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Abstract

System Identification of a Small Low-Cost Unmanned Aerial Vehicle Using Flight Data

from Low-Cost Sensors

by

Nathan V. Hoffer, Master of Science

Utah State University, 2014

Major Professor: Dr. R. Rees Fullmer
Department: Mechanical and Aerospace Engineering

Remote sensing has traditionally been done with satellites and manned aircraft. While

these methods can yield useful scientific data, satellites and manned aircraft have limitations

in data frequency, process time, and real time re-tasking. Small low-cost unmanned aerial

vehicles (UAVs) provide greater possibilities for personal scientific research than traditional

remote sensing platforms. Precision aerial data requires an accurate vehicle dynamics model

for controller development, robust flight characteristics, and fault tolerance. One method

of developing a model is system identification (system ID). In this thesis system ID of a

small low-cost fixed-wing T-tail UAV is conducted. The linerized longitudinal equations of

motion are derived from first principles. Foundations of Recursive Least Squares (RLS) are

presented along with RLS with an Error Filtering Online Learning scheme (EFOL). Sensors,

data collection, data consistency checking, and data processing are described. Batch least

squares (BLS) and BLS with EFOL are used to identify aerodynamic coefficients of the

UAV. Results of these two methods with flight data are discussed.

(145 pages)
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Public Abstract

System Identification of a Small Low-Cost Unmanned Aerial Vehicle Using Flight Data

from Low-Cost Sensors

by

Nathan V. Hoffer, Master of Science

Utah State University, 2014

Major Professor: Dr. R. Rees Fullmer
Department: Mechanical and Aerospace Engineering

Remote sensing has usually been done with satellites and manned aircraft. While they

can be useful, satellites and manned aircraft have issues in how quickly you can get data,

process it, and go back to get more data. Small low-cost unmanned aerial vehicles (UAVs)

overcome these issues. To collect precise data a precise model of the UAV is needed to

develop the autopilot, make sure the aircraft flies well, and does not break. One method

of making a model is system identification (system ID). In this thesis system ID of a small

low-cost fixed-wing T-tail UAV is done. The equations used to show how the aircraft moves

are developed. The algorithms used to do the system ID are developed. Sensors and how

the data is corrected are described. Results of two methods of system ID with flight data

are shown. The model found from system ID fits for some of the data.
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∆ṗ rolling rate (xbody-component of angular acceleration)

∆q̇ pitching rate (ybody-component of angular acceleration)
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Chapter 1

Introduction

1.1 Motivation

Small low-cost unmanned aerial vehicles (UAVs) are a newly emerging resource for

personal remote sensing for scientific research and civilian application. These UAVs can

provide researchers with the means to gather multi-spectral imagery with shorter set up

and data return times which is crucial for dynamic, time sensitive data. UAVs are also well

suited for agricultural research and optimization, characterized by small data collection

areas and the necessity for high resolution imagery and rapid data availability [1]. Rango

et. al. explores how UAVs can fill in the resolution gap for rangeland applications, providing

needed data for rangeland management [2]. Jensen et. al. discussed UAV applications to

riparian and wetland mapping and change detection. They specifically cite how UAVs

can provide multispectral imagery at high resolutions with the flexibility of the user fully

controlling when and where imagery is taken [3].

There are several obstacles that must be overcome before UAVs can be successfully

integrated into civilian airspace. Of these obstacles the most pressing deal with safety

such as obstacle avoidance, communication between manned and unmanned aircraft, and

robust and fault tolerant systems [4–6]. Robust and fault tolerant UAV control systems

are integral for successful and safe personal remote sensing. Development of such control

systems requires dynamic system models that are well-characterized. Traditionally aircraft

and rotorcraft dynamic system models have been analytically determined from first prin-

ciples such as Newton’s Second Law for rigid-body dynamics [7]. The parameters of these

dynamic system are usually determined through costly and time consuming wind tunnel

testing. These methods, while useful, have limitations when applied to small and micro

UAVs due to several key differences which include:
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• Low Reynolds numbers and airspeeds [8]

• Increased dynamic rates due to decreased mass moments of inertia

• Dominance of propulsion dynamics forces and moments versus aerodynamic body

forces and moments

• Asymmetric or atypical designs [9]

• Cannot characterize all flight regimes (e.g. transition from pre- to post-stall, aerobatic

maneuvers, and inverted helicopter flight)

As an alternative to analytical methods and wind tunnel testing, system identification

(system ID) provides several well suited methods for developing dynamic system models

and identifying their parameters. There are several methods of system ID that have been

successfully applied to small low-cost UAVs, which will be discussed later. Through system

ID, a UAV’s dynamic model can be determined from flight data, after which the dynamic

model can be used to develop and validate autopilot control systems. Thus system ID is

an indispensable tool for modeling, simulating, and developing controllers for small UAVs.

System ID provides a base for reliable and robust UAV control systems increasing the

success and safety of personal remote sensing.

The main contribution of this thesis is the design and implementation of a method of

system ID using recursive least squares with an error filtering online learning scheme. This

method is implemented on a small fixed-wing UAV and utilizes low-cost sensors. The thesis

will be developed as follows: Chapter 2 reviews the literature on UAV system ID. Chapter 3

list the thesis and research objectives. Chapter 4 derives the linear longitudinal equations of

motion of the UAV from Newton’s Second Law for rigid-body motion. Chapter 5 derives the

recursive least squares algorithm with an error filtering online learning scheme. Chapter

6 reviews the UAV, sensors, and system ID maneuvers. Chapter 7 detail the processing

of flight data. Chapter 8 gives the model found through the method of system ID and

compares the model response to flight data and Chapter 9 gives concluding remarks and a

suggested future research direction.
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Chapter 2

System Identification

2.1 UAV System ID Process Overview

System ID is the process of determining a mathematical model of a dynamic system

by analyzing the measured input signals and output states of the system. System ID uses

much of the same theory that optimal estimation [10] and control [11] use. However rather

than estimating the states of a system or observing the states to drive a controller, system

ID uses the inputs and states to develop a model that describes the relationship between

the input signals and the response of the system.

For the specific case of UAVs the process of system ID begins with designing the

input signals. Then the pilot or auto pilot performs maneuvers designed to excite the

UAV’s dynamics. The signals given to the control surfaces and actuators are recorded.

The actual deflection of the control surfaces can also be recorded. Then various sensors

record the current state of the UAV: acceleration, velocities, angular velocities, positions,

aerodynamic angles, and angles relative to the earth’s surface. From this training data a

model of the UAV dynamics can be identified. If the model structure is already known then

its parameters can be identified. This is referred to as parameter estimation, which is a

more specific type of system ID. The model’s response is validated using test data. This

validation uses inputs to a set of test data separate from the training used to generate the

model. If the test data and identified model match then the model can be used. If the

model does not sufficiently predict the flight characteristics of the UAV then the system ID

method, and inputs must be re-examined. This process is summarized in Fig. 2.1. There

are six main elements to system ID:
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Fig. 2.1: Overview of the system identification process

1. Input signals

2. Data collection

3. Selection of the model structure

4. Selection of the system ID method

5. Optimization of the model using system ID method, model structure, and test data

These elements will be discussed more in-depth in the following sections. These sections

are intend to provide a base of knowledge for real world implementation of system ID

specifically geared toward UAV dynamics.
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2.1.1 Input Signals

Input signals are perhaps the most important part of system ID since they affect all

other aspects of the identification process. Inputs are used to excite the dynamic modes of

a system. By analyzing the inputs and the response of the system, the model and model

parameters of the system can be identified. If the dynamic modes of a system are not excited

then the dynamic modes will not show up in the training data and cannot be identified in the

model. Thus it is very important to have inputs specifically designed to excite the system

dynamics. However simply exciting the dynamic modes of a system will not guarantee that

the system ID method will resolve the full dynamics. Dynamic modes must also be well

excited or persistently excited which means that all of the modes (of interest) are excited.

Persistent excitation may also require that the modes be excited long enough so that the

system ID method has time to identify the modes. This is the case for dynamic modes with

long periods such as the phugoid mode for a fixed-wing UAV.

Inputs can be designed if there is sufficient information already given about the dynam-

ics of the system. This is usually not the case when performing system ID for UAVs espe-

cially when prototyping. For general inputs Tischler and Remple [9] recommend frequency

sweeps (Fig. 2.2) for system ID and doublets (Fig. 2.3) for model verification. Frequency

sweeps can be constant or varying depending on the dynamics that need to be excited.

Generally frequency sweeps start at a given low frequency and increase to the desired stop-

ping frequency. These inputs can be performed manually by a pilot or automatically by

the autopilot. Inputs for system ID are generally done by a pilot to keep the UAV un-

der complete control. However there is recent work using an autopilot for optimal system

ID maneuvers [12]. Having the autopilot perform system ID maneuvers requires in-depth

understanding of the system and its response to inputs and disturbances.

In summary when developing inputs for system ID the following should be considered:

• Applicable frequency range

• Persistent excitation

• Duration of excitation
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Fig. 2.2: Elevator frequency sweep for system ID from flight data
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Fig. 2.3: Elevator doublet for system ID model validation from flight data
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• Types of inputs

• Model verification set of inputs

2.1.2 Training and test data collection

There are several things to consider when defining instrumentation requirements for

system ID. One of the challenges of system ID is using real flight data. Flight data can be

extremely noisy. The amount of noise depends on the sensor as well as how it is integrated

with avionics, the structure of the UAV, and the type of propulsion. For example an inertial

measurement unit (IMU) will record accelerations due to changes in the aerodynamic forces

and moments as well as structural vibrations caused by the propulsion system. This type

of vibration can be seen in Fig. 2.4 - Fig. 2.7. Figure 2.4 and Fig. 2.6 show the general

acceleration motion during a frequency sweep maneuver. The noise from the electric motor

can be seen in Figure 2.5 and Fig. 2.7. For the z acceleration the signal to noise ratio is

high and the motion is relatively slow compared to the noise. In this case a low pass filter

can be used to filter out the noise from the motor. Tischler and Remple suggest using the

same filter on all input and output signals to avoid biasing the system ID [9].

Sensor sample rates must be considered for collecting training and test data. If the

sensor has a lower sample rate than the frequency of the dynamic modes of the system then

system ID cannot resolve the model and parameters.

Sensor type requirements are driven by the model and by the input and output data

needed for system ID. It is important to characterizes sensors before flight testing to ensure

data fidelity. If a sensor is inherently noisy or dose not have sufficient resolution then other

sensors or filtering should be considered. Sources of data collection for UAVs found in the

literature can be grouped as the following:

• Inertial Measurement Unit (IMU), GPS and differential pressure sensor, laser altime-

ter, or ultrasonic altimeter

• GPS only
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Fig. 2.4: X acceleration from flight data
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Fig. 2.5: X acceleration close up with high frequency noise
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Fig. 2.6: Z acceleration from flight data
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Fig. 2.7: Z acceleration close up with high frequency noise

• Motion capture systems

• Radar [13]

• Hardware in the loop simulations (for system ID methods comparison) [14]

Generally system ID uses data from an IMU and GPS, however the literature shows that

other sensors have been successfully used in system ID [15] and [16].

In summary the following should be considered for training and test data collection:

• Noise

• Filters

• Sensor sample rates

• Sensors types

2.1.3 Selection of the model structure

Model structure selection is an important and difficult step in system ID. This step

requires a priori knowledge of the system dynamics, understanding of model properties,

and an understanding of the end application. Incorrect model selection can lead to a model

that only partially describes the system dynamics. The application of system ID is perhaps
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the strongest driver for model selection. If aerodynamics coefficients are desired then the

model must have these parameters as part of its structure. On the other hand if the model

is used for control systems design then an auto-regressive exogenous input model may be

appropriate [9].

2.1.4 Selection of the system ID method

The selection of the system ID method depends heavily on the application as well as

the dynamics of the system. System ID methods can be differentiated into two groups:

parametric and nonparametric [9]. Nonparametric methods identify a system from impulse

or frequency responses, and do not require any a priori knowledge about system dynamics

or model structure. Parametric methods assume a structure for the dynamic model and

the model parameters are then identified from training data. Parametric models can then

be subdivided in to the following sub groups:

1. Time-varying and time-invariant systems [17]

2. Static and dynamic systems

3. Linear and nonlinear systems [17]

4. Continuous and discrete systems [17]

All of these categorizations are interrelated and each captures only one particular aspect

of system ID. These categorizations are provided as reference for the methods of system ID.

Fig 2.8 is a decision tree for system ID methods. The decision tree gives distinct questions

about the dynamics of a system which when answered lead to a set of system ID methods.

The tree is not currently filled in but should give the basic idea for choosing a system ID

method. For further in-depth discussion on which methods are best suited for a particular

system or application see [9], [17], [18], and [19].
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Fig. 2.8: System identification method decision tree

2.1.5 Optimization of the model using the system ID method, model structure,

and test data

The best identified model is selected by validating the model’s ability to predict the

actual flight dynamics from a set of test data. If the model fits well enough then the model

can be used to predict the actual system dynamics. If the model does not satisfactorily

predict the system dynamics then the model structure, system ID method, or training data

collection must be re-evaluated. Ideally this processes should be quantitative, that is if

the error between the predicted flight dynamics and the actual flight dynamics is above

some threshold then the model is rejected. This does not take into account the errors in

measurement and modeling. Thus this process can become qualitative especially for models

that make assumptions about structural dynamics.
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2.2 UAV System ID Applications Overview

In order to better understand the advantages of each method of system ID, it is impor-

tant to first understand the application of system ID to UAVs. From the literature, system

ID of UAVs includes the following applications:

1. Dynamic model and parameter ID

2. Model validation

3. Control system design

4. Online/real-time system ID

5. Fault detection

6. Comparison of system ID methods

7. Comparison of online vs. offline system ID

Each application is summarized in the following sections.

