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Abstract 

In light of the meaningful learning gains that can be obtained through a genuine research 

experience, chemistry educators have had a longstanding interest in making teaching labs less 

“cookbook-like” and more research-driven [1]. With this mindset, we recently restructured our 

two-semester sophomore organic chemistry lab course to include a synthesis project that was 

chosen, designed, and carried out by students. This led to progress toward the syntheses of JBIR-

94 and JBIR-125, two antioxidative/anticancer natural products that have yet to be assembled 

through organic chemistry. The major drawback of our course redesign is that it requires close 

supervision by an instructor or TA experienced in synthetic chemistry and is limited to small 

class sizes. Its up-front cost is also prohibitive; however, this can be minimized by employing 

synthetic steps that involve reagents already available on-site. The advantage of this restructuring 

is encapsulated by highly-positive student feedback and enthusiasm, which led all participating 

students to continue working on the project after the semester had ended.  Exam performance is 
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also discussed. For reference, complete and reproducible experimental details and full copies of 

student evaluation results are included as Supporting Materials. 

 

Introduction 

In light of the learning gains that can be obtained through a meaningful research 

experience [2-4], chemistry educators have long pondered the question of how to make teaching 

labs less “cookbook-like”   and  more   research-centered [1]. This has led to various approaches, 

including problem-based [2b-c], guided inquiry [5], investigative learning strategies [6], and 

others [7]. In a seminal paper on the subject, Horowitz suggested that all such approaches “can 

be broadly categorized as discovery,   inquiry,  and  project  based”   [8]. He further explained that 

although   some   educators  may   be   “attracted to project-based   experiments”   [8],   these are often 

limited by safety challenges, increased time investment by the instructor, and greater cost [8]. 

In contemplating the question of how to incorporate student-driven research into an 

undergraduate chemistry lab with non-chemistry-majors, our attention turned to a report by 

Gravert [9], in which an undergraduate organic chemistry lab course was restructured to allow 

students to choose any “reasonable” molecule they wished, design a synthesis of it, and then 

carry it out in the lab. Although Gravert reported that none of his students were able to finish 

their syntheses, disappointment  was  curbed  by  the  advance  warning  that  “actual  research  is  much  

like this project: that is, 90% of attempted reactions  may  be  unsuccessful”  [9]. 

We recently strived to adapt and incorporate a related approach into our own two-

semester organic lab course, carried out during Fall 2011 (Semester 1) and Spring 2012 

(Semester 2). Our method differed slightly   from   Gravert’s   on two fronts. First, our students 

chose only two synthetic targets as a class, instead of individual students each selecting their own 
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molecules; and second, students worked on their syntheses in small groups, instead of doing it 

alone. Full experimental details of students’   successful steps are included in our Supporting 

Materials.   

Congruent  with  Horowitz’s  assessment,  we found our new approach to require a much 

greater time investment from the instructor (which helped ensure proper safety), as well as an 

increased cost. Nevertheless, student feedback was highly positive, and all students involved 

later participated in the extracurricular lab research that the resulted from this work. 

Furthermore, students’   year-end performance on a comprehensive, conceptual ACS exam was 

exemplary. 

 

Results and Discussion 

Our small, rural class consisted of five students (three male, two female, aged 20 to 24), 

who were all biology majors. The course regimen included one three-hour lab per week, spread 

over 15 weeks per semester, for two semesters. As Table 1 indicates, Semester 1 was delivered 

in an unaltered,   “typical” format that encompassed 12 “cookbook”   labs designed to expose 

students to fundamental techniques [10]. Semester 2, in contrast (Table 2), was altered to include 

a hybridized  regimen  of  traditional  “cookbook”  experiments,  done  over  nine  weeks,  with  a class 

project that spanned six weeks. As Table 2 shows, two synthesis assignments were given during 

Weeks 1 and 5. For these assignments, students went through the process of selecting two 

molecules as a class and then designing a means of assembling them. Students then carried out 

their synthetic routes during Weeks 12-15. The results of this course redesign will now be 

addressed.  
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Table 1. Weekly Schedule for Semester 1. 

Week Technique/Topic Covered Week Technique/Topic Covered 

1 Lab Safety 9 NMR spectroscopy 

2 IR spectroscopy 10 Grignard addition 

3 Distillation 11 Filtration/m.p. analysis 

4 Extraction 12 Computational chemistry 

5 Sublimation 13 Computational chemistry 

6 Thin-layer chromatography 14 Makeup lab 

7 Filtration 15 Lab cleanup/checkout 

8 Running reactions at reflux   
 

 

Table 2. Weekly Schedule for Semester 2. 

