
Multiple Target Tracking with Recursive-RANSAC and
Machine Learning

Kyle Ingersoll

March 10, 2015

Abstract—The Recursive-Random Sample Consensus
(R-RANSAC) algorithm is a novel multiple target tracker
designed to excel in tracking scenarios with high amounts
of clutter measurements. R-RANSAC classifies each in-
coming measurement as an inlier or an outlier; inliers are
used to update existing tracks whereas are used to gen-
erate new, hypothesis tracks using the standard RANSAC
algorihtm. R-RANSAC is entirely autonomous in that it
initiates, updates, and deletes tracks without user input.
The tracking capabilities of R-RANSAC are extended by
merging the algorithm with the Sequence Model (SM).
The SM is a machine learner that learns sequences of
identifiers. In the tracking context, the SM is used to learn
sequences of target locations; in essence, it learns target
trajectories and creates a probability distribution of future
target locations. Simulation results demonstrate significant
performance improvement when R-RANSAC is augmented
with the SM, most noticeably in situation with high signal-
to-noise ratio (SNR) and infrequent measurement updates.

I. INTRODUCTION

In this paper, we present the Recursive-RANSAC
(R-RANSAC) multiple target tracking (MTT) algo-
rithm. The filtering, track initialization, and track
management blocks of R-RANSAC are explained
in Sections III-A, III-B, and III-C respectively.
Section III-D discusses alternatives ways to view
R-RANSAC in the context of other MTT algo-
rithms. We then describe how tracking perfor-
mance can be improved using machine learning.
Section IV briefly describes the machine learner
used here, the Sequence Model. Section V explains
how the Sequence Model was incorporated into
the R-RANSAC framework. Section VI describes
the simulation that was developed to test the Se-
quence Model/R-RANSAC (SM/R-RANSAC) algo-
rithm. Section VII presents simulation results and
Section VIII discusses conclusions about the SM/R-

RANSAC algorithm and future research directions1.

II. RANDOM SAMPLE CONSENSUS

The RANSAC algorithm [2] was designed to
estimate the parameters of a signal in the presence
of gross errors. When gross errors are present,
traditional methods like least-squares regression of-
ten poorly model the signal of interest. RANSAC
has been successfully applied to a wide range of
computer vision problems. One of the most well-
known applications of RANSAC is the computation
of the homography, or geometrical transformation,
between two images. When computing a homogra-
phy, feature points along with their accompanying
descriptors are found in each image. The feature
points are then matched across the images by com-
paring their descriptors. While many features are
correctly matched, incorrect matches are inevitable.
Figure 1 demonstrates this situation2. Given this set
of feature matches, RANSAC is used to compute
the true homography; the resulting panoramic image
can be seen in Figure 2.

The RANSAC algorithm proceeds as follows.
First, an assumed signal model is selected. In the
homography example, the chosen model is a 4 by
4 matrix encoding translation, rotation, and scaling
information. Second, a random subset of data points
is selected. The number of data points selected is the
minimum number needed to estimate the model’s
parameters. In the homography case, four points
are needed. Third, a model is constructed with this
random subset of data points. Fourth, all remaining
data points are classified as either inliers or outliers

1For further explanation on R-RANSAC, tracker-sensor feedback
in the R-RANSAC framework, or machine learning with R-RANSAC,
we refer the interested reader to [1].

2Images are from the windows dataset and can be accessed at
https://canvas.instructure.com/courses/743674/assignments/1929377

1

2

Fig. 1: Two overlapping images of a building are overlaid on
top of each other. The transformation between these images is
almost purely translational in the horizontal direction. Features
in one image are labeled in red and features in the other image
are labeled in green. Matching features are indicated by yellow
lines. The majority of features are correctly matched, though
some incorrect matches do exist.

Fig. 2: The resulting panoramic image produced with the
homography calculated from the correctly matched feature
pairs identified in Figure 1.

to this new model. This inlier/outlier classification
is performed by setting an inlier threshold; all points
that fall within this threshold are denoted as inliers
and are stored as the new model’s consensus set.
Steps two through four are performed iteratively.
During the iterations, the model with the largest
consensus set, or in other words, the model with the
most support, is stored. At the end of the iterations, a
smoothed model is produced by performing a least-
squares regression on the consensus set of the model
with the most support. To summarize, RANSAC
generates several hypotheses of how to best model
the available data and relies on the data to determine
which hypothesis has the most support.

