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ABSTRACT 

Molecular Sensing and Imaging of Human Disease Cells and Their Responses to 

Biochemical Stimuli  

by 

Lifu Xiao, Doctor of Philosophy 

Utah State University, 2015 

Major Professor: Dr. Anhong Zhou 

Department: Biological Engineering 

 The overall goal of this dissertation is to develop noninvasive imaging techniques 

that allow us not only to detect diseased cells but also to study the molecular mechanisms 

underlying these diseases.  

 Atomic force microscopy and Raman spectroscopy are applied to measure cellular 

mechanical properties (e.g. Young’s Modulus, adhesion force) and biochemical 

composition of living cancerous vs. healthy (A549 vs. SAEC) human lung epithelial cells. 

These biomechanical and biochemical properties can be utilized to differentiate between 

cancerous A549 and healthy SAEC human lung epithelial cells. Furthermore, different 

cellular responses to anticancer drug doxorubicin (DOX) treatment are also observed. 

Using AFM and Raman spectroscopy, we can quantitatively measure biophysical 

properties of different cells, as complementary parameters to other properties (e.g. gene 

and protein expression), helping identify the states of diseased cells. 

 Another major task of this dissertation is to develop noninvasive imaging 

techniques to detect cancer biomarker epidermal growth factor receptor (EGFR) at single 
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cell level using advanced instrumentation. We first synthesized a gold nanorod (AuNR)-

based nanoprobe for single-cell imaging of EGFR using surface-enhance Raman 

spectroscopy (SERS). SERS is able to quantitatively measure the EGFR expression level 

in different breast cancer cell lines and map the cellular distribution of EGFR in single cells. 

Moreover, SERS, as a noninvasive imaging technique, is able to monitor the process of 

nanoparticle uptake by single cell. Due to the diffraction limit of optical microscopy, SERS 

is unable to provide nanoscale imaging resolution. We then applied an AFM-based 

simultaneous Topography and RECognition (TREC) imaging technique to image EGFR 

with nanoscale resolution. TREC is first validated on mica surface and then successfully 

utilized to map the EGFR distribution in fixed and living breast cancer cells at single 

molecule level. In addition, we have explored the potential of a gadolinium-gold (Gd-Au) 

composite nanomaterial as a dual functional (MRI-SERS) imaging probe. Using this 

previous reported MRI contrast agent, we successfully apply SERS function in the 

detection of EGFR in three cancer cell lines.  

 The last part of the dissertation is to study fat-responsive G protein-coupled 

receptor 120 (GPR120), and its interaction with linoleic acid (LA). We have synthesized a 

dual functional composite nanoparticle for SERS-fluorescence bimodal imaging of 

GRP120 in living HEK293 cells. By SERS-fluorescence imaging, we are able to locate 

GPR120 distribution in single cells. Moreover, we have observed a dose-dependent 

GPR120 response to LA treatments using SERS. This work demonstrates the potential to 

use SERS-fluorescence bimodal imaging technique for real-time detection of the 

interaction between fatty acids and their receptors (e.g. GPR120, CD36). 

(201 pages)  
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PUBLIC ABSTRACT 

Molecular Sensing and Imaging of Human Disease Cells and Their Responses to 

Biochemical Stimuli  

Lifu Xiao 

Advancement in microscopic and spectroscopic techniques could significantly 

improve our ability in the study and diagnosis of diseases. Especially, being able to image 

and detect human diseases at the cellular and molecular level allows people to diagnose 

diseases at early stages and to study the molecular mechanisms behind various diseases. 

Currently, histopathological techniques are most widely used for prognosis and diagnosis 

of human diseases. However, conventional histopathology requires a complex process of 

sample preparation, which limits the diagnostic efficiency of this technique. More 

importantly, it requires fixation of tissue or cell sample, making it unsuitable for the study 

of dynamic cellular activities in the progress of diseases. This dissertation mainly discusses 

the progress in development of noninvasive imaging techniques that can be applied to study 

human diseases at the cellular level. 

One approach is to use atomic force microscopy (AFM) and Raman spectroscopy 

to quantitatively measure the biomechanical and biochemical properties of cells, and then 

use these properties to differentiate between different cell types, or cells at different states. 

Here we have utilized our tandem AFM-Raman spectroscopy system to differentiate 

between cancerous and healthy human lung epithelial cells, and monitor their different 

responses to anticancer drug treatments. Generally, this technique (AFM-Raman) can serve 

as a complementary approach to study various diseased cells, providing additional 
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information to help doctors identify diseases at an early stage and investigate the progress 

of diseases. 

Another approach is specifically target and image disease marker molecules using 

advanced microscopic and spectroscopic techniques. Epidermal growth factor receptor 

(EGFR), as a cancer marker molecule, has been used as a model to develop noninvasive 

imaging methods. A nanoparticle-based imagine probe has been synthesized for specific 

imaging of EGFR at a single cell surface using surface-enhance Raman spectroscopy 

(SERS). Due to the noninvasive feature of SERS, it can monitor the receptor-mediated 

endocytosis of a nanoparticle in real time. Furthermore, an AFM-based simultaneous 

Topography and RECognition (TREC) imaging technique has been developed to localize 

EGFR subcellular distribution with nanoscale resolution. This TREC technique exhibits 

potential to monitor the binding between EGFR and its ligands at single molecule level. 

A multimodal imaging nanoprobe, which integrates different imaging modalities 

into one single nanoparticle, can incorporate advantages and compensate for weaknesses 

of respective imaging techniques. In this dissertation, we have functionalized a previously 

reported nanoprobe for magnetic resonance imaging (MRI), trying to incorporate SERS 

function into this probe to realize MRI-SERS bimodal imaging. We have tested the SERS 

performance of the probe by using it to detect EGFR in three human cancer cell lines. This 

nanoprobe demonstrates the potential for in vivo MRI-SERS bimodal imaging with 

improved sensitivity from SERS. In addition, we have synthesized another composite 

nanoprobe for SERS-fluorescence bimodal imaging of a fat-responsive G protein-coupled 

receptor 120 (GPR120). Fluorescence is used as a fast indicator while SERS is for accurate 

localization of GPR120. Using this probe, we can also quantitatively measure the changes 
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of GPR120 activities in response to fatty acid binding, showing the potential to study the 

molecular mechanism of fatty acid chemoreception. 
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CHAPTER 1 

INTRODUCTION 

1.1 RATIONALE FOR PROPOSED RESEARCH 

Health is one of the most important fields in human research. Every year, billions 

of US dollars are funded to support health-related studies, where thousands of researchers 

all over the world devote their lives, trying to fight human diseases and provide a better 

and healthier world. The comprehensive understanding of a disease and effective 

development of therapies requires an understanding of disease mechanisms at cellular and 

molecular levels. A typical example is the study of human tumors. Scientists have shown 

that the process of carcinogenesis proceeds through different stages such as initiation, 

promotion and progression. They found the occurrence of each stage is driven by different 

external or internal factors through different molecular mechanisms (reviewed in [1]). Thus, 

in order to monitor the cellular progress of cancer, or investigate the molecular mechanisms 

of other human diseases, there is always a need to develop new methods with improved 

accuracy and sensitivity, which can be applied in the detection and identification of single 

specific agents or multiple interactive factors that cause human diseases. 

Currently, histopathology is most commonly used tool for study and diagnosis of a 

number of human diseases including most cancers [2]. Histopathology refers to the 

microscopic examination of tissues in order to study the manifestations of diseases. 

Conventional histopathology requires a complicated sample preparation process. For 

example, it requires (1) fixation of tissue to retain characteristic peculiarities of shape and 

structure; (2) sectioning to make micron-scale thin cuts for microscopic imaging; (3) 

histological staining to identify various components (e.g. disease markers) in cells and 
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tissues. Although the developments in digital pathology could substantially enhance the 

efficiency and accuracy of disease diagnosis by automated nuclei detection, segmentation, 

and classification [3], there still remains challenges in applying histopathology for disease 

studies. One major limitation is that histopathological imaging needs cells and tissues to 

be fixed (“killed”), which makes it incapable of monitoring dynamic changes of cells and 

tissues in the process of disease progress. Noninvasive imaging techniques need to be 

developed in order to study cellular mechanism of human diseases. 

This dissertation communicates progress on the development of noninvasive 

imaging techniques to identify human diseased cells. Biomechanical and biochemical 

properties measured by atomic force microscopy (AFM) and Raman spectroscopy, 

respectively, are used to distinguish between different types of cells and different cellular 

responses to external stimuli. This combined AFM-Raman method is explored as a 

biophysical approach to increase the understanding of disease mechanisms. Another 

approach explored in this research is to build biocompatible imaging nanoprobes for 

detection and mapping of biomarker molecules in human cells using advanced microscopic 

and spectroscopic imaging techniques.  

1.2 BACKGROUND 

Since a more detailed background introduction is included in each technical chapter 

from chapter 2 to chapter 6, here only a brief background is presented to cover several 

important concepts in the dissertation. 
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1.2.1 Cellular biomechanics and biochemical compositions measured by AFM and 

Raman 

In past decades, researchers have made considerable efforts to establish the links 

between measures of cellular biomechanics and human disease states. The relationships 

between cell structure, cell biomechanics and disease states can be summarized in a 

structure-property-function-disease paradigm [4] (Figure 1.1). This paradigm shows that 

changes in subcellular structures, especially in the cytoskeleton, will induce alterations in 

biomechanical properties, sequentially alter cell functions, and result in various disease 

states. It is reported that biomechanical properties can contribute to the regulation of tumor 

cell functions such as tumor progression, cell proliferation, motility, migration, invasion 

and metastasis [5, 6]. In vitro studies have shown that cellular biomechanics including cell 

stiffness and adhesion of cancer cells are often lower than that of their normal counterparts. 

This is thought to be mainly due to differently organized cytoskeletal structures [7]—this 

difference in mechanical properties also has been considered a “biomechanical marker” to 

early diagnosis of cancers [8, 9]. As a nondestructive nanoscale technique, AFM has been 

widely applied in the biomechanical studies for mammalian cells, especially for cancer 

cells [8-12]. 

Raman spectroscopy, based on the inelastic scattering of the incident laser on target 

molecules, is a molecular vibrational spectroscopic technique that can detect molecular 

structural information used to identify specific subcellular biochemical compositions in 

living cells [13]. Raman spectra provide highly specific and reproducible vibrational 

fingerprints of different cell types. In addition, this noninvasive technique can conduct 

rapid real-time cell detection under physiological growth environments. Previous Raman 

http://en.wikipedia.org/wiki/Inelastic_scattering
http://en.wikipedia.org/wiki/Spectroscopy
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studies have shown that cellular biochemical compositions and molecular structures (e.g. 

DNA/RNA, proteins and lipids) also exhibit differences in cells with different disease 

states [14-17]. Several studies applying Raman spectroscopy in cellular investigations have 

been summarized in Table 1.1. Since the differences of the Raman spectra are usually non-

significant for different cell types, principal component analysis (PCA) is often applied on 

the spectra to classify them into different categories. 

In past years, the Zhou lab from Utah State University has conducted a series of 

studies incorporating AFM and Raman analyses, together with other techniques, to 

investigate the biomechanics and biochemical changes of mammalian cells under various 

conditions. By using AFM and Raman spectroscopy, Wu et al. [18] observed alterations in 

cyto-architectures, mechanical properties, and biochemical components of human breast 

carcinoma cells (MDA-MB-435), when transfected with BReast cancer Metastasis 

Suppressor 1 (BRMS1) gene. This gene has been shown to induce many phenotypic 

alterations in MDA-MB-435 cells [19]. Tang et al. applied Raman spectroscopy, AFM, 

and multiplex ELISA to investigate the biophysical responses (including biomechanics and 

bio-spectroscopic responses) of human lung epithelial cells to short term exposure of diesel 

exhaust particles [20]. Li et al. used the biochemical and biophysical properties, measured 

by Raman and AFM, as an indicator to monitor serum-induced differentiation of 

trophoblast derived stem-like cells [21]. All these studies have demonstrated the potential 

of AFM and Raman as nondestructive methodologies to investigate human disease cells 

and their metabolism at subcellular level.  
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1.2.2 Epidermal growth factor receptor (EGFR) 

Epidermal growth factor receptor (EGFR) is a member of the receptor tyrosine 

kinase (RTK) family of signaling proteins. It was the first mammalian signaling protein to 

be fully characterized [22].  The activation of EGFR is normally controlled by the 

interaction with their ligands such as EGF and TGF-α, providing cells with substantial 

differentiation and growth advantages [23]. However, it has been found that aberrant 

expression or activation of EGFR appears to be an important factor in both the initiation 

and the progression of human caner [24-26]. For example, in human breast carcinoma 

(EGFR positive), expression of EGFR was reported to support the existence of tumor cells 

with aggressive potentials [27]. The expression level of EGFR in metastatic breast tumors 

was often higher than primary tumors, indicating that EGFR was involved in the process 

of metastasis [19, 28]. Overexpression and abnormal function of EGFR and its ligands have 

been found in many different types of human cancers [26]; this makes it a great prognostic 

indicator for the development of malignancies. Furthermore, therapeutic strategies have 

been developed, using small biomolecules (e.g. monoclonal antibody, kinase inhibitors) to 

block the binding of EGFR and its ligands, consequently blocking receptor activation and 

transduction of post-receptor signals [29, 30]. 

1.2.3 Surface-enhanced Raman spectroscopy (SERS) 

Surface-enhanced Raman spectroscopy (SERS) is a powerful analytical tool in 

biological applications which has attracted considerable attention recently. SERS offers 

extremely high enhancement and turns the weak inelastic scattering effect of photons into 

a structurally sensitive nanoscale probe [31]. As a result, one can realize ultrasensitive 

levels of detection and non-invasive tagging of specific bioanalytes in living cells and 
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animals [32]. A key component of the SERS technique is the SERS-active nanoprobe. It is 

usually composed of metal nanoparticle (NP, e.g. AuNP or AgNP) encoded with sensitive 

Raman reporter molecules followed by the coating of mono- or multi-layer protective 

polymers (e.g. silica, polyelectrolyte and PEG) which improve stability and 

biocompatibility [33-36]. Several studies have reported using SERS probes to target cancer 

cells in vitro or in vivo [33, 36-41], including measurement of EGFR [33, 37, 41]. However, 

very little SERS studies were focused on EGFR cellular distribution, EGFR-mediated 

bioprocess, and how EGFR is regulated by metastasis suppressors.  

1.2.4 AFM and simultaneous Topography and RECognition (TREC) imaging  

In past decades, AFM has become a powerful technique for analyzing the surface 

structures at nanometer scale and the forces acting on them with piconewton sensitivity 

[42, 43]. In terms of studying biological samples, AFM presents significant advantages 

over other microscopic methods since it allows single-molecule level studies of the 

structure and interaction of complicated biomolecules and cells with nanometer spatial 

resolution [44]. It also allows samples to be measured in liquid phase, enabling the study 

of dynamic interactions between biomolecules under physiological cell growth 

environments. Simultaneous Topography and RECognition (TREC) imaging, a new AFM 

technique based on the high-resolution topographic imaging and single-molecule force 

measurement [45, 46], has been developed for receptor imaging with high spatial and 

temporal resolution. This methodology provides information that is complementary to that 

obtained by fluorescence and electron microscopy [47]. For example, TREC imaging has 

been successfully used to visualize for the first time, the localization and distribution of 

Na+-K+ ATPases in the inner leaflet of cell membranes at the single-molecule level [48]. 
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Also, by employing TREC, the local organization of Fcγ receptors on a single macrophage 

cell has been determined at single-molecule level [49]. In addition to cell receptor imaging, 

the TREC imaging technique has also been extensively used to monitor specific 

biomolecules while they are undergoing biological processes.  Wang et al. [45, 50, 51] 

applied TREC to study the action of human Swi-Snf nucleosome remodeling complex and 

its interaction with mouse mammary tumor virus promoter during the process of 

nucleosome remodeling, describing the crucial role of ATP activation in the process. In 

addition, they were also able to recognize the glycosylation process of biomolecules by 

using TREC imaging, and distinguish normal and aberrant antibodies based on their 

glycosylation [52].  

1.2.5 Multimodal cancer imaging 

Noninvasive cancer imaging, used to describe tumor anatomical structure and to 

investigate tumor metabolism, plays an important role in early cancer detection and 

localization [53]. Currently, there are several imaging modalities widely applied in cancer 

research, such as magnetic resonance imaging (MRI) [54-57], photoacoustic (PA) imaging 

[58-60], surface-enhanced Raman scattering (SERS) [61-63] and optical fluorescent 

imaging [64-67]. Although each individual modality has specific advantages in cancer 

imaging, none are able to support comprehensive structural and functional studies of 

tumors independently. Thus, there has been an interest in developing multimodal 

approaches to combine the advantages of these individual imaging modalities and to 

compensate for their weaknesses. Recently, several composite nanoparticles have been 

successfully synthesized and used in multimodal imaging applications [68-73]. Theses 

composite nanoparticles are usually constructed by combining together different nano-
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components, which are effective contrast agents for different imaging modalities. For 

example, Jin et al. [68] had synthesized an iron oxide and gold-coupled core-shell 

nanoparticle to integrate both MRI and PA imaging, which provides remarkable contrast 

enhancement in bioimaging. Despite the quickly growing interest in designing 

multifunctional imaging contrast agents, it remains challenging to combine multiple 

components to incorporate different imaging modalities while preserving particle size. 

1.3 DISSERTATION OUTLINE 

In chapter 2, I included a study that uses AFM and Raman to study human lung 

cancer cells in response to short time chemotherapy (Figure 1.2). Young’s modulus and 

adhesion force of human lung adenocarcinoma epithelial cell line A549 and non-cancerous 

human primary small airway epithelial cells (SAECs) were measured by using AFM. It 

was found that normal SAECs are stiffer and more adhesive than cancerous A549 cells. 

Upon treatment with anti-cancer drug doxorubicin (DOX) for a short time (4 hr), both 

biomechanical properties of A549 cells were found to be increased while those of SAECs 

were decreased, implying that DOX induced response mechanisms are different between 

the two types of cells (cancerous vs. healthy cells). Using Raman spectroscopy, we 

measured the changes in subcellular biochemical compositions of both cell types before 

and after DOX exposure. 

In chapter 3, I included a study that investigates expression, spatial distribution as 

well as the endocytosis of EGFR in single breast cancer cells using SERS (Figure 1.3). By 

incubating anti-EGFR antibody conjugated SERS nanoprobes with an EGFR-over-

expressing cancer cell line, A431, EGFR localization was measured over time and found 

to be located primarily at the cell surface. To further validate the constructed SERS probes, 



9 
 

we applied this SERS probes to detect the EGFR expression on breast cancer cells (MDA-

MB-435, MDA-MB-231) and their counterpart cell lines in which EGFR expression was 

down-regulated by breast cancer metastasis suppressor 1 (BRMS1).  The results showed 

that SERS method not only confirms immunoblotting data measuring EGFR levels, but 

also adds new insights regarding EGFR localization and internalization in living cells 

which is impossible in immunoblotting method. 

In chapter 4, I included a study that applies TREC imaging method to mapping the 

distribution of EGFR on single breast cancer cells at single-molecule level (Figure 1.4). 

Single molecule recognition using monoclonal antibody (anti-EGFR) tethered scanning tip 

was converted to high resolution Topography and Recognition images. The recognition 

efficiency was tested in a spatial-temporal manner by introducing EGF as a competing 

ligand, when conducting TREC imaging of EGFR using antibody-tethered AFM tips. We 

measured the density and distribution of EGFR on breast cancer cell lines—MDA-MB-

435 and BRMS1-transfected 435 cells. We further discussed the advantages of TREC 

imaging over conventional detection methods such as western blot and 

immunofluorescence. 

In chapter 5, I included a study that describes a novel hybrid Gd-Au nanocomposite 

(Gd2O3@MCM-41@Au), and its application on SERS detection of EGFR (Figure 1.5). We 

synthesized and characterized the Gd-Au nanocomposite, and further performed a series of 

functionalization processes to make it capable of SERS detection.  We conjugated 

monoclonal antibody (mAb) to specifically target EGFR in three different human cancer 

cell lines: human nasopharyngeal carcinoma cell (S18), human epidermoid carcinoma cell 

(A431), and human lung adenocarcinoma cell (A549). These cell lines are measured by 
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SERS to express EGFR at different levels.  In addition, we used SERS to mapping the 

cellular distribution of EGFR on single cancer cells as well as to monitor the metabolism 

of the antibody-targeted nanoparticles in real time. Combining our SERS study and the 

MRI study conducted by our collaborators in China [74], we demonstrate the potential of 

this Gd-Au nanocomposite as a multifunctional (MRI-SERS) nano-probe not only for the 

early detection and localization of cancer in vivo, but also for the investigation of cancer 

metabolism and biochemistry at single cell level. 

In chapter 6, I included a study that describes a SERS-fluorescence dual functional 

nanocomposite (CaMoO4:Eu3+@AuNR), and its application on SERS-fluorescence 

bimodal imaging of GPR120 (Figure 1.6). The composite nanoprobe 

CaMoO4:Eu3+@AuNR was synthesized, characterized and functionalized for specific 

targeting of G-protein-coupled receptor 120 (GPR120). As a model to demonstrate the 

SERS-fluorescence bimodal imaging, we used a HEK293 cell line transfected with a cDNA 

sequence encoding a doxycycline (Dox)-inducible mature peptide of GPR120. Both SERS 

and fluorescence imaging showed elevated signals on GPR120 positive cells. In addition, 

the interaction between GPR120 and linoleic acid (LA) was also investigated by SERS. 

In chapter 7, I gave a brief summary of this dissertation research and discussed 

directions for future research. 
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Table 1.1 Raman spectroscopy in cellular investigation 

Application Exemplary Observations (bands, cm-1) Reference 

Cell cycle G1 (511, 658, 845, 1322), S (1541, 1600), G2/M (1273) [75] 

Stem cell 

differentiation 

hESCs had higher DNA and RNA contents than 

differentiated cells (785, 811, 1090, 1320) 

[76] 

Cell death Degradation of proteins (1005, 1342), DNA breakdown 

(788), formation of lipid vesicles (1303, 1660) 

[77] 

Wound healing Collagen content change (1665/1445 ratio) [78] 

Cancer 

detection 

Excessive presence of lipid droplets (1300, 2850) in 

colorectal cancer stem cells 

[79] 
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Figure 1.1 Schematic of chemo-biomechanical pathways influencing connections among 

subcellular structure, cell biomechanics, motility and disease state (image adapted from ref 

[2]). 

 

Figure 1.2 Biophysical and biochemical responses of human lung epithelial cells to 

doxorubicin anti-cancer drugs measured by AFM and Raman spectroscopy. 
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Figure 1.3 Schematic illustration of EGFR detection on single human cancer cells by 

SERS. 

 

 

Figure 1.4 Schematic of interaction between EGFR and anti-EGFR measured by TREC 

imaging. 
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Figure 1.5 (a) STEM image of the Gd-Au nanoprobe. (b) Schematic of the SERS 

detection of EGFR using Gd-Au nanoprobes. 

 

 

 

 

Figure 1.6 Schematic illustration of SERS-fluorescence bimodal nanoprobes for GPR120 

detection. 
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CHAPTER 2 

NONINVASIVE DETECTION OF BIOMECHANICAL AND BIOCHEMICAL 

RESPONSES OF HUMAN LUNG CELLS TO SHORT TIME CHEMOTHERAPY 

EXPOSURE USING AFM AND CONFOCAL RAMAN SPECTROSCOPY1 

2.1 ABSTRACT 

Cellular biomechanical properties including cell elasticity and cell adhesion are 

regarded as criteria to differentiate cancer cells and normal cells. In this study, the 

biomechanical properties including the Young’s modulus and adhesion force of human 

lung adenocarcinoma epithelial cell line A549 and non-cancerous human primary small 

airway epithelial cells (SAECs) were measured by using atomic force microscopy (AFM). 

