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Conformal Actions in Any Dimension
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Abstract

Biconformal gauging of the conformal group gives a scale-invariant
volume form, permitting a single form of the action to be invariant in
any dimension. We display several 2n-dim scale-invariant polynomial
actions and a dual action. We solve the field equations for the most
general action linear in the curvatures for a minimal torsion geome-
try. In any dimension n > 2, the solution is foliated by equivalent
n-dim Ricci-flat Riemannian spacetimes, and the full 2n-dim space is
symplectic. Two fields defined entirely on the Riemannian submani-
folds completely determine the solution: a metric ea

µ, and a symmetric
tensor kµν .

1 Introduction

One of the problems facing the use of the conformal group as a fundamental
spacetime symmetry in n dimensions is the highly restricted set of possible
actions. In sharp contrast to general relativity, where the Einstein-Hilbert
action is Lorentz and coordinate invariant in every dimension, conformal
actions are typically coupled to the dimension. This coupling to dimension
occurs because under a rescaling of the metric by a factor e2φ, the volume
element of an n-dimensional spacetime scales by enφ. Therefore, for example,
since an action containing k copies of the scale-invariant conformal tensor,
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Ca
bcd, requires k inverse metrics (each scaling as e−2φ) to form a Lorentz scalar,

we find that an expression such as

S =
∫ √−gCa

bµνC
b
cαβ · · ·Cc

aρσ g
µαgνρ · · · gβσ dnx

is scale invariant only if n− 2k = 0.
A number of techniques have been developed to overcome this problem,

most of them within the context of conformal gauge theory. Generally, these
techniques either require additional “compensating” fields or fail to reproduce
general relativity in any gauge. Here we show that because of its scale-
invariant volume form, the biconformal gauging of the conformal group [1]
resolves these problems, allowing us to write an invariant action linear in the
curvature without compensating fields. We begin our discussion with a brief
overview of some of the previous treatments of conformal gauging.

The gauging of the conformal group in four dimensions has been handled
in much the same way as Poincaré gauging, simply treating the dilations and
special conformal transformations as generators of additional symmetries.
As recounted in [2], it was long believed that special conformal transforma-
tions were “ungaugeable” because the conformal matter current is explicitely
x-dependent, so that coupling it to the special conformal gauge field would
spoil translation invariance. Therefore, prior to 1977, conformal gauging
incorporated only Lorentz transformations, dilations and, for the supercon-
formal group SU(2,2—N), the internal U(N) symmetry algebras, i.e., Weyl’s
theory of gravity was regarded as the unique gauge theory of the conformal
group. In order to remain as close as possible to Einstein’s theory, Deser
[3] coupled a massless Lorentz scalar field φ(x) (dilaton) of compensating
conformal weight −1 to gravitation through the manifestly scale-invariant
quantity 1

6
φ2R. Later, Dirac [4], trying to accommodate the Large Num-

bers Hypothesis, similarly modified Weyl’s free Lagrangian by replacing all
R2-type terms by φ2R. This method gave rise to various theories involving
the “generalized” Einstein equations [5]-[9]. They were shown to reduce to
general relativity when expressed in a particular gauge [5]-[6].

In 1977, it was demonstrated by Crispim-Romao, Ferber and Freund [2]
and independently by Kaku, Townsend and Van Nieuwenhuizen [10]-[11] that
special conformal transformations can indeed be gauged. Using a Weyl-like
conformally invariant 4-dimensional action quadratic in the conformal cur-
vatures and the assumption of vanishing torsion, it is found that the gauge
fields associated with special conformal transformations are algebraically re-
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movable. The action reduces to a scale-invariant, torsion-free Weyl theory
of gravity based on the square of the conformal curvature. This auxiliary
nature of the special conformal gauge field has been shown to follow for any
4-dimensional action quadratic in the curvatures [12]. Generically, the action
reduces to the a linear combination of the square of the conformal curvature
and the square of the curl of the Weyl vector.

Alternatively, the special conformal gauge fields may be removed by the
curvature constraint [13]

Ra
bac = 0 (1)

This ensures that Ra
b is just the Weyl conformal curvature tensor, rather

than the usual Riemann curvature. Then the constraint of vanishing torsion,

Ta = 0 (2)

also renders the spin connection auxiliary. We will refer to conditions (1) and
(2) as the conventional constraints. The dilation field (Weyl vector) drops
out of the action completely, so instead of a Weyl unified theory one again
obtains a 4-dimensional Weyl-trivial theory of gravity, gauge equivalent to a
Riemannian geometry.

The quadratic curvature theory was later generalized to dimensions n > 4
by unifying it with the compensating field approach [14]. The action involves
terms of the form

e µ
[a e

ν
b e

α
c e

β
d] φ

2(n−4)/(n−2)R ab
µν R cd

αβ

While the resulting field equations no longer require the special conformal
gauge fields to be removable, the conventional constraints may still be im-
posed to remove them. These constraints were shown to be conformally
invariant if the conformal weight of φ is −(n−2)/2. Unfortunately, this class
of theories is not equivalent to general relativity in any gauge. It is useful,
though, in the understanding of superconformal gauge theories in n = 6 and
10 dimensions [29].

A different use of a compensating field proves somewhat more successful.
In n dimensions, an action of the form φ φ is conformally invariant. Because
the conformal d’Alembertian contains a term involving the trace of the special
conformal gauge field, constraint (1) leads to a φ2R term in the action. Again
imposing the conventional constraints, and gauging the Weyl vector to zero
and the compensating field to a constant, we recover Einstein gravity in n
dimensions.
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For n = 3, the Chern-Simons form leads to an exactly soluble (super-)
conformal gravity theory [15]-[17] characterized by conformal flatness.

In n = 2 dimensions, the conformal group is not a Lie group; it is gen-
erated by the infinite-dimensional Virasoro algebra [18]. The importance of
2-dimensional conformal field theory is well known as the symmetry of the 2-
dimensional world sheet in string theory [19]. In addition, we note the recent
surge of interest in conformal field theories due to the celebrated AdS/CFT
duality conjecture put forward by Maldacena [20] and made more precise
by others [21], which relates type IIB string theory and M theory in certain
(n+ 1)-dimensional anti-de-Sitter spacetime backgrounds to conformally in-
variant field theories in n dimensions.

Recently, a new way of gauging the conformal group [1] has been proposed
which resolves the problem of writing scale-invariant actions in arbitrary di-
mension without using compensating fields. In particular, we write the most
general linear action and find that all minimal torsion solutions are foliated
by equivalent n-dimensional Ricci-flat Riemannian spacetimes. Thus, the
new gauging establishes a clear connection between conformal gauge theory
and general relativity. It does not require the conventional constraints.

The new gauging starts with the conformal group that acts on an n-dim
spacetime. We will always assume n > 2 and can thus identify the conformal
group with the 1

2
(n + 1)(n + 2)-parameter orthogonal group O(n, 2), which

acts on an n-dimensional compact spacetime and leaves the null interval
ds2 = ηµνdx

µdxν = 0, ηµν = diag(1 . . . 1,−1,−1), µ, ν = 1 . . . n, invariant. It
is generated by Lorentz transformations, dilations (rescalings), translations,
and special conformal transformations1. The latter are actually translations
of the inverse coordinate yµ ≡ −ηµν

xν

x2 , or, equivalently, translations of the
vertex of the lightcone at infinity. In the new gauging, they are treated on
an equal footing with translations and in that context will be referred to
as co-translations. We retain the term special conformal transformations for
conformal gauge theories in which one of the two subsets of n transformations
(i.e., translations or special conformal transformations) is treated differently
from the other.