III. RECURSIVE-RANSAC

Recursive-RANSAC was originally developed as
a multiple object filter by Dr. Randal W. Beard and
Dr. Peter C. Niedfeldt at Brigham Young University.
The motivation behind R-RANSAC was to design
a filter that inherited RANSAC’s ability to robustly
reject gross errors, but that could be used to esti-
mate multiple signals. Reference [3] introduces R-
RANSAC as a method of estimating multiple static
signals that are updated via recursive-least squares.
R-RANSAC is extended in [4] to estimate time-
evolving signals.

A. Filtering

R-RANSAC maintains a model set, a set of
hypothesis tracks described by their state estimate
x, error covariance P, and consensus set χ. At
every time step, each hypothesis track is propagated
forward using the predict step of the Kalman filter,
given by

xt|t−1 = Axt−1 (1)

Pt|t−1 = APt−1A
> +Q (2)

where A is the state transition matrix of the assumed
motion model and Q is the covariance of the process
noise.

Once all tracks have been propagated forward,
an inlier threshold τR is set around each track; the
`2 norm is used as a threshold. An inlier region is
created when the inlier threshold is applied (IR =
{z : ||z − C xt|t−1||1 < τR). For a given track, all
measurements from the current scan are classified as
inliers or outliers to that track according to whether
or not the measurements fall within the track’s inlier
region. Each inlier is used to update the track using
the update equations of the Kalman filter, given by

xt = xt|t−1 +K (z − C xt|t−1) (3)

Pt = (I −K C)Pt|t−1 (4)

where z is the measurement, C is the measurement
observation matrix that relates the measurement to
the target states, I is an identity matrix of the same
dimensions as A, and K is the Kalman gain and is
given by

K = Pt|t−1C
> (R + C Pt|t−1C

>)−1 (5)

3

where R is the covariance of the sensor noise.
The term inlier region is phraseology borrowed
from RANSAC. In the tracking community, this
region is more commonly referred to as a gate or a
measurement validation region (see, for example,
[5]). R-RANSAC uses an inlier region of fixed
volume and bases the size of the inlier region on
the assumed measurement noise covariance. Suc-
cessful extenstions of R-RANSAC have replaced the
Kalman filter with a probabilistic data association
(PDA) filter.

B. Track Initialization

Measurements that are outliers to all existing
tracks are used to initialize new tracks using a
RANSAC-based method. R-RANSAC stores all the
measurements from the past Nw time steps in a
measurement history window. When a measurement
is found to be an outlier to all existing tracks, a
random subset of measurements (which includes
the outlier measurement under consideration) is se-
lected. Using this subset of measurements, a model
is computed. The measurement history window is
then searched for other measurements that support
this model, i.e. that meet the inlier threshold. This
process of creating hypothesis models is repeated
iteratively and the model with the largest consensus
set is stored. At the end of ` iterations, the model
with the most support is then propagated forward
in time to the current time step. As it is propagated
forward, it is updated by the measurements that
compose its consensus set. These propagation and
update steps are performed with a Kalman filter.
This new model is then appended to the model
set. The RANSAC iterations are also terminated if
the cardinality of a model’s consensus set exceeds
γ = τρ

Nw . The equations used to generate the hypoth-
esis models are given in [6]. Due to the RANSAC-
based initialization method, tracks are often referred
to as models in the R-RANSAC context. The two
terms are used interchangeably here.

Figure 3 provides a snapshot of a single time
step of R-RANSAC. At this time step, there are
three tracks in the model set, labeled by blue X’s.
There are several incoming measurements, drawn as
circles. The inlier region of each track is indicated
by a red square. Measurements classified as inliers
are drawn in cyan whereas outlier measurements are
drawn in orange. Each orange-colored measurement

Fig. 3: A single time step of R-RANSAC. Current state
estimates are indicated by blue X’s. Inlier measurements are
indicated by cyan circles. Outlier measurements are indicated
by orange circles. The inlier regions are displayed as red
squares.

will be used to generate a new, hypothesis track
which will then be appended to the model set.