2.2.1 Dynamic model and parameter ID

A model structure is chosen to represent the relationship between inputs and outputs

of a system. A priori knowledge about the system can be used to select an appropriate

model. This information can include coupling of dynamics, nonlinearities, order of the

model. Model parameters can have physical meaning or can be the means for adjusting the

model fit to the training data. Once the model structure has been chosen an identification

method is used to determine the parameters of the model.

2.2.2 Control system design

System ID is integral to UAV control system design and can provide dynamic system

models to be used in simulations to validate UAV control systems. Some control systems

(model predictive controllers) require a priori knowledge of model parameters and structure,

which can be determined using system ID.
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2.2.3 Online system ID

In general UAV flight training and test data is recorded and then later analyzed using

system ID to select the model and model parameters that best fits (predicts) the training

and test data. This is referred to as a batch method. With the increased performance of

modern computers it is now possible to identify parameters of some dynamic systems in

real time. This has direct application to fault detection and adaptive control.

2.2.4 Fault detection

Online system ID can detect changes between the inputs and the expected and actual

outputs of a UAV in flight. These differences can correspond to a failure of some part of

the UAV (e.g. failed, failing, or stuck actuator). Once the failure has been detected the

flight control system can be adapted to compensate or initiate an emergency landing.

2.2.5 Comparison of system ID methods

There are several methods of system ID. Not all methods are suitable for every UAV

type or every end application of the system ID. Some methods are better suited for non-

linear system or real-time system ID, while other methods are more suited for determining

aerodynamic coefficients or supporting neural net control system design. Thus it is impor-

tant to compare various techniques so that a researcher with a given UAV and application

can appropriately choose a method of system ID.

2.2.6 Comparison of online vs. offline system ID

Online system ID of UAVs is a relatively new research area, and as such it is important

to compare the performance of online methods to offline methods. Comparison of system

ID should not only be made between methods of system ID but also between different types

of UAVs. These types of comparisons can determine how well online methods are suited for

cross platform use and if one method is especially useful for a certain type of UAV.
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2.3 Current State of System Identification of UAVs

This section details the current state of system ID of UAVs and is divided up into five

subsections of UAVs:

1. Helicopter UAVs

2. Fixed-wing UAVs

3. Multirotor UAVs

4. Flapping-wing UAVs

5. Lighter-than-air UAVs

Each section overviews current applications of system ID. Each subsection has corre-

sponding tables that give details on each reference.

2.3.1 System ID of helicopter UAVs

Helicopter dynamics must be discussed in order to understand the importance of system

ID of small UAV helicopters. Small UAV helicopter dynamics are characterized by tight

coupling of the fuselage, rotor, inflow of air to the rotor, and the engine resulting in a

high-order dynamic system. Thus fixed-wing low-order model approximations are generally

not applicable when modeling helicopter dynamics. Also helicopter dynamics cannot be

decoupled as with fixed-wing aircraft resulting in a hybrid fully coupled model with 13

degrees of freedom. Since helicopter aerodynamics are not fully characterized [20] and cross

coupling effects are poorly known [9] (unlike most traditional fixed-wing aircraft), system

ID gives needed insight into helicopter nonlinear, coupled dynamics.

It is noted that almost without exception all helicopter UAV system ID literature

references the work of Mark B. Tischler [9], [21], [22], and [23]. Tischler developed the

software package Comprehensive Identification from Frequency Responses (CIFER R©) which

is an industry standard for full scale rotorcraft system ID [24] It has successfully been

has applied to helicopter UAVs. CIFER R© is frequently used in the current literature for

helicopter UAV system ID.



15

Significant work has been done to develop various dynamic models of helicopter UAVs.

The helicopter literature divides their applications into control system development, com-

parison of proposed system ID methods with previously developed methods, online system

ID, and unexplored flight maneuvers. Tables 2.1 - 2.3 show the collected references for

helicopter system ID.

2.3.2 System ID of fixed-wing UAVs

Fixed-wing dynamic models can be developed from first-principle techniques, wind

tunnel data, and computational-fluid-dynamics, however many parameters must be esti-

mated well enough to be useful. These traditional modeling tools also have uncertainties

and simplification. The fixed-wing literature uses system ID in tandem with first-principle

techniques to better understand flight modes outside of nominal flight e.g. post-stall [15]

and [16] and take-off [53] maneuvers where first-principle techniques may not accurately

model these dynamics. The fixed-wing literature also uses system ID for controller devel-

opment, comparison of system ID methods (for a given application), fault detection, and

online system ID. Tables 2.4 - 2.6 show the collected references for fixed-wing system ID.

2.3.3 System ID of multirotor UAVs

Multirotors include trirotors, quadrotors, hexarotor, octarotors, etc. They differ from

a helicopter in that a helicopter uses a tail-mounted rotor for yaw control. A multirotor

uses differential torque of opposing motor rotation to control yaw.

Even though there exists a large volume of multirotor research, there is very little

research into system ID of multirotors. This could be due to the fact that PID multirotor

controllers can be designed with or without knowledge of the dynamics model. If the

model is known then simulation can be performed to analyze the model response and initial

gains can be determined. If the model is not known, (which is the case with the current

multirotor research), then relay-based tuning or a trial and error method of gain tuning

using test stands and a human safety pilot is performed.
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Current multirotor literature employs system ID methods for propeller, motor, and

mass moment of inertia modeling.

2.3.4 System ID of flapping-wing UAVs

Flapping-wing UAVs, based on biological flight methods, are just emerging. As tech-

nologies make these UAVs reliable, system ID can provide insight into unintuitive dynamics,

although very little literature exists currently.

2.3.5 System ID of lighter-than-air UAVs

Lighter-than-air UAVs or commonly known as “blimps” have recently been suggested

for remote sensing of extraterrestrial planets and moons where traditional Earth atmosphere-

based methods would not work [81].

The lighter-than-atmosphere UAV literature uses system ID methods for controller

design.
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Table 2.1: Summary of UAV system ID methods and applications: single-rotor part 1

Ref. Data
Source

Model System ID Application

[21]
IMU,
GPS, &
MC

SS CIFER Linear SS model derived for the
hover condition

[25]
- SS Partitioned

TD grey-box:
EEM for ini-
tial values,
OEM for un-
known model
parameters

LTI MIMO SS model with 13
states

[26]
IMU Nonlinear SS TD OEM ID of inertial properties

[27]
IMU,
US, &
PT

TF & SS CIFER Coupled 6-DOF linear parameter
varying mode for CSD

[14]
HILS MLP combined

with NNARXM
using LM

PEM Model-based CSD

[28]
- SS PEM Hover stabilization with LQG

control

[29]
INS &
GPS

SS PEM Multi-loop CSD

[30]
INS &
GPS

SS PEM CSD

[31]
IMU &
GPS

SS PEM Nonlinear CSD for landing on
moving platforms

[32]
- SS PEM CSD for yaw channel using com-

posite nonlinear feedback con-
trol.

[33]
- Black-box SS PEM Practical linear CSD

[34]
IMU &
US

Linear SS PEM Attitude & altitude CSD.

[35]
- Linear SS PEM CSD

[36]
IMU &
LA

ARX, ARMAX,
OEM, & BJ

FR &
subspace-based
method

Position control based on H-
infinity control theory

[37]
IMU &
GPS

SS using super-
vised learning

LR Model for reinforcement learning
algorithm applied to automati-
cally learn a controller for au-
tonomous inverted hovering
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Table 2.2: Summary of UAV system ID methods and applications: single-rotor part 2

Ref. Data
Source

Model System ID Application

[38]
- Apprenticeship

learning algo-
rithm

LR Development of a differential dy-
namic programming controller
for forward flip

[39]
- Nonlinear SS CMA-ES Nonlinear dynamic model used

for H-infinity CSD for attitude &
heave

[40]
- MLP PEM using LM

for training NN
Develop NN model for use with
a NN based controller

[41]
IMU &
GPS

ARX PEM using LM
for training re-
cursive NN

RT sys. ID

[42]
IMU,
GPS, &
US

ARX NNARXM RT ID of longitudinal & lateral
dynamics

[43]
IMU,
GPS, &
US

ARX NN Online & offline NN models for
CSD

[44]
- SS EKF Online parameter ID

[45]
IMU,
GPS, &
US

- OKID Sensor fault detection

[23]
IMU,
GPS, &
MC

frequency re-
sponse to SS

FD using
CIFER

Comparison of scale to full-size
helicopter flight dynamics. Com-
plete dynamic model derived for
hover & cruise flight conditions

[46]
IMU &
GPS

SS & acceleration
prediction model

LR & CIFER Comparison of CIFER vs. pro-
posed Sys. ID method that cap-
tures inertial properties

[47]
- SS EKF, sim-

plified UKF,
augmented
UKF

Comparison of 3 methods. RT
onboard recursive estimation of
aerodynamic derivatives.
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Table 2.3: Summary of UAV system ID methods and applications: single-rotor part 3

Ref. Data
Source

Model System ID Application

[48]
IMU &
GPS

SS Adaptive GA &
LS

Comparison of GA vs. LS. Real-
ize precise parameter ID for lin-
ear SS model for horizontal and
vertical dynamics based on test
data

[49]
- SS LS & TLS Comparison of LS and TLS in

the presence of noise

[22]
- Frequency re-

sponse to SS
CIFER Integrated Sys. ID methods for

flight control modeling for flight
test examples of the Fire Scout
MQ-8B, S-76, & ARH-70A

[24]
IMU &
GPS

Frequency re-
sponse to SS

FD using
CIFER

PID autopilot with automated
frequency-sweeps for Sys. ID

[50]
- SS PE Development of MAT-

LAB/Simulink rapid software
prototyping environment with
sys. ID module

[51]
- SS TD FD Overview of rotorcraft develop-

ment

[52]
- RFB NARX OLS Sys. ID method validation
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Table 2.4: Summary of UAV system ID methods and applications: fixed-wing part 1

Ref. Data
Source

Model System ID Application

[15]
MCS SS LS Post-stall perching dy-

namics

[16]
MCS SS LS Post stall perching dy-

namics & quasi-steady
longitudinal model for ac-
celeration

[54]
- Second order

ARX
LS Motor & servo modeling

[55]
IMU,
GPS, &
DP

linear ss Recursive FTR (LS in
FD)

RT modeling

[56]
- SS FD LS CSD

[57]
IMU Fourth-order

ARX
LS Loitering flight model for

improved CSD

[58]
IMU,
GPS, al-
timeter, &
PS

SS OEM Nonlinear CSD

[59]
IMU,
GPS, &
BS

Linear SS TD OEM & MLM Framework for flight CSD

[60]
- Linear ARX SOM-based local lin-

ear modeling scheme
Development of a set of
inverse controllers

[61]
IMU, PS,
side-slip
poten-
tiometer,
& angle
of attack
encoder

ARX NN Results validated using
the RT hardware in the
loop

[62]
IMU Nonlinear SS Model ID CSD

[63]
IMU SS Batch LS Support & validate au-

topilot hardware & soft-
ware

[64]
IMU &
GPS

FD to SS CIFER CSD

[65]
IMU &
GPS

Fifth & first order
ARX

LS Fractional order CSD
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Table 2.5: Summary of UAV system ID methods and applications: fixed-wing part 2

Ref. Data
Source

Model System ID Application

[66]
IMU,
GPS,
ADS,
tachome-
ter, poten-
tiometers,
& strain
gauges

Mu-Markov
parametrization

LS Online sys. ID

[67]
IMU, PS,
& wind
vane

SS Square root uKF Online model ID for con-
trol

[68]
IMU, PS,
side-slip
poten-
tiometer,
& angle
of attack
encoder

ARX NN Comparison of RT online
and offline NN models

[69]
- ARX Multi-network using

NN & batch wise LM
Online and offline NN
models for CSD

[70]
- ARX & MPL Recurrent NN &

batch wise LM
Online and offline NN
models for CSD

[71]
IMU,
GPS, BS,
& DP

SS Online RLS Control surface fault de-
tection

[72]
- Fourier trans-

formed SS
RT FTR Fault detection of the

primary control surface,
real-time estimation of
the longitudinal stability
and control derivatives

[73]
Carrier
Phase Dif-
ferential
GPS

SS Moshe Idan maxi-
mum likelihood pa-
rameter estimation,
OKID, & subspace

Comparison of 3 sys. ID
methods using carrier-
phase differential GPS
(DPDGSP) data

[74]
Wind tun-
nel

SS FD For SS: EEM LS
OEM MLM & for
FD: LSR MLM FR

Comparison of ID meth-
ods and survey of manned
and unmanned aircraft

[20]
IMU SS Nonlinear mapping &

fuzzy ID
Comparison of ID meth-
ods

[53]
IMU,
GPS, &
PS

ARX, ARMAX, &
BJ

PEM Comparison of 3 models
of take-off dynamics
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Table 2.6: Summary of UAV system ID methods and applications: fixed-wing part 3

