 

2 . 41 

2 . 70 

2.70 

3 . 32 

3.32 

Ac1d 
deter·gent 

fiber 

2.20 

2.20 

2.29 

2.29 

3. 07 

3.08 

2 . 90 

2 . 55 

2.89 

2.88 

2.41 

2.58 

3. 15 

3 . 15 

].12 

3.16 

1.97 

1.96 

3.15 

3.19 

2.76 

2. 77 

2.62 

2.66 

2 . 72 

2.72 

2.97 

2 . 98 

2 . 67 

2.69 

2 . 23 

2.21 

2.30 

2.33 

?.. . 77 

2.83 

2 .65 

2.70 

2.47 

2 . 51 

3 . 20 

3.20 

2.43 

2 .40 

2.68 

2.68 

3.24 

3.25 

2 .00 

2.21< 

2.17 

2 . 34 

2 .88 

3 . 20 

2.00 

2.74 

2.89 

2.89 

2.56 
2 . 52 

3.17 

3.18 

3.09 

3.18 

1.99 

1.98 

3.09 

3 . 22 

2.76 

2.79 

2 . 59 

2 .74 

2 .73 

2 . 71 
2.95 

2.93 

2 . 64 

2.66 

2.23 

2.23 

2.32 

2 . 30 

2 . 82 

2.85 

2 . 66 

2 . 70 

2.46 

2 . 45 

3 . 24 

3.14 

2.41 

2 . 41 

2. 71 

2.71 

3.19 

3 . 26 

DE 
observed 
ltal/kc 

2 . 02 

2 . 36 

2.28 

2 .40 

2 . 76 

3.33 

2 . 95 

2 . 57 

2 . 82 

2 .92 

2 .28 

2 . 61 

3 .12 

3 . 25 

3.31 

2 . 94 

2 .03 

2 .02 

3 .16 

3.13 

2 .65 
2,86 

2.61 

2 .82 

2 .81 

2.67 

2 . 95 

2 .93 

2.7'J 

2.72 

2 .17 
2 .14 

2 .33 

2.32 

2 .76 
2.86 

2 . 45 

2.85 

2 ,44 

2 .39 

3.09 

3.32 

2.41 

2.33 

2.60 

2.84 

3,28 

3.23 

Lliet descri ~·tion 

Grass, miclblOOM , ll -h.:w , 

pclleted 

Grass, late veget 1t.!ve, all-tu y, 

pelleted 

Alfalfa, late vegetative , hay­

corn , coarse 

Grass , late vegetative, hay­

corn , coarse 

Grass, midbloom, hay-com, 

pelleted 

Alfalfa, late vegetative , all­

hay , pelleted 

Alfalfa , midblocm , hav-corn 

pelleted 

Grass, late vegetative, hay­

corn, pe .. leted 

Grass, f'ullblOOOJ, all - hay , 

pelleted 

Alfalfa, f'ullbloa:J , hay-corn, 

Alfalfa, midtloan , hay-corn, 

pelleted 

Alfalfa, late vegetative , all ­

hay, coarse 

Grass , mi dbloom, hay-corn 

Alfalfa , mictbloom, hay-corn , 

Alfalfa , fullbloom, all - hay, 

Grass , f\.lllblocm, all - hay, 

Grass, midbloom, all-hay, 

Alfalfa, m!.dblOOI'I, all-hay , 

Gr ass , IUllbloom , hay-corn, 

pelleted 

Grass, late vegetative, all- hay, 

Alfalfa , late vegetati·,e , hay­

corn , pelleted 

Alfalfa, !Ullblocm, all- hay, 

pelleted 

Grass , f\lllbloom, hay-corn, 

Alfalfa , t'ullblocm, hav-corn , 

pelleted 

aD£ was estimated using equaticns of the form Y -= b
0 

+ b
1
X

1 
• o. .i + Bi + yk + 6

1 
+ aBij 

· • Y'\1 • o.1X1 + B1X1 .,. Y X1 .,. Yl1 .,. aBi/1 • . . . • y6k1x1; where Y is the predicted 

DE , and x1 is the nutrient content (~) of the diet. The regression constant is adjusted by 

quali tavariables (ai ' Si' .•. , y6k1 l accon:!ing to the description of" t he diet. Tile N!gression 

coefficient is also adjust~d by qualitative variable interactions (aix
1

, s/
1 

. , y6ki.XZ l 

accord ing to the description of the ingredient or diet, and the specifi c feed nutrient in 

q:.Jestioo . (see also table 17) 

bPlant cel l walls was detemined using detergent methods bv fO!!.'"lesbeck and Harris ll970a) . 
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