By demanding that the translational and co-translational gauge fields
together span the base manifold the biconformal technique yields a 2n-

1These transformations have elsewhere been called proper conformal transfor-
mations or conformal boosts. See Appendix A for a formal definition of the con-
formal group and an overview of geometrical gauge theory.
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dimensional manifold. A summary of this technique is given in Appendix A
and full detail is available in reference [1]. Among the advantages to this pro-
cedure is the fact that the resulting volume element is scale-invariant. To see
why, notice that the inverse coordinates yµ scale oppositely to the spacetime
coordinates xµ. The corresponding translational and co-translational gauge
fields, ωa and ωa scale as eφ and e−φ, respectively. The volume element,

ωa1 ∧ . . . ∧ ωan ∧ ωb1 ∧ . . . ∧ ωbn
,

is therefore scale invariant, since there are n translations and n co-transla-
tions. The scale invariance of the volume form eliminates the typical coupling
of invariance to dimension, opening up a wide range of possible actions.

In the next section, we define our notational conventions.
In Sec.(3) we introduce the zero-weight biconformal Levi-Civita tensor,

define the biconformal dual, present a large class of polynomial actions for
biconformal geometries valid for all dimensions n > 2, and write the most
general action linear in the biconformal curvatures and structural invariants.
Finally, we note certain topological integrals.

The subsequent three sections examine the consequences of the most gen-
eral linear action found in Sec.(3). We completely solve the field equations
for a minimal torsion biconformal space, and show that the solutions admit
two foliations of the 2n-dim base manifold. The first involution shows that
the base space is foliated by conformally flat n-dim submanifolds. The sec-
ond involution gives a foliation by equivalent n-dim spacetimes constrained
by the vanishing of the Ricci tensor. Thus, the solder form satisfies the
vacuum Einstein equation despite the overall geometry possessing (minimal)
torsion, a non-trivial Weyl vector, and an arbitrary cosmological constant.
Each Riemannian geometry is fully determined by the components of the
solder form, e a

µ , defined entirely on these spacetime submanifolds. The full
2n-dim solution contains one additional field, a symmetric tensor hµν , also
defined entirely on the submanifolds. Except for a single special case, the
full 2n-dim space is necessarily symplectic, hence almost complex and almost
Kähler.

Sec.(7) treats one special case which occurs in the general solution. In this
case, the Ricci tensor continues to vanish while certain additional fields are
allowed. Sec.(8) compares and contrasts the present method with previous
conformal and scale-invariant gaugings, while the final section contains a
brief summary.
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2 Notation

The group O(n, 2) preserves the (n + 2)-dim metric diag(1 . . . 1,−1,−1), or
equivalently in a null basis

ηÃB̃ =



















0 0 · · ·0 1
0
...
0

ηab

0
...

0
1 0 · · ·0 0



















where Ã, B̃, . . . = 0, 1, . . . , n, n + 1 and a, b, . . . = 1, . . . , n. The Minkowski
metric is written as ηab = diag(1 . . . 1,−1). The usual antisymmetry of the

pseudo-orthonormal connection, ωÃ
B̃
, allows us to express ωn+1

A , ωA
n+1, and

ωn+1
n+1 (where A,B, . . . = 0, 1, . . . , n) in terms of the remaining set,

ωA
B = {ωa

b , ω
a ≡ ωa

0 , ωa ≡ ω0
a, ω

0
0}

These remaining independent connection components (gauge fields) are asso-
ciated with the Lorentz, translation, co-translation, and dilation generators
of the conformal group, respectively. We refer to ωa

b as the spin-connection,
ωa as the solder-form, ωa as the co-solder-form, and ω0

0 as the Weyl vec-
tor, where in all cases differential forms are bold and the wedge product is
assumed between adjacent forms. The O(n, 2) curvature, given by

ΩA
B = dωA

B − ωC
Aω

A
C , (3)

divides into corresponding parts, {Ωa
b ,Ω

a ≡ Ωa
0,Ωa ≡ Ω0

a,Ω
0
0}, called the

curvature, torsion, co-torsion, and dilation, respectively. While these parts
are not conformally invariant, they are invariant under the fiber symmetry
of the biconformal bundle.

When broken into parts based on the homogeneous Weyl transformation
properties of the biconformal bundle, i.e. Lorentz and scale transformations,
eq.(3) becomes

Ωa
b = dωa

b − ωc
bω

a
c − ∆ad

cbωdω
c (4)

Ωa = dωa − ωbωa
b − ω0

0ω
a (5)

Ωa = dωa − ωb
aωb − ωaω

0
0 (6)

Ω0
0 = dω0

0 − ωaωa (7)
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where ∆ab
cd ≡ δa

c δ
b
d−ηabηcd. If we set ωa = 0 = Ωa the equations reduce to the

structure equations of an n-dim Weyl geometry with torsion. Each curvature
may be expanded in the (ωa, ωb) basis as

ΩA
B =

1

2
ΩA

Bcdω
cd + ΩAc

Bdωcω
d +

1

2
ΩAcd

B ωcd

where we introduce the convention of writing ωbc...d ≡ ωbωc . . . ωd = ωb ∧
ωc ∧ . . . ∧ ωd etc. The three terms will be called the spacetime-, cross-,
and momentum-term, respectively, of the corresponding curvature. For each
curvature of the set {Ωa

b ,Ω
a,Ωa}, each of these three terms is a distinct

Weyl-covariant object. Each term of the dilation Ω0
0 is Weyl invariant. In

addition, the 2-forms dω0
0 and ωaωa appearing in eq.(7) are Weyl invariant.

In working with biconformal objects it is simpler to abandon the raising
and lowering of indices with the metric, for two reasons. First, it would lead
to confusion of fields that are independent, such as the spacetime and cross-
terms of the curvature, Ωa

bcd and Ωac
bd, or the necessarily independent 1-forms,

ωa and ωa. Second, the position of any lower-case Latin index corresponds
to the associated scaling weight: each upper index contributes +1 to the
weight, while each lower index contributes −1. Thus, Ωa

bcd has weight −2,
while Ω bc

a has weight +1.

3 Biconformal Actions

In order to construct biconformal actions, we must first examine certain
special properties of the volume element of a biconformal space. Since the
base manifold is spanned by the 2n gauge fields {ωa, ωb} we may set

Φ = ε b1···bn

a1···an
ωa1 · · ·ωanωb1 · · ·ωbn

where ε b1···bn
a1···an

is the 2n-dim Levi-Civita symbol. The mixed index po-
sitioning indicates the scaling weight of the indices, and not any use of the
metric. The positions arise from our notation for O(n, 2), in which the gen-
erators have a pair of indices, LA

B.
The Lorentz transformations of the biconformal fields are n- rather than

2n-dim matrices2. Therefore, the two n-dim Levi-Civita symbols are also

2While the matrix structure of a Lorentz transformation in biconformal space is
n-dim, the functional dependence is 2n-dim. Thus, we have Λa

b = Λa
b (xµ, yν), where

(xµ, yν) span the full biconformal space.
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Lorentz invariant, but have opposite scaling properties,

εa1···an → enφεa1···an

εa1···an
→ e−nφεa1···an

Another way to see the intrinsic presence of these two tensors is from the
distinguishability of the ωa from the ωa by their differing scale weights, giving
rise to two n-volumes,