C. Track Management

The remaining steps of R-RANSAC fall under
the umbrella of track management: identifying valid
tracks, merging redundant tracks, and pruning low-
support tracks.

At the beginning of every time step, the consensus
set of each track in the model set is updated by
removing older measurements that have left the
measurement history window. Each track’s inlier
ratio ρ is also calculated by ρ = |χ|

Nw
where |χ| is

the cardinality of the consensus set. Good, or valid,
tracks are identified with a good model threshold
and a timeline threshold. The good model threshold
τρ is the minimum inlier ratio for a model to be
considered a good model. Likewise, the timeline
threshold τT is the minimum number of time steps
a model must have existed to be considered a
good model. Models that meet both thresholds are
outputted as good models for that time step.

In order to limit the number of false positive
tracks, redundant tracks must be identified and
removed from the model set. The Mahalanobis
distance is used as a merging criteria. If two tracks
meet the merging criteria, the track with the higher
inlier ratio is retained and the other one is discarded.
At the end of each time step, the tracks in the model
set are ordered by their inlier ratio. The model set

4

has a fixed size M and is truncated at each time
step, thereby removing the least probable tracks.

D. R-RANSAC: Alternative Viewpoints
R-RANSAC was initially developed as a stan-

dalone multiple object filter, a fully-integrated pack-
age that was mutually exclusive with other tracking
approaches such as joint probabilistic data asso-
ciation (JPDA) and multiple hypothesis tracking
(MHT). However, in the process of further evolving
R-RANSAC, it has been beneficial to view R-
RANSAC in other ways.

R-RANSAC can be viewed purely as a track
initialization algorithm, albeit one that imposes cer-
tain constraints on the filtering and data associa-
tion blocks of the tracker. As a track initialization
algorithm, R-RANSAC simply requires that each
incoming measurement be classified as an inlier
or an outlier. Given this requirement, any number
of filters and data association techniques may be
used with R-RANSAC. Consequently, R-RANSAC
becomes a modular algorithm whose blocks can be
substituted with application-specific replacements
depending on the tracking scenario. This idea does
not diminish the impact or utility of R-RANSAC;
rather, it makes R-RANSAC highly adaptable, and
applicable to an even greater number of situations.
Figure 4 illustrates the modularity of R-RANSAC
and includes several algorithms that can be used for
data association and filtering.

IV. SEQUENCE MODEL

The Sequence Model is an extension of the Se-
quence Memoizer, a machine learner first proposed
by Wood, Gasthaus, et. al. in [7]. The Sequence
Memoizer is a hierarchical Bayesian model de-
signed to capture long-range dependencies in dis-
crete data. The Sequence Memoizer is very appro-
priately named: it learns sequences of data. A classic
application of such a learner would be in language
prediction.

The SM was applied to a multiple agent, MTT
problem in an urban environment in [8]. The SM,
like the Sequence Memoizer, learns sequences of
discrete data. Tracking usually takes place in a
continuous field of view, so the first step in applying
the SM to tracking is to discretize the field of
view. In tracking, the SM learns sequences of target
locations instead of continuous target paths. The

Track

Initialization

RANSAC-based method

Data

Association

All neighbors data association

Nearest neighbor data association

Probabilistic data association

Joint probabilistic data association

Filtering

Kalman filter

Extended Kalman filter

Interacting multiple models

Particle filter

Recursive-RANSAC Modularity

Fig. 4: Recursive-RANAC as a modular algorithm.

grid size chosen to discretize the field of view is
very important; an overly fine discretization makes it
more difficult for the SM to learn sequences whereas
an overly coarse discretization reduces the amount
of usable information in the SM’s prediction.

The SM creates a belief model of the field of
view. For each grid location in the belief model, the
probability that a target occupies that location in the
future is estimated. The SM constructs this belief
model in a Monte Carlo-like way by propagating
forward several probable trajectories into the future.
Propagating more possible trajectories forward cre-
ates a belief model that better estimates the true
distribution, but also results in longer execution
times. The number of possible trajectories was set
at 100 in our simulations. The value of the belief
model at a given grid location is the proportion of
probable trajectories that passed through that loca-
tion. An example belief model from the simulations
presented in Section VI can be seen in Figure 5.