It was found that normal SAECs are stiffer and more adhesive than cancerous A549 cells. 

Upon treatment with anti-cancer drug doxorubicin (DOX) for a short time (4 hr), both 

biomechanical properties of A549 cells were found to be increased while those of SAECs 

were decreased, implying that DOX induced response mechanisms are different between 

the two types of cells (cancerous vs. primary cells). Using Raman spectroscopy, we 

measured the changes in (sub)cellular biochemical compositions of both cell types before 

and after DOX exposure. Our ultimate goal is to find out the potential relationship between 

the changes in biomechanics and biochemical compositions of lung epithelial cells in 

response to anti-cancer drugs.  

2.2 INTRODUCTION 

In past decades, considerable cancer research has been carried out using traditional 

biological methods that are based upon molecular genetics and gene signaling, but the roles 

1 L. Xiao, M. Tang, Q. Li, A. Zhou, Non-invasive detection of biomechanical and biochemical responses 

of human lung cells to short time chemotherapy exposure using AFM and confocal Raman spectroscopy, 

Anal. Methods 5 (2013) 874-879. 
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of cell biomechanics have been ignored, regardless of the mechanical nature of the invasion 

process of cancer cells [1]. Mechanical properties regulate tumor cell functions such as 

tumor progression, cell proliferation, motility, migration, invasion and metastasis [2, 3]. 

Recently, cyto-mechanical properties have received increasing attention as a potential 

biophysical marker for new cancer diagnostics and therapeutics [4, 5]. The quantitative 

analysis of mechanical profiles at the single-cell level can provide additional information 

that is usually not available in traditional cell biology approaches but may be crucial to 

assess and understand tumor prognosis and response to chemotherapy. Normal human 

mammary epithelial cells (MCF 10) are found to be less deformable than malignant human 

breast cancer epithelial cells (MCF 7); moreover, phorbol ester TPA-treated MCF-7 cells, 

which have an 18-fold increase in the invasiveness and metastatic efficiency, are even more 

deformable than before treatment [6].  

  In vitro studies have shown that cellular biomechanics including cell stiffness and 

adhesion of cancer cells are often lower than that of their normal counterparts—this has 

been considered as a target to early diagnosis of cancers [7, 8]. In addition, interactions 

between cancer cells and anti-cancer drugs have recently emerged as topics of particular 

interest, because understanding the mechanisms of biomechanics as well as biochemistry 

in cell function would facilitate the understanding of biology of cancers and further the 

development of new anti-cancer drugs. In addition to biomechanics, anti-cancer agents also 

cause subcellular biochemical changes such as the regulation of DNA, protein and lipids 

[9]. Studies have shown that chemotherapy would increase the stiffness of cancer cells [10, 

11]. However, little is known about whether anti-cancer drug chemotherapy would lead to 

synergistic cellular biomechanical and biochemical responses, or in return, how these 
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cellular responses would influence the chemotherapy efficiency. This knowledge is 

particularly important to further determine the role of biomechanics in cancer development 

and further elucidate the potential relationship between biomechanics properties and 

cellular composition changes induced by anti-cancer drugs. 

  Atomic force microscopy (AFM) [12], working on the basis of the interaction 

between a sharp cantilever tip and the sample surface, has become a powerful tool for in 

situ imaging biological samples in (near) physiological conditions, and quantitation of 

biomechanical properties of living cells [13-16].  Cross et al. found that metastatic cancer 

cells are not only much softer, but also less adhesive than benign cells by measuring living 

human cells derived from patients [8, 16].  Lam et al. observed an increase in cell stiffness 

of leukemia cells, which may be due to dynamic changes in the actin cytoskeleton, when 

exposed to anti-cancer drug dexamethasone or daunorubicin [10]. Raman spectroscopy, 

based on the inelastic scattering of the incidence laser on target molecules, is a molecular 

vibrational spectroscopic technique that can detect molecular structural information used 

to identify specific (sub)cellular biochemical compositions in living cells [17]. Recently, 

Raman spectroscopy has been successfully applied to detect biochemical composition 

changes in cancer cells under anti-cancer drug treatments [18, 19]. 

 Measurement of the biomechanical and biochemical responses of normal vs. 

cancerous cells to known chemotherapeutic agents is needed to further understand their 

cell-drug interaction mechanism. Doxorubicin (DOX) is a well-established anti-cancer 

drug widely used in the chemotherapy of a wide range of cancers such as breast carcinoma, 

hematological malignancies and lung cancer [20]. By intercalation into the nucleus [21], 

DOX inhibits the process of DNA replication and macromolecular biosynthesis, and 

http://en.wikipedia.org/wiki/Inelastic_scattering
http://en.wikipedia.org/wiki/Spectroscopy
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consequently lead to tumor cell apoptosis. In addition to leading to the apparent inhibition 

to cellular elements, DOX also induces changes in cellular cytoskeleton (actin filaments) 

[22, 23]. There are substantial studies on the interaction between DOX and tumor cells [24-

26]. However, to our knowledge, no work specifically focused on DOX-induced 

biomechanical and biochemical changes in cancer cells has been reported. In this study, 

we applied AFM and Raman spectroscopy to detect the responses of lung carcinoma cell 

A549 and normal primary small airway epithelial cells (SAECs), to short time (4hr) 

exposure at the single cell level. Short-time chemotherapy exposure (e.g., 4 hr) has been 

reported to be sufficient for cells to show distinct responses and develop preliminary drug 

resistance [27]. As a matter of fact, anti-cancer drug therapy would not only interact with 

cancer cells but also may influence physiological function of normal (healthy) cells. It is 

of particular interest to investigate how normal and cancer cells respond to anti-cancer drug 

treatment. 

2.3 MATERIALS AND METHODS 

2.3.1 Preparation of A549 cells and SAECs 

Human lung carcinoma A549 cells (ATCC, USA) were cultured in F-12k medium 

containing 5% fetal bovine serum and 1% penicillin-streptomycin (both from Invitrogen) 

at 37 °C with 5% CO2 in a humidified atmosphere. Cells (approximately 106 cells/ml) were 

passaged at 80-90% confluence and used for experiments. Human small airway epithelial 

cells (SAECs) were cultured in SAGM medium containing growth factors (BPE, 

hydrocortisone, hEGF, epinephrine, insulin, triiodothyronine, transferrin, 

gentamicin/amphotericin-B, retinoic acid and BSA-FAF) at 37 °C with 5% CO2 in a 

humidified atmosphere.  
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For AFM experiments, the cells were seeded on poly-L-lysine coated glass bottom 

Petri dishes (MatTek Corp. USA) at a density of 1x105 cells per 2 mL of media. To 

minimize background in Raman spectroscopy, a density of 1x105 cells per 2 mL of media 

was placed on a cleaned magnesium fluoride (MgF2) optical window (United Crystals Co., 

Port Washington, NY). 

2.3.2 Anticancer drug Doxorubicin (DOX) treatment 

DOX (Sigma-Aldrich, St. Louis, MO) was dissolved in water and stored at 4 °C as 

a stock solution (8 µM) within one week prior to use. A549 cells and SAECs were 

incubated for 24 hr after seeding and then treated by DOX for 4 hr at a final concentration 

of 70 nM (IC50 of A549 [28]). Drugs were washed away after 4 hr and cells were kept for 

24-hr incubation. Cells were then ready for measurement. 

2.3.3 Atomic Force Microscopy (AFM) measurement 

In order to conduct AFM measurements, cells were prepared in one of two ways. 

(1) To obtain the topography and deflection images, cells were fixed with 4% 

paraformaldehyde for 10 min, and then rinsed by 1×Ca2+/Mg2+-free phosphate buffered 

saline (PBS) buffer. Finally, the cells were imaged in PBS buffer. (2) To measure 

biomechanical properties such as cell elasticity and adhesion, in situ measurements were 

applied. Cells were measured in culture media without any pretreatment. The whole 

measurement was accomplished within 1 hr, so that the experiment condition could be 

considered reflective of the physiological condition of living cells. 

Contact mode AFM controlled by Picoview software (Picoplus, Agilent 

Technologies, USA) was applied on A549 cells and SAECs at room temperature in either 

PBS buffer (0.01 M, pH 7.4) or cell culture media. AFM deflection images of cells were 
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chosen in the imaging experiment. In the force measurement, sharp silicon nitride AFM 

probes (tip radius, 20nm) were employed (Bruker Corp., USA). The spring constant of 

AFM tips were calibrated as 0.10~0.11 N/m and Deflection Sensitivities were 45~50 nm/V, 

using Thermo K Calibration (Agilent Technologies, USA). The approaching/retracting 

speed of the AFM tip during the force curve measurement was 6 µm/s. 

For biomechanics measurement, force-distance curves were recorded by AFM 

instrument to get cell elasticity (Young’s Modulus, E) and adhesion force (maximum pull 

force between AFM tip and cell surface during the retracting process of the AFM probe) 

of individual cells. For each cell line, 12 cells were measured with over 15 force-distance 

curves per cell to avoid spurious results [8]. Young’s modulus and adhesion force were 

calculated via the Scanning Probe Image Processor (SPIP) software (Image Metrology, 

Denmark) by converting the force-distance curves to force-separation curves and fitting 

the Sneddon variation of Hertz model [29-31], which describes conical tips indenting 

elastic samples. 

Statistical analysis of the biomechanical property data were conducted by one-way 

ANOVA (Origin9, USA). Significance of means comparison was evaluated by Tukey’s 

range test. Same statistical analysis were performed in all chapters of this dissertation. 

2.3.4 Fluorescence imaging of A549 cells and SAECs 

Cell samples were stained for cytoskeletal and nuclear architecture according to 

manufacturer’s protocol (Invitrogen). For staining, (1) cells were fixed with a 3.7% 

formaldehyde (Electron Microscopy Sciences) solution in PBS for 10 min at room 

temperature (RT); (2) cells were treated with 0.1% Triton X-100 (Sigma) in PBS for 3 min 

at RT; (3) incubated with 1% bovine serum albumin (BSA) in PBS for 30 min at RT; (4) 
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incubated with 1 unit of phallotoxins (cytoskeleton dye) in PBS for 30 min at RT; (5) 

incubated with 300 nM of DAPI dihydrochloride (nucleic acid dye) in PBS for 3 min at 

RT. Cell samples were washed with PBS for two times between each step. Then stained 

samples were stored in PBS at 4oC prior to AFM/FL observation. 

Fluorescence images were collected by an Olympus IX71 inverted fluorescence 

microscope equipped with an Olympus DP30BW CCD camera. Images were collected by 

Olympus DP-BSW Controller and Manager Software. Phase contrast images were 

acquired with a 40× Phase lens (Olympus), Our IX71 fluorescence microscope was coupled 

to a PicoPlus atomic force microscope (called AFM/FL) via a specially designed stage 

(Agilent Technologies). 

2.3.5 Data acquisition for Raman Micro-spectroscopy 

The Raman spectra of A549 cells and SAECs were measured by a Renishaw inVia 

Raman spectrometer (controlled by WiRE 3.0 software) connected to a Leica microscope 

(Leica DMLM), equipped with a 785 nm near-IR laser (laser spot 10 × 3 µm line) that was 

focused through a 63 × NA = 0.90 water immersion objective. 520.5 ± 0.1 cm-1 was the 

standard calibration peak for the spectrometer with silicon mode at a static spectrum. 

Samples of SAECs and A549 cells were cultured on magnesium fluoride (MgF2) and then 

imaged in Earle's Balanced Salt Solution (EBSS). Raman spectra between 600 and 1800 

cm-1 wavenumber were then recorded for 1 accumulation at 20s laser exposure at static 

mode. Three different positions (nucleus, cytoplasm and membrane) in a cell were 

measured. Thirty-two spectra were used to calculate an average for each group. 
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2.3.6 Raman data analysis 

Cosmic rays in raw spectra were removed using Renishaw Wire 3.3 software. 

Because Raman spectra are affected by the physical properties of the samples and 

background noise, it is necessary to perform mathematical processes to reduce systematic 

noise, and enhance resolution of chemical compositions from target cells. In this work, 

Raman spectra were smoothed by moving average smoothing to filter high-frequency noise. 

Each Raman spectrum consists of many variables, but only a fraction of the variables 

contains useful information for cell classification. Principal component analysis (PCA) [32] 

was performed on the data set with the goal of defining a new dimensional space in which 

the major variance in the original data set can be captured and represented by only a few 

principal component (PC) variables and allowing the most important variables responsible 

for these differences to be identified. In this work, PCA methods based on moving average 

smoothing were performed as an attempt to extract useful information from raw spectral 

data, and firstly applied to examine the differences among the groups of untreated and 

treated SAEC and A549 at three locations (nucleus, cytoplasm and cell membrane) of cells. 

All algorithms were implemented in Matlab R2010b (Mathworks Inc., Natick, USA). 

2.3.7 Cell viability test 

The cell viability was analyzed using LIVE/DEAD Viability/Cytotoxicity Assay 

Kit (Invitrogen) according to the manufacturer’s instruction. Briefly, (1) Cells were 

cultured in poly-D-lysine coated glass-bottom dishes (MatTek Cop. USA) and MgF2 

substrate which was put in Petri dishes for 24 hr; (2) cells were then washed with PBS 

twice; (3) 2 ml of mixed solution of 2 µM Calcein AM and 4 µM ethidium homodimer-1 

(EthD-1) (both from Invitrogen) was added directly to cells, and incubated cells for 30 min 
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at room temperature; (5) cells were imaged using fluorescence microscope with DP30BW 

CCD camera (Olympus IX71) to analyze the relative proportion of live/dead cells. Here, a 

10× objective was used to observe fluorescence. Calcein AM is well retained within live 

cells producing green fluorescence; however, EthD-1 enters cells with damaged membrane 

and binds to nucleic acids, thereby producing a red fluorescence in dead or membrane-

damaged cells. Therefore, the live/dead cells were differentiated visually. 

2.4 RESULTS AND DISCUSSION 

2.4.1 Biomechanical properties and morphologies of A549 cells and SAECs 

In this study, cancerous A549 cells and normal (primary) SAECs are imaged with 

AFM directly in the culture media under physiological condition. Apparent differences in 

cell morphology and ultrastructure between the two cell types can be observed in AFM 

deflection images—primary SAECs are generally larger and more affluent in filamentous 

cell junctions than the cancerous A549 cells (Figure 2.1). Furthermore, two biomechanical 

properties, cell elasticity (Young’s modulus, E) and cell adhesion force, are quantitated by 

AFM force-distance measurements. The average Young’s modulus of A549 cells and 

SAECs are measured to be 12.007±4.381 kPa (n=210) and 25.227±9.274 kPa (n=187), 

respectively. The average adhesion force of A549 cells and SAECs are measured to be 

0.506±0.152 nN (n=190) and 0.819±0.243 nN (n=187), respectively.  Both Young’s 

modulus and adhesion force for A549 cells (tumor cell) are significantly smaller (p<0.01, 

Figure 2.2) than that for SAECs (non-tumor cell); which is consistent with reported studies 

[16, 33]. This result means tumor cells were softer and less adhesive than non-tumor cells. 
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2.4.2 Biomechanical responses to chemotherapy 

In order to study the morphological and biomechanical responses of A549 cells and 

SAECs to short time chemotherapy, cells are exposed to 70 nM (IC50 for A549 cells) [34] 

DOX for 4 hr, followed by AFM force measurement to detect the alteration of cell elasticity 

and cell adhesion. The results are shown in Figure 2.2. Young’s moduli for A549 cells and 

SAECs with DOX treatment (4 hr) are measured to be 19.756±8.489 kPa (n=195) and 

20.486±9.066 kPa (n=180), respectively. Adhesion forces for A549 cells and SAECs with 

DOX treatment are measured to be 0.839±0.291 nN (n=179) and 0.769±0.248 nN (n=195), 

respectively. Young’s modulus of A549 cells significantly (p<0.01) increases with DOX 

treatment, whereas that of SAECs decreases, resulting in the reduction of difference in cell 

elasticity between the two cell types (the difference is not statistically significant, Figure 

2.2a). The change in cell elasticity induced by DOX exposure might be attributed to the 

rearrangement of cytoskeleton, especially to the reorganization of intermediate filaments 

and actin filaments, which have been identified as the main determinants of cell 

viscoelasticity [35]. It should be noted that although, consistent with previous cancer 

studies [10, 11], the elasticity of tumor cells increases after chemotherapy, that of benign 

cells decreases possibly due to alterations in cytoskeleton with focal loss of contractile 

elements, which has been seen in cardiomyocytes [22]. In addition, the alteration in cell 

adhesion between the control and DOX treated cells follows the same trend as that of 

Young’s modulus—adhesion force of A549 cells increases under DOX treatment, while 

that of SAECs decreases. This observed opposite biomechanical responses to DOX 

treatment between cancerous and primary cells imply that the regulation of (actin) 

cytoskeleton or related signaling pathways may be different between these two cell types 
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[36].  The response in cell adhesion could be related to the variation of adhesive 

macromolecules (e.g. proteins, polysaccharides) on the cell surface, which can be probed 

by AFM force spectroscopy [30]. In another word, DOX treatment reduced the 

biomechanical differences between A549 cells and SAECs. 

By applying the coupled AFM/Fluorescence microscope system, we are able to 

simultaneously obtain AFM, fluorescence and optical phase contrast images of the same 

cell (Figure 2.3). It is found that A549 cells are with less organized cytoskeleton structures 

(e.g. filamentous actin) than SAECs; upon DOX treatment, both cell lines exhibit apparent 

change in cytoskeleton, confirming the results of   biomechanical tests. Moreover, phase 

contrast images for DOX treated A549 and SAEC displayed dark spots within cells that 

indicated the presence of intracellular vesicles, which is known to occur during the 

apoptosis induced by DOX [37]. 

2.4.3 Cellular biochemical changes induced by chemotherapy 

In addition to cell morphology and cellular biomechanics, cancerous A549 cells 

and primary SAECs, when exposed to DOX, also present differences in biochemical 

composition, which are detected by Raman spectroscopy. Since DOX interacts with cells 

primarily at nucleus, we mainly focus on the spectra collected on nucleus area (data of 

cytoplasm and membrane area are shown in Figure 2.4) of each cell type (via confocal 

setting in Raman measurement). Averaged Raman spectra of A549 cell and SAECs control 

and DOX treatment groups at nucleus are shown in Figure 2.5a. Major Raman bands for 

cellular biopolymers (i.e. nucleic acids, proteins, lipids and carbohydrates) are listed in 

Table 2.1. Comparing with SAEC control group, the Raman peaks of A549 control 

exhibited a pronounced rise at 672 cm-1 (C-S stretching mode of cytosine), 720 cm-1 (DNA), 
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786 cm-1 (DNA & phosphdiester bands DNA) and 813 cm-1 (phosphodiester bands RNA). 

This result would be consistent with previous findings that DNA is more abundant in 

cancer cells than normal cells due to the more active mitosis and cellular turnover [38]. 

Upon DOX treatments, spectroscopic differences between A549 cells and SAECs in DNA-

related Raman peaks are reduced, because DOX selectively targets A549 cells and prevent 

DNA replication, lowering DNA level in A549 cells. This observation that intensities of 

DNA peaks decrease after anticancer drug exposure is also consistent with previous studies 

[9, 39]. Besides the nucleic acids, distinctions in proteins (937, 1006, 1034 cm-1) and lipids 

(1450 cm-1) are also observed in the Raman spectra; cancerous A549 cells are less affluent 

in proteins and lipids than primary SAECs. Unlike DNA, DOX treatment leads to elevated 

protein and lipid levels in both A549 cells and SAECs. 

Principal component analysis (PCA) can further distinguish the spectral differences 

for both cell types before and after DOX exposure. In Figure 2.5b, an evident separation of 

clusters of SAEC and A549 can be observed in PCA score plot, where the 1st principal 

component incorporated 47% of the variance and the 2nd component 26%. Moreover, it is 

noticed that SAEC clusters (with and without DOX treatment) sit closely each other, 

compared to obvious separation of the two clusters of A549 control and A549-DOX group. 

This observation implies the less effective impact of short term (4 hr) exposure of DOX on 

the changes of SAEC spectra than those on A549 cells. PCA plots for cytoplasm and 

membrane areas are presented in Figure 2.4. 

In order to quantitatively identify how DOX treatment influenced the variation in 

cellular bio-components, we selected some specific Raman peaks (labeled in Figure 2.5a) 

related to DNA, proteins, lipids and compared the changes in their spectral intensities. 720 
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cm-1 band is assigned to guanine band of DNA, 1006 cm-1 band the symmetric ring 

breathing phenylalanine band in protein, and 1450 cm-1 the CH2 deformation of lipids and 

proteins [33]. Since Raman intensities have a linear dependence on the concentrations of 

particular molecular bonds of cellular bio-components, the changes in their characteristic 

peak intensities reflect the alterations of corresponding biochemical compositions of cells. 

As shown in Figure 2.6, for A549 and SAEC cells upon DOX exposure, Raman intensity 

for DNA (720 cm-1) presented a slight decrease (SAEC cells didn’t show obvious DNA 

changes), whereas the peak intensities for protein (1006 cm-1) and lipid (1450 cm-1) 

exhibited a considerable increase (6% ~12%). The decrease in DNA Raman signal and the 

increase in protein Raman signal could be caused by the DOX-induced cell apoptosis, 

which leads to the degradation of DNA [40] as well as the up-regulation of p53, Bax and 

MDM2 proteins in cell nucleus [41]. The increase in lipid related Raman peak is related to 

the presence of intracellular lipid vesicles at cell surface (e.g. phosphatidylserine, granule) 

[9, 42], which also are confirmed by phase contrast imaging (Figure 2.3). Furthermore, as 

Figure 2.6 shows, the larger percentages of Raman intensity changes for A549 cells 

indicates that cancer cells are more sensitive to DOX treatment, comparing with normal 

SAECs. Fluorescence cell viability analysis (Figure 2.7) shows more A549 cells are found 

dead than SAEC cells after 4 hr DOX treatment, although most are still alive under 

experimental condition. 

2.5 CONCLUSIONS 

In conclusion, we applied AFM and Raman micro-spectroscopy to monitor the 

cellular biomechanical and biochemical responses of cancerous (A549) and primary 

(SAECs) human lung epithelial cells to short chemotherapy exposure (4 hr). A549 cells 
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and SAECs show opposite variation in cell stiffness and cell adhesion—A549 cells 

increasing while SAECs decreasing—with the treatment of anticancer agent doxorubicin. 

A reduction in DNA and a rise in protein and lipid concentrations, due to the process of 

DOX-induced cell apoptosis, are observed from Raman spectral changes. Our study 

indicates cellular biomechanics, as a biomarker for cancer therapy, provides new 

prospective to investigate the potential linkage between alterations of biomechanics and 

cell biochemistry induced by cell-drug interaction. As a result, these new findings would 

benefit new anti-cancer drug development. In order to fully understand how the DOX 

treatments affect the cellular biomechanical and biochemical responses of human lung cells, 

more work has to be done in a dose-dependent and time-dependent manner. 

2.6 REFERENCES 

[1] C.T. Mierke, The biomechanical properties of 3d extracellular matrices and embedded 

cells regulate the invasiveness of cancer cells, Cell Biochem. Biophys. 61 (2011) 217-236. 