Week Technique/Topic Covered Week Technique/Topic Covered 

1 Choosing Synthetic Targets 
(Synthesis Assignment 1) 9 Green chemistry 

2 Radical chemistry 10 Diels-Alder chemistry 

3 GC analysis/kinetics 11 Column chromatography 

4 Meet to discuss and vote on 
Assignment 1 12 

Total Synthesis: Step 1  
(Group 1: hydrogenation 

Group 2: cleaving a methyl ether) 

5 
Using SciFinder to design a 

synthesis 
(Synthesis Assignment 2) 

13 
Total Synthesis: Step 2 

(Group 1: protecting an alcohol I 
Group 2: chromatographic purification) 

6 Gas chromatography 14 
Total Synthesis: Step 3 

(Group 1: DCC-amidation I 
Group 2: protecting an alcohol II) 

7 Qualitative analysis 15 
Total Synthesis: Step 4 

(Group 1: DCC-amidation II 
Group 2: hydroboration/oxidation) 

8 Boiling point determination   
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Semester 2, Assignment 1 (Week 1): Choosing Synthetic Targets 

During Week 1 of Semester 2 (Table 2, entry 1), students were taught how to properly search 

current literature, with the accompanying lecture being video-recorded and posted online after 

class for reference [11a]. Each student was then assigned to find and choose at least two 

molecules that might serve as potential synthesis candidates. Students were encouraged to avoid 

overly complex molecules and to focus on simple, bioactive natural products that had never been 

assembled by total synthesis before. After three weeks, class members reconvened with the 

instructor to share their findings (Table 2, entry 4) and written reports, which had to include the 

following for full credit: (1) the structures and reported biological properties of the molecules 

they chose; (2) the literature source(s) in which they were found; and (3) why they were selected.  

On the day these reports were due, we held a round-table student/teacher discussion to 

share our findings (see Table 2, entry 4), and the ensuing dialogue proved to be very positive and 

enthusiastic. One pre-dental student, for example, chose four molecules applicable to oral health 

[12], and one pre-med student with a military background chose spider silk for its potential to 

replace Kevlar [13]. Other students submitted molecules that included daphnetoxin [14], 

xanthohumol [15], berkazaphilone B [16], olympicin A [17], tauromantellic acid [18], 

adenosines A1 and A2A [19], and amyrisin C [20]. Following this discussion, an anonymous 

online vote was taken to compile each student’s top two nominees. The winning contenders from 

this vote, shown in Figure 1, were JBIR-94 (1) and JBIR-125 (2), two recently-discovered 

natural products [21] that possess antioxidative/anticancer properties   comparable   to   α-

tocopherol, the active constituent of Vitamin E [22]. 
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Figure 1. JBIR-94 (1) and JBIR-125 (2). 

 

Semester 2, Assignment 2 (Week 5): Designing Total Syntheses 

During Week 5 of Semester 2 (Table 2, entry 5), students were taught how to use SciFinder 

Scholar to design a total synthesis. The accompanying lecture was video-recorded and posted 

online for reference [11b-c]. Students were then asked to use SciFinder to devise their own 

synthetic routes to JBIR-94 (1) and JBIR-125 (2) using any conditions they found in the 

literature. After three weeks, students turned in their reports, which for full credit had to include 

their proposed synthetic routes to 1 and 2 and every literature reference employed. Once student 

designs were submitted, the instructor combined their most pragmatic elements to construct the 

routes shown in Schemes 1 and 2. Though not required for the assignment, every reaction 

condition used in these pathways was one that students had learned in the separate lecture course 

taken concurrently with the lab. 

The execution of these reactions was intentionally postponed until Weeks 12-15 (Table 2, 

entries 12-15) to allow sufficient time for ordering and receiving all the needed reagents. 

Students conducted more traditional experiments in the interim, as seen in entries 6-11 of Table 

2. 
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Semester 2, Assignment 2 (Weeks 12-15): Carrying out the Syntheses 

During Weeks 12-15 of Semester 2, students separated into two groups, one focusing on 

compound 1 and the other on compound 2. Each reaction undertaken followed exact or related 

literature procedures [23-25], which have been reworded and fully-illustrated in a more student-

friendly and thorough manner in our Supporting Materials. Thus, using conditions that students 

found themselves during their literature search [23], Group 1 successfully reduced trans-ferulic 

acid 3 to intermediate 4 using H2 gas and 5% Pd/C (Scheme 1). Subsequent treatment with acetic 

anhydride during Week 13 achieved conversion of compound 4 to intermediate 5 in 78% yield 

over two steps from 3 [24]. Over Weeks 14-15, various attempts to form diamine-linked 

intermediate 7 led to only complex mixtures of unidentifiable byproducts.  
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Scheme 1. Student-designed route to JBIR-94 (1). 