Φ+ = εa1···an
ωa1 · · ·ωan

Φ− = εa1···anωa1 · · ·ωan

Therefore,
Φ = Φ+Φ−

and we may set
ε b1···bn

a1···an
= εa1···an

εb1···bn

which is clearly both Lorentz and scale invariant. Whenever the indices on
ε b1···bn

a1···an
are not in this standard position, the signs are to be adjusted

accordingly. Thus, for example,

ε g e···f h
a c···d b ≡ − ε e···fgh

abc···d

The Levi-Civita tensor is normalized such that traces are given by

εa1···apcp+1···cn
εb1···bpcp+1···cn = p!(n− p)!δb1···bp

a1···ap

where the totally antisymmetric δ-symbol is defined as

δb1···bp

a1···ap
≡ δ[b1

a1
· · · δbp]

ap

The Levi-Civita tensor allows us to define biconformal duals of forms.
Let

T ≡ 1

p!q!
T b1···bq

a1···ap
ωa1···apωb1···bq

be an arbitrary (p+ q)-form, p, q ∈ {0, . . . , n}, with weight p− q. Then the
dual of T is a ((n−q)+(n−p))-form, also of weight (n−q)− (n−p) = p−q,
defined as

∗T ≡ 1

p!q!(n− p)!(n− q)!
T b1···bq

a1···ap
ε a1···an

b1···bn
ωbq+1···bnωap+1···an

8



so that
∗∗T = (−1)(p+q)(n−(p+q))T

Note that the dual map is scale-invariant: both T and ∗T have weight (p−q).
We can now write a variety of biconformally invariant and O(n, 2) invari-

ant integrals.
To build biconformal invariants, we use the fact that the fiber symmetry

(structure group) of the biconformal bundle is the Weyl group, consisting
of Lorentz transformations and dilations, while the connection forms cor-
responding to translations and co-translations span the base space. We can
therefore return to the reduced notation, and find a correspondingly increased
number of possible actions. First, we note that the bilinear form

ωaωb

is scale invariant. This object allows us to write actions of arbitrary order,
k = 1, . . . , n, in the curvatures. In particular, we can write

Sm,k−m =
∫

ΩA1
B1
. . .ΩAm

Bm
Ω0

0 . . .Ω
0
0ω

a1···an−kωb1···bn−k
Q

B1···Bmb1···bn−k

A1···Ama1···an−k

where there are m factors of the curvature ΩA
B and k − m factors of the

dilational curvature, Ω0
0. The invariant tensor QB···D

A···C has 2[n − (k − m)]
indices and must be built from δA

B and the Levi-Civita tensor. Notice that
when m = k we can use

Q
B1···Bkb1···bn−k

A1···Aka1···an−k
= ε0B1···Bkb1···bn−kε0A1···Aka1···an−k

→ εc1···cnεd1···dn

for the invariant tensor. Various combinations of Kronecker deltas are also
possible for Q

B1···Bmb1···bn−k

A1···Ama1···an−k
.

A scale-invariant dual action of Yang-Mills type is given by

Sdual =
∫

ΩÃ ∗
B̃

ΩB̃
Ã

The resulting field equation, however, is more complicated than the usual
D∗ΩÃ

B̃
= 0, because δωÃ

B̃
does not commute with the dual operator.

The most general linear Lorentz and scale-invariant (weight zero) action
built out of biconformal curvatures and the two invariants ωaωa and dω0

0

in a 2n-dim biconformal space spanned by {ωai, ωai
; i = 1...n} is a linear

combination of S1,0, S0,1 and S0,0,

S =
∫

(αΩa1
b1

+ βδa1
b1

Ω0
0 + γωa1ωb1)ω

a2...anωb2...bn
εb1...bnεa1...an

9



where α, β, γ ∈ R are constants. Notice that γ is an arbitrary cosmological
constant. An additional term containing dω0

0 would be redundant because
of structure equation (7) for Ω0

0. Moreover, S cannot contain torsion or
co-torsion terms, nor is anything further found by using Kronecker deltas in
place of the Levi-Civita tensors. This action and the resulting field equations
will be considered in detail in the following sections.

Finally, to build O(n, 2) invariants, we return to the full O(n, 2) notation.
We can write

Sn =
∫

ΩÃ
B̃ . . .Ω

C̃
D̃Q

B̃···D̃
Ã···C̃

where QB̃···D̃
Ã···C̃

is an O(n, 2)-invariant tensor. QB̃···D̃
Ã···C̃

must be built from δÃ
B̃
, ηÃB̃

or the (n + 2)-dimensional Levi-Civita tensor. The only object with the
correct index structure is

QB̃···D̃
Ã···C̃

= δB̃···D̃
Ã···C̃

=
1

2!(n− 2)!
εB̃···D̃ẼF̃εÃ···C̃ẼF̃

With this specification for QB̃···D̃
Ã···C̃

, Sn becomes the nth Pontrijagin class.

4 The Linear Action

As noted above, in a 2n-dim biconformal space the most general Lorentz
and scale-invariant action which is linear in the biconformal curvatures and
structural invariants is

S =
∫

(αΩa1
b1

+ βδa1
b1

Ω0
0 + γωa1ωb1)ω

a2...anωb2...bn
εb1...bnεa1...an

(8)

We will always assume non-vanishing α and β. Variation of this action with
respect to the connection one-forms yields the following field equations:

δω0
0
S = 0 ⇒ 0 = β(Ωa

ba − 2Ω d
caδ

ca
db) (9)

0 = β(Ω ba
a − 2Ωcd

aδ
ab
dc) (10)

δωa
b
S = 0 ⇒ 0 = α(−∆af

eg Ωb
ab + 2∆cf

ebδ
ab
dgΩ

d
ac) (11)

0 = α(−∆gf
eb Ω ab

a + 2∆af
ed δ

gc
abΩ

bd
c) (12)

δωaS = 0 ⇒ 0 = αΩa
bac + βΩ0

0bc (13)

0 = 2(αΩac
cd + βΩ0a

0d)δ
ed
ab + (α(n− 1) − β + γn2)δe

b (14)

δωa
S = 0 ⇒ 0 = αΩbac

a + βΩ0bc
0 (15)

0 = 2(αΩca
dc + βΩ0a

0d)δ
ed
ab + (α(n− 1) − β + γn2)δe

b (16)

10



Combining equations (14) and (16) we see that the latter can be replaced by

Ωac
cd = Ωca

dc (17)

5 Solution for the Curvatures

We now find the most general solution to these equations subject only to
a constraint of minimal torsion. Starting with the most general ansatz for
the spin connection and Weyl vector, we obtain expressions for the torsion
and co-torsion. Then we find the form of the connection required to satisfy
eqs.(9)-(12). The result does not permit vanishing torsion without vanishing
Weyl vector, so we choose the minimal torsion constraint consistent with a
general form for the Weyl vector. The constraint and field equations lead to
a foliation by n-dim flat Riemannian manifolds, possibly with torsion. By
invoking the gauge freedom on each of these manifolds, we show the exis-
tence of a second foliation by n-dim Riemannian spacetimes without torsion
satisfying the vacuum Einstein equations. Generically, the full biconformal
space also has a symplectic structure.