[2] F. Michor, J. Liphardt, M. Ferrari, J. Widom, What does physics have to do with cancer?, 

Nat. Rev. Cancer 11 (2011) 657-670. 

[3] H.M. Yu, J.K. Mouw, V.M. Weaver, Forcing form and function: biomechanical 

regulation of tumor evolution, Trends Cell. Biol. 21 (2011) 47-56. 

[4] L. Wilson, S. Cross, J. Gimzewski, J.Y. Rao, Nanocytology: a novel class of biomarkers 

for cancer management, IDrugs 13 (2010) 847-851. 

[5] S. Suresh, Biomechanics and biophysics of cancer cells, Acta Biomater. 3 (2007) 413-

438. 

[6] J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, 

H.M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Kas, S. Ulvick, C. Bilby, Optical 



40 
 

deformability as an inherent cell marker for testing malignant transformation and 

metastatic competence, Biophys. J. 88 (2005) 3689-3698. 

[7] S. Suresh, Nanomedicine - elastic clues in cancer detection, Nat. Nanotechnol. 2 (2007) 

748-749. 

[8] S.E. Cross, Y.S. Jin, J. Rao, J.K. Gimzewski, Nanomechanical analysis of cells from 

cancer patients, Nat. Nanotechnol. 2 (2007) 780-783. 

[9] T.J. Moritz, D.S. Taylor, D.M. Krol, J. Fritch, J.W. Chan, Detection of doxorubicin-

induced apoptosis of leukemic T-lymphocytes by laser tweezers Raman spectroscopy, 

Biomed. Opt. Express 1 (2010) 1138-1147. 

[10] W.A. Lam, M.J. Rosenbluth, D.A. Fletcher, Chemotherapy exposure increases 

leukemia cell stiffness, Blood 109 (2007) 3505-3508. 

[11] S.E. Cross, Y.S. Jin, Q.Y. Lu, J.Y. Rao, J.K. Gimzewski, Green tea extract selectively 

targets nanomechanics of live metastatic cancer cells, Nanotechnology 22 (2011) 215101. 

[12] G. Binnig, C.F. Quate, C. Gerber, Atomic force microscope, Phys. Rev. Lett. 56 (1986) 

930-933. 

[13] E. A-Hassan, W.F. Heinz, M.D. Antonik, N.P. D'Costa, S. Nageswaran, C.A. 

Schoenenberger, J.H. Hoh, Relative microelastic mapping of living cells by atomic force 

microscopy, Biophys. J. 74 (1998) 1564-1578. 

[14] M. Radmacher, M. Fritz, C.M. Kacher, J.P. Cleveland, P.K. Hansma, Measuring the 

viscoelastic properties of human platelets with the atomic force microscope, Biophys. J. 70 

(1996) 556-567. 



41 
 

[15] M. Lekka, P. Laidler, D. Gil, J. Lekki, Z. Stachura, A.Z. Hrynkiewicz, Elasticity of 

normal and cancerous human bladder cells studied by scanning force microscopy, Eur. 

Biophys. J. Biophy. 28 (1999) 312-316. 

[16] S.E. Cross, Y.S. Jin, J. Tondre, R. Wong, J. Rao, J.K. Gimzewski, AFM-based analysis 

of human metastatic cancer cells, Nanotechnology 19 (2008) 384003. 

[17] C.A. Owen, I. Notingher, R. Hill, M. Stevens, L.L. Hench, Progress in Raman 

spectroscopy in the fields of tissue engineering, diagnostics and toxicological testing, J. 

Mater. Sci.-Mater. Med. 17 (2006) 1019-1023. 

[18] H. Nawaz, F. Bonnier, P. Knief, O. Howe, F.M. Lyng, A.D. Meade, H.J. Byrne, 

Evaluation of the potential of Raman microspectroscopy for prediction of 

chemotherapeutic response to cisplatin in lung adenocarcinoma, Analyst 135 (2010) 3070-

3076. 

[19] H. Nawaz, F. Bonnier, A.D. Meade, F.M. Lyng, H.J. Byrne, Comparison of 

subcellular responses for the evaluation and prediction of the chemotherapeutic response 

to cisplatin in lung adenocarcinoma using Raman spectroscopy, Analyst 136 (2011) 2450-

2463. 

[20] F. Aoudjit, K. Vuori, Integrin signaling in cancer cell survival and chemoresistance, 

Chemother. Res. Pract. 2012 (2012) 283181. 

[21] F.A. Fornari, J.K. Randolph, J.C. Yalowich, M.K. Ritke, D.A. Gewirtz, Interference 

by doxorubicin with DNA unwinding in Mcf-7 breast tumor cells, Mol. Pharmacol. 45 

(1994) 649-656. 



42 
 

[22] O.J. Arola, A. Saraste, K. Pulkki, M. Kallajoki, M. Parvinen, L.M. Voipio-Pulkki, 

Acute doxorubicin cardiotoxicity involves cardiomyocyte apoptosis, Cancer Res. 60 (2000) 

1789-1792. 

[23] W. Lewis, B. Gonzalez, Anthracycline effects on actin and actin-containing thin 

filaments in cultured neonatal rat myocardial cells, Lab Invest. 54 (1986) 416-423. 

[24] Q. Zhang, R. Pu, Y. Du, Y.F. Han, T. Su, H.Y. Wang, G.W. Cao, Non-coding RNAs 

in hepatitis B or C-associated hepatocellular carcinoma: potential diagnostic and 

prognostic markers and therapeutic targets, Cancer Lett. 321 (2012) 1-12. 

[25] C.H. Takimoto, A. Awada, Safety and anti-tumor activity of sorafenib (Nexavar®) in 

combination with other anti-cancer agents: a review of clinical trials, Cancer Chemoth. 

Pharm. 61 (2008) 535-548. 

[26] J. Sterz, I. von Metzler, J.C. Hahne, B. Lamottke, J. Rademacher, U. Heider, E. Terpos, 

O. Sezer, The potential of proteasome inhibitors in cancer therapy, Expert Opin. Inv. Drug. 

17 (2008) 879-895. 

[27] A. Sobrero, C. Aschele, R. Rosso, A. Nicolin, J.R. Bertino, Rapid development of 

resistance to antifolates in vitro—possible clinical implication, J. Natl. Cancer. I. 83 (1991) 

24-28. 

[28] K.N. Kashkin, E.A. Musatkina, A.V. Komelkov, I.A. Favorskaya, E.V. Trushkin, V.A. 

Shleptsova, D.A. Sakharov, T.V. Vinogradova, E.P. Kopantzev, M.V. Zinovyeva, O.V. 

Kovaleva, I.B. Zborovskaya, A.G. Tonevitsky, E.D. Sverdlov, Expression profiling and 

putative mechanisms of resistance to doxorubicin of human lung cancer cells, Dokl. 

Biochem. Biophys. 430 (2010) 20-23. 



43 
 

[29] S. Ian N, The relation between load and penetration in the axisymmetric boussinesq 

problem for a punch of arbitrary profile, Int. J. Eng. Sci. 3 (1965) 47-57. 

[30] B.C. van der Aa, R.M. Michel, M. Asther, M.T. Zamora, P.G. Rouxhet, Y.F. Dufrene, 

Stretching cell surface macromolecules by atomic force microscopy, Langmuir 17 (2001) 

3116-3119. 

[31] M. Radmacher, Measuring the elastic properties of biological samples with the AFM, 

IEEE Eng. Med. Biol. 16 (1997) 47-57. 

[32] L. Notingher, G. Jell, P.L. Notingher, I. Bisson, O. Tsigkou, J.M. Polak, M.M. Stevens, 

L.L. Hench, Multivariate analysis of Raman spectra for in vitro non-invasive studies of 

living cells, J. Mol. Struct. 744 (2005) 179-185. 

[33] Y.Z. Wu, G.D. McEwen, S. Harihar, S.M. Baker, D.B. DeWald, A.H. Zhou, BRMS1 

expression alters the ultrastructural, biomechanical and biochemical properties of MDA-

MB-435 human breast carcinoma cells: an AFM and Raman microspectroscopy study, 

Cancer Lett. 293 (2010) 82-91. 

[34] K.N. Kashkin, E.A. Musatkina, A.V. Komelkov, I.A. Favorskaya, E.V. Trushkin, V.A. 

Shleptsova, D.A. Sakharov, T.V. Vinogradova, E.P. Kopantzev, M.V. Zinovyeva, O.V. 

Kovaleva, I.B. Zborovskaya, A.G. Tonevitsky, E.D. Sverdlov, Expression profiling and 

putative mechanisms of resistance to doxorubicin of human lung cancer cells, Dokl. 

Biochem. Biophys. 430 (2010) 20-23. 

[35] A.R. Bausch, K. Kroy, A bottom-up approach to cell mechanics, Nat. Phys. 2 (2006) 

231-238. 



44 
 

[36] C. Alberti, Cytoskeleton structure and dynamic behaviour: quick excursus from basic 

molecular mechanisms to some implications in cancer chemotherapy, Eur. Rev. Med. 

Pharmacol. Sci. 13 (2009) 13-21. 

[37] S. Gamen, A. Anel, P. Perez-Galan, P. Lasierra, D. Johnson, A. Pineiro, J. Naval, 

Doxorubicin treatment activates a Z-VAD-sensitive caspase, which causes ΔΨ loss, 

caspase-9 activity, and apoptosis in Jurkat cells, Exp. Cell Res. 258 (2000) 223-235. 

[38] N.D. Magee, J.R. Beattie, C. Carland, R. Davis, K. McManus, I. Bradbury, D.A. 

Fennell, P.W. Hamilton, M. Ennis, J.J. McGarvey, J.S. Elborn, Raman microscopy in the 

diagnosis and prognosis of surgically resected nonsmall cell lung cancer, J. Biomed. Opt. 

15 (2010) 026015. 

[39] F. Draux, C. Gobinet, J. Sule-Suso, M. Manfait, P. Jeannesson, G.D. Sockalingum, 

Raman imaging of single living cells: probing effects of non-cytotoxic doses of an anti-

cancer drug, Analyst 136 (2011) 2718-2725. 

[40] M. Binaschi, G. Capranico, P. De Isabella, M. Mariani, R. Supino, S. Tinelli, F. 

Zunino, Comparison of DNA cleavage induced by etoposide and doxorubicin in two 

human small-cell lung cancer lines with different sensitivities to topoisomerase II inhibitors, 

Int. J. Cancer 45 (1990) 347-352. 

[41] X. Liu, C.C. Chua, J. Gao, Z. Chen, C.L. Landy, R. Hamdy, B.H. Chua, Pifithrin-

alpha protects against doxorubicin-induced apoptosis and acute cardiotoxicity in mice, Am. 

J. Physiol. Heart Circ. Physiol. 286 (2004) H933-H939. 

[42] C. Ferraro-Peyret, L. Quemeneur, M. Flacher, J.P. Revillard, L. Genestier, Caspase-

independent phosphatidylserine exposure during apoptosis of primary T lymphocytes, J. 

Immunol. 169 (2002) 4805-4810. 



45 
 

[43] Z. Movasaghi, S. Rehman, I.U. Rehman, Raman spectroscopy of biological tissues, 

Appl. Spectrosc. Rev. 42 (2007) 493-541. 

[44] C. Yu, E. Gestl, K. Eckert, D. Allara, J. Irudayaraj, Characterization of human breast 

epithelial cells by confocal Raman microspectroscopy, Cancer Detect. Prev. 30 (2006) 515-

522. 

[45] N. Stone, C. Kendall, J. Smith, P. Crow, H. Barr, Raman spectroscopy for 

identification of epithelial cancers, Faraday Discuss. 126 (2004) 141-157. 

[46] N. Stone, C. Kendall, N. Shepherd, P. Crow, H. Barr, Near-infrared Raman 

spectroscopy for the classification of epithelial pre-cancers and cancers, J. Raman 

Spectrosc. 33 (2002) 564-573. 

[47] W.T. Cheng, M.T. Liu, H.N. Liu, S.Y. Lin, Micro-Raman spectroscopy used to 

identify and grade human skin pilomatrixoma, Microsc. Res. Techniq. 68 (2005) 75-79. 

[48] G. Shetty, C. Kendall, N. Shepherd, N. Stone, H. Barr, Raman spectroscopy: 

elucidation of biochemical changes in carcinogenesis of oesophagus, Brit. J. Cancer 94 

(2006) 1460-1464. 

[49] A.J. Ruiz-Chica, M.A. Medina, F. Sanchez-Jimenez, F.J. Ramirez, Characterization 

by Raman spectroscopy of conformational changes on guanine-cytosine and adenine-

thymine oligonucleotides induced by aminooxy analogues of spermidine, J. Raman 

Spectrosc. 35 (2004) 93-100. 

[50] J.W. Chan, D.S. Taylor, T. Zwerdling, S.M. Lane, K. Ihara, T. Huser, Micro-Raman 

spectroscopy detects individual neoplastic and normal hematopoietic cells, Biophys. J. 90 

(2006) 648-656. 



46 
 

[51] L. Chiriboga, P. Xie, H. Yee, V. Vigorita, D. Zarou, D. Zakim, M. Diem, Infrared 

spectroscopy of human tissue. I. differentiation and maturation of epithelial cells in the 

human cervix, Biospectroscopy 4 (1998) 47-53. 

 

 

  



47 
 

Table 2.1 Tentative Raman band assignments of Small Airway Epithelial Cells (SAEC) 

and human lung adenocarcinoma epithelial cell (A549). 

   Raman shift (cm-1) 

  SAEC             A549                                                            Band assignment 

624                 624                                                                  Phenylalanine 

643                 643                                                          C-C twist Phenylalanine 

662                 662                                         C-S stretching mode of cystine (collagen type I)       

    666                 666                                                 G, T-tyrosine-G backbone in RNA                                              

672                 669                                                    C-S stretching mode of cytosine 

    719                 719                                  C-C-N+ symmetric stretching in phosphatidylcholine 

720                 720                                                                        DNA                                                            

    762                 762                                                                   Tryptophan 

786                 785                                                    DNA & phosphdiester bands DNA 

813                 813                                                       Phosphodiester bands RNA                                                                     

832                 832                                                         𝑃𝑂2
−stretch nucleic acids 

854                 853                                                                      Tyrosine 

880                 881                                                                    Tryptophan 

900                 901                                    Monosaccharides (b-glucose), (C-O-C) skeletal 

mode 
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    939                 939                                                    Skeletal modes (polysaccharides) 

961                 961                                     Phosphate of HA; Calcium-phosphate stretch band   

   1006               1006                                                                 Phenylalanine 

   1034               1034                                                                 Phenylalanine           

   1066               1066                                     𝑃𝑂2
−stretching; chain stretching; C-O, C-C 

stretching  

1070-90         1070-90                      Symmetric 𝑃𝑂2
−stretching of DNA (represents more DNA 

in cell)                                               

   1095               1095                                   Phosphodioxy group (PO2
− in nucleic acids); Lipid 

   1129               1129                                               C-C skeletal stretch transconformation 

   1158               1158                                               Lipids and nucleic acids (C, G and A ) 

   1179               1176                                                               Cytosine, guanine 

   1213               1213                                                            Tyrosine, phenylalanine 

   1254               1254                             Lipid; A,T breathing mode (DNA/RNA); Amide III 

(protein) 

   1304               1304                                          CH2 deformation (lipid), adenine, cytosine 

   1306               1306                                                   C-N stretching aromatic amines 

 1317-9           1317-9                                                            Guanine (B,Z-marker) 

   1343               1342                            G (DNA/RNA); CH deformation (proteins and 

carbohydrates) 
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1400-30         1400-30                                      γ(C=O) O- (amino acids aspartic & glutamic 

acid) 

   1451               1450                                            CH2 deformation (nucleic acid, proteins, 

lipids) 

   1579               1581                                                  Pyrimidine ring (nucleic acids) 

   1608               1608                                                      Phenylalanine, Tryptophan        

   1660               1661                                                                      Amide I 

   1740               1740                                                                   Collagen III 

Band assignment is based on [43-51].  
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Figure 2.1 AFM images of living (a) A549 and (b) SAEC cells. Cells are imaged in culture 

media under physiological condition. Scale bar: 10 µm. Histograms of (c) Young’s 

modulus and (d) adhesion force distributions of A549 cells and SAECs.Data are expressed 

as mean±SD.   
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Figure 2.2 Comparison of (a) Young’s modulus and (b) adhesion force of A549 cells and 

SAECs control groups and DOX (70nM, 4hr) treated groups.Values represent mean ± SD 

(bar) of multiple cells. *p<0.05, **p<0.01. 
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Figure 2.3 AFM deflection (row 1), phase contrast (row 2) and fluorescence (row 3) 

corresponding images of SAEC and A549 control and DOX treatment (70nM, 4hr), 

obtained simultaneously using coupled AFM/FL microscope.Cells were fixed with 4% 

paraformaldehyde. In fluorescence images, F-actin was stained with phalloidin and nucleus 

was stained with DAPI. Scale bar: 10 µm, column 1 and column 2; 16 µm, column 3 and 

column 4.  
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Figure 2.4 Average Raman spectra and PCA analysis of A549 cells and SAECs for 

cytoplasm (a, b) and membrane (c, d) areas of control and DOX treatment (70nM, 4hr) 

experiment. 
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Figure 2. 5 (a) Average Raman spectra and (b) PCA analysis of A549 cells and SAECs for 

nucleus area of control and DOX treatment (70nM, 4hr) groups (n=32). 
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Figure 2.6 Raman intensity of the 720 cm-1, 1006 cm-1 and 1450cm-1 bands of A549 cells 

and SAECs under control and DOX treatment condition. 720 cm-1: DNA. 1006 cm-1: 

Phenylalanine (protein), 1450 cm-1: CH2 deformation of lipids. Scale bar represents 

standard deviation. Percentage numbers on column show the changes of peak intensity 

after DOX exposure.  *p<0.05, **p<0.01.  
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Figure 2.7 Representative fluorescence images of cell viability test. Images of A549 cells 

and SAEC control (column 1, 2) and with DOX treatment (column 3, 4) were exhibited. 

Cells were stained with Invitrogen LIVE/DEAD Viability/ Cytotoxicity Assay Kit. Green 

fluorescence presented live cells, whereas red fluorescence showed dead or membrane-

damaged cells. All images were obtained with 10× lens. These fluorescence images 

together revealed that A549 cells and SAECs which were used for AFM (row 1, 2) and 

Raman (row 3, 4) experiments were mostly alive. 
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CHAPTER 3 

IMAGING OF EPIDERMAL GROWTH FACTOR RECEPTOR ON SINGLE 

BREAST CANCER CELLS USING SURFACE-ENHANCED RAMAN 

SPECTROSCOPY2 

3.1 ABSTRACT 

Epidermal growth factor receptor (EGFR) is widely used as a biomarker for 

pathological grading and therapeutic targeting of human cancers. This study investigates 

expression, spatial distribution as well as the endocytosis of EGFR in single breast cancer 

cells using surface-enhanced Raman spectroscopy (SERS). By incubating anti-EGFR 

antibody conjugated SERS nanoprobes with an EGFR-over-expressing cancer cell line, 

A431, EGFR localization was measured over time and found to be located primarily at the 

cell surface. To further validate the constructed SERS probes, we applied this SERS probes 

to detect the EGFR expression on breast cancer cells (MDA-MB-435, MDA-MB-231) and 

their counterpart cell lines in which EGFR expression was down-regulated by breast cancer 

metastasis suppressor 1 (BRMS1).  The results showed that SERS method not only 

confirms immunoblotting data measuring EGFR levels, but also adds new insights 

regarding EGFR localization and internalization in living cells which is impossible in 

immunoblotting method. Thus, SERS provides a powerful new tool to measure biomarkers 

in living cancer cells. 

3.2 INTRODUCTION 

Epidermal growth factor receptor (EGFR), a receptor tyrosine kinase, is 

overexpressed in a variety of human cancers, including all breast cancer subtypes [1]. 

Overexpression of EGFR in breast cancer is generally associated with poor prognosis and 

2 L. Xiao, S. Harihar, D.R. Welch, A. Zhou, Imaging of epidermal growth factor receptor on single 

breast cancer cells using surface-enhanced Raman spectroscopy, Anal. Chim. Acta 843 (2014) 73-82 
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high recurrence rates [2]. Since EGFR status is related to cancer progression, there has 

been extensive research to develop agents targeting EGFR and its corresponding signaling 

pathways [3-5]. Therefore, improved methods to quantify and measure function of EGFR 

in breast cancer cells could improve diagnosis and treatment of breast cancer. 

Currently, the most commonly used methods to assess EGFR status in clinical 

cancer specimens are immunohistochemistry and immunofluorescence staining [6-8]. 

Quantification can be done using immunoblotting. However, these methods either need 

cell fixation (immunohistochemistry and immunoblotting), or face the problem of photo-

bleaching (immunofluorescence), rendering them non-suitable for measuring dynamic 

alterations of cell receptors and ligands. 

Surface-enhanced Raman spectroscopy (SERS) is a powerful analytical tool in 

biological applications which has attracted considerable attention recently. SERS offers 

extremely high enhancement and turns the weak inelastic scattering effect of photons into 

a structurally sensitive nanoscale probe [9]. In turn, one can realize ultrasensitive levels of 

detection and non-invasive tagging of specific bioanalytes in living cells and animals [10]. 

A key to the SERS technique is the metal nanoparticle (NP, e.g. AuNP or AgNP) encoded 

with sensitive Raman reporter molecules followed by the coating of mono- or multi-layer 

protective polymers (e.g. silica, polyelectrolyte and PEG) which improve stability and 

biocompatibility [11-14]. Several studies have reported using SERS probes to target cancer 

cells in vitro or in vivo [11, 14-19], including measurement of EGFR [11, 15, 19]. However, 

very little SERS studies were focused on EGFR cellular distribution, EGFR-mediated 

bioprocess, and how EGFR is regulated by metastasis suppressors. 
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Metastasis suppressors are a relatively recently described family of molecules that 

suppress the development of cancer metastasis without blocking primary tumor growth 

(reviewed in [20]). Of the approximately 30 metastasis suppressors (genes) identified to 

date, BRMS1 has been well characterized for its ability to regulate molecules that alter 

cellular response to micro-environmental signals which can be different between 

orthotopic sites (i.e., the mammary gland for breast cancer) and ectopic sites (i.e., sites of 

metastasis) [21], thought to explain why metastasis suppressors allow primary tumor 

growth, but not metastatic colonization. BRMS1 regulates EGFR [21] and osteopontin [22] 

expression, phosphoinositide [23], NFκB [24] and PKA [25] signaling, connexin 

expression and gap junctional intercellular communication [20, 26], all of which play 

significant roles in cancer progression. The mechanism by which BRMS1 does these 

myriad things is thought to be as part of SIN3 histone deacetylase regulation of chromatin 

structure [27]. 

Understanding how BRMS1 directly impacts cellular responses to signals from the 

microenvironment is thought to be key to defining the critical mechanisms of action. 

Unfortunately, the tools to measure ligand-receptor or antibody-antigen interactions are 

suboptimal for this purpose. Therefore, we designed a SERS probe based on 

polyelectrolyte-coated gold nanorods (AuNRs) to specifically recognize and detect EGFR 

molecules (via antibody-antigen interaction) on the cell surface of breast cancer cells. 

Using an EGFR over-expressing cell line (e.g., A341), we validated the ability of the 

antibody-conjugated SERS probe to measure EGFR distribution and internalization on 

single cancer cells. Then, using BRMS1-expressing cells and comparing them to their 

parental breast cancer counterparts, we demonstrated that our constructed SERS probe is 
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able to distinguish EGFR levels in different cancer cells and provide spatial information of 

EGFR expressed on single cancer cell surface. 