Conceptually, the SM can be a powerful tool in
tracking. It has the natural ability to learn road
networks, including details like the locations of
stoplights, one-way streets, and common U-turn lo-
cations. The SM, because it requires a discretization
of the environment, can also easily incorporate prior

5

5 10 15 20 25 30 35

5

10

15

20

25

30

35

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Fig. 5: An example belief model constructed by the Sequence
Model. The probability of a target occupying a given grid
location at the next time step is indicated by the color scale.

knowledge one might have of the tracking envi-
ronment. Grid locations corresponding to no travel
areas (buildings instead of streets, for example), can
have their probability mass zeroed out or greatly
reduced. Incorporating prior knowledge about the
environment into a Kalman filter estimate is much
more difficult.

The SM does, however, present some difficulties
when applying it to tracking. First, the SM, like
all machine learning algorithms, requires a training
period before it begins to make accurate predictions.
Care must also be taken to only train the SM with
tracks that have a high probability of representing
true targets to prevent spurious tracks from corrupt-
ing the training data. The most significant shortcom-
ing of the SM in its current state is that it produces
a single belief model describing the distribution of
future locations for all targets. In [8], the SM is
used to perform path planning for a cooperative
team of UAVs with the goal of maximizing the
number of targets seen. The shared belief model
does not conflict with this objective. The authors
also assume perfect data association; unfortunately,
data association is one of the most difficult prob-
lems in real tracking scenarios. Because of this
shared belief model, R-RANSAC cannot leverage
the SM to associate measurements of closely spaced
targets; the SM can only be used to distinguish
between clutter measurements and target-associated
measurements of widely spaced targets.

A. Other Learning Approaches
Machine learning is often applied to video-based

target tracking in order to learn a visual appearance
model of the targets. Reference [9] provides a

representative example of this class of algorithm;
when targets are not interacting, they are tracked
with individual trackers and an appearance model
is constructed. This appearance model includes
positive examples (templates of the correct target)
and negative examples (templates of other targets).
When targets interact, the appearance models are
used to distinguish between the targets. This use
of machine learning is fundamentally different to
the use proposed here. We seek to learn target
trajectories as opposed to target appearances.

In our literature review, we only came across one
other example of using machine learning to learn
target trajectories. In [10], a motion map is used
to learn non-linear motion patterns in the scene.
This motion model helps to connect small sequences
of associated measurements known as tracklets into
larger sequences known as tracks. An affinity score
is calculated between tracklets and learned motion
patterns using the head and tail positions and veloc-
ities of the different segments. The motion pattern
that receives the highest affinity score is used to
connect the tracklets. This is an online learning
algorithm; the motion model is constructed during
tracking with high confidence tracklets. Reference
[11] extends this method by using a Conditional
Random Field to model the track affinities and
dependencies, and by calculating the affinity scores
globally. This method differs from our method in
that it is a post-processing algorithm.

V. INCORPORATING THE SEQUENCE MODEL
WITH R-RANSAC

When incorporating the SM into the R-RANSAC
framework, we primarily use it as a tool to improve
data association. We expect using the SM to be most
advantageous in situations with infrequent mea-
surement updates and a high proportion of clutter
measurements. R-RANSAC relies entirely on its as-
sumed dynamic model to perform data association.
In the case of infrequent measurement updates, a
target can deviate significantly from its assumed
model, thereby making it much less probable that R-
RANSAC correctly associates measurements. The
SM does not share this inherent weakness of R-
RANSAC; its belief model is constructed entirely
from past observations of the target. Consequently,
provided the SM has been sufficiently trained and
the target does not deviate from its previous paths,

6

the SM should be able to correctly associate mea-
surements independent of the time between mea-
surement updates. The simple example of a road
with a right-hand turn clearly illustrates this point.
Just prior to the turn, R-RANSAC propagates the
state estimate forward and off the road. The SM,
on the other hand, has never observed a target
continuing straight on this section of road. Instead,
it has observed targets making a right hand turn at
that location and thus it assigns probability mass to
the right.