We first write the spin connection ωa
b as

ωa
b = αa

b + βa
b + γa

b

= (αa
bc + βa

bc + γa
bc)ω

c + (αac
b + βac

b + γac
b )ωc

with αa
b and βa

b defined by

dωa = ωbαa
b +

1

2
Ωabcωbc (18)

dωa = βb
aωb +

1

2
Ωabcω

bc (19)

Using this ansatz as well as the expanded form of the Weyl vector

ω0
0 = Waω

a +W aωa

in structure equations (5) and (6), Ωabc and Ωabc remain related to derivatives
of the solder- and co-solder forms, whereas the other torsion and co-torsion
terms are algebraic in αa

b , β
a
b and γa

b :

Ωa
bc = γa

cb − γa
bc + βa

cb − βa
bc +Wcδ

a
b −Wbδ

a
c (20)

Ωac
b = γac

b + βac
b −W cδa

b (21)

Ω b
ac = αb

ac + γb
ac −Wcδ

b
a (22)

Ω bc
a = αbc

a − αcb
a + γbc

a − γcb
a +W bδc

a −W cδb
a (23)

11



Thus, the separation of the connection allows us to solve the first four field
equations algebraically. Imposing field equations (9) and (10) onto (21) and
(22) we get

βa
ba = αa

ba

βba
a = αba

a

Using this result and imposing field equations (11) and (12) onto (20) and
(23) completely determines γa

b in terms of αa
b and βa

b :

γa
b = −(αa

bcω
c + βac

b ωc)

so the spin connection becomes

ωa
b = βa

bcω
c + αac

b ωc

Defining the traceless Lorentz tensor

σa
b ≡ αa

b − βa
b

= σa
bcω

c + σac
b ωc

equations (20)-(23) become

Ωa
bc = σa

bc − σa
cb +Wcδ

a
b −Wbδ

a
c (24)

Ωac
b = −W cδa

b (25)

Ω b
ac = −Wcδ

b
a (26)

Ω bc
a = σbc

a − σcb
a +W bδc

a −W cδb
a (27)

While it might seem natural to demand vanishing torsion, Ωa = 0, notice
that the traces of Ωa

bc and Ωac
b are given by

Ωb
ba = (n− 1)Wa

Ωac
a = −nW c

Therefore, constraining either eq.(24) or eq.(25) to vanish unnecessarily con-
strains the Weyl vector and thus greatly reduces the set of allowed geometries.
Instead, we impose the strongest torsion constraint that is consistent with a
general Weyl vector, namely,

Ωa = ωaω0
0 (28)
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As a consequence,

Ωabc = 0

σa
bc = σa

cb

Since the antisymmetry of the spin connection,

ωa
b = −ηacηbdω

d
c

is inherited by αa
b , β

a
b , and therefore σa

b , it is now easy to show by permuting
the indices of ηadσ

d
bc and taking the usual linear combination, that in fact

σa
bc ≡ αa

bc − βa
bc = 0

so that
ωa

b = αa
b

We make no assumption concerning the co-torsion, curvature or dilation. In
particular, for the co-torsion we see from eqs.(26) and (27) that constraints
on Ω bc

a or Ω b
ac would constrain ω0

0. Furthermore, we will see below that van-
ishing spacetime co-torsion, Ωabc = 0, leads to vanishing spacetime curvature,
Ωa

bcd = 0, and would therefore be too strong an assumption.
The torsion constraint makes it possible to obtain an algebraic condition

on the curvatures from the Bianchi identity associated with eq.(5). Taking
the exterior derivative of eq.(5) gives

DΩa ≡ dΩa + Ωbωa
b − ω0

0Ω
a = ωbΩa

b − ωaΩ0
0

Simplifying DΩa using eqs.(28) and (7)

DΩa = D(ωaω0
0)

= −ωaΩ0
0 − ωabωb

(recall that ωab ≡ ωaωb) the Bianchi identity reduces to

ωbΩa
b = −ωabωb

which implies

Ωa
[bcd] = 0 (29)

Ωac
bd = −∆ac

db (30)

Ωacd
b = 0 (31)
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If we define

Ra
b ≡ dωa

b − ωc
bω

a
c

= dαa
b − αc

bα
a
c

so that Ωa
b = Ra

b − ∆ac
dbωcω

d, eqs.(30) and (31) show that Ra
b has vanishing

cross- and momentum-terms:

Ra
b =

1

2
Ra

bcdω
cd

This result also follows from the Bianchi identity arising from eq.(18) with
Ωabc = 0. Noting from the trace of Ωa

[bcd] = 0 and the antisymmetry condi-

tion Ωa
bcd = −ηbeη

afΩe
fcd that Ra

bac ≡ Rbc = Rcb, field equation (13) implies
separate vanishing of the α and β terms

Rbc = 0 (32)

Ω0
0bc = 0 (33)

while eq.(15) immediately gives

Ω0cd
0 = 0 (34)

Notice that, while eq.(32) is certainly similar to the vacuum Einstein equa-
tion, Ra

b has not yet been shown to be the curvature of a Riemannian ge-
ometry. In particular, though it has the general form of an n-dim curvature
tensor, it might in principle depend on all 2n coordinates, on the torsion,
and/or on the Weyl vector.

Continuing with the field equations, we see that since ∆ab
ac = ∆ba

ca =
(n− 1)δb

c, eq.(17) is identically satisfied. Finally, eq.(14) implies

Ω0a
0b = λδa

b (35)

where

λ ≡ αn(n− 1) − β + γn2

β(n− 1)

Thus, the entire 3-parameter class of actions leads to a 1-parameter class of
solutions. In particular, the form of the solution is largely independent of
the value of the cosmological constant.

14



We have now satisfied all of the field equations. The curvatures take the
form

Ωa
b = Ra

b − ∆ac
dbωcω

d (36)

Ω0
0 = λωaω

a (37)

Ωa = ωaω0
0 (38)

Ωa = ω0
0ωa + σbc

a ωbc +
1

2
Ωabcω

bc (39)

with

Rab = 0

σba
a = 0

In the next section, we find further constraints on the curvatures arising from
the structure equations. We also find an explicit form for the connection that
displays clearly the minimal field content of the general solution.

6 Solution for the Connection

While eqs.(36)-(39) for the curvatures satisfy all of the field equations, they
do not fully incorporate the form of the biconformal structure equations as
embodied in the Bianchi identities. Moreover, it is not yet clear what minimal
field content is required to insure a unique solution. Therefore, in this section,
we turn to the consequences of the form (36)-(39) of the curvatures on the
connection.

Substituting the reduced curvatures into eqs.(4)-(7), the structure equa-
tions now take the form

Ra
b = dαa

b − αc
bα

a
c (40)

dωa = ωbαa
b (41)

dωa = αb
aωb − σb

aωb +
1

2
Ωabcω

bc (42)

dω0
0 = (1 − λ)ωaωa (43)

We begin with eq.(43). For λ 6= 0, 1, eqs.(43) and (37) show that the
three biconformal invariants dω0

0, ωaω
a and Ω0

0 noted in the introduction are
all proportional to each other. Moreover, eq.(43) shows in gestalt form that
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each invariant is a symplectic form: dω0
0 is manifestly closed and ωaω

a is
manifestly nondegenerate. A generic biconformal space subject to the linear
action and minimal torsion condition Ωa = ωaω0

0 is therefore a symplectic
manifold. By a well-known theorem [33] it is always possible to construct
an almost complex structure and a Kähler metric on a symplectic manifold.
Therefore the field equations arising from the linear action constrain the
biconformal space to be almost Kähler.