3.3 MATERIALS AND METHODS 

3.3.1 Materials 

 Ultrapure water (18 MΩ cm-1) was used in this work. All chemicals were purchased 

from commercial source and were used as received: gold nanorods (5.1  1011 particles 

mL-1, Nanopartz Inc., USA), monoclonal anti-EGFR antibody (Invitrogen). A431 cell line 

was obtained from American Type Culture Collection (ATCC). MDA-MB-435 (435), 

MDA-MB-231 (231), MDA-MB-435 expressing BRMS1 (435BRMS1) and MDA-MB-231 

expressing BRMS1 (231BRMS1) were described previously [21]. Cell culture media and 

supplies were purchased from Thermo Fisher Scientific Inc. (Waltham, MA). Other 

chemicals were purchased from Sigma-Aldrich (St. Louis, MO) at the highest available 

purity. 

3.3.2 Instrumentation 

 The morphology of the gold nanorods (AuNRs) SERS probe was determined by a 

FEI Titan 80-300 transmission electron microscope (TEM) in a bright-field mode. 

Extinction spectra of the AuNRs were taken by an Agilent Cary 60 UV-Vis 

Spectrophotometer controlled by Cary WinUV software. Dark field images of cell samples 

were obtained by using an Olympus IX71 Inverted Microscope equipped with an oil-

immersed dark field condenser (NA=1.5) and a 100 objective lens. Images were acquired 

using DPController software (Olympus). 
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3.3.3 Preparation of SERS probe 

 As shown in Figure 3.1a, the synthesis of the SERS probe includes three steps: (1) 

bare AuNRs and Raman reporter molecules 4-mercaptobenzoic acid (MBA) were mixed 

together with a molar ratio of 1:10000, conjugating the reporter molecules onto AuNRs 

through Au-S interaction; (2) polyallylamine hydrochloride (PAH) solution (28 mg mL-1, 

200 µL) and NaCl solution (1 mM, 100 µL) were added to 1 mL of AuNRs solution 

containing 1 nM MBA-AuNRs and reacted for 3 hr; and (3) after removing the excess PAH 

by centrifugation, monoclonal antibody anti-EGFR (0.21 mg mL-1, 10 µL) was added to 

the solution and incubated for 1 hr. Excess antibody was removed by centrifugation. The 

SERS probe was stable for several days at 4°C in solution. 

3.3.4 Cell culture 

 Cell lines were grown in a mixture of Dulbecco’s-modified Eagle’s medium 

(DMEM) and Ham’s F-12 medium (1:1) supplemented with 5% fetal bovine serum 

(Atlanta Biologicals, Atlanta, GA) in a humidified atmosphere at 37°C with 5% CO2. Cells 

were at 80~90% confluence when used for experiments. 

3.3.5 Immunoblotting 

 Cells were rinsed twice with ice-cold PBS and lysed in a buffer containing 25 mM 

Tris-HCl (pH 7.4), ß-glycerol phosphate (50 mM), EDTA (0.5 mM), glycerol (5%), triton 

X-100 (0.1%), sodium orthovanadate (1 mM), benzamidine (1 mM), and a protease 

inhibitor cocktail containing aprotinin, leupeptin, and phenylmethylsulfonyl fluoride 

(Roche, Indianapolis, IN). Protein concentration was determined using a BCA assay 

(Pierce, Rockford, IL). Protein was denatured with Laemmli’s buffer at 95°C for 5 min and 

lysate (50 μg) was loaded to each well. Proteins were separated using 10% SDS-PAGE gel 
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electrophoresis and resolved proteins were transferred to PVDF before incubating in Tris-

buffered saline containing Tween-20 (0.05%) and fat-free dry milk (5%) for 1 hr at room 

temperature. Membranes were incubated with primary antibodies to EGFR (Cell Signaling, 

Danvers, MA) β-Actin (Sigma, St. Louis, MO) and BRMS1 overnight at 4°C and 

subsequently with HRP-conjugated secondary antibody at room temperature for 1 hr. 

Signals were visualized using ECL (Pierce, Rockford, IL) following manufacturer’s 

instructions. 

3.3.6 Immunofluorescence imaging 

 To evaluate EGFR  localization, MDA-MB-435/231 and 435BRMS1/231BRMS1 cells 

grown on coverslips for 24 hr were fixed using 4% para-formaldehyde (Electron 

Microscopy Sciences, Hatfield, PA) for 20 min, and permeabilized using 0.1% Triton X-

100 (Union Carbide Corporation, Texas City, TX) for 10 min. After blocking with 5% BSA 

in PBS, cells were incubated with anti-EGFR antibody conjugated with Alexia Fluor 555 

at 1:50 dilution (Life technologies, Carlsbad, CA) in 5% BSA solution overnight at 4°C. 

After washing the cells thrice with PBS, the cover slips were mounted using Vectashield 

mounting solution containing the nuclear counter-stain 4′, 6-diamidino-2-phenylindole 

(Vector laboratories Inc, Burlingame, CA). Images were collected under a Nikon inverted 

epifluorescence microscope. Representative images were combined, and processed using 

ImageJ software. 

3.3.7 SERS measurement on living cancer cells 

 Cells were used at a density of 0.5  105 cells per milliliter. Media (2 mL) 

containing cells were placed on a cleaned magnesium fluoride (MgF2) optical window 

(United Crystals Co., Port Washington, NY) in order to minimize background in Raman 
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measurement. Cells cultured on MgF2 were incubated with the antibody conjugated SERS 

probes for different time (1.5, 3, 4.5 and 6 hr) and washed with PBS to remove non-

adsorbed probes prior to Raman measurements.  

Raman spectra were measured by a Renishaw inVia Raman system (controlled by 

WiRE 3.3 software, Renishaw, UK) connected to a Leica microscope (Leica DMLM, Leica 

microsystems, USA) equipped with a 785 nm near-IR laser that was focused through a 63 

water immersion objective (NA=0.90, Leica Microsystems). The instrument was calibrated 

with silicon (Raman peak centered at 520.5 cm-1). Raman spectra (600 and 1800 cm-1) were 

recorded using 1 accumulation per 10 sec laser exposure (1% laser intensity (3 mW) static 

mode). For Raman line and depth profiling, multiple spectra were acquired at different 

locations with constant intervals (line: 3 µm; depth: 1.5 µm). Spectral smoothing, baseline 

subtraction and Raman mapping generation were performed using Renishaw WiRE 3.3 

software. The processed spectra were exported to Origin Pro 8.5 software (OriginLab Corp., 

USA) for statistical analysis. 

3.3.8 Cell viability test 

The cell viability was analyzed using LIVE/DEAD Viability/Cytotoxicity Assay 

Kit (Invitrogen) according to the manufacturer’s instruction. Briefly, (1) cells were cultured 

in poly-D-lysine coated glass-bottom dishes (MatTek Cop. USA) and MgF2 substrate 

which was put in Petri dishes for 24 hr; (2) cells were then washed with PBS twice; (3) 2 

ml of mixed solution of 2 µM Calcein AM and 4 µM ethidium homodimer-1 (EthD-1) 

(both from Invitrogen) was added directly to cells, and incubated cells for 30 min at room 

temperature; (5) cells were imaged using fluorescence microscope with DP30BW CCD 

camera (Olympus IX71) to analyze the relative proportion of live/dead cells. Here, a 10× 
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objective was used to observe fluorescence. Calcein AM is well retained within live cells 

producing green fluorescence; however, EthD-1 enters cells with damaged membrane and 

binds to nucleic acids, thereby producing a red fluorescence in dead or membrane-damaged 

cells. Therefore, the live/dead cells were differentiated visually. 

3.4 RESULTS AND DISCUSSION 

3.4.1 Characterization of the SERS probe 

 Figure 3.1a illustrates preparation of the MBA-encoded, PAH-coated, and anti-

EGFR functionalized AuNRs as the SERS probes. The size and morphology of the SERS 

probes were visualized by TEM (Figure 3.1b). The successful coating of PAH and antibody 

was confirmed by a thin dim film on the surface of AuNRs and the slight red-shift of the 

maximum plasmon peaks (Figure 3.1c). MBA was used as a Raman reporter molecule to 

optimize SERS sensitivity due to its strong affinity to Au surface and simple SERS 

spectrum. The PAH molecule, a polyelectrolyte with positive charge, plays an important 

role by, not only preventing AuNR aggregation, but also providing biocompatibility to the 

SERS probes (Figure 3.2). Compared with other polymer coatings, such as thiol-PEG and 

silica, polyelectrolyte coating simplified the process, and more importantly, avoided 

adsorption competition with Raman reporters [14, 28]. Taken together, these conditions 

were expected to provide higher SERS sensitivity. 

Figure 3.1c shows the stepwise extinction spectra of the AuNR during the 

preparation process. The longitudinal plasmon resonance band for bare AuNR is located at 

ca. 770 nm, which is related to the 3.7 aspect ratio of the nanorods (Figure 3.1b). The 

nanorod longitudinal plasmon band (770 nm) is favorable in this work because it overlaps, 

in part, with the excitation laser source (785 nm), providing >10 surface enhancement 



65 
 

than substrates whose Plasmon bands do not overlap with the excitation source [29]. After 

coating with MBA, PAH and antibody, the longitudinal plasmon band maxima red-shifted 

5 nm, which is thought to be due to changes in local refractive index. Red shifts were also 

reported previously [14, 30, 31]. A typical SERS spectrum of the MBA-linked SERS probe 

is shown in Figure 3.1d. The two highest Raman peaks (1077 and 1588 cm-1) were observed 

and could be assigned to the ring breathing and axial deformation modes of MBA, 

respectively [32, 33]. Since the peak at 1077 cm-1 was the most stable and reproducible 

characteristic band for the reporter, MBA, it was used for further Raman analysis in this 

study. 

3.4.2 Detection of EGFR on single A431 cells 

 SERS has been widely applied since 1970s when it’s reported that molecular 

adsorption onto a roughened noble metal surface led to electromagnetic and chemical 

enhancement mechanisms [34, 35]. Using a molecule with an intense and distinguishable 

Raman signature as a reporter molecule for sensing and quantification is called extrinsic 

SERS (reviewed in [36]). In the presented work, the extrinsic SERS strategy is used—we 

are trying to detect cell surface receptor EGFR using anti-EGFR antibody targeted SERS 

nanoprobes, conjugated with MBA as reporter molecule, and track the EGFR localization 

by measuring the specific Raman signature of MBA. 

 In order to investigate whether the anti-EGFR functionalized SERS probe can 

successfully detect the expression of EGFR on cells, A431, which highly expresses EGFR 

[37-39], was used (Figure 3.3). The SERS probe were incubated with A431 cells under 

three different conditions: (1) cells were incubated with SERS probes without anti-EGFR 

antibody conjugation for 1.5 hr at 37°C (“No Antibody”, representing non-specific 
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interaction); (2) cells were incubated with anti-EGFR antibody-conjugated SERS probes 

for 1.5 hr at 37°C (“Antibody”); (3) cells were pre-blocked with free anti-EGFR antibody 

for 1 hr before incubation with the antibody-conjugated SERS probe for 1.5 hr 

(“Antibody_Block”). Typical SERS spectra for the three groups are shown in Figure 3.3a. 

“Antibody group” shows two major intense peaks at 1077 cm-1 and 1588 cm-1, while the 

peak intensities are very low in “No Antibody” group and “Antibody_Block” group. The 

Raman intensities at 1077 cm-1 for “Antibody” group was significantly higher (P<0.001, 

n=60) than the other two treatment groups (Figure 3.3b), demonstrating the specificity of 

the antibody-antigen interaction. SERS mapping images revealed intense signals in 

“Antibody” group but significantly less in the other two conditions (Figure 3.3c). Thus, the 

findings confirm that SERS specifically recognizes EGFR on A431 cells by antibody-

antigen interactions. 

3.4.3 Local distribution and depth profiling of EGFR on single A431 cells 

 The spatial distribution of EGFR on single A431 cell surface was also studied. 

Figure 3.4 shows the Raman line profiling spectra when the laser spot was scanning over 

different locations on a single A431 cell. Eleven separated locations across the cell were 

measured along a straight line (Figure 3.4a). Only at central locations (# 4~7) were there 

distinguishable SERS bands (Figure 3.4b). Figure 3.4c shows normalized SERS intensity 

at 1077 cm-1 at all 11 points on the cell surface. This Raman line profiling shows that EGFR 

markers were not homogeneously distributed on the cell surface, and seem mainly located 

on the central region of the cell surface of this selected cell. This kind of EGFR distribution 

had also been reported in some other studies, especially when EGF had been introduced 

[40, 41]. 
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To study antibody-functionalized gold nanoparticles are internalized via receptor-

mediated endocytosis [42, 43], a confocal Raman setting was applied to detect the SERS 

spectra collected at depth levels ranging from 0 (top, upper cell surface), 3 μm (middle, 

middle surface of the cell), to 6 μm (bottom, lower surface of the cell) (Figure 3.5). At 3-

hr incubation of the SERS probes with A431 cells, Raman streamline mapping (at 1077 

cm-1) of the same cells at three different depths (0, 3, and 6 μm) were captured sequentially 

(Figure 3.5a). Red areas in the mapping images represent the presence of the EGFR 

molecules in single A431 cells. Raman spectra at an EGFR aggregate at different depths 

(points 1-3, Figure 3.5a) are shown in Figure 3.5b. It shows the highest peak intensity at 

the apical surface and lowest at the basal cell membrane, indicating that majority of the 

AuNRs has still yet to be internalized at 3-hr incubation. To further study the EGFR-

mediated endocytosis of nanoparticle, we measured the Raman peak intensities at EGFR 

aggregates at top, middle and bottom of the cells with 1.5 hr, 3 hr, 4.5 hr and 6 hr incubation 

of SERS probes. As shown in Figure 3.5c, at 1-3 hr incubation, the highest peak intensities 

are at the top surface of the cells, indicating that the internalization level is low; while at 4-

6 hr incubation, the highest intensities are at the middle, which means most of the AuNRs 

are internalized into the cells. As reported, the process of EGFR mediated endocytosis is 

strongly influenced by the applied targeting ligands [44]. Here we used monoclonal 

antibody as the targeting ligand, which is much slower than the EGF targeted EGFR 

endocytosis [34]. This is because EGF can activate the receptor signaling, whereas the 

antibody binding is unable to lead to considerable downstream receptor activation. 

Fluorescence live/dead imaging test was conducted to prove that cells remained high 

viability (>95 %) after incubation with SERS probes for 1.5, 3, 4.5 and 6 hr (Figure 3.2). 
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3.4.4 BRMS1-regulated EGFR expression on MDA-MB-435 and MDA-MB-231 

breast cancer cells 

 EGFR was significantly down-regulated in BRMS1-expressing human breast 

cancer cell lines as previously reported [21]. In this report, the immunoblotting results 

showed that reduction of EGFR in 231BRMS1 cells was not as dramatic as previously 

reported. Nonetheless, the complete loss of EGFR in 435BRMS1 cells was readily apparent 

by immunoblotting (Figure 3.6a). Using SERS probe to measure EGFR (Figure 3.6b), 

435BRMS1 cells have significantly (P<0.001, n=60) lower levels than parental 435 cells. The 

results are not significantly different when comparing 231 and 231BRMS1 cells (P>0.05, 

n=60). The SERS results are essentially consistent with traditional western blot data 

(Figure 3.6a). However, SERS mapping provides the spatial distribution of EGFR at the 

single cell level that western blot does not have. 

 Dark-field microscopic imaging was also done (Figure 3.6c-f) since AuNR scatter 

light intensely and they are much brighter than cells in the dark field [45, 46]. The presence 

of many bright spots on 435 cells (Figure3.6c) reflects abundant EGFR expressed, while 

the abundance of spots is negligible on 435BRSM1 cells (Figure 3.6d). The numbers of bright 

spots in 231 cells are not readily distinguishable than those observed in 231BRMS1 cells, 

consistent with the western blot results. Based on the dark field images and SERS spectra 

in living cells, the constructed SERS probes can be utilized as multimodal cell imaging 

sensors. 

 Recognition of EGFR molecules and analysis of their distribution on single cells 

was done by SERS mapping at 1077 cm-1 comparing 231 and 435 cells with their BRMS1-

expressing counterparts (Figure 3.7). Bright field images (upper panel) and their 
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corresponding SERS maps (lower panel) were simultaneously recorded. EGFR was 

heterogeneously distributed on the plasma membrane. To further validate the observations 

from SERS method, 435, 231, 435BRMS1 and 231BRMS1 cells were labeled with anti-EGFR 

antibody conjugated to Alexia Fluor 555 to measure EGFR localization using 

immunofluorescence (IF) imaging. As presented in Figure 3.8, the IF images confirmed 

the down-regulation of EGFR expression by BRMS1 gene in MDA-MB-435 and MDA-

MB-231 cells as our SERS results suggested.  The consistency between SERS and IF 

results indicates SERS is a tool as powerful as IF to detect cellular receptors as single-cell 

level. Moreover, SERS possesses potential advantages over fluorescence in multiplex 

imaging of cell receptors due to much narrower spectroscopic bands of Raman spectra. 

3.5 CONCLUSIONS 

 We developed a AuNR-based SERS probe that allows live-cell targeting and 

imaging of EGFR, a widely recognized breast cancer marker. The probe successfully 

detected EGFR and distinguished heterogeneity in its distribution on the plasma membrane 

of cells growing in culture. Furthermore, using Raman depth mapping, internalization of 

the SERS probes could be monitored temporally and spatially. Data using the SERS probes 

are consistent with standard detection methods, but affords the capability to measure 

dynamic changes molecules in living cells. Thus, our SERS probes can be used as a 

noninvasive sensing agent for detection of spatial distribution and dynamic change of 

EGFR on living breast cancer cells at the single cell level, which is a significantly 

complement to the traditional biochemical approaches like immunoblotting and 

immunofluorescence. This work also demonstrated the potential of using SERS to 

investigate EGFR-involved physiological process such as EGFR-mediated nanoparticle 
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uptake and EGF-EGFR interaction. Our future work is to study multiple cell surface 

receptors and their interactions by using different Raman reporter labeling; besides, using 

tip-enhanced Raman Spectroscopy (TERS) would be alternative option allowing us to 

achieve single-molecular detection of cell receptors at nanoscale cell surface. 
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Figure 3.1 (a) Schematic illustration of the fabrication of the gold nanorods-based, 

antibody-functionalized SERS probe. (b-d) Characterizations of the SERS probe. (b) TEM 

image of the bare AuNRs, scale bar is 50 nm. (c) Extinction spectra of the AuNRs at each 

step of the coating process. (d) SERS spectrum of the antibody-functionalized AuNRs with 

4-MBA as the reporter molecules. AuNR: gold nanorod; 4-MBA: 4-mercaptobenzoic acid. 
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Figure 3.2 Fluorescence cell viability test. Cells were stained with Invitrogen LIVE/DEAD 

Viability/Cytotoxicity Assay Kit. Green fluorescence presented live cells, whereas red 

fluorescence showed dead or membrane-damaged cells. All images were obtained with 

10× lens. The viability test shows that over 95% of A431 cells are alive after incubation 

with SERS probes for 1.5, 3, 4.5 and 6 hr. Over 500 cells were counted for each of the 

incubation times. 
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Figure 3.3 Performance assessment of constructed SERS probe. (a) Typical SERS spectra, 

(b) normalized average Raman intensities at 1077 cm-1 (curve numbers, n=60), and (c) 

typical single-cell bright-field and corresponding SERS mapping images of A431 cells 

incubated with (1) SERS probes without anti-EGFR antibody conjugation (No Antibody); 

(2) anti-EGFR antibody-conjugated SERS probes (Antibody); (3) free anti-EGFR  

antibody molecules prior to the incubation with antibody-conjugated SERS probes 

(Antibody_Block). Raman spectral images were created by the selection of peak 1077 cm-

1. The intensities were normalized between the lowest (0) and highest (1) color values. 

Image size: 30  30 μm2. * P<0.001.  
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Figure 3.4 Raman line profiling of SERS probes bind to single A431 cell surface. (a) Image 

of an A431 cell showing 11 different locations with Raman measurements. (b) Raman 

profiles of the 11 points shown in (a). (c) Normalized Raman intensities at 1077 cm-1 at 

those eleven different locations. 
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Figure 3.5 Raman depth profiling of SERS probes bound to single A431 cell surface. (a) 

Raman streamline mapping (at 1077 cm-1) of a living A431 cell. Three images (top, middle, 

and bottom) were respectively obtained at three different depths (0, 3 and 6 μm), when the 

cells were incubated with the SERS probes for 3 hrs. (b) The typical SERS spectra 

measured on the single cell shown in (a) at locations 1-3 with different depths. (c) Raman 

intensities (1077 cm-1) at different depths with 1.5, 3, 4.5 and 6 hr incubation times, n=90, 

Error bar: SE of mean. Image size: 52  39 μm2. 
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Figure 3.6 Comparison of EGFR detection by (a) immunoblotting and (b) SERS probes on 

MDA-MB-435 and MDA-MB-231 breast cancer cells, and their BRMS1 expressing cell 

lines MDA-MB-435BRMS1 and MDA-MB-231BRMS1. (c-f) Dark field images of the SERS 

probes on MDA-MB-435 and MDA-MB-231 cells with (c, e) and without (d, f) BRMS1 

expression. * P<0.001. n = 60, number of spectra collected.  
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Figure 3.7 Bright field and SERS mapping (1077 cm-1) images of four breast cancer cell 

lines: 435, 435BRMS1, 231 and 231BRMS1. The intensities were normalized between the 

lowest (0) and the highest (1) color values for each pair of 435 vs. 435BRMS1, and 231 vs. 

231BRMS1. Mapping size for all images is 30  30 μm2. 
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Figure 3.8 Immune-fluorescence images for showing the expression of EGFR in MDA-

MB-435, MDA-MB-435BRMS1, MDA-MB-231 and MDA-MB-231BRMS1 cells. First 

column: EGFP; second column: EGFR; third column: nucleus; fourth column: merge of 

first three columns. 

 

 

  



85 
 

CHAPTER 4 

SIMULTANEOUS TOPOGRAPHIC AND SINGLE MOLECULE 

RECOGNITION IMAGING OF EPIDERMAL GROWTH FACTOR RECEPTOR 

(EGFR) ON SINGLE HUMAN BREAST CANCER CELLS 

4.1 ABSTRACT  

Epidermal growth factor receptor (EGFR) plays an important role in signaling 

pathway of the development of breast cancer cells. Since EGFR over expresses in most 

breast cancer cells, it is regarded as a biomarker molecule of breast cancer cells. Here we 

demonstrated a new AFM technique—topography and recognition imaging (TREC)—to 

simultaneously obtain highly sensitive and specific single-molecule recognition images 

and high-resolution topographic images of EGFR on single breast cancer cells. 

4.2 INTRODUCTION 

Epidermal growth factor receptor (EGFR) is a member of receptor tyrosine kinase 

(RTK) family of signaling proteins. It was the first mammalian signaling protein to be fully 

characterized [1].  The activation of EGFR is normally controlled by the interaction with 

their ligands such as EGF and TGF-α, providing cells with substantial differentiation and 

growth advantages [2]. However, it has been found that aberrant expression or activation 

of EGFR appears to be an important factor in both the initiation and the progression of 

human caner [3-5]. For example, in human breast carcinoma (EGFR positive), expression 

of EGFR was reported to support the existence of tumor cells with aggressive potentials 

[6]. The expression level of EGFR in metastatic breast tumors was often higher than 

primary tumors, indicating that EGFR was involved in the process of metastasis [7, 8]. 