 
 
Given its greater structural complexity, students’  proposed  route  to  JBIR-125 (2) was predictably 

longer (Scheme 2). Thus, during Week 12, Group 2 treated 4-allylanisole 8 with BCl3•SMe2
 [25] 
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to unveil free phenolic intermediate 9 in 65% yield. This was then acylated during Week 13 to 

give 10 in 83% yield, as indicated. At this stage (Weeks 14-15), two attempts were made to 

convert 10 to 11 through hydroboration/oxidations conditions [24]. Disappointingly, both failed, 

precluding access to 11, en route to 12, 14, and ultimately 2. Modified routes to 1 and 2 are 

currently underway and will be disclosed once the synthesis is completed. 
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Scheme 2. Student-designed route to JBIR-125 (2). 

 

For every week of the semester, including Weeks 12-15, students were required to hand in a 

journal-style, typed lab report for full credit. For experiments that did not succeed (Weeks 14-

15),   students   had   to   include,   in   their   “Results/Discussion”   sections,   possible explanations for 

reaction failures and proposals for future alternative conditions. 
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Safety and Time Investment 

A major challenge we face in organic chemistry teaching labs is the difficulty of converting real-

world synthetic procedures into an undergraduate-appropriate format. For instance, many 

reactions take too long or involve too many safety concerns for a typical lab course. In the case 

of our project specifically, two of our reactions (1  2 in Scheme 1 and 8  9 in Scheme 2) 

required overnight stirring, which obviously could not be done start-to-finish in a three-hour 

timeframe.  

 This problem was circumvented by running these reactions in duplicate, so students could 

experience both the setup and the quench portions of each procedure without having to wait 

through the hours of reaction time in-between. Thus, for these two steps (1  2 and 8  9), the 

instructor set up each reaction the night before. The next day, students were tasked with both 

quenching the previous night’s  reaction  and setting up that reaction again (to be quenched by the 

instructor the following day). Students could thereby experience both halves of the procedure 

(setup and quench) and then perform purifications and analyses on the resulting products, all 

within a three-hour timeframe. This obviously required a greater time investment from the 

instructor. Furthermore, specific safety concerns, such as the flammability of Pd/C and the 

corrosivity of BCl3•SMe2, were addressed by close and judicious instructor supervision. Specific 

procedural and safety details are found in the Supporting Materials. 

 

Cost Breakdown and Extracurricular Student Participation 

Congruent with Horowitz’s assertions [8], the up-front costs, summarized in Table 3, remain a 

prohibitive factor for this type of course restructuring. These were minimized, however, by the 

fact that many of the general reagents needed were already available on-site in the   instructor’s  
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adjacent research lab.  As Table 3 illustrates, the cost-per-experiment was highest during Week 

12, where gram-scale amounts of the initial starting materials were required. These costs 

decreased over the ensuing weeks because previously-synthesized intermediates were taken on in 

smaller amounts during successive steps. (A more in-depth cost analysis is given in the 

Supporting Materials.) 

 
Table 3. Cost breakdown summary. 

 Group 1 (3 students) Group 2 (2 students) 

Week Up-Front 
Cost 

Cost Per 
Experiment 

Total Cost 
Per Student Week 

Up-
Front 
Cost 

Cost Per 
Experiment 

Total 
Cost 
Per 

Student 
12 $180.11 $17.36 $5.79 12 $470.17 $25.62 $12.81 
13 $208.07 $1.65 $0.56 13 $715.00 $0.27 $0.14 
14 $26.30 $0.30 $0.10 14 $0.00* $1.07 $0.54 
15 $0.00* $0.30 $0.11 15 $215.56 $1.95 $0.97 

Total $414.48 $19.61 $6.54 Total $1400.73 $28.91 $14.47 
 

*The up-front costs for these steps were counted as $0.00 because all needed reagents were 

purchased in earlier experiments. 