If λ = 0, the dilation vanishes, while ωaωa = dω0
0 remains symplectic. All

subsequent calculations hold with Ω0
0 = 0. This case has been investigated

in [1], where it was argued that for classical geometries it is reasonable to
assume that no path in phase space encloses a plaquette on which the dilation
is nonvanishing. Such spaces were shown to be in 1− 1 correspondence with
n-dimensional Einstein-Maxwell spacetimes.

We will consider the special case λ = 1 further in Sec.(7). For the re-
mainder of this Section let λ 6= 1.

The Bianchi identity obtained by taking the exterior derivative of eq.(43)
is

0 = dωaω
a − ωadω

a

= (αb
aωb − σb

aωb +
1

2
Ωabcω

bc)ωa − ωaω
bαa

b

= σb
aω

aωb +
1

2
Ωabcω

abc

so that

Ω[abc] = 0

σb
a = 0

Here the vanishing of σb
a follows from the simultaneous vertical antisymme-

try and horizontal symmetry of σbc
a . This vanishing of σb

a amounts to the
vanishing of the momentum term of the co-torsion.

Next we examine consequences of eq.(41), which is in involution. By the
Frobenius theorem, we can consistently set ωa to zero and obtain a foliation
by submanifolds where the spin connection and Weyl vector reduce to

α̂a
b ≡ αa

b|ωa=0 = αac
b ωc

ω̂0
0 ≡ ω0

0|ωa=0 = W aωa
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If we define
fa ≡ ωa|ωa=0

then each submanifold is described by the reduced structure equations

dα̂a
b = α̂c

bα̂
a
c

dfa = α̂b
afb + faω̂

0
0

dω̂0
0 = 0

Since ω̂0
0 is closed, we can scale-gauge the Weyl vector to zero on each sub-

space, i.e. W a = 0. The remaining two equations then describe a flat
n-dimensional Riemannian spacetime. Since the spin-connection is involute,
there also exists a Lorentz gauge transformation such that α̂a

b = 0 on each
submanifold, i.e. αac

b = 0. With these gauge choices the system reduces to
simply dfa = 0, with solution fa = dθa for some 0-forms θa.

Returning to the full biconformal space, we now have a gauge such that
the spin connection and Weyl vector are

αa
b = αa

bcω
c (44)

ω0
0 = Waω

a (45)

while the co-solder form may be written in terms of fa and an additional
term linear in the solder form,

ωa = fa + habω
b

Notice that fa is essentially unchanged by this extension, except that the
0-forms θa must be regarded as dependent on all 2n coordinates. This means
that dfa remains at least linear in fa, and is consequently involute (see Ap-
pendix B). We can therefore turn the problem around, setting fa = 0 to
obtain a second foliation of the biconformal space. We can define ha in
terms of this involution, setting

ha ≡ ωa|fa=0 = hab ω
b

with hab arbitrary. Now, with fa = 0, the new submanifolds are described by

Ra
b = dαa

b − αc
bα

a
c

dωa = ωbαa
b

dha = αb
ahb +

1

2
Ωabcω

bc

dω0
0 = (1 − λ)ωaha

17



The first two equations are unchanged from their full biconformal form, show-
ing that the curvature Ra

b and connection αa
b (and of course ωa, by the first

involution) are fully determined on the fa = 0 submanifold. Thus, αa
b is

the usual spin connection compatible with ωa, while Ra
b is its curvature.

Therefore, the vanishing of the Ricci tensor, Rab = 0, now shows that these
n-dim submanifolds satisfy the vacuum Einstein equations. Even though
the torsion and dilation have nonvanishing spacetime projections, Ωabc and
Ω0a

0b|fa=0 = −λωaha, respectively, the curvature is the one computed from the
solder form ωa alone; even though our action included an arbitrary cosmo-
logical constant, γ, the Ricci tensor vanishes. This is our most important
result, since it establishes a direct connection between the usual Ricci-flat
Riemannian structure of general relativity and the more general structure of
conformal gauge theory.

Finally, we seek a minimum set of fields required to uniquely specify
a complete solution. We can easily find such a minimum set by choosing
coordinates. Based on the involution for ωa there exist n coordinates xµ

such that
ωa = e a

µ dxµ

with the component matrices necessarily invertible. From eq.(41), we imme-
diately find that e a

µ = e a
µ (x). Similarly, we show in Appendix B that there

exist coordinates yν such that fa takes the form

fa = e µ
a dyµ + ψaµdx

µ

where e µ
a is the inverse to e a

µ and ψaµ = ψaµ(x, y).
Using this coordinate choice and writing the co-solder form as

ωa = e µ
a (dyµ + hµνdx

ν + ψµνdx
ν)

≡ e µ
a (dyµ + ĥµνdx

ν) (46)

eq.(43) yields

∂[νWµ] = (λ− 1)ĥ[µν]

∂νWµ = (λ− 1)δν
µ

where e µ
a and e a

µ are used to interchange coordinate and orthonormal indices
in the usual way and (∂ν , ∂

ν) denote derivatives with respect to (xµ, yν). The
second equation can immediately be integrated,

Wµ = (λ− 1)(yµ − Aµ(x)) (47)
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where the integration “constant” Aµ(x) determines the antisymmetric part

of ĥ[µν] :

ĥ[µν] = ∂[νAµ] (48)

Clearly, ĥ[µν] is a function of x only.

The fields Aµ and ĥ[µν] in eqs.(47) and (48) are purely coordinate depen-
dent. To see this, note that under coordinate transformations of the form
ȳα = yα+ γα(x), eq.(46) changes to

ωa = e µ
a (dȳµ + (ĥµν + γµ,ν)dx

ν)

Then eqs.(47) and (48) become

W̄µ = (λ− 1)(ȳµ − γµ − Aµ(x))

h̄[µν] = ∂[νAµ] + γ[µ,ν]

Therefore, if we choose γµ = −Aµ, we have simply

W̄µ = (λ− 1)ŷµ

h̄[µν] = 0

We make this coordinate choice below, dropping the overbars.
Finally, with σb

a = 0, eq.(42) for the co-solder form reduces to

dωa = αb
aωb +

1

2
Ωabcω

bc

or in coordinate form

(∂µhaν − αb
aµhbν) − (∂νhaµ − αb

aνhbµ) = Ωaµν (49)

∂νhaµ = ∂µe
ν
a − αb

ace
c
µe

ν
b (50)

Using the well-known relation between the orthonormal connection αa
b (x)

and the Christoffel connection Γν
αµ(x) of a metric compatible geometry,

Dµe
ν
a ≡ ∂µe

ν
a − αb

aµe
ν
b + e α

a Γν
αµ = 0

we find from eq.(50) that

∂νhαµ = e a
α ∂

νhaµ = −Γν
αµ
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which integrates to
hαµ = −yνΓ

ν
αµ + kαµ(x)

where the symmetric tensor kαµ(x) is a second integration “constant”. The
contraction with yµ permits hab to behave as a Lorentz tensor. Notice that the
covariant curl of hαµ has a term proportional to the curvature tensor because
the contraction −yνΓ

ν
αµ eliminates the extra connection terms that normally

prevent the covariant curl of Γν
αµ from being simply related to curvature.

When this result for hαµ is substituted into eq.(49), the spacetime co-torsion
is expressed in terms of kαµ(x) and the curvature. After restoring the basis
forms,

1

2
Ωabcω

bc = −ybR
b
a + Dka

where D is the metric compatible covariant exterior derivative and ka =
kabω

b. As claimed in Sec.(5), vanishing Ωabc implies vanishing curvature
since ka depends on xµ only.