Overexpression and abnormal function of EGFR and its ligands have been found in many 
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different types of human cancers [5]; this makes it a great prognostic indicator for the 

development of malignancies. Furthermore, therapeutic strategies have been developed, 

using small biomolecules (e.g. monoclonal antibody, kinase inhibitors) to block the binding 

of EGFR and its ligands, consequently blocking receptor activation and transduction of 

post-receptor signals [9, 10]. 

Recent study has shown that EGFR functionality can be dependent on its 

subcellular location and mislocated EGFR may regulate tumor response to therapy [11]. 

Therefore, localization of EGFR on cancer cells is of great importance. However, it is very 

challenging to probe the spatial and temporal distribution of specific cell receptors and 

their signaling-related molecular actions in molecular cell biology [12, 13]. In recent years, 

sophisticated technologies have been developed to achieve the identification and 

localization of those biomolecules in cells. Among them are (1) fluorescence imaging with 

improved spatial resolution, which can offer the approach to monitor the dynamic 

information about the localization, distribution of biomolecules and their cell-signaling 

actions [14, 15]; (2) electron-dense probes and electron microscopy, which provide 

nanometer resolution in characterizing and mapping membrane receptors and signaling 

molecules [16]; (3) a combination of quantitative mass spectrometry and cryo-electron 

tomography, providing insights into the distribution of specific protein complexes in 

cytoplasm [17, 18]. Although these advanced technologies have significantly improved the 

capability of detecting and localizing cell receptors, some limitations still remain: high 

spatial and temporal resolution, the requirement of physiological and dynamic condition, 

and the chemical specificity. Few techniques can overcome all these limitations and 

provide critical measurements of cell membrane receptors. 
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Since its invention in 1980s, atomic force microscopy (AFM) has become a 

powerful tool technique for analyzing the morphology of individual molecules at 

nanometer scale and the forces acting on them with piconewton sensitivity. As to the study 

of biological samples, AFM presents significant advantages than other microscopic 

methods since it allows single-molecule level studies of the structure and interaction of 

complicated biomolecules and cells with nanometer spatial resolution [19], and it allows 

samples to be measured in liquid phase, enabling the study of dynamic interactions between 

biomolecules under physiological condition. Simultaneous Topography and RECognition 

(TREC) imaging, a new AFM technique based on the high-resolution topographic imaging 

and single-molecule force measurement [20, 21], has been developed for receptor imaging 

with high spatial and temporal resolution, providing exceptional information that is 

complementary to that obtained by fluorescence and electron microscopy [22]. For 

example, TREC imaging has been successfully used to visualize, at the first time, the 

localization and distribution of Na+-K+ ATPases in the inner leaflet of cell membranes at 

single-molecule level [23]; by employing TREC, the local organization of Fcγ receptors 

on single macrophage cell has been determined at single-molecule level [24]. In addition 

to cell receptor imaging, TREC imaging technique has also been extensively used to 

monitor specific biomolecules while they are undergoing biological processes.  Wang et 

al. [20, 25, 26] applied TREC to study the action of human Swi-Snf nucleosome 

remodeling complex and its interaction with mouse mammary tumor virus promoter during 

the process of nucleosome remodeling, proving the crucial role of ATP activation in the 

process. Besides, they were also able to recognize the glycosylation process of 
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biomolecules by using TREC imaging, and distinguish normal and aberrant antibodies 

based on their glycosylation [27].  

In this context, we applied TREC imaging method to detect and localize EGFR at 

single molecule level. Single molecule recognition using monoclonal antibody (anti-EGFR) 

tethered scanning tip was converted to high resolution Topography and Recognition images. 

The recognition efficiency was tested in a spatio-temporal manner by introducing EGF as 

a competing ligand, when conducting TREC imaging of EGFR using antibody-tethered 

AFM tips. We measured the density and distribution of EGFR on breast cancer cell lines—

MDA-MB-435 (435) and 435 transfected with BRMS1 gene (BReast cancer Metastasis 

Supressor 1 [28, 29], 435BRMS1). In addition, the advantages of TREC imaging over 

conventional detection methods (e.g. immunofluorescence, western blot) have been 

discussed. 

4.3 MATERIALS AND METHODS  

4.3.1 Sample preparation and cell culture 

    For TREC imaging on mica, epidermal growth factor receptor (EGFR, Life 

Technologies, Grand Island, NY) solution (21μg/ml, in 0.1X PBS) was dropped onto newly 

pealed mica surface and left 10min for adsorption. Rinse several times with DI water to 

wash away incompletely adsorbed EGFR and then load mica onto sample plate for 

recognition imaging. 

435 and 435BRMS1 cells were measured. 435BRMS1 cells were transfected with a 

lentiviral vector construct expressing full length BRMS1 cDNA under the control of a 

cytomegalovirus promoter [30]. 435 and 435BRMS1 cells were cultured in a 1:1 mixture of 

Dulbecco’s-modified eagle’s medium (DMEM) and Ham’s F-12 medium supplemented 
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with 5% fetal bovine serum (Hyclone, Logan, UT). Cells were cultured in 25-cm2 corning 

tissue culture dishes at 37 ℃ with 5% CO2 in a humidified atmosphere. Cells were 

passaged at 80–90% confluence using 2 mM EDTA in Ca2+/Mg2-free PBS (PBS, 0.01 M, 

pH 7.4, Thermo Scientific). Cell lines were confirmed to be free of mycoplasma 

contamination using PCR (TaKaRa-Clontech, Mountain View, CA). No antibiotics or 

antimycotics were used during routine culture. For TREC imaging on cell surface, cells 

were fixed with paraformaldehyde and measured in PBS buffer. 

4.3.2 AFM tip functionalization 

    Magnetically coated silicon-nitride AFM tips (Type VI MAC Levers, Agilent 

Technologies, Chandler, AZ) were functionalized with anti-EGFR antibody using the 

method reported previously [20]. Briefly, MAC levers were first amino-functionalized with 

APTES (aminopropyltriethoxysilane, Sigma-Aldrich, St. Louis, MO) under the 

atmosphere of argon. Subsequently, after rinsing with methylene chloride (Sigma-Aldrich) 

for 3 times, MAC levers were attached to NHS-PEG-SS-Pyr (PolyPure, Oslo, Norway) by 

incubating the tips with the PEG linker for 2hr, with the presence of triethylamine. At the 

same time, monoclonal antibody to EGFR (anti-EGFR, Life Technologies, Grand Island, 

NY) was thiolated by reacting with with N-cuccinimidyl 3-(acetylthio) propionate (SATP, 

Sigma-Aldrich) and subsequently purified in a PD-10 column (GE Healthcare). Finally, 

the thiolated antibody was conjugated to the AFM tip via the PEG crosslinker by 1h 

incubation in deacetylation buffer (hydroxylamine hydrochloride and Triz Base, Sigma 

Aldrich). Antibody functionalized MAC levers were then rinsed with PBS buffer and 

stored in 4 ℃ before use. 
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4.3.3 AFM recognition imaging 

AFM recognition imaging was performed on a PicoPlus AFM system with a 

commercially available electronic attachment (PicoTREC, Agilent Technologies). 

Topography and recognition images were recorded simultaneously by using functionalized 

MAC levers with nominal spring constant of 0.292 N/m. During TREC measurement, a 

half-amplitude feedback loop was used to measure the unbiased topography. Eight to ten 

nm free oscillation amplitude and ~20 kHz driving frequency of the tips were chosen to 

obtain optimized recognition images. All these parameters were set to make the TREC 

measurements more easy, robust and reliable [31]. Image processes (including smooth, 

contrast adjustment) and the height and width measurements of tested proteins were 

performed using PicoView software (Agilent Technologies).  

The single cell AFM images were taken under contact mode with the instrument 

setting exactly the same as previously described [32, 33]. 

4.3.4 Image processing 

We employ an adaptive threshold-based segmentation method to find white spots 

in a topological image and dark spots in a recognition image.  We first convert the original 

color image to a grayscale image.  For the recognition image, we also invert its intensity 

so the darkest spot turns to the brightest spot and vice versa.  After this processing, we aim 

to separately find white spots in the grayscale image of the topological image and the 

inverted grayscale image of the recognition image.  To this end, we first compute the 

average intensity and the standard deviation of the grayscale image.  The threshold is then 

computed as the sum of the average intensity and the standard deviation.  For the 

topological image, we simply mark any position with the pixel intensity larger than the 



91 
 

threshold as the white spot.  For the recognition image, we similarly mark any position 

with the pixel intensity larger than the threshold as the dark spot due to the inversion 

process.  Finally, we apply a logical "AND" operation to find the common areas shown up 

in both white spots of the topological image and dark spots of its paired recognition 

image.  These areas are then overlaid on top of the original topological image to show the 

white spots in topological image that have been simultaneously recognized in the 

recognition image as the dark spots. 

We implemented the image segmentation method using Matlab 2012(b). 

4.4 RESULTS  

4.4.1 Functionalization and SEM characterization of AFM MAC lever 

Functionalization of AFM MAC Lever tips with anti-EGFR antibody was the key 

point to achieve successful TREC measurements. As shown in Figure 4.1a, a procedure 

with 4 steps involved has been implemented to conjugate anti-EGFR monoclonal antibody 

with AFM tip to construct an EGFR-specific AFM nanosensor tip. It should be noted that, 

in this method, a PEG chain was applied to link the tip and the antibody due to its flexibility 

that allows for reorientation of the sensor molecule when the tip approaches the surface 

[34, 35]. The free oscillation amplitude was set comparable to the extended length of the 

PEG linker (~8nm) so that antibody on the tip remained bounding to the antigen on the 

surface during imaging and kept high lateral accuracy as well [35]. The morphologies of 

bare MAC Lever tip (Figure 4.1b) and anti-EGFR antibodies modified tip (Figure 4.1c) 

were characterized by scanning electron microscope (SEM). It is clearly seen that the 

morphology of modified probe was different from bare probe with the presence of “bumps” 

or “clusters” on the surface.  
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4.4.2 Specificity, Efficiency and Reproducibility of TREC 

To evaluate the feasibility and efficiency of this TREC imaging method, we first 

chose mica as the substrate, since it’s flat at atomic level and its much simpler 

circumstances than cell membrane surface. EGFR molecules were adsorbed onto the mica 

surface through electrostatic interaction. When anti-EGFR antibody-tethered AFM tip 

approached the surface and scanned through the surface, antibody-antigen recognition 

events occurred, simultaneously generating maps of the surface topography (Figure 4.2a) 

and recognition (Figure 4.2b) signals. “Bright spots” on Figure 4.2a represent single 

molecules or aggregates of EGFR, and the corresponding “dark spots” on Figure 4.2b 

represent the recognition events of EGFR. These events were originated from the tip-

tethered antibody binds to antigens, restricting the tip to oscillate upwards and leading to 

the reduction of the oscillation amplitude. To test the specificity of the recognition process, 

an anti-EGFR solution (20 μg/mL) was injected via a liquid flow cell to block the 

interaction between tip-tethered anti-EGFR and EGFR on the surface. After 10 min 

adsorption, “dark spots” on recognition image were disappeared when conducting scan on 

the same location (Figure 4.2c). Cross section analysis along the recognition events (green 

lines on Figure 4.2a, b, and c) showed that before free anti-EGFR blocking, there were 

significant recognition signals (Figure 4.2e) corresponding to the topography signals 

(Figure 4.2d), which indicated the height of molecules on the surface; however, as blocked 

by excess specific antibody, recognition signals of the antigens were dramatically 

decreased (Figure 4.2f).  Furthermore, as a control experiment, bare tip was employed to 

scan EGFR on mica surface (Figure 4.3a). Apparent features on topography image were 

presented, while no features were shown on recognition image. After a BSA solution (50 
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μg/mL) was injected and let adsorbed for 10 min, recognition events still appeared as 

antibody-tethered tip scanning on the surface (Figure 4.3b), showing that non-specific 

protein-protein interaction wouldn’t affect the recognition. All these results indicate the 

recognition events were highly specific—only EGFR molecules were recognized when 

sensing with anti-EGFR antibody-tethered AFM tip. 

Efficiency of the EGFR recognition was also tested on mica. As shown in Figure 

4.4, bright spots in topography image and dark spots in recognition image were labeled by 

a pair of green dots, representing a pair of recognition events took place. In this typical 

image, almost all features (45 out of 47) in topography image were recognized, indicating 

perfect recognition efficiency of this TREC imaging method to detect EGFR through 

specific antibody-antigen interaction. In addition, to test the reproducibility of recognition, 

the sample was rescanned at the same position. Only a few changes labeled with blue dots 

and circles had happened in the rescan of the same area, showing generally high 

reproducibility of the recognition. 

4.4.3 EGF effects on TREC imaging of EGFR 

EGF acts as a competing ligand that may affect the recognition of EGFR by AFM 

tip-tethered anti-EGFR. To investigate how EGF affects the antibody-antigen recognition 

between EGFR and its antibody, we applied TREC imaging to measure EGFR on mica 

with and without EGF presence. As shown in Figure 4.5, when EGFR was presented alone 

on the mica surface (Figure 4.5a), the recognition events (green) occurred at the most of 

the “bright spots” area, indicating the high recognition efficiency between the tip-tethered 

antibody and the EGFR; however, the TREC image scanned at 10 min after EGF (20 μg/mL) 

introduction (Figure 4.5b) showed only reduced level of recognition, revealing the 
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incomplete blocking by EGF on the binding sites between EGFR and its antibody. 

Analyses of multiple images show that the average recognition percentage dropped from 

84.3% to 57.4% when EGF is presented as a competitor (Figure 4.5c). Comparing the 

partial block by EGF with the complete block by anti-EGFR antibody (Figure 4.2c), it is 

suggested that the binding affinity to EGFR is higher for anti-EGFR antibody than for EGF. 

4.4.4 TREC Imaging of EGFR on 435 and 435BRMS1 cells 

Morphologies of single 435 and 435BRMS1 cells were visualized by contact mode 

AFM, and they have been shown to be very different (Figure 4.6a-d). Typical topography 

and deflection images of 435 cells are shown in Figure 4.6a and c.  The shape of 435 cells 

was observed to be round-like and the nucleic area possessed the most part of cell, which 

is typical for cancer cells. Nevertheless, as shown in Figure 4.6b and d, the 435BRMS1 cell 

has an elongated morphology and nucleus is smaller comparing with the 435 cell. Changes 

in cell morphology caused by BRMS1 transfection has also been previously reported [36]. 

While features like chemosensitivity were not significantly affected by BRMS1 [37], the 

BRMS1 did regulate the expression of several cellular receptors, such as EGFR [8, 38]. 

TREC imaging method was carried out to further probe the local distribution of 

EGFR molecules on the membrane surface of 435 and 435BRMS1 cells. Comparing with the 

TREC images on mica surface, the images on cells were less distinct with the distribution 

of EGFR due to the complexity of cell membrane surface. We then applied an image 

segmentation method to find out the corresponding “recognition sites” in topography and 

recognition images, and superimpose the recognitions sites (green) onto corresponding 

topography images (Figure 4.7a). The presence of recognition events were also confirmed 

by the corresponding peaks occurred in the line profiles along the images (Figure 4.7b). It 
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is found that EGFR heterogeneously distributed on 435 cells and tended to form domains 

with a scale of a few nanometers (Figure 4.6e); with the expression of BRMS1, the numbers 

of EGFR binding sites reduced and smaller domains were observed (Figure 4.6f). The 

smallest “clusters” showing the recognition sites of EGFR molecules were nanometer scale, 

which is comparative to the size of single molecule of EGFR, indicating that TREC is able 

to achieve analysis of biomolecules at single-molecule level. Furthermore, the whole 

imaging process was done within several min, which means TREC imaging is capable of 

in situ monitoring many biological processes such as the activation of EGFR molecules by 

their specific ligands (e.g. EGF, TGF-α). 

4.5 DISCUSSION 

4.5.1 BRMS1 role in EGFR regulation 

It has been known that BRMS1 is a member of metastasis suppressors, which 

inhibit metastasis without blocking orthotopic tumor formation in metastatic cascade [39, 

40]. Previous studies have shown that the expression of BRMS1 in 435 cells regulates 

biomechanical properties including cell adhesion and cell elasticity [36], which probably 

induced by reorganization of cytoskeletal structures [41, 42]. Also, it has been reported that 

BRSM1 regulates the expression of growth factor receptors in 435 cells by differentially 

modulates their signaling pathway [8]. Aberrant EGFR signaling results in many 

pathological diseases like neural developmental disorders and cancer [43]. Further, EGFR 

signaling is mainly up-regulated in breast cancers through activation of NF-κB activity, 

and BRMS1 has been shown to affect NF-κB activity [44, 45]. To probe this link, we 

explored whether BRMS1 altered signaling through EGFR. Our previous work [38] has 

confirmed that BRSM1 down-regulated the expression of EGFR in 435 breast carcinoma 
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cells. However, up to now, there is no study reported the ability to obtain the information 

about the local distribution of EGFR with nanoscale spatial resolution, which is necessary 

to study the cellular biology of cell receptors, such as the interaction between receptors and 

their specific ligands. TREC imaging presented high specificity, reproducibility and 

recognition efficiency at nanoscale. Therefore, TREC imaging method has been applied in 

order to identify the local binding sites of EGFR on single breast cancer cells. 

4.5.2 Biological application of TREC imaging 

Figure 4.8 briefly shows the principle of TREC imaging method. The basic 

principle of TREC imaging is based on small alterations in cantilever oscillation amplitude 

that occur when tip-tethered antibodies bind to their antigens. When the oscillating 

antibody-tethered AFM tip scans through the sample, the tethered antibody binds to an 

antigen on the surface and the upward oscillation of the cantilever is restricted by specific 

antibody-antigen binding force, leading to the decrease in the oscillation amplitude. This 

reduction of amplitude is sensed by the microscope servo and converted into reduction of 

the recognition signal (peak voltages). Therefore, a map of recognition signals, together 

with simultaneously generated topographic image, localizes the antibody-antigen binding 

events with pairs of bright and dark spots showing on the image.  

Applications of TREC technique in biomedical research is certainly an increasingly 

demanding task. Up to now, TREC imaging method has been applied to visualize quite a 

few different biomolecule systems, such as biotin-avidin [46, 47], ligand-receptor [48, 49], 

and antibody-antigen interactions [20, 23]. In this study, we utilized TREC imaging to 

visualize EGFR molecules on complex cell membrane surface, providing a new example 

of the applications of this methodology in biomedical research. Due to the significant role 
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of EGFR in cancer research, our work appears to inspire an alternative approach to primary 

cancer diagnostics. Furthermore, TREC approach has the potential to study the dynamic 

activation process of EGFR, which is of great significance, because EGFR can be activated 

by its specific ligands (e.g. EGF, TGF-α), leading to the growth and spread of tumor [50]. 

Time resolution may be the concern. At present, it takes several min to record a recognition 

image, which is more than enough for the activation and endocytosis of EGFR molecules.  
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Figure 4.1 (a) Fabrication AFM MAC lever: (1) MAC lever amination; (2) link MAC lever 

with PEG linker; (3) antibody activation by SATP; (4) SATP-antibody conjugate to AFM 

tip. (b) SEM image for bare tip. (c) SEM image for anti-EGFR functionalized tip. 
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Figure 4.2 Specificity of recognition. (a) Topographic image and (b) corresponding 

recognition image of EGFR on mica. (c) Recognition image of EGFR after blocking by 

free anti-EGFR. (d, e, f) Cross section analysis along the green line in (a, b, c). Scan area: 

500nm*500nm. 
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Figure 4.3 Topographic image, corresponding recognition and cross section profile of 

EGFR on mica under two conditions: (a) bare tip scans on EGFR only; (b) anti-EGFR 

antibody-tethered tip scans on EGFR with BSA presence. Scan area: 500nm*500nm. 
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Figure 4.4 Demonstration of recognition events. A pair of green dots in topography (a) and 

corresponding recognition (b) images represents a recognition event. After rescanning at 

the same location, changes in recognition events are labeled in the same recognition image 

(b). Green dot surrounded by a blue circle means a recognition event appear in the first 

scan but not in the second scan; blue dots represent recognition events appeared in the 

second scan but not in the first scan. Scan area: 2000nm*2000nm.  
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Figure 4.5 EGF influence on the recognition of EGFR on mica. Recognition events of 

EGFRs (green) superimposed on corresponding topography images before (a) and 10 min 

after (b) the introduction of EGF solution (20 μg/mL). (c) EGF effect on recognition 

percentage.  
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Figure 4.6 Single 435 and 435BRMS1 cells’ morphologies and their EGFR expression 

measured by TREC. (a-d) are the topography images (a, b) and corresponding deflection 

images (c, d) of Single 435 (a, c) and 435BRMS1 (b, d) cells. (e, f) are recognition events of 

EGFRs (green) superimposed onto corresponding topography images of 435 (e) and 

435BRMS1 cells (f).  
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Figure 4.7 (a) Recognition image of EGFRs (green) superimposed on corresponding 

topography images of 435 cell. (b) Cross section profile along the red line in (a). 

Corresponding peaks were occurred at the positions of recognition sites, indicating the 

recognition events. 
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Figure 4.8 Schematic illustration of the TREC imaging method. 
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CHAPTER 5 

Gd2O3-DOPED SILICA @ GOLD NANOPARTICLES AS PROBES FOR IN 

VITRO CANCER BIOMARKER IMAGING USING SURFACE-ENHANCED 

RAMAN SPECTROSCOPY 

5.1 ABSTRACT 

Here we report a novel nanomaterial composed of gadolinium oxide-doped silica 

nanoparticles and gold nanoparticles (Gd-Au NPs), which can be used for detection and 

imaging of epidermal growth factor receptor (EGFR) on individual human cancer cells 

with surface-enhanced Raman scattering (SERS). The Gd-Au NPs were sequentially 

conjugated with a monoclonal antibody recognizing EGFR and a Raman reporter molecule, 

4-meraptobenzoic acid (MBA), to generate characteristic SERS signal at 1075 cm-1. By 

spatially mapping the SERS intensity at 1075 cm-1, cellular distribution of EGFR and 

relocalization on the plasma membrane were measured. In addition, the EGFR expression 

level in three human cancer cell lines (S18, A431 and A549) was measured using this SERS 

probe, which was consistent with the comparable measurements using immunoblotting and 

immunofluorescence.  

5.2 INTRODUCTION 

Noninvasive cancer imaging to exhibit tumor anatomical structure and to 

investigate its metabolism plays an important role in early cancer detection and localization 

[1]. Currently, there are several imaging modalities widely applied in cancer research, such 

as magnetic resonance imaging (MRI) [2-5], photoacoustic (PA) imaging [6-8], surface-

enhanced Raman scattering (SERS) [9-11] and optical fluorescent imaging [12-15]. 

Although each individual modality has specific advantages in cancer imaging, none of 
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them is able to support comprehensive structural and functional studies of tumors 

independently. Thus, there has been an interest in developing multimodal approaches to 

combine the advantages of these individual imaging modalities, as well as to compensate 

for the weaknesses of individual imaging modalities. Recently, several composite 

nanoparticles have been successfully synthesized and applied to multimodal imaging [16-

21]. These composite nanoparticles are usually constructed by combining together nano-

components, which are effective contrast agents for different imaging modalities. For 

example, Gao and co-workers [16] synthesized an iron oxide and gold-coupled core-shell 

nanoparticles to integrate both MRI and PA imaging, which provided remarkable contrast 

enhancement in bioimaging. Despite quickly growing interest in designing multifunctional 

imaging contrast agents, the challenge remains to combine different imaging modalities 

while preserving the controlled particle size. 