R-RANSAC measurement association probabil-
ities are calculated using the covariance of the
innovation. The SM association probabilities are
calculated by interpolating between grid locations
in the belief model. Both sets of association prob-
abilities are normalized. A weighting between the
R-RANSAC and SM association probabilities is
computed. Several approaches have been suggested
on how to best weight these probabilities includ-
ing using mean-based, entropy-based, or random
weightings. Ideally, the weighting would be based
on the certainty of each prediction. We attempt
to approximate this ideal weighting by allowing
the SM weight to grow linearly from zero to an
upper bound P (SM)max. The SM weight reaches
P (SM)max when the track’s age reaches `SM time
steps; after `SM time steps we are confident the
SM has been sufficiently trained. In the simulations
presented here, P (SM)max = 0.9 and `SM = 300.

When used with R-RANSAC, the SM is initial-
ized with an arbitrarily large number of targets. All
valid tracks outputted by R-RANSAC are used to
update the SM. The R-RANSAC track with good
model number i updates the belief model for the
ith target in the SM. A high τT value of 15 is
used to prevent spurious tracks from corrupting the
SM. The SM is updated with the highest probability
measurement associated with a track instead of the
track’s state estimate. Valid tracks that were not
updated at the current time step are not used to
update the SM. The inlier region of R-RANSAC
is expanded to account for possibly extreme intra-
time step target maneuvers (τR = 70). A grid size
of 15 is used to discretize the environment.

Because the SM/R-RANSAC algorithm is de-
signed to excel in tracking situations with infrequent
measurement updates, the nearly constant velocity
(CV) model is used in place of a higher-order linear
model such as the nearly constant jerk (CJ) model.

The CJ model performs poorly in these situations
because its sensitive higher-order terms result in
inaccurate predictions of future target locations far
into the future. The CV model, although it does not
model turning behavior, is less sensitive to errors in
the state estimate and oftentimes more accurately
predicts future target locations. The CV model also
behaves in a more stable fashion when a target has
maneuvered between time steps. In the case of a
right hand turn, the CJ model requires several post-
turn measurements to converge to the true path.
Conversely, the CV model snaps to the true path
after receiving a single post-turn measurement.

VI. LEARNING SIMULATION ENVIRONMENT

As described in Section IV, the SM is still under
active development and can only be reasonably
expected to improve tracking performance in certain
situations. To fairly evaluate the performance of the
SM/R-RANSAC combination, the simulated MTT
scenario was designed to showcase the expected
strengths of the new algorithm.

A MTT scenario was simulated in Matlab in
order to test the SM/R-RANSAC algorithm. The
simulation environment consists of a 550 x 550
field of view with four targets. Each target travels
in a rectangular path, with each path being located
almost wholly in one of the quadrants of the field
of view. The target measurements are corrupted by
normally-distributed noise with a standard deviation
of 0.5. The simulation begins with a 600 time
step learning period; this learning period contains
no clutter measurements. After the learning period,
alternating 400-time step periods with clutter and
200-time step periods without clutter occur until
time step 2800 (the end of the simulation). The
time periods with clutter are referred to as the
“jamming” periods throughout this discussion. The
periods without clutter measurements are designed
to allow R-RANSAC to reacquire the targets and
establish context for the learner. Figure 6 displays
the number of clutter measurements over the entire
simulation. The number of clutter measurements
during each “jamming” period builds to a peak and
then falls back to zero. Each successive “jamming”
period rises to a higher maximum number of clutter
measurements resulting in more difficult tracking
as the simulation progresses. Figure 7 shows a
snapshot of the simulation environment during a
period of clutter measurements.

7

0 500 1000 1500 2000 2500 3000
0

20

40

60

80

100

120

Time Steps

N
um

be
r

of
 C

lu
tte

r
M

ea
su

re
m

en
ts

Fig. 6: The number of clutter measurements at each time step
in the learning simulations.

0 50 100 150 200 250 300 350 400 450 500 550
0

50

100

150

200

250

300

350

400

450

500

550

Fig. 7: A snapshot of the simulation environment during a
period of clutter measurements. The measurements of the
current time step are shown as green circles. The most recent
25 measurements generated by the true targets are shown
as smaller, blue circles. The good R-RANSAC tracks are
displayed as randomly colored, larger crosses. The hypothesis
tracks are displayed as smaller, magenta crosses.