Ref. Data
Source

Model System ID Application

[75]
IMU,
GPS, &
PS

SS GA based parameter
ID & PEM

Comparison of the 2 sys.
ID methods

[76]
IMU SS EKF & EMID Comparison of the two

methods

[77]
IMU &
GPS

Fifth & first order
ARX

LS Comparison & fractional
order (PI) CSD

[12]
IMU FD to SS CIFER Baseline model used to

design informative flight
experiments for FD sys.
ID

[78]
IMU,
GPS, &
PS

ARX for discrete-
time,inverse Z-
transform convert
to continuous-
time & FD for
small order model

LS Sys. ID method proposal

[79]
IMU,
GPS, &
PS

SS Nonlinear constrained
optimization algo-
rithm

Undergraduate education
in UAVs

[80]
- ARX - Autopilot tuning
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Table 2.7: Summary of UAV system ID methods and applications: multirotor and other

Ref. UAV
Source

Data Type Model System ID Application

[82]
Multirotor Speed sensor, &

voltage sensor
TF Step response Sys. ID of drive

system

[83]
Multirotor - Learned

model
Coevolution of
models

Automatic mod-
eling & control

[84]
Multirotor IMU & US SS LM optimiza-

tion, quadratic
optimization

Model of pro-
peller, motor,
and mass mo-
ment of inertia

[85]
Multirotor - - Parameter ID Comprehensive

nonlinear mod-
eling

[86]
Flapping-
Wing

Capacitive
displacement
sensor & non-
contact charge-
coupled device
laser displace-
ment sensor

TF Linear discrete-
time, subspace
algorithm

Verification
of theoretical
model

[81]
Lighter-
than-air

IMU & GPS - PE CSD

[87]
Lighter-
than-air

MCS Learning
pre-
dictive
models

GP Reinforcement
learning CSD
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Chapter 3

Thesis and Research Objectives

3.1 Thesis Statement

The primary objective of this research is to evaluate the suitability of a Recursive Least

Squares algorithm with an Error Filtering Online Learning scheme for identifying online the

aerodynamic force and moment coefficients of the linear longitudinal equations of motion

with current low-cost sensor data of a small fixed-wing unmanned aerial vehicle.

3.2 Research Objectives

1. Develop a Batch Least Squares (BLS) algorithm to identify the aerodynamic coeffi-

cients of the linear longitudinal equations of motion using flight data from low-cost

sensors.

2. Develop a Recursive Least Squares (RLS) algorithm to identify the aerodynamic co-

efficients of the linear longitudinal equations of motion using flight data from low-cost

sensors.

3. Evaluate the accuracy of the identified model from BLS and RLS compared to flight

data.

4. Add the Error Filtering Online Learning (EFOL) scheme to the RLS algorithm and

identify the aerodynamic coefficients of the linear longitudinal equations of motion

using flight data from low-cost sensors.

5. Compare the identified models from the BLS, RLS, and the RLS with EFOL scheme,

and their ability to predict flight data for various maneuvers.
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6. Evaluate RLS EFOL scheme’s suitability to identify aerodynamic coefficients online.

7. Outline how any shortcomings of the RLS EFOL scheme can be resolved and provide

a future research direction.
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Chapter 4

Aerodynamic and Mechanical Models for System

Identification

4.1 Overview

This section presents the derivation of the linear longitudinal equations of motion of a

general aircraft from the nonlinear equations of motion. The linear longitudinal equations of

motion apply directly to small UAVs. Also the state space model of the linear longitudinal

equation of motion used for system ID is presented.

4.2 Derivation of the 6 Degree of Freedom Nonlinear Equations of Motion

The equations of motion of an aircraft can be split into translational motion and rota-

tional motion. Newton’s second law for rigid-body dynamics can be used to describe both

the translational and rotational motion [7] and will be used here to develop the equations

of motion of the UAV. Note that for the rigid body assumption to apply, the system’s mass

must not change in time as is the case for this electric powered UAV. Gas powered UAVs

fall under the category of a continuously varying mass system [88] and require special care

when deriving the equations of motion [89].

4.2.1 Coordinate system

For clarification the coordinate system sign convention of the equations of motion is

given in Fig. 4.1. This coordinate system describes the sign convention of the accelerations,

velocities, positions, and angles used in the equations of motion. The control surface sign

convention for the UAV is shown in Fig. 4.2.
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Fig. 4.1: Eq. of motion coordinate system sign convention with accelerations, velocities,
positions, and angles.

4.2.2 Derivation of the 6 degree of freedom nonlinear equations of motion:

translational motion

Beginning with translational motion in an inertial frame the time rate of change of the

translational momentum is equal to the sum of the forces exerted on the rigid-body.

ΣFi =
dPi

dt
(4.1)

Pi is the inertial translational momentum expressed as

Pi = mVi (4.2)

Substituting Eq. (4.2) into Eq. (4.1) yields the following formulation for translational

motion

ΣFi =
d(mVi)

dt
(4.3)
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Fig. 4.2: Control surface deflection sign convention (aileron, elevator, rudder)

Again Newton’s Second Law for Rigid-Body Dynamics only applies to constant mass sys-

tems. This is not to say that Newton’s Second Law cannot ever be applied to a body that

is loosing or gaining mass. It simply means that Newton’s Second Law requires that the

mass and the momentum of the entire system must be accounted for. Since m is constant

and to avoid confusion with a mass varying systems, m is taken out of the time derivative

using the constant factor rule in differentiation.

ΣFi = m
dVi

dt
(4.4)

For convenience in expressing and measuring velocities and angular rates of the UAV, the

inertial frame velocity vector is expressed in body-fixed frame through a transformation.

This is important since most of the UAV sensors output data in the body-fixed frame. The

transformation introduces additional terms into the translational and rotational equations

of motion. The additional terms are due to the body-fixed rotating with respect to the

inertial frame. The full derivation, as found in [90], of the transformation from inertial to

body frame for the velocity vector follows. First the velocity vector is expressed in its body

components.

Vb = Vxbib + Vybjb + Vzbkb (4.5)
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Then the time derivative of the velocity vector Vb with respect to the inertial frame is found

by differentiating Eq. (4.5) as

dVb

dti
=
dVxb
dtb

ib +
dVyb
dtb

jb +
dVzb
dtb

kb + Vxb
dib
dti

+ Vyb
djb
dti

+ Vzb
dkb
dti

, (4.6)

where d
dti

is the time derivative with respect to the inertial frame. The first three terms

of the right hand side of Eq. (4.6) are the change in Vb as viewed from the body frame.

These three terms can be combined into the time derivative of Vb in the body frame by

dVb

dtb
=
dVxb
dtb

ib +
dVyb
dtb

jb +
dVzb
dtb

kb. (4.7)

The last three terms of the right-hand side of Eq. (4.6) are the change in Vb from the

rotation of the body frame with respect to the inertial frame. The angular velocity of the

body frame with respect to the inertial frame is expressed as ωb. The derivatives of ib, jb,

and kb can be found by

d

dti
ib = ωb × ib

d

dti
jb = ωb × jb

d

dti
kb = ωb × kb. (4.8)

Substituting Eq.(4.7) and Eq. (4.8) into right hand side of Eq. (4.6) yields

dVi

dti
=
dVb

dtb
+ Vxb(ωb × ib) + Vyb(ωb × jb) + Vzb(ωb × kb). (4.9)

Manipulating the last three terms of the right hand side further by

dVi

dti
=
dVb

dtb
+ ωb × (Vxbib) + ωb × (Vybjb) + ωb × (Vzbkb) (4.10)

dVi

dti
=
dVb

dtb
+ ωb × (Vxbib + Vybjb + Vzbkb) (4.11)

gives the desired relationship

dVi

dti
=
dVb

dtb
+ ωb ×Vb. (4.12)
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This relationship can now be used in Eq. (4.4) to express the time derivative of the velocity

vector in terms of the body-fixed frame, which gives

ΣFb = m
dVb

dt
+ ωb × (mVb). (4.13)

Keeping the equations of motion in body-fixed coordinate systems the force can be separated

into surface and body forces as

FS + W = m
dVb

dt
+ ωb × (mVb). (4.14)

This is done for ease of derivation. Now the equations of translational motion are expressed

in terms of their vector components starting with the terms associated with angular velocity

on the right of the Eq. (4.14) as

ωb × (mVb) = m

∣∣∣∣∣∣∣∣∣∣
ixb iyb izb

ωxb ωyb ωzb

Vxb Vyb Vzb

∣∣∣∣∣∣∣∣∣∣
= m


ωybVzb − ωzbVyb

ωzbVxb − ωxbVzb

ωxbVyb − ωybVxb

 . (4.15)

Substituting Eq. (4.15) into Eq. (4.14) and expanding the rest of the terms into vector

components yields


FSxb

FSyb

FSzb

+


Wxb

Wyb

Wzb

 = m
d

dt


Vxb

Vyb

Vzb

+m


ωybVzb − ωzbVyb

ωzbVxb − ωxbVzb

ωxbVyb − ωybVxb

 . (4.16)

The equations of motion are expressed here in terms of their vector components so that

later the equations of motion can be split into longitudinal and lateral dynamics. Eq. (4.16)
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can be rearranged as

m
d

dt


Vxb

Vyb

Vzb

 =


FSxb +Wxb −mωybVzb +mωzbVyb

FSyb +Wyb −mωzbVxb +mωxbVzb

FSzb +Wzb −mωxbVyb +mωybVxb

 . (4.17)

It should be noted that this derivation of the equations of motion is for a constant mass UAV.

Some UAVs change mass with time as a result of burning fuel. The equations of motion

need to take into account this momentum flux. The derivation for the mass changing system

can be found in [7]. Since this UAV does not change mass with time the time rate of change

of the velocity is simply

m


V̇xb

V̇yb

V̇zb

 =


Fxb +Wxb −mωybVzb +mωzbVyb

Fyb +Wyb −mωzbVxb +mωxbVzb

Fzb +Wzb −mωxbVyb +mωybVxb

 , (4.18)

where Fb is the pseudo aerodynamic force thrust. The classical dynamics notation is replaced

with the following flight dynamics notation

V =


Vxb

Vyb

Vzb

 =


u

v

w

 =


axial velocity

sideslip velocity

normal velocity

 (4.19)

ωb =


ωxb

ωyb

ωzb

 =


p

q

r

 =


rolling rate

pitching rate

yawing rate

 , (4.20)

m = W/g (4.21)
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and substituting in the flight dynamics notation in to Eq. (4.18) gives


W/g 0 0

0 W/g 0

0 0 W/g



u̇

v̇

ẇ

 =


Fxb +Wxb + (rv − qw)W/g

Fyb +Wyb + (pw − ru)W/g

Fzb +Wzb + (qu− pv)W/g

 (4.22)

4.2.3 Derivation of the 6 degree of freedom nonlinear equations of motion:

rotational motion

Rotational motion can also be described in similar manner to the translational motion.

From Newton’s Second Law the time rate of change of the rotational momentum is equal

to the sum of the moments exerted on the rigid-body in the inertial frame expressed as

ΣMi =
dHi

dt
, (4.23)

where Hi is the inertial rotational momentum given by

Hi = [I]ωi. (4.24)

Substituting Eq. (4.24) into Eq. (4.23) yields the following formulation for rotational

motion

ΣMi =
d([I]ωi)

dt
. (4.25)

Again Newton’s Second Law applies to rigid-bodies. For rotational motion this means the

products of inertia are constant and can be taken out of the time derivative resulting in

ΣMi = [I]
d(ωi)

dt
. (4.26)

The angular velocity vector is transformed from inertial to body-fixed frame in the same

manner as the translation velocity vector. The derivation for this transformation is found
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in [91]. The transformation yields

dωi
dti

=
dωb
dtb

+ ωb × ωb. (4.27)

The rotational motion can now be written in terms of the body-fixed frame as

Mb = [I]
d(ωb)

dt
+ ωb × ([I]ωb). (4.28)

The inertial tensor is expressed in terms of its components as

[I] =


Ixxb −Ixyb −Ixzb

−Iyxb Iyyb −Iyzb

−Izxb −Izyb Izzb

 . (4.29)

Since the body-fixed coordinate system is used, the product of inertia are zero due to

symmetry about the yb plane.