Among varied imaging modalities, MRI has the advantages of high spatial and 

temporal resolution and unlimited tissue penetration, which make it a great technique for 

clinical diagnostics. But it also suffers the limitation of insufficient sensitivity and it is 

unable to detect the subcellular distribution of the nanoscale contrast agent in living cancer 

cells. In recent years, SERS has become an emerging non-invasive imaging tool in 

detection of cancer cells and cancer biomarkers, due to its ultrahigh sensitivity and the 

ability to reflect subtle changes in chemical composition and molecular structure of living 

cells [22-24]. To date, only a few studies have been published integrating MRI and SERS 

for multimodal bioimaging [17, 18], even though this combination can achieve both high 

resolution and high sensitivity. We previously reported a gadolinium-doped mesoporous 

silica nanoparticle (Gd2O3@MCM-41) as an efficient MRI contrast agent for cancer 
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imaging [25, 26]. In addition, we incorporated the gadolinium-doped mesoporous silica 

nanoparticle and gold nanoparticle (AuNP) into one single nano-system to form a 

composite Gd-Au nanostructure (Gd2O3@MCM-41@Au) [27]. The Gd-Au 

nanocomposite was an efficient amplification strategy to increase MRI signals for in vivo 

cancer imaging. MRI alone did not show enough sensitivity to study the relocation and 

endocytosis of surface markers at subcellular level. 

Epidermal growth factor receptor (EGFR) is a cell surface receptor tyrosine kinase 

that, when activated by binding its specific ligands (e.g. EGF, TGF-α), triggers cell 

signaling pathways that result in cell proliferation, inhibition of apoptosis, angiogenesis, 

cell migration, adhesion and invasion [28, 29]. EGFR over-expression and up-regulation 

have been reported in variety of cancers, including breast [30], lung [31], and esophageal 

[32]. As a result, EGFR is the target in an expanding class of anticancer therapies [31, 33]. 

Here we report  synthesis and characterization of a Gd-Au nanocomposite 

(Gd2O3@MCM-41@Au) functionalization to make it capable of SERS detection, 

conjugation with a monoclonal antibody (mAb) to target EGFR and validation of function 

human nasopharyngeal carcinoma (S18), epidermoid carcinoma (A431), and lung 

adenocarcinoma (A549) cells. Importantly, SERS allowed mapping of EGFR cellular 

distribution of EGFR on individual cancer cells in real time. 

5.3 EXPERIMENTAL METHODS 

5.3.1 Materials  

4-mercaptobenzoic acid (MBA), 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide 

hydrochloride (EDC), N-hydroxysuccinimide (NHS), Tris-HCl, ß-glycerol phosphate, 

EDTA, glycerol, triton X-100, sodium orthovanadate, benzamidine, aprotinin, leupeptin, 
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phenylmethylsulfonyl fluoride, tween 20, phosphate buffer saline (PBS) and bovine serum 

albumin (BSA) were purchased from Sigma-Aldrich (St. Louis, MO). All solutions were 

prepared using deionized water (18 MΩ cm-1). Monoclonal anti-EGFR antibody was 

purchased from Life Technology (Carlsbad, CA). The polyethylene glycol (PEG) products, 

Thiol-PEG-COOH and mPEG-Thiol, were purchased from Nanocs Inc. (New York, NY). 

5.3.2 Preparation of the Gd-Au nanoprobe 

The Gd-Au nanocomposite composed of Gd2O3-MCM41 silica nanoparticle and 

gold (Au) nanoparticle were synthesized as previously described [26, 27].  The synthesized 

Gd-Au nanocomposite was imaged by high-angle annular dark-field scanning electron 

microscopy (HAADF-STEM, University of Oregon). The size distribution of the Gd-Au 

nanocomposite was measured by dynamic light scattering (DynaPro NanoStar, Wyatt 

Technology, Santa Barbara, CA). 

The Gd-Au nanocomposite was sequentially coated with Raman reporter molecule 

4-mercaptobenzoic acid (MBA), polyethylene glycol (PEG), and anti-EGFR antibody 

(Life Technology, AHR5062) to achieve SERS capability, biocompatibility and specific 

targeting as detailed below. Gd-Au (8.1 mg) was dissolved in phosphate-buffered saline 

(10 mL) followed by addition of MBA solution (100 µL in 0.03 M in EtOH) before stirring 

for 30 min. Then Thiol-PEG-COOH (1 mL, 0.24 mM, MW 5000) was introduced to react 

for 30 min before 2.8 mL of mPEG-Thiol (0.42 mM, MW 5000) was added to stir for 

another 3 hr. The resulting mixture solution was centrifuged (9700 g, 10 min) twice to 

remove excess PEG molecules. The conjugation of monoclonal antibody was achieved by 

using EDC/NHS method [34, 35] to activate the Gd-Au nanoparticle. PEGylated Gd-Au 

nanocomposite was re-suspended in water. EDC (10 µL, 10 mM) and 10 µL of NHS 
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solution (25 mM) were added to 1 mL of Gd-Au suspension (0.8 mg/mL) and incubated 

for 30 min at room temperature. Activated Gd-Au suspension was then incubated with 20 

µL of mAb EGFR (0.21 mg/mL) for 1 hr at room temperature. Excess antibody was 

removed by centrifugation (9700 g, 10 min). The antibody functionalized Gd-Au bioprobes 

were stored at 4 °C before measurements. The nanoparticles were stable for several days. 

5.3.3 Cell culture, viability and sample preparation 

All cells were purchased from ATCC and were determined to be free of 

Mycoplasma contamination. Cells were grown at 37°C with 5% CO2 in a humidified 

atmosphere. The human epidermoid carcinoma cell line A431 was cultured in Dulbecco’s-

modified eagle’s medium (DMEM) and Ham’s F-12 medium (1:1) with 10% fetal bovine 

serum (FBS). The human lung carcinoma cell line A549 was cultured in F-12k medium 

with 5% FBS and 1% penicillin-streptomycin. The human nasopharyngeal carcinoma cell 

line S18 was cultured in DMEM with 10% FBS. 

Cells were passaged at 80-90% confluence and seeded at a density of 105 cells per 

2 mL of media. Cells were let grow for 24 hr after seeding before imaging measurements. 

For Raman measurements, cells were seeded on magnesium fluoride (MgF2) substrates to 

minimize the background noise. Cells were seeded on glass bottom Petri dishes for other 

optical imaging measurements. 

The cell viability was analyzed using LIVE/DEAD Viability/Cytotoxicity Assay 

Kit (Invitrogen) according to manufacturer’s instructions. 

5.3.4 Cellular SERS measurements 

Raman measurements were performed by a Renishaw inVia Raman system 

(Renishaw, UK) coupled with a Leica DMLM microscope (Leica microsystems, USA) 
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equipped with a 785 nm near-IR laser. A 63X water immersion objective (NA = 0/90) was 

used to image the cells in culture media and a temperature control unit (ALA Scientific 

Instruments, USA) was used to keep cells under physiological temperature (37.5 °C). The 

Raman instrument was calibrated with silicon at 520.5 cm-1. 

Prior to Raman measurements, all three cell lines (A431, A549 and S18) were 

incubated with anti-EGFR-conjugated Gd-Au nanoprobes for 1 hr and rinsed with PBS to 

remove unbounded nanoparticles.  Raman spectra (600~1800 cm-1) and Raman streamline 

mapping (at 1075 cm-1) of the nanoprobe-treated cells were recorded under a laser intensity 

of 3 mW. Spectra smoothing, baseline subtraction and mapping generation were performed 

by Renishaw WiRE 3.3 software. Processed data were exported to Origin Pro 9 software 

(OriginLab Corp., USA) for statistical analysis. 

5.3.5 Cellular optical imaging 

Fluorescence images of the nanoprobe-treated cells were collected by an Olympus 

IX71 inverted fluorescence microscope equipped with an Olympus DP30BW CCD 

camera. Dark field images were obtained by using an oil-immersed dark field condenser 

(NA=1.5). Images were acquired with 40x objectives using DPController software 

(Olympus). 

5.3.6 Western blot 

Cells were rinsed twice with ice-cold PBS and lysed in a buffer containing 25 mM 

Tris-HCl (pH 7.4), ß-glycerol phosphate (50 mM), EDTA (0.5 mM), glycerol (5%), triton 

X-100 (0.1%), sodium orthovanadate (1 mM), benzamidine (1 mM), and a protease 

inhibitor cocktail containing aprotinin, leupeptin, and phenylmethylsulfonyl fluoride. 

Protein concentration was determined using a BCA assay (Pierce, Rockford, IL). Protein 
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was denatured with Laemmli’s buffer at 95°C for 5 min and lysate (50 μg) was loaded to 

each well. Proteins were separated using 10% SDS-PAGE gel electrophoresis and resolved 

proteins were transferred to PVDF before incubating in Tris-buffered saline containing 

Tween-20 (0.05%) and fat-free dry milk (5%) for 1 hr at room temperature. Membranes 

were incubated with primary antibodies to EGFR and β-Actin overnight at 4°C and 

subsequently with HRP-conjugated secondary antibody at room temperature for 1 hr. 

Signals were visualized using ECL (Pierce, Rockford, IL) following manufacturer’s 

instructions. 

5.3.7 Immunofluorescence imaging 

S18, A431 and A549 cells grown on coverslips for 24 hr were fixed using 4% 

paraformaldehyde for 20 min and permeabilized using 0.1% trion X-100 for 10 min. After 

blocking with 5% BSA in PBS, cells were incubated with anti-EGFR antibody conjugated 

with Alexia Fluor 555 at 1:50 dilution in 5% BSA solution overnight at 4°C. After washing 

the cells thrice with PBS, the cover slips were mounted using Vectashield mounting 

solution containing the nuclear counter-stain 4’, 6-diamidino-2-phenylindole (DAPI). 

Images were collected under a Nikon inverted epifluorescence microscope. Representative 

images were combined and processed using ImageJ software. 

5.4 RESULTS AND DISCUSSION 

5.4.1 Characterization of the Gd-Au nanocomposite 

The synthesized Gd-Au nanoparticle has a composite structure illustrated in Figure 

5.1a. Gadolinium oxide (Gd2O3) nanoparticles were embedded in the mesoporous silica 

structure (MCM-41). Gd2O3-MCM41 is conjugated with gold (Au) nanoparticles through 

a polymer linker polyethylenimine (PEI). The structure of the Gd-Au nanocomposite can 
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be visualized by HAADF-STEM imaging (Figure 5.1b). Energy dispersive X-ray (EDX) 

spectrum (supporting information, Figure 5.2a) and the elemental mapping (Figure 5.1c) 

have presented the existence of gadolinium and gold, indicating the successful assembly 

of the core-shell like structure of the Gd-Au nanocomposite. A line profile of integrated 

intensity plot shows the elemental distribution across the nanocompostie (Figure 5.2b). The 

hydraulic diameter is measured to be 208.05 ± 5.98 nm using dynamic light scattering 

(DLS) (Figure 5.1d). 

5.4.2 Functionalization of the Gd-Au nanocomposite  

To make the Gd-Au nanocomposite a specific SERS probe for EGFR sensing and 

imaging, step-by-step fucntionalization was conducted. As presented in Figure 5.3a, Gd-

Au nanoparticles were firstly conjugated with 4-mercaptobenzoic acid (MBA) through Au-

S covalent bond as a Raman reporter molecule. The reasons to use MBA were: (1) MBA 

can produce high SERS effect when binding with gold nanoparticle due to its high binding 

affinity with gold and relatively large cross section area for Raman scattering [36]; (2) 

MBA has simple SERS spectrum in the fingerprint region (600~1800 cm-1) with two 

intensive characteristic peaks at 1075 and 1587 cm-1. The presence of both characteristic 

peaks on spectra of nanoparticle-treated S18 cells (Figure 5.3b) confirmed the successful 

adsorption of MBA on the Gd-Au nanocomposite. Then, thiolated PEG linkers were also 

coated onto Au surfaces (PEG-NP) to eliminate the non-specific particle-cell binding as 

well as to improve the biocompatibility of the Gd-Au nanoprobes when incubated with 

cells in vitro. Lastly, to realize specific EGFR targeting, monoclonal antibody to EGFR 

was introduced and conjugated with the PEGylated Gd-Au nanocomposite using 

EDC/NHS method. The antibody-targeted Gd-Au nanoprobe (mAb-NP) was then used for 
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in vitro SERS detection of EGFR and SERS imaging of cellular EGFR distribution at single 

cell level. 

5.4.3 Specificity of EGFR targeting 

In order to study how anti-EGFR functionalized Gd-Au nanoprobes specifically 

bind to EGFR and are subsequently internalized via receptor-mediated endocytosis, control 

experiments are performed under different conditions. S18 cells (EGFR-positive)were 

incubated with Gd-Au nanoprobes under three conditions: (1) PEG-NP for 1 hr; (2) mAb-

NP for 1 hr; and, (3) pre-blocked with free anti-EGFR antibody for 1 hr, followed by 

incubation with mAb-NP for 1 hr. Cells were rinsed with PBS thrice to remove unbound 

nanoprobes, before Raman measurements.  

Typical Raman spectra are shown in Figure 5.3b. Cells with PEG-NP incubation 

typically present a much lower SERS signal compared to cells incubated with mAb-NP, 

while cells in the pre-block group (block-mAb-NP) show almost non-observable SERS 

spectra (Figure 5.3c). Moreover, as shown in Figure 5.3c, the average intensities at 1075 

cm-1 calculated from 50 spectra (1 cell/spectra) for each condition confirm the same finding. 

S18 cells alone (CTRL) or treated with PEG-NP or mAb-NP were also visualized using 

dark field imaging (Figure 5.3d). PEG-NP–treated cells exhibit minimal light scattering, 

similar to CTRL, while cells incubated with mAb-NP have many more bright spots, 

indicative of nanoparticles binding to the cells.  

Thus, both SERS and dark field imaging indicate that the Gd-Au nanoprobes bind 

to the S18 cells through a selective antibody-antigen recognition. Nonspecific binding was 

minimal (i.e., few PEG-NP particles and low SERS signal) and selective (i.e., significant 

suppression when pre-blocked with free anti-EGFR). High SERS signal was only observed 
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in cells incubated with mAb-NP, indicating that the Gd-Au nanoprobe is capable of specific 

SERS detection of EGFR. 

5.4.4 Biocompatibility of the Gd-Au nanoprobe 

To investigate the biocompatibility of the Gd-Au nanoprobe, viability of S18 cells 

was measured following incubation with mAb-NPs at different concentrations (8, 20, 28, 

40 and 48 µg/ml) for 24 hr. As shown in Figure 5.4, the cell viability remains >90% even 

at the highest concentrations. For further SERS detection studies, a dose of 40 µg/ml was 

chosen. 

5.4.5 SERS mapping of cellular EGFR distribution 

Raman mapping is generated by firstly taking spectral acquisition (2s exposure) 

centered at 1100 cm-1 (400 cm-1 bandwidth) at each point over the 2D area of a single cell 

with 0.8 μm spacing. Then, color mapping with the peak intensity at 1075 cm-1 is plotted 

to depict the intensity variation over the area, which reflects the cellular EGFR distribution 

via the binding of Gd-Au nanoprobes. 

Changes of cellular EGFR distribution were measured (Figure 5.5). A single S18 

cell after 1 hr incubation with mAb-NPs is presented in the Raman bright field image 

(Figure 5.5a). In situ Raman mapping is performed over the area of cell body (dotted area 

in Figure 5.5a) at 60, 90 and 120 min. As shown in Figure 5.5b-d, the bright spots, which 

represent EGFR molecules, are heterogeneously distributed and are relocating in the cell. 

Figure 5.5e-g show the Raman spectra at the same position (green crosses) in the mappings 

at different times (Figure 5.5b-d). The time-dependent changes indicates the reorganization 

of cell membrane after nanoparticle binding. The membrane reorganization is most likely 

due to internalization of nanoprobes after binding through a receptor-mediated endocytosis, 
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as suggested by a decreased mapping intensity with longer incubation (Figure 5.6). The 

results of in situ Raman mapping have demonstrated the feasibility of the methodology to 

detect and monitor dynamic cellular processes, although the mechanisms underlying the 

cellular relocalization will require additional studies. 

5.4.6 EGFR detection in three human cancer cell lines (S18, A431 and A549) 

The proof-of-concept studies with S18 were validated using two unrelated human 

cancer cell lines. As shown in Figure 5.7, SERS mapping shows EGFR in discrete domains 

on each cell, but at different intensities, suggesting that the EGFR expression varies 

between the cell lines.  

To verify the EGFR levels, average Raman peak intensity at 1075 cm-1 was 

calculated using data from 50 cells (1 spectrum/cell) in each cell line. A431 cell had 

significantly (**P<0.01, one-way ANOVA) higher EGFR level than S18 or A549 cells 

(Figure 5.8a). These observations were consistent with the western blot (i.e., EGFR band 

is darker in A431 than S18 and A549, Figure 5.8b) and immunofluorescence imaging 

(Figure 5.9). Importantly, SERS has the advantage over immunofluorescence because there 

is no photo-bleaching. Since SERS has narrower spectral bands than fluorescence, it 

represents a better candidate for multiplex imaging in complex biosystems. 

5.5 CONCLUSION 

In conclusion, we have synthesized a gadolinium-gold composite nanoparticle and 

functionalized this nanoparticle for specific in vitro detection and imaging of EGFR using 

surface-enhanced Raman scattering. Applying this Gd-Au nanoprobe, EGFR expression 

level and cellular distribution were detected by SERS, and confirmed with immunoblotting 

and immunofluorescence imaging. SERS shows the advantage of non-invasive detection 
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over immunoblotting and immunofluorescence. In addition, changes in single cell EGFR 

distribution could be monitored in situ, demonstrating the potential of SERS to study cell 

activity under physiological conditions. These SERS results, combined with previously 

reported MRI results [27], demonstrate the potential of this Gd-Au composite nanoparticle 

as a multifunctional nanoprobe not only for the early detection and localization of cancer 

in vivo, but also for the investigation of cancer metabolism and biochemistry at single cell 

level. 
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Figure 5.1 (a) Schematic illustration of the Gd-Au nanocomposite. (b) HAADF-STEM 

image of the Gd-Au nanocomposite. (c) EDX elemental mapping of oxygen (O), silicon 

(Si), gadolinium (Gd) and gold (Au) within the area labeled with an orange square in (b). 

(d) Hydraulic diameter of the nanocomposite determined by DLS. 
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Figure 5.2 (a) Parallel beam EDX spectrum of Gd-Au nanocomposite. (b) STEM image 

and corresponding elemental line profile of the Gd-Au nanocomposite.  
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Figure 5.3 (a) Schematic of the functionalization of Gd-Au nanocomposite. (b) Typical 

Raman spectra (600~1800 cm-1) and (c) average Raman intensity at 1075 cm-1 of S18 cells 

under the treatments of  PEG-NP, mAb-NP, and first free anti-EGFR molecules then mAb-

NP. Error bar represents standard error of mean (SEM). (d) Dark field images of S18 cells 

alone (CTRL), cells incubated with PEG-NP, and cells incubated with mAb-NP.   
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Figure 5.4 Live/dead fluorescent images of S18 cells with mAb-NP incubation at 

concentrations of 8, 20, 28, 40 and 48 µg/ml. Cell viability is analyzed in the column 

graph. 
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Figure 5.5 (a) Bright field image of a single S18 cell with 1-h incubation with mAb-NP 

and the selected area for Raman mapping. Scale bar: 10 μm. (b-d) Raman images of the 

selected area after 60, 90 and 120 min incubation, respectively. The color scale is generated 

using peak intensity at 1075 cm-1. (e-g) Extracted Raman spectra at the same position 

(green crosses) in (b-d). 
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Figure 5.6 Single cell Raman mapping of S18 cells after 120, 135, 150, 165, 180 and 195 

min incubation of Gd-Au nanoprobes. The color scale is generated with peak intensity at 

1075 cm-1 and is kept constant with Figure 5.5. 
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Figure 5.7 Representative Raman images of single S18, A431 and A549 cells incubated 

with Gd-Au nanoprobes (mAb-NPs). The first row shows bright field image and the 

selected area, and second row shows the corresponding Raman images. The color scale is 

generated with peak intensity at 1075 cm-1 and is kept constant with Figure 5.5.  
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Figure 5.8 (a) Average peak intensity at 1075 cm-1 for S18, A431 and A549 cells with Gd-

Au nanoprobes incubation. Data are collected from 50 spectra for each sample. **P<0.01. 

(b) Western blot result showing EGFR expression levels in S18, A431 and A549 cells. 
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Figure 5.9 Immunofluorescence images showing the EGFR expression in S18, A431 and 

A549 cells. 
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CHAPTER 6  

SERS-FLUORESCENCE BIMODAL IMAGING OF FATTY ACID RESPONSIVE 

RECEPTOR GPR120 

6.1 ABSTRACT 

 G-protein-coupled receptor 120 (GPR120), as a member of the rhodopsin family of 

G-protein-coupled receptors, has been shown to function as a sensor for dietary fat in the 

gustatory and digestive systems. Its specific role in the chemoreception of fatty acids, 

which is thought to be crucial in understanding mechanism of fat intake and treatment of 

obesity, remains unclear. Here we report a novel imaging technique using surface-

enhanced Raman spectroscopy (SERS)-fluorescence bimodal nanoprobes for detection and 

imaging of GPR120 in single living cells. Construction and characterization of the bimodal 

nanoprobes are described in detail. Biocompatibility and imaging capability of the probes 

are investigated using a model HEK293 cell line with a inducible GPR120 gene 

transfection. Cellular distribution of GPR120 are visualized by single-cell SERS and 

fluorescence imaging. A dose-dependent GPR120 response to linoleic acid (LA) treatment 

is measured by SERS. 

6.2 INTRODUCTION 

Dietary lipids (e.g. fatty acids, triglycerides) make up as high as 40% of daily 

caloric intakes in Western diet, which is thought contribute greatly to the prevalence of 

obesity and associated diseases [1-3]. Understanding the mechanisms underlying the 

perception of dietary lipids thus is important to help control fat intake preference and 

develop treatment of obesity. G protein-coupled receptors (GPCRs) have been shown to 

play important roles in cellular signaling pathways that affect human sense of taste (e.g. 
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sweet, bitter) [4, 5]. GPR120 and GPR40, members of GPCR family, have recently been 

reported to mediate response to long chain fatty acids (LCFAs) [6]. Both GPR120 and 

GPR40 knock-out mice showed a diminished preference for linoleic acid and oleic acid, 

and diminished taste nerve responses. In addition, studies have shown that GPR120 and 

CD36, LCFA receptors identified in rodent taste bud cells, mediate differential Ca2+ 

response to fatty acids, and are differentially regulated by dietary lipids [7, 8]. Though 

several lipid receptor candidates (e.g. GPR120, GPR40, and CD36) have been found in the 

tongue papillae, the mechanism how these receptors act in the perception of LCFAs 

remains unresolved and merits further extensive studies [3]. It will be beneficial to develop 

an imaging technique that can visualize how these receptors act when binding with LCFAs 

in single cells, in order to understand their specific roles in fat perception.  