To make R-RANSAC compatible with this par-
ticular simulation, two modifications are necessary.
First, tracks’ consensus sets are updated with all
of the inlier measurements instead of only with the
nearest neighbor measurement. Second, an adaptive
τρ is used. A baseline value of 0.8 is assumed for τρ;
this baseline value is added to the average number of
expected inlier measurements based on the average
size of the measurement scans in the measurement
history window, the area of the field of view, and
the inlier region area. This adaptive τρ appears to
work well during all stages of the simulation. These
two modifications are necessary to distinguish valid
tracks from spurious tracks during the “jamming”
stages of the simulation.

TABLE I: MOT Results - R-RANSAC with the Sequence
Model

Simulation MOTP MOTA MD FP MM
SM/RR - 9 0.4960 0.9793 0.0000 0.0203 0.0004
RR - 9 0.4452 0.9428 0.0207 0.0281 0.0083
SM/RR - 13 1.1883 0.9818 0.0000 0.0174 0.0007
RR - 13 1.7101 0.7896 0.1500 0.0088 0.0515
SM/RR - 17 11.2009 0.8690 0.0085 0.0911 0.0314
RR - 17 15.3591 0.5766 0.2718 0.0233 0.1284

TABLE II: Average OSPA Scores - R-RANSAC with the
Sequence Model

Simulation OSPA OSPA-T Std. Dev. (OSPA-T)
SM/RR - 9 4.1499 4.1786 0.4883
RR - 9 12.8371 13.0207 1.0472
SM/RR - 13 4.3613 4.3839 0.5872
RR - 13 35.8561 36.4852 1.2125
SM/RR - 17 20.3627 20.5861 0.7797
RR - 17 60.5101 61.4912 0.3926

VII. LEARNING RESULTS

Three sets of simulations were run in order to
compare R-RANSAC with the SM/R-RANSAC al-
gorithm. The simulations are differentiated by the
length of their time steps: 9, 13, and 17 seconds,
respectively. In Tables I and II, the simulations are
labeled as “SM/RR - dt” and “RR - dt” where dt
indicates the time step length. Five trials were run
with each simulation. Results were only extracted
from the post-learning period interval of the simula-
tion (i.e. the last 2200 time steps). The optimal sub-
pattern assignment (OSPA) [12], [13] and multiple
object tracking (MOT) [14] metrics were used. The
R-RANSAC parameters were kept constant across
all of the trials, except for the measurement noise
covariance which was increased by one order of
magnitude for the 17 second time step trials.

For all time step lengths, the SM/R-RANSAC
algorithm outperformed R-RANSAC. As expected,
the disparity in performance increases as the time
step grows larger. This is because the Kalman
filter estimate of future target location used by
R-RANSAC becomes increasingly less trustworthy
with longer time steps, whereas the SM estimate is
less affected by longer time steps. One interesting
observation is that SM/R-RANSAC’s performance
remained relatively constant between the 9 and 13
second simulations. This result is especially relevant
to UAVs which often have strict limits on computa-
tional power: the same level of tracking performance
can be achieved even when receiving measurements

8

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200
0

10

20

30

40

50

60

70

80

90

100

Time Steps

O
S

P
A

−
T

 S
co

re
s

Fig. 8: The OSPA-T scores for a single trial of “SM/RR - 17
(blue)” and “RR - 17” (red).

and updating the model set much less frequently.
Figure 8 plots the average OSPA-T scores at each

time step for the five trials of the “SM/RR - 17” and
“RR - 17” simulations. During the periods without
clutter measurements, R-RANSAC tracks very well
and SM-R-RANSAC tracks perfectly. During the
periods with clutter measurements, SM/R-RANSAC
performs noticeably better than R-RANSAC. Fig-
ure 8 also shows that R-RANSAC’s performance
degrades as soon as the clutter measurements be-
gin and its performance only improves after the
clutter measurements have ended. SM/R-RANSAC,
on the other hand, maintains excellent performance
through the early stages of the “jamming” periods
and strongly recovers before the “jamming” periods
are over.