Collecting the results for the connection, we immediately see the essential
field content:

αa
b = αa

b (e
a
µ (x))

ωa = e a
µ (x)dxµ

ωa = e µ
a (x)(dyµ − yνΓ

ν
µαdx

α + kµα(x) dxα)

= Dya + ka(x)

ω0
0 = (λ− 1) yµdx

µ (51)

The entire solution depends on two fields, e a
µ (x) and kµα = k(µα)(x). Both of

these fields are defined entirely on the vacuum Einstein spacetime subman-
ifolds (with coordinates xµ). Otherwise kµα(x) is an arbitrary integration
constant, while e a

µ (x) is the usual solder form.
Finally, we write the final form of the curvatures. Decomposing the Rie-

mann curvature into its traceless and Ricci parts

Ra
b = Ca

b + ∆ac
dbRce

d (52)

where

Ra ≡ (Rab −
1

2(n− 1)
ηabR)eb (53)
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we use the Ricci-flat condition together with the results of this section for σb
a

and the co-torsion to write the curvatures as

Ωa
b = Ca

b − ∆ac
dbωcω

d (54)

Ω0
0 = λωaω

a (55)

Ωa = ωaω0
0 (56)

Ωa = ω0
0ωa − ybC

b
a + Dka (57)

7 Special Case

For the special case λ = 1, eq.(43) implies a closed and hence locally remov-
able Weyl vector, i.e. Wa = 0. In that case, eqs.(38) and (39) for the torsion
and co-torsion become

Ωa = 0

Ωa = σbc
a ωbc +

1

2
Ωabcω

bc

with
σba

a = 0

As before, the involution in eq.(41) allows us to gauge the spin connection
αa

b so that αac
b = 0. Then structure equation (6) becomes

dωa = αb
acω

cωb − σbc
a ωbc +

1

2
Ωabcω

bc (58)

Writing the co-solder form again as

ωa = fa + ha

such that fa ≡ ωa|ωa=0, we have on the ωa = 0 subspace

dfa = σbc
a fbc

This can be solved in the usual way giving σbc
a in terms of the projected part

of fa and its y derivatives. Since this solution has the same form at each
point x, the expression for σbc

a remains valid when the x-dependence of fa is
restored.
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For the fa = 0 subspace,

dha = αb
acω

chb − σbc
a hbc +

1

2
Ωabcω

bc

In general, this equation determines the spacetime co-torsion, Ωabc, once ha

is given.
Extending back to the full space, and introducing coordinates as before,

we write

dfa = ∂αf
β

a dxαdyβ + ∂αf β
a dyαdyβ

dha = ∂αhaβdx
αdxβ + ∂αhaβdyαdx

β

where we can no longer restrict the functional dependence of f β
a . Now eq.(58)

implies
∂αf

β
a − ∂βhaα = αb

aαf
β

b − (σbc
a − σcb

a )hbαf
β

c

Any solution of this equation for f β
a and haα gives a complete solution. It is

clear that solutions do exist, since the λ 6= 1 condition σbc
a = 0 permits the

generic solution to hold.

8 Comparisons with previous theories

As mentioned in the introduction, there have been a number of studies of
conformal and superconformal gauge theories for n > 2. In this section, we
compare our results with these other approaches. The gravitational sectors
of standard conformal actions fall into three principal types:

1. Chern-Simons action (n = 3)

2. Curvature-linear action with compensating fields (n = 4)

3. Curvature-quadratic action with compensating fields (n ≥ 4)

We will treat each of these cases in turn, comparing the results to ours.
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8.1 Chern-Simons action

The topological Chern-Simons action, which is intrinsically odd-dim, is of
particular interest in 3-dimensional conformal gravity [15], where it becomes

S =
∫

ωa
b (dω

b
a −

2

3
ωc

aω
b
c) (59)

Here ωa
b is the spin connection of a torsion-free Riemannian geometry. When

this action is varied with respect to the solder form ea, the resulting field
equation is

DRa = 0 (60)

with Ra defined as in eq.(53). This is precisely the condition for spacetime
to be conformally flat in 3-dim [26], so the model is exactly soluble with
ea = eφdxa for any function φ(x). It has been observed that this action can be
derived from the Chern-Simons action for the whole (super)conformal group
O(3, 2) by imposing the constraints of vanishing curvature and torsion [16].
The same result follows without constraints if one replaces the Riemannian
spin connection in eq.(59) by the conformal connection,

ωa
b → ωA

B

and performs a Palatini variation [17]. Then all conformal curvatures vanish
and gauging the Weyl vector to zero renders the first- and second-order for-
malisms equivalent again giving condition (60) for conformal flatness. As in
the quadratic 4-dim theory (see below), the special conformal gauge field is
found to be equal to Ra.

In biconformal space, the 3-dim example does not lead to many simpli-
fications over the general method of solution, though an explicit check in
that dimension did confirm our previous results. A generalization of condi-
tion (60) obviously arises in this case (and in fact for n > 3 as well), since
our solution shows the existence of 3-dimensional embedded Ricci-flat space-
times. While our proof demonstrates the existence of the appropriate gauge
choice directly, it is clear that any other x-dependent gauge transformation
must lead to a slicing satisfying eq.(60). In addition, the biconformal model
permits y-dependent gauge choices. Thus, the field equations of the linear
biconformal field theory generalize eq.(60) to an embedding biconformal or
phase space. Note further that constraint (1) follows from the field equations
as in [17] rather than being imposed as in [16].
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8.2 Curvature-linear actions

In standard 4-dimensional Weyl gauge theory [5]-[9], one obtains a Lorentz-
and scale invariant linear action through the introduction of a Brans-Dicke-
like [22] compensating field φ(x) in the manner suggested by Deser [3] and
Dirac [4]. In close analogy to the geometrical gauge approach of identifying
the gauge fields with connections on spacetime developed by Utiyama and
Kibble [24] for Poincaré gravity, a Weyl-covariant derivative Da is built out of
the spin connection (usually assumed to be metric compatible and torsion-
free) and the Weyl vector. The free (vacuum) action comprises a kinetic
term φ φ, a Yang-Mills-type term FabF

ab for the curl of the Weyl vector
Fab=D[aWb], a gravitational term Rφ2, and possibly a cosmological term
Λφ4:

S =
∫ √−g(6φ φ+

1

4
FabF

ab −Rφ2 + Λφ4)d4x (61)

Dropping the cosmological term, the corresponding gravitational field equa-
tions change the vacuum Einstein equations [8] to the “generalized” Einstein
equations:

2φ2(Ra
b −

1

2
δa
bR) + 4(DaφDbφ− 1

2
δa
bD

cφDcφ) = T a
b

where T a
b is the generalized Maxwell stress tensor:

T a
b = FacF

bc − 1

4
δb
aFcdF

cd

In the Einstein gauge one sets φ = 1, so the vacuum Einstein equations,
coupled to a spin-1 field, are recovered. However, note that the geometric
meaning of Fµν as producing changes in the lengths of transported vectors
precludes interpreting Fµν as the Maxwell field [23].

It is also possible to couple n-dimensional conformal gravity to compen-
sating fields of conformal weight −(n − 2)/2 [14]. This approach does not
require an explicit gravity term in the action, since the d’Alembertian is
built out of derivatives that are also covariant with respect to special confor-
mal transformations and hence contain the special conformal gauge field fa

b .
Then the Lagrangian φ φ, when broken up based on its conformal invariance
properties, contains a term of the form fa

aφ
2, which under the conventional

constraint (1) reduces to Rφ2 when the Weyl vector is gauged to zero. As
in the Weyl case, this theory is equivalent to Einstein gravity when φ is
expressed in a particular gauge using the special conformal gauge freedom.
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Biconformal space improves on these results in two important ways: (1)
biconformal space does not require compensating fields, and (2) the first
conventional constraint, eq.(1) follows from the field equations and is not
required as a constraint. A third point developed elsewhere [1] is that it
is possible to include electromagnetism without the usual interpretational
difficulties.