[I] =


Ixxb 0 −Ixzb

0 Iyyb 0

−Izxb 0 Izzb

 (4.30)

If the UAV was asymmetrical about the yb plane then the inertial tensor would be full with

no zeros. Thus the angular momentum vector, H, is

H = [I]ωb =


Ixxb 0 −Ixzb

0 Iyyb 0

−Izxb 0 Izzb



ωxb

ωyb

ωzb

 =


Ixxbωxb − Ixzbωzb

Iyybωyb

Izzbωzb − Izxbωxb

 (4.31)
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ωb × ([I]ω) = ω ×H =

∣∣∣∣∣∣∣∣∣∣
ixb iyb izb

ωxb ωyb ωzb

Hxb Hyb Hzb

∣∣∣∣∣∣∣∣∣∣
=


ωybHzb − ωzbHyb

ωzbHxb − ωxbHzb

ωxbHyb − ωybHxb

 =


(Izzb − Iyyb)ωybωzb − Ixzbωxbωyb

(Ixxb − Izzb)ωxbωzb − Ixzb(ω2
xb
− ω2

yb
)

(Iyyb − Ixxb)ωxbωyb − Ixzbωybωzb



(4.32)

Substituting Eqs. (4.31) and (4.32) into Eq. (4.28)


MSxb

MSyb

MSzb

 =


Ixxb 0 −Ixzb

0 Iyyb 0

−Izxb 0 Izzb

 d

dt


ωxb

ωyb

ωzb

+


(Izzb − Iyyb)ωybωzb − Ixzbωxbωyb

(Ixxb − Izzb)ωxbωzb − Ixzb(ω2
xb
− ω2

yb
)

(Iyyb − Ixxb)ωxbωyb − Ixzbωybωzb


(4.33)

Rearranging the equation


Ixxb 0 −Ixzb

0 Iyyb 0

−Izxb 0 Izzb



ω̇xb

ω̇yb

ω̇zb

 =


Mxb + (Iyyb − Izzb)ωybωzb + Ixzbωxbωyb

Myb + (Izzb − Ixxb)ωxbωzb + Ixzb(ω
2
xb
− ω2

yb
)

Mzb + (Ixxb − Iyyb)ωxbωyb + Ixzbωybωzb

 , (4.34)

where Mb is the pseudo moments. Applying flight dynamic notation to Eq. (4.34) gives


Ixxb 0 −Ixzb

0 Iyyb 0

−Ixzb 0 Izzb



ṗ

q̇

ṙ

 =


Mxb + (Iyyb − Izzb)qr + Ixzbpq

Myb + (Izzb − Ixxb)pr + Ixzb(r
2 − p2)

Mzb + (Ixxb − Iyyb)pq − Ixzbqr

 (4.35)
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4.2.4 Derivation of the 6 degree of freedom nonlinear equations of motion:

translational and rotational motion combined

Combining Eqs. (4.22) and (4.35) and putting the two equations into matrix form

yields the 6 DOF nonlinear equations of motion



W/g 0 0 0 0 0

0 W/g 0 0 0 0

0 0 W/g 0 0 0

0 0 0 Ixxb 0 −Ixzb

0 0 0 0 Iyyb 0

0 0 0 −Ixzb 0 Izzb





u̇

v̇

ẇ

ṗ

q̇

ṙ



=



Fxb +Wxb + (rv − qw)W/g

Fyb +Wyb + (pw − ru)W/g

Fzb +Wzb + (qu− pv)W/g

Mxb + (Iyyb − Izzb)qr + Ixzbpq

Myb + (Izzb − Ixxb)pr + Ixzb(r
2 − p2)

Mzb + (Ixxb − Iyyb)pq − Ixzbqr



(4.36)

4.3 Linearized Equations of Motion

The nonlinear equations of motion for the UAV are now linearized. Given a general

second-order nonlinear system given by the following differential equation

ẍ = f(ẋ, x, t) (4.37)

where ẋ is the rate of change of the state and x is the state, it is assumed that there

exists a particular solution to the differential equation, in this case a trim input of x0(t).

The differential equation can be expanded in a Taylor series around the particular solution
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(trim) and yields

ẍ = f(ẋ0, x0, t) +
∂f

∂ẋ

∣∣∣∣
ẋ=ẋ0,x=x0

(ẋ− ẋ0) +
∂f

∂x

∣∣∣∣
ẋ=ẋ0,x=x0

(x− x0) + · · · (4.38)

The higher order terms of the Taylor series expansion can be ignored by assuming that the

general solution does not deviate far from the particular solution. The particular solutions

satisfies

ẍ0 = f(ẋ0, x0, t) (4.39)

and making the substitution for deviation from particular solution of the form

∆ẋ = ẋ− ẋ0 (4.40)

∆x = x− x0 (4.41)

Using (4.39), (4.40) and, (4.41) in (4.38) yields

ẍ = ẍ0 +
∂f

∂ẋ

∣∣∣∣
ẋ=ẋ0,x=x0

∆ẋ+
∂f

∂x

∣∣∣∣
ẋ=ẋ0,x=x0

∆x (4.42)

which can be expressed as the particular solution plus the deviation from the particular

solution

ẍ = ẍ0 + ∆ẍ (4.43)

Thus a small deviation or disturbance from the particular solution must satisfy

∆ẍ =
∂f

∂ẋ

∣∣∣∣
ẋ=ẋ0,x=x0

∆ẋ+
∂f

∂ẋ

∣∣∣∣
ẋ=ẋ0,x=x0

∆x (4.44)

Note that this equation is linear in ∆x as a result of evaluating the derivatives for the known

particular solution and is known as small-disturbance theory.

Now applying small-disturbance theory to the rigid-body 6 degree of freedom (DOF)

equations of motion (4.36) and each of its variables as an equilibrium state value plus some
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small disturbance from the equilibrium state. The equilibrium state is steady level flight.

u = u0 + ∆u v = v0 + ∆v w = w0 + ∆w

p = p0 + ∆p q = q0 + ∆q r = r0 + ∆r

xf = x0 + ∆xf yf = y0 + ∆yf zf = z0 + ∆zf

φ = φ0 + ∆φ θ = θ0 + ∆θ ψ = ψ0 + ∆ψ

Fxb = Fxb0 + ∆Fxb Fyb = Fyb0 + ∆Fyb Fzb = Fzb0 + ∆Fzb

Wxb = Wxb0 + ∆Wxb Wyb = Wyb0 + ∆Wyb Wzb = Wzb0 + ∆Wzb

Mxb = Mxb0 + ∆Mxb Myb = Myb0 + ∆Myb Mzb = Mzb0 + ∆Mzb

δa = δa0 + ∆δa δe = δe0 + ∆δe δr = δr0 + ∆δr

(4.45)

The sum of the moments and forces must balance to produce the equilibrium state of steady

level flight. Thus

u0 = V0, x0 = (Vwxf + V0 cos θ0)t, y0 = Vwyf t, z0 = (Vwzf − V0 sin θ0)t

Fxb0 = −Wxb0, Fzb0 = −Wzb0

v0 = w0 = p0 = q0 = r0 = φ0 = ψ0 = Fyb0 = Wyb0 = M0 = 0

(4.46)

Substituting the results from balancing the forces and moments in Eq. (4.46) for the

equilibrium state into Eq. (4.45) gives

u = V0 + ∆u v = ∆v w = ∆w

p = ∆p q = ∆q r = ∆r

xf = (Vwxf + V0 cos θ0)t+ ∆xf yf = Vwyf t+ ∆yf zf = (Vwzf − V0 sin θ0)t+ ∆zf

φ = ∆φ θ = θ0 + ∆θ ψ = ∆ψ

Fxb = −Wxb0 + ∆Fxb Fyb = ∆Fyb Fzb = −Wzb0 + ∆Fzb

Wxb = Wxb0 + ∆Wxb Wyb = ∆Wyb Wzb = Wzb0 + ∆Wzb

Mxb = ∆Mxb Myb = ∆Myb Mzb = ∆Mzb

δa = δa0 + ∆δa δe = δe0 + ∆δe δr = δr0 + ∆δr

(4.47)
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Substituting in the small-disturbance variables, Eq. (4.36) becomes



W/g 0 0 0 0 0

0 W/g 0 0 0 0

0 0 W/g 0 0 0

0 0 0 Ixxb 0 −Ixzb

0 0 0 0 Iyyb 0

0 0 0 −Ixzb 0 Izzb





∆u̇

∆v̇

∆ẇ

∆ṗ

∆q̇

∆ṙ



=



−Wxb0 + ∆Fxb +Wxb0 + ∆Wxb + (∆r∆v −∆q∆w)W/g

∆Fyb + ∆Wyb + (∆p∆w −∆r(V0 + ∆u))W/g

−Wzb0 + ∆Fzb +Wzb0 + ∆Wzb + (∆q(V0 + ∆u)−∆p∆v)W/g

∆Mxb + (Iyyb − Izzb)∆q∆r + Ixzb∆p∆q

∆Myb + (Izzb − Ixxb)∆p∆r + Ixzb(∆r
2 −∆p2)

∆Mzb + (Ixxb − Iyyb)∆p∆q − Ixzb∆q∆r



(4.48)

Canceling out terms and neglecting the product of small disturbances gives



W/g 0 0 0 0 0

0 W/g 0 0 0 0

0 0 W/g 0 0 0

0 0 0 Ixxb 0 −Ixzb

0 0 0 0 Iyyb 0

0 0 0 −Ixzb 0 Izzb





∆u̇

∆v̇

∆ẇ

∆ṗ

∆q̇

∆ṙ



=



∆Fxb + ∆Wxb

∆Fyb + ∆Wyb −∆r(V0)W/g

∆Fzb + ∆Wzb + ∆q(V0)W/g

∆Mxb

∆Myb

∆Mzb



(4.49)
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The small-disturbance aerodynamic forces are functions of translational and rotational

velocities, translational accelerations, and the deflection of the control surfaces. These

aerodynamic forces can be approximated as


∆Fxb

∆Fyb

∆Fzb

 =


∂Fxb
∂u

∂Fxb
∂v

∂Fxb
∂w

∂Fyb
∂u

∂Fyb
∂v

∂Fyb
∂w

∂Fzb
∂u

∂Fzb
∂v

∂Fzb
∂w




∆u

∆v

∆w

+


∂Fxb
∂p

∂Fxb
∂q

∂Fxb
∂r

∂Fyb
∂p

∂Fyb
∂q

∂Fyb
∂r

∂Fzb
∂p

∂Fzb
∂q

∂Fzb
∂r




∆p

∆q

∆r


+


∂Fxb
∂u̇

∂Fxb
∂v̇

∂Fxb
∂ẇ

∂Fyb
∂u̇

∂Fyb
∂v̇

∂Fyb
∂ẇ

∂Fzb
∂u̇

∂Fzb
∂v̇

∂Fzb
∂ẇ




∆u̇

∆v̇

∆ẇ

+


∂Fxb
∂δa

∂Fxb
∂δe

∂Fxb
∂δr

∂Fyb
∂δa

∂Fyb
∂δe

∂Fyb
∂δr

∂Fzb
∂δa

∂Fzb
∂δe

∂Fzb
∂δr




∆δa

∆δe

∆δr



(4.50)

The small-disturbance aerodynamic moments are also functions of translational and ro-

tational velocities, translational accelerations, and the deflection of the control surfaces.

These aerodynamic moments can be approximated as


∆Mxb

∆Myb

∆Mzb

 =


∂Mxb
∂u

∂Mxb
∂v

∂Mxb
∂w

∂Myb
∂u

∂Myb
∂v

∂Myb
∂w

∂Mzb
∂u

∂Mzb
∂v

∂Mzb
∂w




∆u

∆v

∆w

+


∂Mxb
∂p

∂Mxb
∂q

∂Mxb
∂r

∂Myb
∂p

∂Myb
∂q

∂Myb
∂r

∂Mzb
∂p

∂Mzb
∂q

∂Mzb
∂r




∆p

∆q

∆r


+


∂Mxb
∂u̇

∂Mxb
∂v̇

∂Mxb
∂ẇ

∂Myb
∂u̇

∂Myb
∂v̇

∂Myb
∂ẇ

∂Mzb
∂u̇

∂Mzb
∂v̇

∂Mzb
∂ẇ




∆u̇

∆v̇

∆ẇ

+


∂Mxb
∂δa

∂Mxb
∂δe

∂Mxb
∂δr

∂Myb
∂δa

∂Myb
∂δe

∂Myb
∂δr

∂Mzb
∂δa

∂Mzb
∂δe

∂Mzb
∂δr




∆δa

∆δe

∆δr



(4.51)

These derivatives are all evaluated at the equilibrium flight condition of steady level flight.

Equations (4.50) and (4.51) only depend on the motion of the aircraft relative to the sur-

rounding air and not on the orientation relative to the Earth’s surface. This is the reasoning

for choosing the atmosphere-fixed coordinates. Side slip acceleration terms have little effect

on lift or vorticity and can be neglected. Symmetry also cancels out some of the derivative
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terms. Thus the following derivatives shall be used in the linearized equations of motion.

∂Fyb
∂u̇ =

∂Fxb
∂v̇ =

∂Fyb
∂v̇ =

∂Fzb
∂v̇ =

∂Fyb
∂ẇ = 0

∂Mxb
∂u̇ =

∂Mzb
∂u̇ =

∂Mxb
∂v̇ =

∂Myb
∂v̇ =

∂Mzb
∂v̇ =

∂Mxb
∂ẇ =

∂Mzb
∂ẇ = 0

(4.52)

All of the following derivatives evaluated at the equilibrium flight condition of steady level

flight can also be eliminated based on symmetry of axial forces [7].

∂Fxb
∂v =

∂Fyb
∂u =

∂Fyb
∂w =

∂Fzb
∂v = 0

∂Fxb
∂p =

∂Fxb
∂r =

∂Fyb
∂q =

∂Fzb
∂p =

∂Fzb
∂r = 0

∂Fxb
∂δa =

∂Fxb
∂δr =

∂Fyb
∂δe =

∂Fzb
∂δa =

∂Fzb
∂δr = 0

∂Mxb
∂u =

∂Mxb
∂w =

∂Myb
∂v =

∂Mzb
∂u =

∂Mzb
∂w = 0

∂Mxb
∂p =

∂Mxb
∂r =

∂Myb
∂q =

∂Mzb
∂p =

∂Mzb
∂r = 0

∂Mxb
∂δe =

∂Myb
∂δa =

∂Myb
∂δr =

∂Mzb
∂δe = 0

(4.53)

Gravitational force components are only dependent on the Euler angles as shown.