There is a significant time penalty associated with
using the SM. R-RANSAC averaged 2.6111× 10−6

seconds per time step whereas the SM/R-RANSAC
algorithm averaged 2.3889× 10−5 seconds per time
step.

VIII. CONCLUSIONS

The ideas and results presented here are more
proof-of-concept than fully developed. The simu-
lation results showed that the SM significantly im-
proved data association in situations with infrequent
measurement updates and high amounts of clut-
ter. However, this simulation was very simplistic:
the targets were constrained to easily-learned and
widely spaced paths. Future research should include
simulations with interacting targets that deviate oc-
casionally from their nominal paths. Eventually,
experiments should be run on video where the
objects of interest do not follow constrained paths.
Future work will also need to look at determining

the optimal discretization of the environment and
the optimal way of combining the SM and R-
RANSAC belief models. All of this future work,
though, hinges on the continued development of
the SM. The SM needs to be able to maintain
separate belief models for individual targets for it
to be successfully applied to more realistic tracking
scenarios.

REFERENCES

[1] James Kyle Ingersoll. Vision-Based Multiple Target Tracking
Using Recursive-RANSAC. PhD thesis, Brigham Young Uni-
versity, 2015.

[2] Martin A. Fischler and Robert C. Bolles. Random Sample
Consensus: A Paradigm for Model Fitting with Applications to
Image Analysis and Automated Cartography. Communications
of the ACM, 24(6):381–395, June 1981.

[3] Peter Niedfeldt and Randy Beard. Recursive RANSAC: Mul-
tiple Signal Estimation with Outliers. In Nonlinear Control
Systems, volume 9, pages 430–435, September 2013.

[4] Peter C Niedfeldt. A Novel Multiple Target Tracking Algorithm
in Clutter: Recursive-RANSAC. PhD thesis, Brigham Young
University, 2014.

[5] Yaakov Bar-Shalom, Fred Daum, and Jim Huang. The Proba-
bilistic Data Association Filter. IEEE Control Systems Maga-
zine, 29(6):82–100, December 2009.

[6] Peter C Niedfeldt and Randal W Beard. Multiple Target
Tracking using Recursive RANSAC.

[7] Frank Wood, Jan Gasthaus, Cédric Archambeau, Lancelot
James, and Yee Whye Teh. The Sequence Memoizer. Com-
munications of the ACM, 54(2):91, February 2011.

[8] Kevin Cook, Everett Bryan, Huili Yu, He Bai, Kevin Seppi,
and Randal Beard. Intelligent Cooperative Control for Urban
Tracking. Journal of Intelligent & Robotic Systems, 74(1-
2):251–267, September 2013.

[9] Xuan Song, Jinshi Cui, Hongbin Zha, and Huijing Zhao.
Vision-Based Multiple Interacting Targets Tracking via On-Line
Supervised Learning - Computer Vision ECCV 2008, volume
5304 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg, Berlin, Heidelberg, October 2008.

[10] Bo Yang, Chang Huang, and Ram Nevatia. Learning Affinities
and Dependencies for Multi-Target Tracking Using a CRF
Model. In CVPR 2011, pages 1233–1240. IEEE, June 2011.

[11] R. Nevatia. Multi-Target Tracking by Online Learning of
Non-Linear Motion Patterns and Robust Appearance Models.
In 2012 IEEE Conference on Computer Vision and Pattern
Recognition, pages 1918–1925. IEEE, June 2012.

[12] Dominic Schuhmacher, Ba-Tuong Vo, and Ba-Ngu Vo. A
Consistent Metric for Performance Evaluation of Multi-Object
Filters. IEEE Transactions on Signal Processing, 56(8):3447–
3457, August 2008.

[13] B Ristic and D Clark. A Metric for Performance Evaluation
of Multi-Target Tracking Algorithms. IEEE Transactions on
Signal Processing, 59(7):3452–3457, July 2011.

[14] Keni Bernardin and Rainer Stiefelhagen. Evaluating Multiple
Object Tracking Performance: The CLEAR MOT Metrics.
EURASIP Journal on Image and Video Processing, 2008:1–10,
February 2008.