There are interesting differences between these treatments and our re-
sults regarding the effect of constraint (2). In standard conformal gaugings
vanishing torsion leads to vanishing Weyl vector as a possible gauge choice
and identification of the special conformal gauge field with Ra:

fa = −
(

1

n− 2

)

Ra (62)

We find that the same results occur if the biconformal torsion is set to zero
and attention is restricted to the y = 0 subspace. However, on the full
biconformal space, where y is allowed to vary, this solution proves to be
inconsistent. Instead, the torsion may be fixed intrisically by the minimal
torsion constraint, eq.(28), resulting in a non-trivial y-dependance for the
Weyl vector and independence of the projected co-solder form, kaα.

To further compare these standard results to the biconformal solution,
consider the final form of the biconformal curvatures

Ωa
b = Ca

b − ∆ac
dbωcω

d (63)

Ω0
0 = λωaω

a (64)

Ωa = ωaω0
0 (65)

Ωa = ω0
0ωa − ybC

b
a + Dka (66)

The first constraint, eq.(1), already holds for the spacetime components of
Ωa

b , namely, Ωa
bcd = Ca

bcd. In the standard conformal gauging, this constraint
also includes the term −∆ac

dbωcω
d, so that the constraint fixes ωc. However, in

biconformal space, ωc is independent of ωd, and even its y = const. projection,
ka, remains arbitrary. If we restrict attention to the y = 0 submanifold, the
curvatures take the form

Ωa
b = Ca

b − ∆ac
dbkce

d

Ω0
0 = 0

Ωa = 0

Ωa = Dka
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It is amusing to notice that if we demand that Ωa
b be the Riemannian cur-

vature of the submanifold, then not only do we immediately have

ka = −
(

1

n− 2

)

Ra (67)

but also the second Bianchi identity DΩa
b = 0 implies DRa = 0, i.e., the

spacetime is conformally Ricci flat. However, Ωa
b is not a Riemannian curva-

ture, and satisfies a different Bianchi identity that leaves ka arbitrary. These
same comments apply when n = 3 by simply setting Ca

b = 0.

8.3 Curvature-quadratic actions

In 4 dimensions, all invariant Lagrangians of a Weyl geometry with curvature
tensor Ra

bcd and Weyl vector Wa have been classified [25]:

c1FabF
ab + c2R

2 + c3RabR
ab + c4RabcdR

abcd

The last term may be written as a linear combination of R2, RabR
ab, and

CabcdC
abcd, where Ca

bcd is Weyl’s conformal tensor defined by eq.(52), or it
may be eliminated altogether using the Gauss-Bonnet invariant. All of these
actions lead to higher order field equations. For example, Weyl’s original free
action,

S =
1

4

∫ √−g(FabF
ab +R2)d4x

yields the fourth-order field equation [27]

R(Ra
b −

1

4
δa
bR) + T a

b = 0

As a result of this field equation, the metric is underdetermined. For example,
when T a

b = 0, the single condition R = 0 already provides a solution. Since
almost every metric is scale equivalent to one with R = 0, almost every
metric is gauge equivalent to a solution.

Following the approach of MacDowell and Mansouri [28] for obtaining
Einstein (super-)gravity through squaring the curvatures of the de-Sitter
group, Crispim-Romao, Ferber, and Freund [2] and independently Kaku,
Townsend, and van Nieuwenhuizen [10] derived Weyl (super-)gravity as a
gauge theory of the full conformal group. Gauging O(4, 2) under the con-
ventional constraints (1) and (2), vanishing torsion and tracefree curvature,

26



their RabcdR
abcd-type Lagrangian reduces to

CabcdC
abcd = RabR

ab − 1

3
R2

All Weyl vector-dependent terms drop out of the action, whereas eq.(1) ren-
ders the special conformal gauge field auxiliary. As in the Chern-Simons case,
it is given by Ra(e

a). All other possible actions built out of the O(4, 2) cur-
vatures under the conventional constraints were shown to reduce to a Weyl
geometry [12]. It was concluded that Weyl’s theory of gravity is the unique
conformally invariant gravity theory in 4 dimensions.

These results were generalized to any dimension n ≥ 4 by including a
compensating field [14], so that the Lagrangian assumes the form

e µ
[a e

ν
b e

α
c e

β
d] φ

2(n−4)
(n−2) R ab

µν R cd
αβ

Under the conventional constraints (1) and (2) this reduces to

(RabR
ab − n

4(n− 1)
R2)φ

2(n−4)
n−2

As in the 4-dim case, none of the quadratic action theories provide obvious
contact to Einstein gravity, but instead lead to higher derivative field theories.
Nonetheless, supersymmetrization of an R2-action in n = 10 [14] and n = 6
[29] is an important issue which arises in the study of the low-energy limit
of superstrings.

The comments of the preceeding two subsections regarding eq.(60) and
the relationship between the special conformal gauge field and Ra hold here
as well (thought it should be noted that eq.(62) follows from the quadratic
field equations rather than only as a constraint). Thus, in contrast to these
quadratic-curvature theories, the linear biconformal theory:

• provides direct contact with Einstein gravity,

• does not require compensating fields,

• does not require the conventional constraints (1) or (2)

Of course, biconformal space also permits curvature-quadratic actions for
any n > 2 without the use of compensating fields, although these theories
are not explored further here.
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9 Conclusion

By finding the most general class of biconformal scale-invariant curvature-
poly-nomial actions for any dimension n > 2, we have overcome the well-
known restrictions to the set of possible scale-invariant actions in standard
conformal gauge theory imposed by the coupling of the action to the dimen-
sion, without the use of compensating fields. All of the displayed polynomial
actions rely on the existence of certain biconformally invariant tensors as well
as the scaling properties of the connection forms. Since the solder and the
co-solder forms that span the 2n-dimensional biconformal space scale with
opposite weights, they provide a manifestly scale-invariant volume element
consisting of n solder and n co-solder forms. We also displayed a Yang-Mills
type scale invariant dual action, which hinges on the existence of a scale-
invariant biconformal dual operator.

For the most general linear action we computed and solved the field equa-
tions by imposing them onto the minimal torsion biconformal structure equa-
tions. With one exceptional case, all solutions have the following properties:

1. The full 2n-dim space has a symplectic form, and is therefore almost
complex and almost Kähler.

2. There are two n-dim involutions. The first leads to a foliation by con-
formally flat manifolds spanned by weight −1 co-solder forms. The
second leads to a foliation by equivalent Ricci-flat Riemannian space-
times spanned by the weight +1 solder forms. The Riemann curvature
is computed from the solder form alone, despite the inclusion of min-
imal torsion, general co-torsion and a general Weyl vector, and the
spacetime is Ricci-flat despite an arbitrary cosmological constant.

3. The full 2n-dim minimal torsion solutions are fully determined by two
fields, each defined entirely on the n-dimensional Riemannian space-
times: the solder form e a

µ (x)dxµ and a symmetric tensor field, kαβ(x).