Wxb

Wyb

Wzb

 = W


− sin(θ0)

sin(φ0) cos(θ0)

cos(φ0) cos(θ0)

 (4.54)
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For the equilibrium flight condition of steady level flight, the gravitational force derivatives

are 
∆Wxb

∆Wyb

∆Wzb

 =


∂Wxb
∂φ

∂Wxb
∂θ

∂Wxb
∂ψ

∂Wyb
∂φ

∂Wyb
∂θ

∂Wyb
∂ψ

∂Wzb
∂φ

∂Wzb
∂θ

∂Wzb
∂ψ




∆φ

∆θ

∆ψ


=


0 −W cos(θ0) 0

W cos(φ0) cos(θ0) −W sin(φ0) sin(θ0) 0

W sin(φ0) cos(θ0) −W cos(φ0) sin(θ0) 0




∆φ

∆θ

∆ψ


=


0 −W cos(θ0) 0

W cos(θ0) 0 0

0 −W sin(θ0) 0




∆φ

∆θ

∆ψ



(4.55)

where φ0 = 0. Now using all previous approximations and assumptions for the forces and

moments gives


∆Fxb + ∆Wxb

∆Fyb + ∆Wyb

∆Fzb + ∆Wzb

 =


Fxb,u 0 Fxb,w

0 Fyb,v 0

Fzb,u 0 Fzb,w




∆u

∆v

∆w

+


0 Fxb,q 0

Fyb,p 0 Fyb,r

0 Fzb,q 0




∆p

∆q

∆r


+


Fxb,u̇ 0 Fxb,ẇ

0 0 0

Fzb,u̇ 0 Fzb,ẇ




∆u̇

∆v̇

∆ẇ

+


0 Fxb,δe 0

Fyb , δa 0 Fyb,δr

0 Fzb,δe 0




∆δa

∆δe

∆δr

+


0 −W cos(θ0) 0

W cos(θ0) 0 0

0 −W sin(θ0) 0




∆φ

∆θ

∆ψ



(4.56)
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
∆Mxb

∆Myb

∆Mzb

 =


0 Mxb,v 0

Myb,u 0 Myb,w

0 Mzb,v 0




∆u

∆v

∆w

+


Mxb,p 0 Mxb,r

0 Myb,q 0

Mzb,p 0 Mzb,r




∆p

∆q

∆r


+


0 0 0

Myb,u̇ 0 Myb,ẇ

0 0 0




∆u̇

∆v̇

∆ẇ

+


Mxb,δa 0 Mxb,δr

0 Myb , δe 0

Mzb,δa 0 Mzb,δr




∆δa

∆δe

∆δr



(4.57)

Note that the force and moment notation (
∂Fxb
∂u ) has been simplified (Fxb,u). Also note that

control inputs: ∆δa, ∆δe, and ∆δr are respectively the change in the aileron, elevator, and

rudder deflection.

Now small-disturbance theory can also be applied to the six first-order differential

equations relating time rate of change of position and orientation yielding,


ẋf

ẏf

żf

 =


CθCψ SφSθCψ − CφSψ CφSθCψ + SφSψ

CθSψ SφSθSψ + CφCψ CφSθSψ − SφCψ

−Sθ SφCθ CφCθ



u

v

w

+


Vwxf

Vwyf

Vwzf


φ̇

θ̇

ψ̇

 =


1 SφSθ/Cθ CφSθ/Cθ

0 Cφ −Sφ

0 Sφ/Cθ Cφ/Cθ



p

q

r



(4.58)

where Vwxf , Vwyf , and Vwzf are the wind velocity vectors. Using small angle approximations

and small-disturbance variables,

sin(φ) ∼= ∆φ sin(θ) ∼= sin(θ0) + cos(θ0)∆θ sin(ψ) ∼= ∆ψ

cos(φ) ∼= 1 cos(θ) ∼= cos(θ0)− sin(θ0)∆θ cos(ψ) ∼= 1
(4.59)
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Eq. (4.58) becomes


Vwxf + V0Cθ0 + ∆ẋf

Vwyf + ∆ẏf

Vwzf − V0Sθ0 + ∆żf


=


Cθ0 − Sθ0∆θ Sθ0∆φ−∆ψ Sθ0 + Cθ0∆θ

Cθ0∆ψ 1 Sθ0∆ψ −∆φ

−Sθ0 − Cθ0∆θ Cθ0∆φ Cθ0 − Sθ0∆θ



V0 + ∆u

∆v

∆w

+


Vwxf

Vwyf

Vwzf


∆φ̇

∆θ̇

∆ψ̇

 =


1 Sφ∆φ/Cθ0 Sθ0/Cθ0 + ∆θ/C2

θ0

0 1 −∆φ

0 ∆φ/Cθ0 1/Cθ + Sθ0∆θ/C2
θ0




∆p

∆q

∆r



(4.60)

Neglecting second-order terms (any small angle multiplied by another small angle) and

assuming a zero wind velocity, Eq. (4.60) becomes



∆ẋf

∆ẏf

∆żf

∆φ̇

∆θ̇

∆ψ̇



=



cos(θ0) 0 sin(θ0) 0 0 0

0 1 0 0 0 0

− sin(θ0) 0 cos(θ0) 0 0 0

0 0 0 1 0 tan(θ0)

0 0 0 0 1 0

0 0 0 0 0 sec(θ0)





∆u

∆v

∆w

∆p

∆q

∆r



+



0 −V0 sin(θ0) 0

0 0 V0 cos(θ0)

0 −V0 cos(θ0) 0

0 0 0

0 0 0

0 0 0




∆φ

∆θ

∆ψ



(4.61)

Applying these results to the rigid-body 6-DOF equations of motion gives
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

W/g − Fxb,u̇ 0 −Fxb,ẇ 0 0 0 0 0 0 0 0 0

0 W/g 0 0 0 0 0 0 0 0 0 0

−Fzb,u̇ 0 W/g − Fzb,ẇ 0 0 0 0 0 0 0 0 0

0 0 0 Ixxb 0 −Ixzb 0 0 0 0 0 0

−Myb,u̇ 0 −Myb,ẇ 0 Iyyb 0 0 0 0 0 0 0

0 0 0 −Ixzb 0 Izzb 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1





∆u̇

∆v̇

∆ẇ

∆ṗ

∆q̇

∆ṙ

∆ẋf

∆ẏf

∆żf

∆φ̇

∆θ̇

∆ψ̇



=



0 Fxb,δe 0

Fyb,δa 0 Fyb,δr

0 Fzb,δe 0

Mxb,δa 0 Mxb,δr

0 Myb,δe 0

Mzb,δa 0 Mzb,δr

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0




∆δa

∆δe

∆δr

(4.62)
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+



Fxb,u 0 Fxb,w 0 Fxb,q 0 0 0 0 0 −W cos(θ0) 0

0 Fyb,v 0 Fyb,p 0 Fyb,r − V0W/g 0 0 0 W cos(θ0) 0 0

Fzb,u 0 Fzb,w 0 Fzb,q + V0W/g 0 0 0 0 0 −W sin(θ0) 0

0 Mxb,v 0 Mxb,p 0 Mxb,r 0 0 0 0 0 0

Myb,u 0 Myb,w 0 Myb,q 0 0 0 0 0 0 0

0 Mzb,v 0 Mzb,p 0 Mzb,r 0 0 0 0 0 0

cos(θ0) 0 sin(θ0) 0 0 0 0 0 0 0 −V0 sin(θ0) 0

0 1 0 0 0 0 0 0 0 0 0 V0 cos(θ0)

− sin(θ0) 0 cos(θ0) 0 0 0 0 0 0 0 −V0 cos(θ0) 0

0 0 0 1 0 tan(θ0) 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 sec(θ0) 0 0 0 0 0 0





∆u

∆v

∆w

∆p

∆q

∆r

∆xf

∆yf

∆zf

∆φ

∆θ

∆ψ



(4.63)
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4.4 Force and Moment Derivatives

Now the equations for the derivatives of the forces and moments will be derived begin-

ning by expressing the total airspeed in terms of its components u, v, and w.

V =
√
u2 + v2 + w2 (4.64)

The aerodynamic angles α, angle of attack and β, side slip angle and their approximations

in terms of components of velocity are given as

α = tan−1(
w

u
) ∼=

w

u
(4.65)

β = tan−1(
v

u
) ∼=

v

u
(4.66)

Now consider a function F which is defined in terms of total velocity, aerodynamic angle

and, side slip angle: F (V, α, β). The change in the function with respect to axial velocity

is

∂F

∂u
=
∂F

∂V

∂V

∂u
+
∂F

∂α

∂α

∂u
+
∂F

∂β

∂β

∂u
(4.67)

Angle of attack is not a function of side slip velocity, so the change of the function with

respect to side slip velocity is

∂F

∂v
=
∂F

∂V

∂V

∂v
+
�
�
�
�>

0
∂F

∂α

∂α

∂v
+
∂F

∂β

∂β

∂v
=
∂F

∂V

∂V

∂v
+
∂F

∂β

∂β

∂v
(4.68)

Similarly sideslip angle is not a function of normal velocity using the approximation for

sideslip angle given in Eq. (4.66), thus the change of the function with respect to normal

velocity is

∂F

∂w
=
∂F

∂V

∂V

∂w
+
∂F

∂α

∂α

∂w
+
�
�
�
��>

0
∂F

∂β

∂β

∂w
=
∂F

∂V

∂V

∂w
+
∂F

∂α

∂α

∂w
(4.69)

Finding the components of the partials of V with respect to u, v, w gives

∂V

∂u
=

u√
u2 + v2 + w2

∂V

∂v
=

v√
u2 + v2 + w2

∂V

∂w
=

w√
u2 + v2 + w2

(4.70)
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and the small angle approximation for the partials of the aerodynamic angles gives

∂α

∂u
∼= −

w

u2
∂α

∂v
∼= 0

∂α

∂w
∼=

1

u
(4.71)

∂β

∂u
∼= −

v

u2
∂β

∂v
∼=

1

u

∂β

∂v
∼= 0 (4.72)

Applying the equilibrium state of steady level flight of the components of velocity


u

v

w

 =


V0

0

0

 (4.73)

to Eq. (4.70), (4.71), and (4.72) yields

∂V

∂u
= 1 (4.74)

∂V

∂v
=
∂V

∂w
=
∂α

∂u
=
∂β

∂u
= 0 (4.75)

∂α

∂w
∼=
∂β

∂v
∼=

1

V0
(4.76)

Thus

∂F

∂u
=
∂F

∂V
(4.77)

∂F

∂v
=

1

V0

∂F

∂β
(4.78)

∂F

∂w
=

1

V0

∂F

∂α
(4.79)

Now the sum of the forces and moments will be shown and used to define the partial

derivatives developed in the previous sets of equations. The forces and moments acting on

the aircraft are due to; gravity, aerodynamic loading, and thrust. Starting with the force
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balance

F + W =
1

2
ρV 2Sw


CX

CY

CZ

+ T


cos(αT0)

0

− sin(αT0)

+W


− sin(θ)

sin(φ) cos(θ)

cos(φ) cos(θ)

 (4.80)

and moment balance

M =
1

2
ρV 2Sw


bwC`

c̄wCm

bwCn

+


0

zTT cos(αT0) + xTT sin(αT0)

0

 (4.81)

where ρ is the air density, Sw is the wing planform area, αT0 is the thrust angle of attack,

CX , CY , and CZ are the x, y, and z components of aerodynamic force coefficients, T is the

thrust force, xT and zT are the x and z components of the center of thrust, bw is the main

wing span, c̄w and C`, Cm, and Cn are the roll, pitch, and yaw moment coefficients . The

sum of the forces and moments can be expressed in terms of lift and drag and applying the

equilibrium state of steady level flight yields

1

2
ρV 2Sw



CX

CY

CZ

bwC`

c̄wCm

bwCn



=
1

2
ρV 2Sw



−CD

0

−CL

0

c̄wCm

0



=



−T cos(αT0) +W sin(θ0)

0

T sin(αT0)−W cos(θ0)

0

−zTT cos(αT0)− xTT sin(αT0)

0



(4.82)

where CL is the lift coefficient and CD is the drag coefficient. Assuming the thrust vector is

aligned with the center of gravity and the direction of flight the partials of the forces with
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respect to velocity are

∂Fxb
∂V = ∂

∂V

[
1
2ρV

2SwCX + T cos(αT0)−W sin(θ0)

]
= ρV Sw

(
CX + V

2
∂CX
∂V

)
+ ∂T

∂V cos(αT0)

= ρV Sw

[(
CL + V

2
∂CL
∂V

)
cos(α)−

(
CD + V

2
∂CD
∂V

)
sin(α)

]
+ ∂T

∂V cos(αT0)

(4.83)

∂Fyb
∂V = ∂

∂V

[
1
2ρV

2SwCY +W sin(φ) cos(θ)

]
= ρV Sw

(
CY + V

2
∂CY
∂V

)
(4.84)

∂Fzb
∂V = ∂

∂V

[
1
2ρV

2SwCZ − T sin(αT0)−W cos(φ)cos(θ)

]
= ρV Sw

(
CZ + V

2
∂CZ
∂V

)
− ∂T

∂V sin(αT0)

= ρV Sw

[
−
(
CL + V

2
∂CL
∂V

)
cos(α)−

(
CD + V

2
∂CD
∂V

)
sin(α)

]
− ∂T

∂V sin(αT0)