 

Despite the up-front cost being considerable ($414.48 for Group 1 and $1400.73 for Group 2), 

the cost-per-experiment and cost-per-student were fairly reasonable for the two groups ($19.61 

and $28.91, respectively), as Table 3 indicates. Thus, costs can be minimized if the synthetic 

steps chosen involve common reagents that are already available on-site. In a more honest sense, 

however, the true cost-per-experiment and per-student can only be minimized if the purchased 

supplies are reused with subsequent students, which we did not do. Consequently, our reagents 

and supplies had to be paid for by   subsidizing   the   cost   using   the   instructor’s   startup   research  

funds. 
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 This was not a purely altruistic move, as twenty of the 25 reagents/supplies used in this 

project are extremely common to synthetic work and would eventually be used in the instructor’s  

research anyway. The cost of the “truly unique supplies”  (those  that  were  specific  to  this project) 

came to $240.24 for the entire class, or 13.23% of the total up-front expense of $1,815.21. This 

work proved to be additionally beneficial, as it eventually evolved into a research project for the 

instructor’s group. This occurred at the semester’s   end, when all participating students were 

invited (if they chose) to continue working on the syntheses of 1 and 2. All five students 

eventually did. One of them even wrote two institutional grant proposals to help fund the 

continued research, and two helped coauthor this paper. With an upcoming synthetic publication 

on the horizon, this project has proved to be mutually beneficial for both students and the 

instructor. 

 

Student Feedback and ACS Exam Performance 

Our success in meeting our original objective –to create a new course structure to provide a 

student-driven research project—was gauged through anonymous end-of-year student 

evaluations. This was done using the Diagnostic Form Report from the IDEA Center Student 

Ratings system [27], for which full results are included in the Supporting Materials section. The 

number of student comments was somewhat limited, given the small class sizes at our rural 

campus, but responses to the student-driven research project were highly positive. Following are 

some of the representative student comments: 

 

Best class ever!  I love that [the professor] involved us in a total synthesis during 

the last four weeks of class. I am so excited to go to each lab class. I feel like I 
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have learned so much more doing work for the synthesis project than any of the 

other  “cookbook”  labs  that  we  have  done. 

 

I think that the best part of this course was that we were able to design a synthesis 

and produce a compound of our choosing and make it in the lab. I liked that we 

didn’t  follow  the  book  the  whole  time  and  were  able  to  see  what  it  is  like  to  be  in  

a real lab designing a synthesis. It was an awesome experience and made the class 

that much more amazing. Also the labs went with the material being taught in the 

Organic Chemistry lecture. I loved this because I would learn about it in class and 

then experience what I learned in the lab. 

 

I think it would be really fun and educational to do more of the syntheses than the 

“cookbook”  labs. 

 

In typical fashion for this lab, our five enrolled students also took a separate organic chemistry 

lecture course during the same semester. The final for the lecture course was a normalized, 

comprehensive ACS exam [28], on which these five students’   scores   averaged   in the 87th 

national percentile [29]. This exam was not a lab-specific one, but mostly conceptual in nature. 

However, our redesigned lab structure cannot be ruled out as a contributing factor in students’ 

exemplary comprehension of organic chemistry. Future findings in this area will be shared in a 

later disclosure. 
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Conclusions 

  To create a new course structure that would provide a positive, student-driven research 

experience, we recently followed the example of Gravert [9] by redesigning our two-semester 

sophomore organic lab course to include a synthesis project that was chosen, designed, and 

carried out by students. This resulted in progress toward the total syntheses of JBIR-94 (1) and 

JBIR-125 (2) [21], two antioxidative/anticancer compounds with properties comparable to those 

of  α-tocopherol, the active constituent of Vitamin E [22]. Our course redesign has the significant 

drawback of requiring close supervision by an instructor or TA with experience in synthetic 

chemistry, narrowing its applicability to smaller class sizes. Its up-front cost is also prohibitive, 

but can be minimized by employing synthetic steps that involve reagents already available on-

site and extending the findings into an accompanying research setting. Despite these 

shortcomings, the highly positive student feedback, exemplary student performance on an ACS 

normalized exam [28], and continued research participation by all registered students after the 

class had ended, are indicative of the beneficial nature of this type of classroom approach. 
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Description of Supporting Materials 

The Supporting Materials include full experimental details (including spectroscopic data, 

full-color photographs, and illustrations), written with sufficient clarity to be employable in 

synthetic lab courses, for the following transformations: 3  4 and 4  5 from Scheme 1, and 8 

 9 and 9  10 from Scheme 2. It also includes full copies of student evaluations, which were 

administered using the IDEA Center Student Ratings system [27], course syllabi, and a detailed 

cost breakdown. 
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