For the single special case, λ = 1, there still exists a foliation by Ricci-
flat Riemannian spacetimes, but the minimal field content includes the one
field beyond the solder form and haα: the co-solder coefficient f β

a , which is
coupled to haα by a differential equation.

Certain important subclasses of biconformal spaces described in [1] turned
out to be special cases of the general solution. Because of the symmetry
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between solder and co-solder form, analogous results to the ones obtained
hold for co-torsion-free biconformal spaces, e.g. spacetime sector flatness.
Spaces of vanishing torsion and co-torsion are conformally flat.

A Biconformal Gauging

The conformal (Möbius) group C(n) is the group of transformations preserv-
ing angles or ratios of infinitesimal lengths when acting on an n-dim space
or, equivalently, leaving the null interval

ds2 = ηµνdx
µdxν = 0

with ηµν = diag(−1, 1 . . . 1), µ, ν = 1 . . . n , invariant. While C(2) is the
infinite-dimensional diffeomorphism group of the plane, the conformal group
for n > 2 is a Lie group of dimension 1

2
(n+ 1)(n+ 2) and locally isomorphic

to the pseudo-orthogonal group O(n, 2). It can be shown [30] that C(n) is
the projective group O(n, 2)/{1,−1} of rays through the origin in O(n, 2). It
possesses a real linear representation in Rn+2, a complex linear representation
in Rn, and a real nonlinear representation in an n-dim compact spacetime
(Möbius space).

Biconformal space was first introduced in [1] using methods similar to
the geometric construction of general relativity as an ECSK theory. In the
standard Poincaré gauge theory of gravitation one postulates the invariance
of some action integral under local Poincaré transformations [24]. The field
equations are derived by “soldering” the Lorentz fibers to the base manifold,
i.e. by identifying those gauge fields (connection forms) that correspond to
the translation generators of the Poincaré group with an orthonormal basis
{ea}. This gauging was later recognized as being equivalent to Cartan’s or-
thonormal frame bundle formalism [31]. In this formalism, a homogeneous
space is first constructed as the quotient space of a group G and a subgroup
with trivial core, i.e. a subgroup G0 that itself contains no subgroup which is
normal in G other than the identity. This subgroup will act as the isotropy
subgroup of any point in the orbit space G/G0. The group action on this
space is effective (only the identity of the group acts as the identity trans-
formation) and transitive (only one orbit). The orbit space is a manifold
with a Lie-algebra-valued connection if the group is a Lie group. The affine
connection of this frame bundle {π : G → G/G0} is then generalized to a
Cartan connection by including curvatures in the structure equations of the
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group. Holonomy considerations require these curvatures to be horizontal,
i.e. bilinear in the base connections. The formalism provides a priori locally
group symmetric geometries without requiring an action integral.

In this way, Minkowski space is built as the quotient space of the Poincaré
group acting on R4and the Lorentz group O(3, 1). The curvature 2-forms as-
sociated with Lorentz transformations and translations, Riemann curvature
Ra

b and torsion Ta, respectively, are defined through the Poincaré structure
equations:

Ra
b = dωa

b − ωc
b ∧ ωa

c

Ta = dea − eb ∧ ωa
b

The resulting spacetime is a curved four-dimensional manifold with torsion.
The result can be generalized to n dimensions as well as applied to manifolds
with topology other than the usual Rn topology. Any action constructed
within this locally Poincaré invariant geometry, such as the Einstein-Hilbert
action

S =
∫

ηa1bRa2
b ∧ ea3 ∧ · · · ∧ eanεa1...an

=
∫ √−gR dnx

provides a field theory.
In the frame bundle formalism language the standard conformal gauge

theories [2]-[14] correspond to a quotienting of the conformal group by the
inhomogeneous Weyl group generated by Poincaré transformations and di-
lations [32]. While this construction retains the largest possible continuous
symmetry on the fibers, it does not take the discrete symmetry of the confor-
mal algebra into account, according to which translation and co-translation
generators are essentially interchangeable.

Biconformal space is the 2n-dimensional homogeneous space obtained by
quotienting the conformal group C(n) acting on Möbius space by the ho-
mogeneous Weyl group C0, consisting of Lorentz transformations and dila-
tions. Thus, symmetry of the fibers is exchanged for increased coordinate
freedom for the base manifold. In this gauging, the conformal translation
and co-translation generators are treated on an equal footing: Their associ-
ated connection forms span the base space together. When broken up into
components based on their biconformal covariance properties, the O(n, 2)
curvatures defined through the conformal structure equations (4)-(7) are bi-
linear in the these connection forms. There are no a priori conditions on the
torsion and the curvature.
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Definition 1 Let A,B, ... = 0, ..., n and a, b, ... = 1, ..., n. A biconformal
space is a principal fiber bundle π : C → B with conformal connection ωA

B =
{ωa

b , ω
a, ωa, ω

0
0}, where π is the canonical projection of the (n+ 1)(n+ 2)/2-

dimensional conformal bundle onto the 2n-dimensional base manifold B in-
duced by C/C0, where the structure (or symmetry or gauge) group C0 is the
Weyl group of an n-dimensional Minkowski space.

Biconformal space possesses a preferred orthonormal basis {ωa, ωa} de-
fined through the conformal Killing metric g , so that g(ωa, ωb) = 0, g( ωa =
0, and ωb) = 0 and g(ωa, ωb) = δa

b . It provides a natural nondegenerate, in-
variant 2-form ωa ∧ωa. In the generic case of a biconformal space subject to
the linear action and the minimal torsion constraint discussed in this paper,
the 2-form is closed and hence symplectic. By a well-known theorem [33] it
is always possible to construct on a symplectic manifold an almost complex
structure and a Kähler metric. Therefore, the field equations arising from
the linear action constrain the biconformal space to be almost Kähler.

As a result of the increased dimension of biconformal space, there are
many new fields that could be identified with the electromagnetic potential
or other internal symmetries.

B The projected co-solder form, fa

We first define the projected co-solder form

fa ≡ ωa|ωa=0

Since the involution (41) allowed us to single out a set of n biconformal
coordinates {xµ} for the weight +1 sector such that ωa = e a

µ dxµ, we can
find a complimentary set of n coordinates {zµ} for the weight −1 sector so
that fa is of the form

fa = fµ
a (x, z)dzµ (68)

This form shows that fa is necessarily involute, since dfa is at least linear in
dzµ and dzµ = f a

µ fa. On each x0 = const. submanifold we can gauge ωa
b and

ω0
0 to zero which implies dfa = 0 or, by the converse of the Poincaré Lemma,

fa = dθa
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for some 0-form θa(x0, z). When the last equation is extended to the full
biconformal space, θa becomes a function of x and z, and therefore

fa = dθa + χaµdx
µ

= (∂µθa + χaµ)dxµ + (∂µθa)dzµ (69)

where ∂µ and ∂µ denote derivatives with respect to xµ and zµ, respectively.
Since by eq.(68) fa can have no part proportional to dxµ, this implies

χaµ = −∂µθa

so that
fa = (∂µθa)dzµ

Defining a new set of coordinates by

yµ ≡ e a
µ θa

and regarding θa as a function of x and y, we have

fa = (∂µθa)dzµ

= (e α
a

∂yα

∂zµ

)dzµ

= e β
a (dyβ − ∂yβ

∂xα
dxα)

The partial derivative
∂yβ

∂xα is computed holding zµ constant. Writing this
partial as a function ψαβ(xµ, yν), fa takes the desired form,

fa = e β
a dyβ − ψaβdx

α
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