(4.85)

and the partials of the moments with respect to velocity are

∂Mxb
∂V = ∂

∂V

(
1
2ρV

2SwbwC`

)
= ρV Swbw

(
C` + V

2
∂C`
∂V

)
(4.86)

∂Myb
∂V = ∂

∂V

[
1
2ρV

2Sw c̄wCm + zTT cos(αT0)− xTT sin(αT0)

]
= ρV Sw c̄w

(
Cm + V

2
∂Cm
∂V

)
+ ∂T

∂V

[
zTT cos(αT0)− xTT sin(αT0)

] (4.87)

∂Mzb
∂V = ∂

∂V

(
1
2ρV

2SwbwCn

)
= ρV Swbw

(
Cn + V

2
∂Cn
∂V

)
(4.88)

Again these partial derivatives are evaluated at the equilibrium flight condition of steady

level flight. Only axial force, normal force and pitching moment depend on angle of attack,
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the derivatives with respect to α are

∂Fxb
∂α = ∂

∂α

[
1
2ρV

2SwCX + T cos(αT0)−W sin(θ0)

]
= 1

2ρV
2Sw

∂CX
∂α

= 1
2ρV

2Sw

[
∂CL
∂α sin(α) + CL cos(α)− ∂CD

∂α cos(α) + CD sin(α)

] (4.89)

∂Fzb
∂α = ∂

∂α

[
1
2ρV

2SwCZ − T sin(αT0) +W cos(φ) cos(θ0)

]
= 1

2ρV
2Sw

∂CZ
∂α

= 1
2ρV

2Sw

[
−∂CL

∂α cos(α) + CL sin(α)− ∂CD
∂α sin(α)− CD cos(α)

] (4.90)

∂Myb
∂α = ∂

∂α

[
1
2ρV

2Sw c̄wCm + zTT cos(αT0) + xTT sin(αT0)

]
= 1

2ρV
2Sw c̄w

∂Cm
∂α (4.91)

With respect to axial velocity u

Fxb,u =
∂Fxb
∂V

= ρV0Sw

(
CX + V0

2 CX,u

)
+ T,V cos(α) (4.92)

Fyb,u =
∂Fyb
∂V

= ρV0Sw

(
CY + V0

2 CY,u

)
= 0 (4.93)

Fzb,u =
∂Fzb
∂V

= ρV0Sw

(
CZ + V0

2 CZ,u

)
− T,V sin(α) (4.94)

Mxb,u =
∂Mxb

∂V
= ρV0Swbw

(
C` + V0

2 C`,u

)
= 0 (4.95)
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Myb,u =
∂Myb
∂V = ρV0Sw c̄w

(
Cm + V0

2 Cm,u

)
+ T,V

[
zT cos(αT0) + xT sin(αT0)

]
= ρV0Sw c̄w

(
Cm + V0

2 Cm,u

)
+ zT0T,V

(4.96)

Mzb,u =
∂Mzb

∂V
= ρV0Swbw

(
Cn + V0

2 Cn,u

)
= 0 (4.97)

Derivatives with respect to normal velocity w

Fxb,w ≡ ∂Fxb
∂w = 1

V0

∂Fxb
∂α = 1

2ρV0SwCX,α

Fzb,w ≡ ∂Fzb
∂w = 1

V0

∂Fzb
∂α = 1

2ρV0SwCZ,α

Myb,w ≡ ∂Myb
∂w = 1

V0

∂Myb
∂α = 1

2ρV0Sw c̄wCm,α

Fyb,w = Mxb,w = Mzb,w = 0

(4.98)

Derivatives with respect to side slip velocity v

Fyb,v ≡ ∂Fyb
∂v = 1

V0

∂Fyb
∂β = 1

2ρV0SwCY,β

Mxb,v ≡
∂Mxb
∂v = 1

V0

∂Mxb
∂β = 1

2ρV0SwbwC`,β

Mzb,v ≡ ∂Mzb
∂v = 1

V0

∂Mzb
∂β = 1

2ρV0SwbwCn,β

Fxb,v = Fzb,v = Myb,v = 0

(4.99)

Derivatives with respect to roll rate p

Fyb,p ≡ ∂Fyb
∂p = 1

2ρV
2
0 SwCY,p

Mxb,p ≡
∂Mxb
∂p = 1

2ρV
2
0 SwbwC`,p

Mzb,p ≡ ∂Mzb
∂p = 1

2ρV
2
0 SwbwCn,p

Fxb,p = Fzb,p = Myb,p = 0

(4.100)
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Derivatives with respect to pitch rate q

Fxb,q ≡ ∂Fxb
∂q = 1

2ρV
2
0 SwCX,q

Fzb,q ≡ ∂Fzb
∂q = 1

2ρV
2
0 SwCZ,q

Myb,q ≡
∂Myb
∂q = 1

2ρV
2
0 Sw c̄wCm,q

Fyb,q = Mxb,q = Mzb,q = 0

(4.101)

Derivatives with respect to pitch rate r

Fyb,r ≡ ∂Fyb
∂r = 1

2ρV
2
0 SwCY,r

Mxb,r ≡
∂Mxb
∂r = 1

2ρV
2
0 SwbwC`,r

Mzb,r ≡ ∂Mzb
∂r = 1

2ρV
2
0 SwbwCn,r

Fxb,r = Fzb,r = Myb,r = 0

(4.102)

Longitudinal derivatives with respect to translational acceleration u̇ and ẇ

Fxb,u̇
∼= Fzb,u̇

∼= Myb,u̇
∼= Fxb,ẇ

∼= 0

Fzb,ẇ ≡ ∂Fzb
∂ẇ = 1

V0

∂Fzb
∂α̇ = 1

2ρV0SwCZ,α̇

Myb,ẇ ≡ ∂Myb
∂ẇ = 1

V0

∂Myb
∂α̇ = 1

2ρV0Sw c̄wCm,α̇

(4.103)

The lateral derivatives with respect to translational acceleration are either zero or negligible

and will be treated as such.

The following section give the equations for the derivatives with respect to control

surface deflection starting with aileron deflection, δa

Fyb,δa ≡ ∂Fyb
∂δa = 1

2ρV
2
0 SwCY,δa

Mxb,δa ≡
∂Mxb
∂δa = 1

2ρV
2
0 SwbwC`,δa

Mzb,δa ≡ ∂Mzb
∂δa = 1

2ρV
2
0 SwbwCn,δa

Fxb,δa = Fzb,δa = Myb,δa = 0

(4.104)
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Derivatives with respect to elevator deflection, δe

Fxb,δe ≡ ∂Fxb
∂δe = 1

2ρV
2
0 SwCX,δe

Fzb,δe ≡ ∂Fzb
∂δe = 1

2ρV
2
0 SwCZ,δe

Myb,δe ≡
∂Myb
∂δe = 1

2ρV
2
0 Sw c̄wCm,δe

Fyb,δe = Mxb,δe = Mzb,δe = 0

(4.105)

Derivatives with respect to rudder deflection, δr

Fyb,δr ≡ ∂Fyb
∂δr = 1

2ρV
2
0 SwCY,δr

Mxb,δr ≡
∂Mxb
∂δr = 1

2ρV
2
0 SwbwC`,δr

Mzb,δr ≡ ∂Mzb
∂δr = 1

2ρV
2
0 SwbwCn,δr

Fxb,δr = Fzb,δr = Myb,δr = 0

(4.106)
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The partial derivatives of the forces and moments are grouped together to provide a

reference for dimensional derivatives of the 6 DOF equations of motion.

Fxb,u̇
∼= 0 Fzb,u̇

∼= 0 Myb,u̇
∼= 0

Fxb,ẇ
∼= 0 Fzb,ẇ = 1

2ρV0SwCZ,α̇ Myb,ẇ = 1
2ρV0Sw c̄wCm,α̇

(4.107)

Fxb,u = ρV0Sw

(
CX + V0

2 CX,u

)
+ T,V cos(αT0)

Fzb,u = ρV0Sw

(
CZ + V0

2 CZ,u

)
− T,V sin(αT0)

Myb,u = ρV0Sw c̄w

(
Cm + V0

2 Cm,u

)
+ zT0T,V

(4.108)

Fxb,w = 1
2ρV0SwCX,α Fzb,w = 1

2ρV0SwCZ,α Myb,w = 1
2ρV0Sw c̄wCm,α

Fyb,v = 1
2ρV0SwCY,β Mxb,v = 1

2ρV0SwbwC`,β Mzb,v = 1
2ρV0SwbwCn,β

Fyb,p = 1
2ρV

2
0 SwCY,p Mxb,p = 1

2ρV
2
0 SwbwC`,p Mzb,p = 1

2ρV
2
0 SwbwCn,p

Fxb,q = 1
2ρV

2
0 SwCX,q Fzb,q = 1

2ρV
2
0 SwCZ,q Myb,q = 1

2ρV
2
0 Sw c̄wCm,q

Fyb,r = 1
2ρV

2
0 SwCY,r Mxb,r = 1

2ρV
2
0 SwbwC`,r Mzb,r = 1

2ρV
2
0 SwbwCn,r

Fyb,δa = 1
2ρV

2
0 SwCY,δa Mxb,δa = 1

2ρV
2
0 SwbwC`,δa Mzb,δa = 1

2ρV
2
0 SwbwCn,δa

Fxb,δe = 1
2ρV

2
0 SwCX,δe Fzb,δe = 1

2ρV
2
0 SwCZ,δe Myb,δe = 1

2ρV
2
0 Sw c̄wCm,δe

Fyb,δr = 1
2ρV

2
0 SwCY,δr Mxb,δr = 1

2ρV
2
0 SwbwC`,δr Mzb,δr = 1

2ρV
2
0 SwbwCn,δr

(4.109)
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4.5 Linearized Uncoupled Equations of Motion

The linearized equations of motion, Eq. (4.62), can be decoupled in to longitudinal

and lateral dynamics [7]. The linearized longitudinal equations of motion are



W/g − Fxb,u̇ −Fxb,ẇ 0 0 0 0

−Fzb,u̇ W/g − Fzb,ẇ 0 0 0 0

−Myb,u̇ −Myb,ẇ Iyyb 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1





∆u̇

∆ẇ

∆q̇

∆ẋf

∆żf

∆θ̇



=



Fxb,δe

Fzb,δe

Myb,δe

0

0

0


∆δe

+



Fxb,u Fxb,w Fxb,q 0 0 −W cos(θ0)

Fzb,u Fzb,w Fzb,q + V0W/g 0 0 −W sin(θ0)

Myb,u Myb,w Myb,q 0 0 0

cos(θ0) sin(θ0) 0 0 0 −V0 sin(θ0)

− sin(θ0) cos(θ0) 0 0 0 −V0 cos(θ0)

0 0 1 0 0 0





∆u

∆w

∆q

∆xf

∆zf

∆θ



(4.110)

where the force and moment derivatives are defined in Eqs. (4.107)-(4.109). The linear lon-

gitudinal equations of motion can be further simplified by removing the rows and columns

associated with ∆xf and ∆zf . This is due to the translation and rotational being indepen-

dent of ∆xf and ∆zf . The linear longitudinal equations of motion can now be expressed
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as



W/g − Fxb,u̇ −Fxb,ẇ 0 0

−Fzb,u̇ W/g − Fzb,ẇ 0 0

−Myb,u̇ −Myb,ẇ Iyyb 0

0 0 0 1





∆u̇

∆ẇ

∆q̇

∆θ̇


=



Fxb,δe

Fzb,δe

Myb,δe

0


∆δe

+



Fxb,u Fxb,w Fxb,q −W cos(θ0)

Fzb,u Fzb,w Fzb,q + V0W/g −W sin(θ0)

Myb,u Myb,w Myb,q 0

0 0 1 0





∆u

∆w

∆q

∆θ



(4.111)

4.6 State Space Model for System Identification

In this section the state space model for system ID is derived from Eq. (4.111). The

force and moment derivatives on the left side of the equation are assumed to be small and

are neglected [7]. This leaves a diagonal matrix of mass and mass moment of inertia. Then

both sides of the equation are divided by the mass or mass moment of inertia, leaving an

identity matrix that multiplies the state derivatives. The state space model of the linear

longitudinal equations of motion is



∆u̇

∆ẇ

∆q̇

∆θ̇


=



Fxb,δe
W/g

Fzb,δe
W/g

Myb,δe

Iyyb

0


∆δe

+



Fxb,u
W/g

Fxb,w
W/g

Fxb,q
W/g

−W cos(θ0)
W/g

Fzb,u
W/g

Fzb,w
W/g

Fzb,q+V0W/g

W/g
−W sin(θ0)

W/g

Myb,u

Iyyb

Myb,w

Iyyb

Myb,q

Iyyb
0

0 0 1 0





∆u

∆w

∆q

∆θ



(4.112)

4.7 Chapter Summary

The derivation from Newton’s Second Law to nonlinear equations of motion, linearized
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equations of motion, linearized longitudinal equation of motion, and the state space model

for system ID was presented. The main equations are summarized here.

Newton’s Second Law for translational and rotational dynamics.

ΣFi =
dPi
dt

(4.113)

ΣMi =
dHi

dt
(4.114)

Translational and rotational equtions of motion.

FS +W = m
dVb
dt

+ ωb × (mVb) (4.115)

Mb = [I]
d(ωb)

dt
+ ωb × ([I]ωb) (4.116)

6 degree of freedom nonlinear equations of motion.