 Surface-enhanced Raman spectroscopy (SERS) is a novel and powerful optical 

imaging technique that can be applied in single cell bioanalysis. SERS is able to achieve 

10~14 orders of magnitude enhancement of spontaneous Raman signal by conjugate a 

molecule to a noble metal (e.g. Au, Ag) nanostructure [9], which allows detection of 

biomolecules with ultrahigh sensitivity [10, 11]. To generate SERS activity, a SERS 

nanoprobe composed of noble metal nanoparticle, Raman reporter molecule, and surface 

stabilizer are usually constructed and applied. Due to advantages of high stability and 

biocompatibility, especially great capability of multiplex detection, SERS nanoprobes have 

been applied in a variety of bioapplications such as molecular detection [12, 13], single 

living cell imaging [14-16], and in vivo biosensor [17, 18]. In addition, SERS imaging, by 

generating a pseudo-color map based on relative intensities of selected Raman bands, is 

able to map the distribution of biomolecules such as lipids and proteins [19, 20], cell 
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surface receptors [17, 21] and even bacterial species [22, 23] at single cell level. However, 

SERS is a low-throughput imaging technique and it requires a long acquisition time (e.g. 

several seconds) to get reliable Raman spectrum, due to relatively weak signal by Raman 

scattering (even after SERS enhancement). This limits the application of SERS in 

biological analysis, especially for high-throughput cell sorting and imaging [24]. 

 To overcome the limitation and expand the functionality, multimodal imaging 

probes have been developed to integrate SERS with other imaging modalities, such as 

magnetic resonance imaging (MRI) [25], X-ray computed tomography (CT) [26, 27] and 

fluorescence imaging [28-30]. Among these modalities, fluorescence, due to its fast 

imaging speed and high-throughput imaging ability, is considered as a promising 

complementary technique to SERS. Fluorescence functions for quick recognition of the 

analytes in complex biosystems, while SERS is used to accurately detect multiplex targets 

in single cells. Recently, Choo et al. [31] reported a SERS-fluorescence bimodal imaging 

technique to investigate multiple cancer markers co-localized in single breast cancer cells. 

 Here we developed a SERS-fluorescence bimodal nanoprobe for detection and 

imaging of GPR120 in single cells. Europium-doped calcium molybdate nanoparticles 

(CaMoO4:Eu3+) showed intense red fluorescence emission under UV light excitation [32]. 

This fluorescence-active CaMoO4:Eu3+ nanoparticle was conjugated with SERS-active 

gold nanorods (AuNR) encapsulated with Raman reporter molecule 4-mercaptobenzoic 

acid (MBA), to realize SERS-fluorescence dual functions. The composite nanoparticle was 

conjugated with antibody for specific targeting of GPR120 expressed in living cells. By 

using this bimodal nanoprobe, we successfully realize SERS-fluorescence imaging 
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specifically for GPR120 at single cell level. In addition, for the first time, we observed a 

linear dose-dependence of GPR120 on linoleic acid (LA) treatments. 

6.3 MATERIALS AND METHODS 

6.3.1 Materials 

4-mercaptobenzoic acid (MBA), N-(3-Dimethylaminopropyl)-N’-

ethylcarbodiimide hydrochloride (EDC), N-hydroxysuccinimide (NHS), doxycycline 

hydrochloride (DOX), linoleic acid (LA), europium(III) nitrate hydrate (Eu(NO3)3·xH2O) 

were purchased from Sigma-Aldrich (St. Louis, MO). Calcium nitrate tetrahydrate, 

(Ca(NO3)2·4H2O), ammonium molybdate (H8MoN2O4), oleic acid, 1-octadecene were 

purchased from Alfa Aesar (Ward Hill, MA). Blasticidin S HCl, Hygromycin B, 

phosphate-buffered saline (PBS), 0.5% trypsin-EDTA, LIVE/DEAD 

Viability/Cytotoxicity Assay Kit were purchased from Life Technologies 

(Carlsbad, CA). The polyethylene glycol (PEG) products, thiol PEG acid (HS-PEG-COOH, 

MW 5000) and methoxyl PEG thiol (mPEG-SH, MW 5000), were purchased from Nanocs 

Inc. (USA). Polyclonal GPR120 antibody was purchased from Santa Cruz Biotechnology 

Inc. (sc-99105). Ultrapure water (18 MΩ cm-1) was used in this work. 

6.3.2 Characterization techniques  

Transmission electron microscopy (TEM) images and energy-dispersive X-ray 

spectroscopy spectrum (EDX) were acquired using an FEI Titan 80–300 kV (S) TEM 

equipped with a spherical aberration (Cs) image corrector (300 kV). For the TEM 

measurements, the powder samples were ground and dispersed in methanol. Few drop of 

dispersed particles were placed on a carbon coated-copper grid and allowed to dry at room 

temperature. Absorption spectra were acquired by Multiskan Spectrum spectrophotometer 

https://www.google.com/search?espv=2&biw=1366&bih=667&q=carlsbad+california&stick=H4sIAAAAAAAAAGOovnz8BQMDgwsHnxCXfq6-gUlVRUp8rhIHiF1kUp6npZWdbKWfX5SemJdZlViSmZ-HwrHKSE1MKSxNLCpJLSrWVFixcmJyFKMkn9zH7fzvj79bOC8JAP2RSVthAAAA&sa=X&ei=rYDnVN7LFIargwTwk4L4Dw&ved=0CIIBEJsTKAEwEg
https://www.google.com/search?espv=2&biw=1366&bih=667&q=california&stick=H4sIAAAAAAAAAGOovnz8BQMDgwsHnxCXfq6-gUlVRUp8rhIHiG2YZ16opZWdbKWfX5SemJdZlViSmZ-HwrHKSE1MKSxNLCpJLSo-9GuRaiSL_N-PXgdL-Hla7v5v3dwJAFQmsKhhAAAA&sa=X&ei=rYDnVN7LFIargwTwk4L4Dw&ved=0CIMBEJsTKAIwEg
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(Thermo Scientific). FT-IR spectra were acquired by Varian 660-IR FT-IR spectrometer 

(Agilent Technologies). Luminescent spectra were acquired by FluoroMax-3 fluorometer 

(Horiba Scientific). Raman spectra were measured by Renishaw inVia Raman 

spectrometer equipped with a 785 nm near-IR laser, which was focused through a 63x 

water immersion lens (NA=0.90, Leica Microsystems). Spectral smoothing and 

autofluorescence background subtraction were performed using an automated algorithm 

program kindly provided by BC Cancer Research Center [33]. The processed spectra were 

exported to OriginPro 9 software for plotting. Data were reported as mean ± SE (standard 

error of mean). Statistical difference was analyzed by one-way analysis of variance 

(ANOVA). 

6.3.3 Synthesis of CaMoO4:Eu3+@AuNR hybrid nanoparticles 

Europium-doped calcium molybdate (CaMoO4:Eu3+) nanoparticles were prepared 

via a simple thermolysis process ~309 oC. The preparation procedure can be briefly 

described as follows: 21 mg of Eu(NO3)3 · xH2O, 50 mg of NaOH, and 1.0 g of 

Ca(NO3)2.4H2O were dissolved in 2 mL of distilled water. The mixture was treated with 2 

mL of OA and 18 mL ODE and heated in a round-bottom flask at 80 °C for 1 hr under 

continuous stirring. In another beaker, 0.423 g of H8MoN2O4 was dissolved in 3 mL of DI 

water, and 0.1 g of NaOH, 2 mL of OA, and 18 mL of ODE were added and stirred the 

solution at 80 C for 1 hr. The two solutions were mixed under continuous stirring and 

heated at 80 C for 30 min, and then the reaction was refluxed at 309 °C for 1 hr. The 

resulting precipitate was collected by centrifugation at ~2500 g after washing with ethanol. 

The obtained precipitate was cooled at room temperature for 2 days. 
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For the synthesis of CaMoO4:Eu3+@AuNR hybrid nanoparticles, commercially 

available Au nanorods (AuNRs) with 10 nm in diameter and 35 nm in length were 

purchased from Nanopartz. Initially, 4 mL of the AuNR was centrifuged at 12000 g for 30 

min to remove the excess of CTAB and then redispersed in PBS. Centrifugation was 

repeated for three times to reduce the excess of CTAB present on the surface of the AuNR. 

4 mL of AuNR dispersed in PBS was added to 1 mL of the PEGylated CaMoO4:Eu3+ 

nanoparticles under continuous stirring and then sonicated for 1 hr. The resulting solution 

was centrifuged, and the hybrid nanoparticles precipitated was collected. These particles 

were washed with a PBS solution for three times and redispersed in PBS. 

6.3.4 Functionalization of SERS-fluorescence bimodal probe 

One mL of as-prepared CaMoO4:Eu3+@AuNR composite nanoparticle solution 

was mixed with MBA solution (1mM, 10 µL) and reacted for 30 min. Solutions of HS-

PEG-COOH (1 mg/mL, 10 µL) and mPEG-SH (1 mg/mL, 40 µL) were sequentially added 

to the nanoparticle solution and incubated for 2 hr. The resultant solution was then 

centrifuged (12000 g, 15 min) to remove excess PEG and MBA. Particles were resuspend 

in water. Freshly prepared EDC (10 mM, 10 µL) and NHS (25 mM, 10 µL) solutions were 

mixed with the nanoparticle solution and reacted for 30 min. The resultant solution was 

centrifuged and particles were resuspended in PBS. Finally, anti-GPR120 antibody (0.2 

mg/mL, 10 µL) was added to the nanoparticle solution and reacted for 1 hr. Excess antibody 

was removed by centrifugation. Nanoparticles were resuspended in PBS. The 

functionalized nanoprobe (CaMoO4:Eu3+@AuNR-MBA-Ab) was stable in solution for 

several days at 4 ºC.  
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6.3.5 Cell culture  

HEK293 cell lines transfected with an inducible GPR120 gene (HEK293-GPR120) 

and a constitutive CD36 gene (HEK293-CD36) were used in this context. Cells were grown 

in DMEM-GlutaMAX media (Life Technologies, 10569-010) supplemented with 10% 

Tet-free fetal bovine serum (Fisher, NC0290780). Cells were cultured in a humidified 

atmosphere at 37 ºC with 5% CO2, and were passaged at 80~90% confluence. Blasticidin 

S HCl (10 µg/mL) and Hygromycin B (100 µg/mL) were added to cell culture medium 

specifically for maintenance of inducible GPR120 gene. To express GPR120, HEK293-

GPR120 cells were induced with DOX at 0.5 µg/mL for 48 hr. 

6.3.6 Cell staining and Viability test  

The cell viability was analyzed using LIVE/DEAD Viability/Cytotoxicity Assay 

Kit (Invitrogen) according to the manufacturer’s instruction. Briefly, (1) cells were cultured 

in poly-D-lysine coated glass-bottom dishes (MatTek Cop. USA) for 24 hr; (2) cells were 

then washed with PBS twice; (3) 2 ml of mixed solution of 2 µM Calcein AM and 4 µM 

ethidium homodimer-1 (EthD-1) (both from Invitrogen) was added directly to cells, and 

incubated cells for 30 min at room temperature; (5) cells were imaged using fluorescence 

microscope to analyze the relative proportion of live/dead cells. A 10× objective was used 

to observe fluorescence.  

Calcein AM was well retained within live cells producing green fluorescence; 

however, EthD-1 entered cells with damaged membrane and bonded to nucleic acids, 

producing a red fluorescence in dead or membrane-damaged cells. Therefore, the live/dead 

cells were differentiated visually. 
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6.3.7 Cellular fluorescence and SERS imaging 

For fluorescence and SERS imaging experiments, cells were incubated with the 

functionalized nanoprobe (CaMoO4:Eu3+@AuNR-MBA-Ab) for 24 hr, and rinsed with 

PBS 3 times before imaging experiments. For LA treatments, cells were first treated with 

LA for 5 min at different concentrations, and then incubated with nanoprobes for 24 hr. 

Cellular fluorescence imaging was performed on an Olympus IX71 inverted 

microscope with an external 285 nm UV lamp. Images were acquired and processed using 

DPController software (Olympus Corporation) to maintain identical light exposure for 

three different cell conditions.  

For SERS measurements, cells were seeded on a cleaned magnesium fluoride 

(MgF2) optical window (United Crystals Co.) to minimize background signal from 

substrate. Raman spectra between 600~1800 cm-1 were recorded under 10s laser exposure 

(3mW). For each sample, 25 spectra from 25 cells with 1spectrum per cell were collected. 

Raman mappings were generated using Renishaw WiRE 3.3 software. 

6.4 RESULTS AND DISCUSSION 

6.4.1 Nanoparticle Structure characterization  

The typical TEM image of the composite CaMoO4:Eu3+@AuNR NPs is shown in 

Figure 6.1a. It confirms the formation of hybrid nanoparticles where AuNR is attached to 

the surface of CaMoO4:Eu3+ NP. The presence of each element in the particle was 

confirmed by EDX spectrum (Figure 6.1a, inset). The average size of CaMoO4:Eu3+ 

nanoparticles is found to be ~20 nm, whereas, average lengths and widths of AuNR is 

found to be ~40 and 10 nm, respectively. Moreover, the hybrid nanoparticles show high 

dispersion for long-time without precipitation. The crystalline nature of the CaMoO4:Eu3+ 
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nanoparticles was confirmed by X-ray diffraction pattern (not shown here). All peaks are 

well match with the tetragonal structure of CaMoO4:Eu3+ (JCPDF#29-0351). The UV-Vis 

spectra of hybrid nanoparticles in the range 200–1000 nm are shown in Figure 6.1b. A 

strong absorption bands at 512.5 and 789 nm was observed, which are assigned to 

transverse and longitudinal surface plasmon resonance (SPR) bands of AuNR, respectively. 

It is observed that the peak positions of SPR band at 789 nm is slightly red-shifted (~0.8 

nm) and full width at half maximum (FWHM) increases by ~27 nm, whereas there is no 

shift for SPR band at 512.5 nm and FWHM  increased by ~14.4 nm on antibody coating 

on the  surface of nanoparticles. Moreover, a small hump ~265 nm was observed for 

CaMoO4:Eu@AuNR NPs, this is ascribed to a charge transfer from the oxygen ligands to 

the central molybdenum atom within the MoO4
2- cluster (also called Mo–O charge transfer 

band (CTB)), but no such peak was observed for bare AuNR. It was further confirmed by 

excitation spectra (λem = 615 nm). Also some weak peaks in the longer wavelength region 

300–500 nm are ascribed to the direct 4f6–4f6 intraconfiguration transitions of Eu3+ ion 

(Figure 6.1d, inset) [34]. The CaMoO4:Eu3+@AuNR NPs emits strong red fluorescence 

under 270, 285, 300, 395, and 464 nm excitations (Figure 6.1d) peaks centered at 590 

(5D0→
7F1; magnetic dipole transition) and 615 nm (5D0→

7F2; electric dipole transition). 

The high-energy state excited (Mo–O CTB and Eu3+) electrons of Eu3+ are unstable and 

relaxed back to back to ground states of Eu3+ ion through photons emission in visible region. 

The intensity of 5D0→
7F2 transition is significantly higher than other transitions of Eu3+ 

ion [35]. Strong luminescence of CaMoO4:Eu3+@AuNR NPs may be particularly useful 

for biological fluorescence labeling.  
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Figure 6.1c shows the FT-IR spectra of bare CaMoO4:Eu3+, CaMoO4:Eu3+@AuNR, 

and antibody-conjugated CaMoO4:Eu3+@AuNR hybrid nanoparticles in the range from 

4000–500 cm-1. Peak at ∼1650 and 3450 cm−1 correspond to bending and stretching 

vibrations of H–O–H molecules present on the surface of the hybrid nanoparticles. The 

characteristic peaks appears ~802 cm−1 is assigned to asymmetric stretching vibration of 

O–Mo–O vibration in the MoO4
2− tetrahedron [36]. The peaks at 2923 and 2852 cm-1 

indicating the C–H streaching vibrations arises from OA [37]. On antibody conjugation to 

CaMoO4:Eu3+ nanoparticles with AuNR and AuNR-Ab the peaks become broaden. The 

FTIR spectrum of pure HS–PEG–COOH, mPEG-HS, and antibody are show in Figure 6.2. 

It was found that pure HS–PEG–COOH has sever characteristic peaks between 1700–1000 

cm-1, whereas some feeble peaks were observed ~2500, 1244, and 1076 cm-1 for antibody.   

Moreover, the conjugation of the antibody to the CaMoO4:Eu@AuNR nanoparticles results 

some small peaks between 1700–1000 cm-1 which are characteristic of peaks arises from 

PEG and/or antibody present on the surface of the nanoparticles. It further confirms the 

presence of antibody coating on the surface of the particles.  

6.4.2 Functionalization and performance of SERS-fluorescence bimodal probe 

 As prepared CaMoO4:Eu3+@AuNR nanocomposite was further functionalized to 

generate intense Raman signals and achieve specific targeting. Figure 6.3a demonstrate the 

functionalization process containing three steps: (1) MBA, as a Raman reporter molecule 

providing strong chemical enhancement of the SERS signal and simple SERS spectrum, 

was conjugated onto the nanocomposite through covalent Au-S bond. (2) PEG linkers were 

coated to improve the stability and biocompatibility of the nanoprobe, as well as to 

minimize the non-specific binding of the nanoprobes to cells. (3) Finally, anti-GPR120 
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antibodies were conjugated onto the nanocomposite to realize specific GPR120 targeting 

in cells. The specificity of GPR120 antibody was determined by immunofluorescence 

imaging (Figure 6.4). Under 1:250 dilution ratio, the antibody exhibited good specificity 

in labeling GPR120 in cells. Thus, this ratio was used in nanoprobe functionalization and 

cell incubation. 

 The performance of functionalized nanoprobe (CaMoO4:Eu3+@AuNR-MBA-Ab) 

was assessed by SERS and fluorescence imaging. The constructed probes were incubated 

with cells for 24 hr at final concentration of 100 μg/mL. Three different cell samples are: 

(1) HEK293-GPR120 cells induced with DOX for 48 hr (GPR120 (+)); (2) HEK293-

GPR120 cells without DOX inducing (GPR120 (-)); (3) constitutive HEK293-CD36 

(CD36) cells. Representative SERS spectra of the nanoprobe-treated cells are shown in 

Figure 6.3b. Typical spectrum of GPR120 (+) cells shows two enhanced peaks at 1078 and 

1585 cm-1, which are assigned to the ring breathing and axial deformation modes of MBA, 

respectively [38, 39]. In contrast, spectra of GPR120 (-) and CD36 cells show nearly no 

Raman peaks from the reporter molecule MBA, but only regular Raman signals from cells 

(e.g. 1003 cm-1 from phenylalanine). Average peak intensity at 1078 cm-1 for GPR120 (+) 

cells is significantly higher (P<0.001, N=25) than GPR120 (-) and CD36 cells (Figure 6.3c). 

This difference is resulted from the specific targeting ability of the constructed nanoprobe 

CaMoO4:Eu3+@AuNR-MBA-Ab, which selectively binds to GPR120 (+) cells through 

specific antibody-antigen interactions, bringing significantly enhanced SERS signal. This 

finding can also be confirmed by fluorescent images, in which the CaMoO4:Eu3+@AuNR-

MBA-Ab nanoprobe-incubated GPR120 (+) cells exhibited considerable red fluorescence 

while the fluorescence of GPR120 (-) cells was almost invisible (Figure 6.5). 
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6.4.3 Biocompatibility  

 Biocompatibility of the SERS-fluorescence bimodal nanoprobe 

CaMoO4:Eu3+@AuNR-MBA-Ab was estimated by incubating GPR120 (+) cells with the 

nanoprobes at different concentrations (20, 50, 80, 100, 200 μg/mL) for 24 hr, and then 

testing the cell viability using live/dead fluorescence imaging. As shown in Figure 6.6, 

there were no significant decreases in cell viability when incubating cells with nanoprobes 

at concentration as high as 100 μg/mL. Thus, this concentration (100 μg/mL) was chosen 

in further imaging experiments. 

6.4.4 Cellular fluorescence and SERS imaging 

 Cellular imaging capability of the bimodal nanoprobe was estimated by 

fluorescence and SERS imaging. Fluorescent images of nanoprobe-treated multiple cells 

successfully demonstrated the difference in GPR120 levels between DOX-induced and 

non-induced HEK293-GPR120 cells (Figure 6.5). Besides, due to its high-throughput 

nature, fluorescence was also used to quickly identify individual cells with high GPR120 

expression levels. At single cell level, as shown in Figure 6.7, CD36 cell showed hardly 

visible red fluorescence at the central area of the cell (Figure 6.7b); on the other hand, 

GPR120 (+) cell had strong red color all over the cell (Figure 6.7d). Because the 

nanoprobes were conjugated with anti-GPR120 antibodies, they tended to bind with 

GPR120 but not CD36 at cell surface. 

 Furthermore, cellular SERS imaging was performed on the nanoprobe-treated cells. 

SERS images were created using the Raman intensities of peak 1078 cm-1, which is the 

most stable and reproducible characteristic peak from the reporter molecule, MBA. By 

collecting the peak intensity values all over the cell and transforming them into color values, 
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GPR120 distribution were reflected by the brightness of the SERS image at single cell or 

subcellular level. Figure 6.8 showed the single-cell SERS mapping of GPR120. Apparently, 

strong SERS signals were recorded on GPR120 (+) cell (Figure 6.8d), while SERS signals 

at the CD36 cell were nearly undetected (Figure 6.8b). SERS imaging is able to mapping 

the heterogeneous distribution of GPR120 receptors at single cell level, providing more 

accurate spatial information than regular fluorescence imaging.  

6.4.5 Detection of GPR120 under LA treatment by SERS 

 GPR120 responses to LA treatments were measured by SERS. GPR120 (+) cells 

were treated with LA at concentrations 0, 5, 20, 30, and 60 µM for 5 min, and then 

incubated with nanoprobes for 24 hr. After washing off the unabsorbed nanoparticles, cells 

were taken for Raman measurements. Figure 6.9a showed the average SERS spectra (N=25) 

of the LA-treated cells. Two major intense peaks at 1078 and 1585 cm-1 were from the 

nanoprobes, which represent the activity level of GPR120 receptors. Elevated SERS 

signals were observed in high LA concentration treatments (Figure 6.9b, inset). Peak 

intensity at 1078 cm-1 vs. LA concentration was plotted in Figure 6.9b. It was found that 

there is a linear relationship (R2 = 0.93) between the SERS intensity and LA concentrations. 

This result indicates GPR120 activity is up-regulated by LA treatment, which is consistent 

with previous reports using other methods [7]. Furthermore, for the first time, we found 

that there is a linear dose-dependence of GPR120 to LA in 0~60 µM concentration range. 

6.5 CONCLUSIONS 

 In summary, we developed a dual functional composite nanoprobe for SERS-

fluorescence bimodal imaging of fat-responsive receptor GPR120 in single living cells. 

The dual functional nanoprobe was composed of europium-doped calcium molybdate and 
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gold nanorod, and further functionalized with Raman reporter and anti-GPR120 antibody. 