W/g 0 0 0 0 0

0 W/g 0 0 0 0

0 0 W/g 0 0 0

0 0 0 Ixxb 0 −Ixzb

0 0 0 0 Iyyb 0

0 0 0 −Ixzb 0 Izzb





u̇

v̇

ẇ

ṗ

q̇

ṙ



=



Fxb +Wxb + (rv − qw)W/g

Fyb +Wyb + (pw − ru)W/g

Fzb +Wzb + (qu− pv)W/g

Mxb + (Iyyb − Izzb)qr + Ixzbpq

Myb + (Izzb − Ixxb)pr + Ixzb(r
2 − p2)

Mzb + (Ixxb − Iyyb)pq − Ixzbqr


(4.117)
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Linear longitudinal equations of motion.



W/g − Fxb,u̇ −Fxb,ẇ 0 0 0 0

−Fzb,u̇ W/g − Fzb,ẇ 0 0 0 0

−Myb,u̇ −Myb,ẇ Iyyb 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1





∆u̇

∆ẇ

∆q̇

∆ẋf

∆żf

∆θ̇



=



Fxb,δe

Fzb,δe

Myb,δe

0

0

0


∆δe

+



Fxb,u Fxb,w Fxb,q 0 0 −W cos(θ0)

Fzb,u Fzb,w Fzb,q + V0W/g 0 0 −W sin(θ0)

Myb,u Myb,w Myb,q 0 0 0

cos(θ0) sin(θ0) 0 0 0 −V0 sin(θ0)

− sin(θ0) cos(θ0) 0 0 0 −V0 cos(θ0)

0 0 1 0 0 0





∆u

∆w

∆q

∆xf

∆zf

∆θ



(4.118)

Simplified linear longitudinal state space model for system ID.



∆u̇

∆ẇ

∆q̇

∆θ̇


=



Fxb,δe
W/g

Fzb,δe
W/g

Myb,δe

Iyyb

0


∆δe

+



Fxb,u
W/g

Fxb,w
W/g

Fxb,q
W/g

−W cos(θ0)
W/g

Fzb,u
W/g

Fzb,w
W/g

Fzb,q+V0W/g

W/g
−W sin(θ0)

W/g

Myb,u

Iyyb

Myb,w

Iyyb

Myb,q

Iyyb
0

0 0 1 0





∆u

∆w

∆q

∆θ



(4.119)
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Chapter 5

System Identification Method

5.1 UAV System ID Method Overview

The method of system ID used here in is a variation on the recursive linear least

squares approximation. Recall that least squares is the mathematically optimal method of

selecting unknown parameters that minimize the sum square of the residual errors. This

minimization, described in [10], is shown by

J =
1

2
eT e (5.1)

Given the differential equation

ẋ = ax+ bu, (5.2)

the recursive linear least squares uses measured values for the state, x, state derivative,

ẋ, and input, u, in order to estimate the parameters, a and b, of the equations of motion.

Measurements for the state derivatives are not always available as is partially the case here.

In order to estimate the state derivative, the state could be differentiated. This however is

not desirable as it amplifies noise in the measurements. The Error Filtering Online Learning

(EFOL) scheme provides a filtering technique using the Laplace domain to find the state

derivative while filtering out high frequency noise [11]. The following sections describe

the derivation and implementation of the recursive linear least squares algorithm using the

EFOL scheme to find the aerodynamic parameters for the linear longitudinal dynamics of

the Minion class UAV.
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5.2 Derivation of the Recursive Linear Least Squares Algorithm Using the

Error Filtering Online Learning (EFOL) Scheme

Starting with the differential equation in scalar form

ẋ = ax+ bu, (5.3)

where ẋ is the state derivative, x is the state, and u is the input to the system. For the

specific case of the UAV, some of ẋ and all of x and u can be measured. The measured

values are denoted as ˙̃x, x̃, and ũ. Estimated values are denoted as â and b̂. Due to some of

the state derivatives being measurable, there are two different cases for the EFOL scheme.

1. ẋ is measured ( ˙̃x)

2. ẋ is determined using filtering ( ˙̂x)

5.2.1 Case 1: Measured ẋ

The differential equation is given with measurement and parameter estimation error,

estimated parameters, measured states, and measured state differentials.

˙̃x = âx̃+ b̂ũ+ (a− â)x̃+ (b− b̂)ũ+ emeasured (5.4)

The measurement error, emeasurement, and the difference between estimated and true pa-

rameters, (a− â) and (b− b̂), are combined into one error, ef , as

˙̃x = âx̃+ b̂ũ+ ef (5.5)

where â and b̂ are the estimated parameters. A first-order filter is applied to both sides of

the equation

λ

s+ λ
˙̃x = â

λ

s+ λ
x̃+ b̂

λ

s+ λ
ũ+

λ

s+ λ
ef (5.6)
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Then a change of variables is used to make the differential equation a linearly parametrized

model yielding

χ̃ = θ̂1ζ̃1 + θ̂2ζ̃2 + δ. (5.7)

Combining terms into vector notation gives

χ̃ = θ̂T ζ̃ + δ. (5.8)

Solving the equation for the filtered error, δ gives

δ = χ̃− θ̂T ζ̃ (5.9)

5.2.2 Case 2: Determined ẋ

For case 2 the differential equation is given with the measurement and parameter

estimation error, estimated parameters, and measured states. However the state differentials

are not measured. Instead a filtering techniques using the Laplace domain will be used

to determine the state differentials. Thus the state differentials are currently denoted as

estimates in

˙̂x = âx̃+ b̂ũ+ (a− â)x̃+ (b− b̂)ũ+ emeasurement (5.10)

The measurement errors, emeasurement, and the difference in estimated and true parameters,

(a− â) and (b− b̂), are combined into one error, ef , as with case 1

˙̃x = âx̃+ b̂ũ+ ef , (5.11)

where â and b̂ are the estimated parameters. Now before applying the first-order filter, Eq.

(5.42) is changed to the Laplace domain using the Laplace transform. The state derivative

is changed to the Laplace domain using the following transform

L[ ˙̂x(s)] = s[x̃(s)]− x̃0 (5.12)
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Applying the Laplace transform to Eq. (5.42) yields

s[x̃(s)]− x̃0 = âx̃(s) + b̂ũ(s) + ef (s) (5.13)

The initial condition x̃0 is moved to the right side of the equation.

s[x̃(s)] = x̃0 + âx̃(s) + b̂ũ(s) + ef (s) (5.14)

Now the first-order filter can be applied to both sides of the equation

λs

s+ λ
[x̃(s)] = x̃0

λ

s+ λ
+ â

λ

s+ λ
x̃(s) + b̂

λ

s+ λ
ũ(s) +

λ

s+ λ
ef (s) (5.15)

The Laplace domain differentiation with a lowpass filter, λs
s+λ , is replaced with the trans-

formation λ(1− λ
s+λ), eliminating the differentiation.

λ(1− λ

s+ λ
)[x̃(s)] = x̃0

λ

s+ λ
+ â

λ

s+ λ
x̃(s) + b̂

λ

s+ λ
ũ(s) +

λ

s+ λ
ef (s) (5.16)

Since x̃ and ũ are in the time domain, Eq. (5.16) is changed back into the time domain

using the inverse Laplace transforms. It is noted that the inverse Laplace transform of λ
s+λ

is λ(e−λt). The time domain equation of motion is

λ(1− λ

s+ λ
)[x̃(t)] = x̃0λ(e−λt) + â

λ

s+ λ
x̃(t) + b̂

λ

s+ λ
ũ(t) +

λ

s+ λ
ef (t) (5.17)

Again a change of variables is used to make the differential equation a linearly parametrized

model yielding

χ̃ = θ̃1ζ̃1 + θ̂2ζ̃2 + θ̂3ζ̃3 + δ. (5.18)

Combining terms into vector notation gives

χ̃ = θ̂T ζ̃ + δ. (5.19)
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Solving the equation for the filtered error, δ gives

δ = χ̃− θ̂T ζ̃ (5.20)

Now recursive least squares can be applied to the differential equation in linear form

with the addition of the covariance matrix, P . The update equation for the parameter

estimate, [10] is

˙̂
θ = −P (t)ζ(t)δ, θ(0) = θ0, (5.21)

and the update equation for the covariance is

Ṗ = −P (t)ζ(t)ζ(t)TP (t), P (0) = P0. (5.22)

˙̂
θ and Ṗ are integrated to get θ̂ and P by

θ̂ =

∫
˙̂
θdt (5.23)

and

P =

∫
Ṗ dt. (5.24)

5.3 Implementation of the Recursive Linear Least Squares Algorithm Using

the Error Filtering Online Learning (EFOL) Scheme

The derivation of recursive least squares algorithm using the EFOL scheme has been

shown. Now the algorithm is applied to the specific case of the Minion class UAV. De-

tailed steps are shown herein to avoid any confusion. Starting with the linear longitudinal
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equations of motion using the state space representation



∆u̇

∆ẇ

∆q̇

∆θ̇


=



Fxb,δe
W/g

Fzb,δe
W/g

Myb,δe

Iyyb

0


∆δe

+



Fxb,u
W/g

Fxb,w
W/g

Fxb,q
W/g

−W cos(θ0)
W/g

Fzb,u
W/g

Fzb,w
W/g

Fzb,q+V0W/g

W/g
−W sin(θ0)

W/g

Myb,u

Iyyb

Myb,w

Iyyb

Myb,q

Iyyb
0

0 0 1 0





∆u

∆w

∆q

∆θ



(5.25)

The elements within the A and B matrices are represented in the following way



∆u̇

∆ẇ

∆q̇

∆θ̇


=



Â11 Â12 Â13 A14

Â21 Â22 Â23 A24

Â31 Â32 Â33 0

0 0 1 0





∆u

∆w

∆q

∆θ


+



B̂1

B̂2

B̂3

0


∆δe. (5.26)

This representation will simplify the derivation of the recursive least squares using the

Error Filter Online Learning (EFOL) Scheme. The error associated with measurements

and parameter estimates can be represented by a column vector of errors corresponding to

each change in the state as is represented here in Eq. 5.43



∆u̇

∆ẇ

∆q̇

∆θ̇


=



Â11 Â12 Â13 A14

Â21 Â22 Â23 A24

Â31 Â32 Â33 0

0 0 1 0





∆u

∆w

∆q

∆θ


+



B̂1

B̂2

B̂3

0


∆δe+



ef1

ef2

ef3

ef4


(5.27)

Now the EFOL scheme will be applied. The purpose of the EFOL is two fold: first

to filter the data using a low pass filter, and second to avoid the use of differentiation.

Differentiation of noisy data causes the noise to be amplified. The EFOL scheme uses a
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filtering approach in the Laplace domain which is as follows. Before filtering, the changes

in the states will be transformed in to the Laplace domain using the Laplace transform.

L[ẋ(s)] = s[x(s)]− x0 (5.28)

Applying the Laplace transform to the equations of motion yields.



s∆u(s)− u0

s∆w(s)− w0

s∆q(s)− q0

s∆θ(s)− θ0


=



Â11 Â12 Â13 A14

Â21 Â22 Â23 A24

Â31 Â32 Â33 0

0 0 1 0





∆u(s)

∆w(s)

∆q(s)

∆θ(s)


+



B̂1

B̂2

B̂3

0


∆δe(s) +



ef1(s)

ef2(s)

ef3(s)

ef4(s)


(5.29)

Now both sides of the equations of motion are filtered using a stable first-order lowpass

filter.

λ
s+λ



s∆u(s)− u0

s∆w(s)− w0

s∆q(s)− q0

s∆θ(s)− θ0


= λ

s+λ



Â11 Â12 Â13 A14

Â21 Â22 Â23 A24

Â31 Â32 Â33 0

0 0 1 0





∆u(s)

∆w(s)

∆q(s)

∆θ(s)



+ λ
s+λ



B̂1

B̂2

B̂3

0


∆δe(s) + λ

s+λ



ef1(s)

ef2(s)

ef3(s)

ef4(s)



(5.30)
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The filtered initial conditions are moved to the right had side of the equation.

λ
s+λ



s∆u(s)

s∆w(s)

s∆q(s)

s∆θ(s)


=

λ
s+λ



u0

w0

q0

θ0


+ λ

s+λ



Â11 Â12 Â13 A14

Â21 Â22 Â23 A24

Â31 Â32 Â33 0

0 0 1 0





∆u(s)

∆w(s)

∆q(s)

∆θ(s)



+ λ
s+λ



B̂1

B̂2

B̂3

0


∆δe(s) + λ

s+λ



ef1(s)

ef2(s)

ef3(s)

ef4(s)


.

(5.31)

Since the A and B matrices are to be estimated, the filter is grouped with the states and

state derivatives. The Laplace domain differentiation with lowpass filter, λs
s+λ , is replaced

with the transformation λ(1− λ
s+λ), eliminating the differentiation. The A and B matrices
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and the initial conditions are also combined together shown in Eq. 5.32,



λ(1− λ
s+λ)∆u(s)

λ(1− λ
s+λ)∆w(s)

λ(1− λ
s+λ)∆q(s)

λ(1− λ
s+λ)∆θ(s)


=



Â11 Â12 Â13 A14 B̂1 u0

Â21 Â22 Â23 A24 B̂2 w0

Â31 Â32 Â33 0 B̂3 q0

0 0 1 0 0 θ0





λ
s+λ∆u(s)

λ
s+λ∆w(s)

λ
s+λ∆q(s)

λ
s+λ∆θ(s)
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.