The functionalized nanoprobe was successfully applied for both SERS and fluorescence 

detection of GPR120 in different cell lines. Fluorescence served as an indicator for fast 

recognition of the target, while SERS functions for accurate localization of molecular 

signature in single cells. In particular, cellular distribution of GPR120 was successfully 

detected by single-cell SERS mapping. Taking advantages of the quantification ability of 

SERS, we observed an up-regulation of GPR120 by LA treatment. Moreover, a linear 

relationship between GPR120 activity and LA concentration in 0~60 µM range was 

observed for the first time. Our future direction is to build multiplex imaging probes for 

simultaneous detection of major lipid receptors such as GPR120, GPR40 and CD36, trying 

to unveil the enigma how these receptors interact with each other in the chemoreception of 

fatty acids. 
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Figure 6.1 Characterization of the nanoprobe. (a) TEM image of CaMoO4:Eu3+@AuNR 

nanoparticle. Inset: EDX spectrum of the particle. (b) UV-Vis absorption spectra of AuNR 

and CaMoO4:Eu3+@AuNR. (c) FT-IR spectra of bare CaMoO4:Eu3+, 

CaMoO4:Eu3+@AuNR, and antibody-conjugated CaMoO4:Eu3+@AuNR. (d) Luminescent 

properties (excitation/emission) of the CaMoO4:Eu3+@AuNR nanoparticle. 
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Figure 6.2 FT-IR spectra of (a) HS–PEG–COOH, mPEG-HS and (b) GPR120 antibody. 
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Figure 6.3 (a) Schematic for functionalization process of CaMoO4:Eu3+@AuNR 

nanocomposite. (b) Representative SERS spectra and (c) average SERS intensities at 1078 

cm-1 (N=25) of CaMoO4:Eu3+@AuNR-MBA-Ab nanoprobe-incubated cell samples: (1) 

HEK293-GPR120 cells induced with DOX (GPR120 (+)); (2) HEK293-GPR120 cells 

without DOX inducing (GPR120 (-)); (3) constitutive HEK293-CD36 (CD36) cells. 

**P<0.001. 
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Figure 6.4 Immunofluorescence imaging to test the specificity of GPR120 antibody. 

Antibody ratio: 1st 1:250, 2nd 1:500. Color: red—GPR120, blue—DAPI. 
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Figure 6.5 Fluorescence imaging of GPR120 (+) and GPR120 (-) cells incubated with 

CaMoO4:Eu3+@AuNR-MBA-Ab nanoprobe for 24 hr. 
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Figure 6.6 Viability of GPR120 (+) cells with 24-hr incubation of CaMoO4:Eu3+@AuNR-

MBA-Ab nanoprobe at concentrations of 20, 50, 80, 100, and 200 μg/mL. Green 

fluorescence presented live cells, whereas red fluorescence showed dead or membrane-

damaged cells. Over 300 cells were counted for each treatment condition. Scale bar: 200 

μm. **P<0.001. 
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Figure 6.7 Phase contrast (a, c) and Fluorescence (b, d) images of single CD36 (a, b) and 

GPR120 (+) (c, d) cells incubated with CaMoO4:Eu3+@AuNR-MBA-Ab nanoprobes for 

24 hr. 
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Figure 6.8 Bright field images (a, c) and Raman mappings (b, d) of single CD36 (a, b) and 

GPR120 (+) (c, d) cells incubated with CaMoO4:Eu3+@AuNR-MBA-Ab nanoprobes for 

24 hr. Raman mappings were generated by the selection of peak 1078 cm-1. The intensities 

were normalized between the lowest (0) and highest (1) color values.  Scale bar: 5 μm.  
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Figure 6.9 GPR120-LA dependence measured by SERS. (a) Average Raman spectra of 

CaMoO4:Eu3+@AuNR-MBA-Ab nanoprobe-incubated cells under 5 min LA treatment at 

concentrations 0, 5, 20, 30, and 60 μg/mL. (b) Linear relationship (R2=0.93) between SERS 

intensity (1078 cm-1) and LA concentration. Inset: expanded Raman spectra around 1078 

cm-1.  

(a) 

(b) 
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CHAPTER 7 

SUMMARY AND FUTURE DIRECTION 

7.1 SUMMARY 

 The overall objective of this dissertation is to study human disease at single cell 

level using advanced instrumentation including atomic force microscopy (AFM), Raman 

spectroscopy and fluorescence microscopy. Research presented in five technical chapters 

(chapter 2-6) can be summarized as following: 

 Apply atomic force microscopy (AFM) and Raman spectroscopy to measure 

cellular biomechanical and biochemical properties for classification of cells in 

different conditions. 

 Design and synthesize nanoparticle-based probes for highly sensitive and specific 

imaging and detection of cell surface receptors using surface-enhanced Raman 

scattering (SERS), AFM-based nanoscale recognition and fluorescence microscopy. 

In chapter 2, we measured the biomechanical and biochemical properties of healthy 

and cancerous (SAEC & A549) human lung epithelial cells, and compared their responses 

to short-term (4 hr) anticancer drug doxorubicin (DOX) treatments, using AFM and Raman 

spectroscopy. Some key research findings are: (1) cancerous A549 cell is less stiff and less 

adhesive than healthy SAEC cell. (2) After DOX treatment, A549 gets stiffer and more 

adhesive while SAEC respond oppositely, resulting a reduced difference in biomechanics 

between two cell lines. (3) DOX treatment causes decrease in DNA but increase in protein 

and lipid contents in both cell lines. We also discussed the potential correlation between 

the biomechanics measured by AFM and the biochemical composition measured by Raman 

spectroscopy, and suggested a series of experiments to study the correlation. 
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In chapter 3, a gold nanorod (AuNR)-based SERS nanoprobe was developed for 

single-cell analysis of epidermal growth factor receptor (EGFR). The SERS probe was able 

to specifically target EGFR in single breast cancer cell and generate characteristic Raman 

peak that can be used determine the localization of EGFR on cell membrane surface. 

Quantification of EGFR expression level was performed using SERS and confirmed by 

immunoblotting. In addition, cellular distribution of EGFR was visualized by single-cell 

SERS mapping, which provides more detailed spatial resolution at single cell level 

comparing with traditional immunofluorescence imaging. EGFR-mediated nanoparticle 

endocytosis was also investigated by depth SERS mapping, demonstrating the potential of 

SERS, as a noninvasive technique, to study dynamic cellular process. 

Chapter 4 described an AFM-based recognition imaging technique—simultaneous 

Topography and RECognition (TREC) imaging—for nanoscale imaging of EGFR. 

Experiments on mica demonstrated high specificity, reproducibility and efficiency of 

TREC imaging technique for EGFR recognition. Single molecule recognition of EGFR 

was achieved in fixed and living breast cancer cells. TREC imaging exhibited potential to 

monitor cellular activities like receptor-ligand binding at single molecule level. 

 Chapter 5 introduced a previously reported MRI contrast agent Gd-Au 

nanocomposite. We further functionalized the composite Gd-Au nanoprobe to integrate 

SERS function and tested its SERS performance. Our results showed that composite Gd-

Au nanoprobe successfully served as a SERS probe for single-cell mapping of EGFR as 

well as quantification of EGFR levels in different cancer cells, showing the potential of 

this nanoprobe for MRI-SERS multifunctional detection and bioimaging. 



168 
 

In chapter 6, we developed a SERS-fluorescence dual functional nanoprobe for in 

vitro imaging of fat-responsive GPR120 receptor. We tested the performance of this 

nanoprobe for specific imaging of GPR120 using SERS and fluorescence imaging. 

Furthermore, by using SERS, we observed a dose-dependent GPR120 response to linoleic 

acid treatment. Our results showed a bright perspective to study fat receptors and their 

interaction with fatty acids using SERS. 

7.2 FUTURE DIRECTION 

7.2.1 Cellular analysis of human diseases by AFM and Raman spectroscopy 

In this dissertation, I included a study that uses our tandem AFM/Raman system to 

measure the biomechanical properties and biochemical composition of human lung cancer 

cells (chapter 2), demonstrating the strength of our combined AFM/Raman system as an 

noninvasive tool for cellular diagnosis of human diseases like cancer. In fact, due to the 

noninvasive nature of this technique, and its ability to provide quantitative information for 

cells, our AFM/Raman system can be applied for a range of different cell analysis. For 

example, we have measured the changes in biomechanics and biochemical composition 

during differentiation process of stem-like cells [1]. We also have investigated the toxicity 

effects of diesel exhaust particles (DEPs) to human lung cells by measuring their 

biomechanical and biochemical responses [2]. Another ongoing project is that we are trying 

to use our AFM/Raman instrumentation to study human lung cells in response to 

inflammatory stimuli. We would also investigate human cellular response to air pollutant 

like PM2.5. 

Although AFM and Raman spectroscopy are techniques with great potential in cell 

analysis, they only physical and basic chemical properties, and need to combine with other 
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techniques for comprehensive analysis. In other words, since AFM and Raman 

spectroscopy are not standard approaches for many biological assays, they need to be 

validated by other tested methods. For example, in addition to the biomechanical and 

biochemical properties measured by AFM and Raman spectroscopy, we could use 

multiplex ELISA to measure cytokine and chemokine production to verify the 

inflammatory responses of cells induced by DEP treatments. We could use quantitative 

PCR to measure gene expression long with the biophysical and biochemical changes during 

cell differentiation. 

In summary, our AFM/Raman system has great potential in mammalian cell 

analysis. It could provide supplementary information to conventional biological techniques 

for better investigation of complicated biological problems. Thus using AFM and Raman 

spectroscopy for studies human diseases at cellular level is still an important future 

direction in our lab. 

7.2.2 nanoparticle-based imaging probes for noninvasive bioimaging  

Molecular imaging of human disease cells by nanoparticle-based imaging probes is 

the major focus of this dissertation. Metallic nanoparticles (e.g. Au or Ag) showed 

remarkable light scattering efficiency due to their strong surface plasmon resonance. 

Especially for Au nanoparticles, the high photostability, water solubility and low 

cytotoxicity make them favorable for biological imaging. In this dissertation, several 

studies have been done using Au nanoparticle-based contrast agent for in vitro bioimaging. 

A lot more experiments could be performed in this direction in the future. 

One project ongoing is to use Au nanoparticle-base imaging probe for multiplex 

SERS detection of fat receptors GPR120 and CD36 at single cell level, because their roles 
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in the chemoreception of fatty acids are thought to be critical for people to understand fat 

preference and develop obesity treatments. In chapter 6 of this dissertation, we have 

presented a study using SERS-fluorescence bimodal imaging technique to study GPR120 

in single cells. However, we are more interested in the interactions between the two 

receptors GP120 and CD36, even their interactions with fatty acids. From this perspective, 

one experiment we can do is to build multiplex SERS probes, and use them to mapping 

cellular distribution of both GPR120 and CD36 in same single cell. Moreover, we can 

monitor their distribution change when fatty acid is introduced using single cell SERS 

mapping. Even though SERS technique shows great promise for multiplex detection and 

imaging, it still suffers the diffraction limit of optical imaging techniques. In order to 

achieve nanoscale imaging resolution, we could apply tip-enhanced Raman scattering 

(TERS), which uses an AFM probe instead of a laser to map the cell surface. Due to the 

nanoscale imaging capability of AFM, TERS is promising to provide us the detailed spatial 

information of GPR120 and CD36 distribution at subcellular level or even single molecule 

level. 

Another direction is multimodal in vivo boimaging. As discussed in previous 

chapters, multimodal imaging can integrate advantages of different imaging modalities, 

improving imaging performance in resolution and sensitivity. In this dissertation, I have 

included two studies describing bimodal imaging probes for in vitro bioimaging (chapters 

5 and 6). The sensitivity, specificity and biocompatibility of these probes have been tested 

by in vitro experiments. It is very promising to apply these probes for more clinically 

important in vivo imaging. One potential challenge is the long-term stability of these probes. 

Will these probes maintain their stable structure in complex biological environments like 
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animal organs? What iss the retention time of these nanoprobes in animal body? There 

questions need to be further investigated in future studies. 

Besides the imaging application, there are many other biological application of 

metallic nanoparticles that worth investigation in the future. For example, we could apply 

Au nanoparticles for photothermal therapy (PTT) or photodynamic therapy (PDT) of 

human cancers. My colleague Qifei Li from Dr. Anhong Zhou’s lab has done some initial 

work on PTT and PDT of human cancer cells using Au nanoparticle-based nanoprobes. In 

addition, we could also develop porous nanostructures as carriers for drug delivery and 

controlled drug release. In a word, our future direction is to use advanced instrumentation 

and nanotechnologies to help biologists solve more sophisticated biology problems. 

7.3 References 

[1] Q. Li, E. Suasnavas, L. Xiao, S. Heywood, X. Qi, A. Zhou, S.C. Isom, Label-free and 

non-invasive monitoring of porcine trophoblast derived cells: differentiation in serum and 

serum-free media, J. Biophotonics, (2014) doi: 10.1002/jbio.201400062. 

[2] M.J. Tang, Q.F. Li, L.F. Xiao, Y.P. Li, J.L. Jensen, T.G. Liou, A.H. Zhou, Toxicity 

effects of short term diesel exhaust particles exposure to human small airway epithelial 

cells (SAECs) and human lung carcinoma epithelial cells (A549), Toxicol. Lett. 215 (2012) 

181-192. 

 

  



172 
 

 

 

 

 

 

 

 

 

 

APPENDIX 

  



173 
 

 

 

http://www.rsc.org/Publishing/copyright/permission-requests.asp 

  



174 
 

 

 

  



175 
 

 

  



176 
 

 

 

 

 

http://www.elsevier.com/about/policies/author-agreement/lightbox_scholarly-purposes 

 



177 
 

 

  



178 
 

  



179 
 

CURRICULUM VITAE 

Lifu Xiao 

1693 N 400 W  

APT N203        

Logan, UT 84341       

E-mail: lifu.xiao@aggiemail.usu.edu or lfxiao0517@gmail.com 

Work Phone: (435)213-8716  Cell Phone: (435)757-1349 

Education 

09/2011-05/2015 (expected)  Ph.D. in Biological Engineering, Utah State 

University, Logan UT.  

Advisor: Anhong, Zhou, Ph.D. 

09/2007-07/2011 B.Sc. in Chemistry, Fudan University, Shanhai, 

China. 

Experimental Skills 

Mammalian Cell Culture, Bench Chemistry, Nanomaterial Preparation 

Raman spectroscopy, Atomic Force Microscopy, Fluorescence Microscopy 

Awards and Recognitions 

 Keysight Technologies AFM image competition “2015 Calendar Image” (2015)  

 Robins Award, finalist, Utah State University (2015) 

 Graduate Researcher of the Year, College of Engineering (2015) 

 Outstanding Graduate Researcher, Department of Biological Engineering (2015) 

 USU Graduate Students Travel Awards (2014) 

 Top 10 most accessed articles, Analytical Methods (Feb 2013) 

 2nd place Poster competition, Annual Institute of Biological Engineering Western 

Regional Conference (2011) 

Research Experience 

Graduate Research Assistant (2011-present) 

 A combined TERS and functional cellular imaging approach to explore receptor 

function. (NSF grant) (2013-present) 

o Design and synthesize composite nanoparticle for multimodal bioimaging. 

o Conjugate the nanoparticle-based imaging probe with antibodies to 

specifically target fatty acid-responsive cell-surface receptors. 

mailto:lifu.xiao@aggiemail.usu.edu
mailto:lfxiao0517@gmail.com


180 
 

o In vitro imaging of receptors and monitor how receptors rearrange and co-

localize on surfaces of cells. 

o Real-time imaging of receptors in response to presence of fatty acids. 
 

 Localization and Quantification of Single EGF Receptor on Single Breast Cancer 

Cell Surface. (DoD CDMRP grant) (2011-2013) 

o Design a gold nanorod (GNR)-based nanoprobe for surface-enhanced 

Raman scattering (SERS) detection of EGFR in single breast cancer cells. 

o Develop an AFM-based simultaneous topography and recognition (TREC) 

imaging technique for EGFR detection at single molecule level. 

o Design a MRI-SERS bimodal nanoprobe for EGFR detection 
 

 Detection and identification of mammalian cells by biomechanical and biochemical 

properties using atomic force microscopy and Raman spectroscopy (2011-2012) 

o Cell morphology was imaged by combined AFM-Fluorescence microscopic 

system 

o Biomechanics were measured by AFM force measurements 

o Biochemical composition was measured by Raman spectroscopy 

Undergraduate Research Assistant (2009-2011) 

 Fudan's Undergraduate Research Opportunities Program (“Xiyuan” Program) 

o Iron-catalyzed alkyne cyclotrimerization reaction to form benzene 

derivatives 
 

 Senior Design Project 

o Nucleotide-mediated dispersion of magnetic nanoparticles for MRI-based 

quantification of enzyme 

Journal Publications 

1. M. Tang, Q. Li, L. Xiao, Y. Li, J. L. Jensen, T. G. Liou, A. Zhou, Toxicity effects 

of short term diesel exhaust particles exposure to human small airway epithelial 

cells (SAECs) and human lung carcinoma epithelial cells (A549), Toxicology 

letters 215.3 (2012): 181-192. 

2. L. Xiao, M. Tang, Q. Li, A. Zhou, Non-invasive detection of biomechanical and 

biochemical responses of human lung cells to short time chemotherapy exposure 

using AFM and confocal Raman spectroscopy, Analytical Methods 5.4 (2013): 

874-879 (top ten accessed article in Feb 2013 of the journal ). 

3. G. Liang, L. Xiao, H. Chen, Q. Liu, S. Zhang, F. Li, J. Kong, Label-free, 

nucleotide-mediated dispersion of magnetic nanoparticles for “non-sandwich type” 

MRI-based quantification of enzyme, Biosensors and Bioelectronics 41 (2013): 

78-83. 

4. L. Xiao, S. Harihar, D. R. Welch, A. Zhou, Imaging of epidermal growth factor 

receptor on single breast cancer cells using surface-enhanced Raman spectroscopy, 

Analytica Chimica Acta 843 (2014): 73-82. 



181 
 

5. Q. Li, E. Suasnavas, L. Xiao, S. Heywood, X. Qi, A. Zhou, S. C. Isom, Label-free 

and non-invasive monitoring of porcine trophoblast derived cells: differentiation in 

serum and serum-free media, Journal of Biophotonics (2014). 

6. L. Xiao, X. Tian, S. Harihar, Q. Li, L. Li, D. R. Welch, A. Zhou, Gd2O3-doped 

silica @ Au Nanoparticles as Probes for In Vitro Cancer Cell Imaging Biomarkers 

Using Surface-Enhanced Raman Spectroscopy (Submitted). 

7. L. Xiao, Q. Chen, Y. Wu, X. Qi, A. Zhou, Simultaneous topographic and single 

molecule recognition imaging of epidermal growth factor receptor (EGFR) on 

single human breast cancer cells (Submitted). 

8. Q. Li, E. Suasnavas, S. Heywood, L. Xiao, A. Zhou, S. Isom, Biochemical, 

biophysical and genetic changes of porcine trophoblast derived cells during 

differentiation as evaluated using Raman microspectroscopy, Atomic force 

microscopy and quantitative polymerase chain reaction (Submitted). 

9. L. Xiao, A. K. Parchur, H. Xu, T. A. Gilbertson, A. Zhou, SERS-fluorescence 

bimodal imaging of fatty acid responsive receptor GPR120 (To be submitted). 

Conference Presentations 

1. L. Xiao, Y. Wu, Q. Chen, Q. Li, M. Tang, A. Zhou, Simultaneous acquisition of 

topography and recognition (TREC) images using anti-EGFR antibody modified 

atomic force microscopy probe, Annual Institute of Biological Engineering 

Western Regional Conference, Logan, Utah, Oct 28, 2011 (2nd place award in 

poster competition). 

2. L. Xiao, A. Zhou, Probe biomechanical response and cellular biochemical 

composition changes of human lung epithelial cells to short time chemotherapy 

drug exposure using AFM and Raman Micro-Spectroscopy, Intermountain 

Graduate Research Symposium, Apr 5, 2012. 

3. R. Li, Q. Li, L. Xiao, S. Williams, E. Suasnavas, C. Isom, D. Larson, L. Rickords, 

A. Zhou, Assessment of Cell Behaviors on TiO2 Nanotube Arrays by Using Atomic 

Force Microscopy, Raman Spectroscopy, Fluorescence Microscopy. In Meeting 

Abstracts (No. 18, pp. 2060-2060). The Electrochemical Society, June 2012. 

4. L. Xiao, A. Zhou, Surface enhanced Raman spectroscopy detection of epidermal 

growth factor receptor regulated by BReast Cancer Metastasis Suppressor 1 on 

single breast cancer cells, Annual Institute of Biological Engineering Western 

Regional Conference, Logan, Utah, Oct 26, 2012. 

5. L. Xiao, S. Harihar, Y. Wu, D. R. Welch, A. Zhou, Highly sensitive detection of 

cancer biomarker EGFR by PicoTREC-SERS, NanoTech Conference & Expo 2013, 

Washington, D.C., May 12-16, 2013. 

6. L. Xiao, Q. Li, A. Zhou, Multimodal nano-bioprobes for imaging EGFR on single 

human cancer cells, SPIE Photonics West BiOS 2014, San Francisco, California, 

Feb 1-6, 2014 (Podium Presentation). 

7. Q. Li, L. Xiao, A. Zhou, Assessment of the anti-cancer drug chemoresistance by 

Raman microspectroscopy and atomic force microscopy (AFM), SPIE Photonics 

West BiOS 2014, San Francisco, California, Feb 1-6, 2014. 

8. L. Xiao, H. Xu, A. K. Parchur, Q. Li, T. A. Gilbertson, A. Zhou, SERS-

fluorescence bimodal nanoprobes for imaging of HEK293 cells expressing 



182 
 

GPR120, The 69th Northwest Regional Meeting of the American Chemical Society, 

Missoula, Montana, Jun 22-25, 2014. 

9. Q. Li, S. Heywood, L. Xiao, M. Tang, A. Zhou, S. C. Isom, Atomic force 

microscopy (AFM), Raman microspectroscopy (RM) and gene chip monitoring of 

porcine trophoblast derived cells differentiation, SPIE Photonics West BIOS 2015, 

San Francisco, California, Feb 7-12, 2015. 

10. L. Xiao, A. K. Parchur, H. Xu, Q. Li, T. A. Gilbertson, A. Zhou, Lanthanide (Ln3+)-

doped calcium molybdate nanoparticle (CaMoO4:Ln3+, Ln=Eu, Tb) based SERS-

fluorescence bimodal imaging probes for detection and imaging of fatty acid 

responsive GPR120 and CD36 receptors, SPIE Photonics West BIOS 2015, San 

Francisco, California, Feb 7-12, 2015 (Podium Presentation). 

11. L. Xiao, H. Xu, D. R. Hansen, T. A. Gilbertson, A. Zhou, In vitro SERS-

fluorescence bimodal imaging of fatty acid responsive GPR120 receptor using a 

Gadolinium-Gold composite nanoprobe, 2015 Institute of Biological Engineering 

Annual Meeting, St. Louis, MO, March 5-7, 2015. 

 

List of References 

Anhong Zhou, Ph.D. 

Associate Professor 

Department of Biological Engineering 

Utah State University 

4105 Old Main Hill 

Logan, UT 84322-4105 

Anhong.zhou@usu.edu 

Phone: 435-797-1248 

 

Tim Gilbertson, Ph.D. 

Professor 

Department of Biology 

Utah State University 

UMC 5305 

Logan, UT 84322-5305 

Tim.gilbertson@usu.edu 

Phone: 435 797-7314 

 

Ronald C. Sims, Ph.D. 

Professor 

Department of Biological Engineering 

Utah State University 

4105 Old Main Hill 

Logan, UT 84322-4105 

Ron.sims@usu.edu 

Phone:  435-770-4922 

mailto:Anhong.zhou@usu.edu
mailto:Tim.gilbertson@usu.edu
mailto:Ron.sims@usu.edu

	Molecular Sensing and Imaging of Human Disease Cells and Their Responses to Biochemical Stimuli
	Recommended Citation

	tmp.1430503932.pdf.sVoXu