(5.32)

The equations of motion are transformed back into the time domain using the inverse
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Laplace transforms. Noting that the inverse Laplace transform of λ
s+λ is λ(e−λt), the equa-

tion of motion in the time domain is
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.

(5.33)
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Now the equations of motion can be rewritten from the state space model to a linearly

parametrized model which coincides with the EFOL and general least squares form,


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Â31 Â32 Â33 0 B̂3 q0

0 0 1 0 0 θ0





ζ1(t)

ζ2(t)

ζ3(t)

ζ4(t)

ζ5(t)

ζ6(t)


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
.

(5.34)

where there is a change of variables for the filtered state derivative, state, and filtered error.

The equation is now put into vector notation for the remainder of the derivation as

χ = θ̂ζ + δ. (5.35)

Solving for δ, the filtered error, gives

δ = χ− θ̂ζ. (5.36)

Using the filtered error, δ, the filtered states, ζ, and a covariance matrix, P , recursive

least squares can be used to give the change in the parameter estimates and the change in

the covariance. The change is the parameter estimates are computed by

˙̂
θ = −P (t)ζ(t)δ θ(0) = θ0, (5.37)



70

and the change in the covariance is computed by

Ṗ = −P (t)ζ(t)ζ(t)TP (t) P (0) = P0 (5.38)

Then
˙̂
θ and Ṗ are integrated giving

θ̂ =

∫
˙̂
θdt (5.39)

P =

∫
Ṗ dt. (5.40)

This is the full derivation of recursive least squares algorithm with the EFOL scheme. The

EFOL scheme assumes that the state derivatives are not available for measuring. This is

true only for the pitch angular acceleration, q̇, for the UAV. Axial acceleration, u̇, vertical

acceleration, ẇ, and the pitch angular velocity, θ̇, are measured and available for use in the

system ID. The state derivatives can be included in the EFOL simply by filtering them, just

as the states are filtered. If the measured stated derivatives are used the χ vector becomes

χ =



λ
s+λ∆u̇(t)

λ
s+λ∆ẇ(t)

λs
s+λ∆q(t)

λ
s+λ∆θ̇(t)


(5.41)

5.4 Chapter Summary

The Error Filtering Online Learning Scheme was derived first in scalar form and then

in full matrix form specifically for the UAV. The main equations are summarized here.

General state space form of the equations of motion

˙̃x = âx̃+ b̂ũ+ ef , (5.42)
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and for the specific case of the UAV


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(5.43)

EFOL linearized parameter model in expanded format


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(5.44)

and in vector format

χ = θ̂ζ + δ (5.45)

Filtered error between the identified model and the data

δ = χ− θ̂ζ. (5.46)
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Recursive least squares update equations

˙̂
θ = −P (t)ζ(t)δ θ(0) = θ0, (5.47)

and

Ṗ = −P (t)ζ(t)ζ(t)TP (t) P (0) = P0 (5.48)

Recursive least squares estimated parameters

θ̂ =

∫
˙̂
θdt (5.49)

and covariance

P =

∫
Ṗ dt. (5.50)
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Chapter 6

Experiment Setup

This chapter gives a brief overview of the Minion class UAV on which system ID is

preformed. Each sensor used to collect data for system ID is detailed. The flight testing

procedure and maneuvers for the system ID are discussed.

6.1 The AggieAir Minion Personal Remote Sensing UAV Overview

The AggieAir service center at the Utah Water Research Laboratory provides scientific

grade data for civilian research. The Minion UAV serves as the primary platform for data

collection at the AggieAir service center. The Minion UAV, shown in Figure 6.1, is a

traditional fixed-wing aircraft with a T-tail and is designed for launch and retrieval without

the use of a runway. Additionally the UAV breaks down to meet international check on

luggage size requirement of 60 total inches. A summary of the configuration parameters are

given in Table 6.1

Fig. 6.1: Minion class personal remote sensing unmanned aerial vehicle
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Table 6.1: Summary of the Minion class UAV system ID configuration parameters

Parameter Value Units

System ID configuration weight 4.1 kg
Maximum weight 6.35 kg
Maximum payload weight 1.81 kg
Wing span 2.29 m
Fuselage length 1.08 m
Range 48 km
Flight time 1 hr
Cruse speed 15 m/s

6.2 Low-cost Sensors for Data Acquisition

AggieAir systems use low-cost sensors for autonomous flight. In general a UAV requires

four types of sensor for autonomous flight: triaxial accelerometer, triaxial gyroscope, triaxial

magnetometer, and a Global Positioning Unit (GPS). Often the accelerometer, gyroscope,

and magnetometer are combined into a single sensor housing. Sensors such as differential

and absolute pressures sensors and angle of attach and side slip sensors can provide ad-

ditional measurements. These additional sensors are not required for autonomous flight

but do allow for increased autopilot performance. A main point of this thesis is to asses

how well system ID can be performed with sensors already flown on the Minion UAV. The

Minion class UAV was equipped with a MicroStrain 3DM GX3-25 OEM Attitude Head-

ing and Reference System (AHRS), u-blox LEA-6h GPS, and a Freescale Semiconductor

MPXV7002DP piezoresistive transducer differential pressure sensor. The UAV was later

equip with a VectorNav VN-200 Rugged. The following sections detail each sensor and the

measurements it provides.

6.2.1 MicroStrain 3DM GX3 AHRS

The MicroStrain 3DM GX3-25 OEM AHRS, shown in Fig. 6.2, contains a triaxial

accelerometer, triaxial gyroscope, and triaxial magnetometer. The 3DM GX3-25 OEM

AHRS can provide measurement data on:

• Linear accelerations in the x, y, & z body axis (u̇, v̇, & ẇ)



75

• Angular rates around the x, y, & z body axis (p, q, & r)

• Orientation matrix in Euler angles φ, θ, & , ψ relative to its initial orientation

• Heading in relation to magnetic north

Fig. 6.2: MicroStrain 3DM GX3 AHRS

The GX3 has a maximum data rate of 1000 Hz for raw acceleration and angular rate data.

For orientation matrix with acceleration and angular rate data the maximum data rate is

500 Hz. For the system ID flight testing the AHRS is set at 500 Hz. The specifications for

the GX3 are given in Table 6.2

Table 6.2: GX3 Specifications

Parameter Accels Gyros Mags

Measurement Range ±5 g ±300 deg/sec ±2.5 Gauss
Non-linearity ±0.1 % fs ±0.03 % fs ±0.4 % fs
In-run bias stability ±0.04 mg ±18 deg/hr -
Initial bias error ±0.002 g ±0.25 deg/sec ±0.003 Gauss
Scale factor stability ±0.05 % ±0.05 % ±0.1 %

Noise density 80 µg/
√
Hz 0.03

deg/sec/
√
Hz

100 µGauss/
√
Hz

Alignment error ±0.05 deg ±0.05 deg ±0.05 deg
User adjustable bandwidth 225 Hz max 440 Hz max 230 Hz max
Sampling rate ±30 kHz ±30 kHz ±7.5 kHz max

6.2.2 u-blox LEA-6h GPS

The u-blox LEA-6h GPS, shown in Fig. 6.3, provides the following measurements:
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Fig. 6.3: u-blox LEA-6h GPS

• Magnitude of the velocity parallel to the Earth’s surface referred to as ground speed

(Vground =
√
u2 + v2)

• Magnitude of the velocity perpendicular to the Earth’s surface referred to as vertical

speed (w)

• Position in Earth Centered Earth Fixed coordinate system (xf , yf , & zf )

The GPS updates at 4 Hz. Each measurement has some delay due to the time it takes to

generate an accurate position and velocity measurement. Thus the delay must be accounted

for in the data post processing. The specifications for the GPS are given in Table 6.3.

Table 6.3: GPS Specifications

Parameter Specification

Max navigation update rate 2 Hz
Horizontal position accuracy 2.5 m
Velocity accuracy 0.1 m/s
Heading accuracy 0.5 deg
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6.2.3 Freescale semiconductor MPXV7002DP piezoresistive transducer differ-

ential pressure sensor

The Freescale Semiconductor MPXV7002DP piezoresistive transducer differential pres-

sure sensor, shown in Fig. 6.4, provides a measurement for differential pressure, ∆P , which

is directly used to calculate airspeed, V . The sensor has an update rate of 20 Hz. The sen-

sor is calibrated on the ground by changing an air density gain until it reads zero airspeed,

however this calibration is insufficient for an accurate airspeed measurement.

Fig. 6.4: Differential pressure sensor

The airspeed measurement is calculated from the differential pressure reading and air

density. Airspeed can be calculated from differential pressure using the formula

Vairspeed =

√
2∆P

ρ
, (6.1)

where ∆P is the differential air pressure and ρ is the air density. Equation (6.1) shows that

the airspeed is inversely proportional to the air density. Air density varies with altitude

and temperature. Thus for a constant airspeed using only the differential pressure without

updating the air density will give biased airspeed measurements. This bias can be corrected

using a static pressure and temperature sensor, however the Minion UAV does not currently

have an integrated static pressure sensor or temperature sensor. Thus the airspeed data is
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not used for system ID. The specifications for the differential pressure sensor are given in

Table 6.4.

Table 6.4: Differential Pressure Sensor Specifications

Parameter Specification

Pressure range ±2 kPa
Full scale output (FS0) 4.25-4.75 Vdc
Full scale span (FSS) 3.5-4.5 Vdc
Accuracy ±6.25 %FSS
Sensitivity 1.0 V/kPa
Update rate A/D dependent (20 Hz)

6.2.4 VectorNav VN-200 rugged GPS/INS

The VectorNav VN-200 GPS/INS, shown in Fig. 6.5, contains a triaxial accelerometer,

triaxial gyroscope, and triaxial magnetometer, pressure sensor, and GPS. The navigation

solution uses an Extended Kalman filter. The VN-200 can provide measurement data on:

• Linearized accelerations in the x, y, & z body axis (u̇, v̇, & ẇ)

• Angular rates around the x, y, & z body axis (p, q, & r)

• Orientation matrix in Euler angles φ, θ, & ψ

• Velocities in the x, y, & z body axis (u, v, & w)

Fig. 6.5: VectorNav VN-200 rugged GPS-aided inertial navigation system

The specifications for the VN-200 are given in Table 6.5.
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Table 6.5: VN-200 Specifications

Parameter Specification

Dynamic Accuracy (Heading, True Inertial) 0.3 deg RMS
Dynamic Accuracy (Pitch/Roll) 0.1 deg RMS
Angular Resolution <0.05 deg
Angular Repeatability <0.1 deg
Horizontal Position Accuracy 2.0 m RMS
Vertical Position Accuracy 2.5 m RMS
Position Resolution 1 mm
Velocity Accuracy ±0.05 m/s
Velocity Resolution 1 mm/s
Output rate 400 Hz

6.3 Control Inputs

Four types of inputs are used to excite the dynamics of the Minion UAV: sine wave,

frequency sweep (chirp), doublet, and singlet.

6.3.1 Sine wave

The sine wave maneuver, shown in Fig. 6.6, is a constant sine wave input for approx-

imately 20 seconds for each set. Three different periods are used for the sine input wave:

0.25 Hz, 0.5 Hz, and 1.0 Hz.

Fig. 6.6: Sine wave elevator input
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6.3.2 Frequency sweep

The frequency sweep maneuver or chirp, shown in Fig. 6.7, provides frequency rich

data which is essential for system ID. Each sweep starts at a frequency of 0.25 Hz and is

progressively ramped up to 1.0 Hz over 10 to 20 seconds.

Fig. 6.7: Frequency sweep (Chirp) elevator input

6.3.3 Doublet

A doublet, shown in Fig. 6.8, is a quick elevator up, elevator down maneuver that has

similar qualities as a step input. Doublet data is used for model validation After the doublet

input the aircraft is allowed to oscillate freely for as long as possible while still maintaining

visual contact and control.

6.3.4 Singlet

A singlet, shown in Fig. 6.9 is a short elevator up or elevator down maneuver that

has similar qualities as to a impulse. The singlet data also provides data used for model

validation.s. After the singlet input the aircraft is allowed to oscillate freely for as long as

possible while still maintaining visual contact and control.

6.4 Flight Testing Procedure

The flight test procedure is as follows. The avionics are turned on and sensors are
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Fig. 6.8: Doublet elevator input

Fig. 6.9: Singlet elevator input

allowed to warm up for several minutes (5-15 min). The UAV is launched and the flight

controls (ailerons, rudder, and elevator) are timed so that the UAV will fly straight and

level without pilot input. The trim settings are recorded. A metronome is used to keep the

test pilot in time and consistent with the maneuvers. Sine wave maneuvers are preformed

at quarter elevator defection at 0.25 Hz, 0.5 Hz, and 1.0 Hz. Each sine wave is repeated

for approximately 20 seconds. Before and after each maneuver the aircraft is returned to

trim for 3 sec. Four sets of frequency sweeps are performed in the same manner as the sine

waves. Frequency sweeps start at 0.25 Hz and ramps to 1.0 Hz over a 20 second period using
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a maximum of quarter elevator deflection. Doublet maneuvers are performed in the same

manner as the sine wave and frequency sweep. Each doublet is a quarter up elevator input

for 1 second, down elevator for 1 second and return to trim. After the doublet the UAV

is allowed to oscillate for as long as possible without any pilot input. Singlet maneuvers

are performed in the same manner as the doublets. Each singlet is a quick quarter down

elevator input. Then the plane is landed and the data is allowed to buffer for several minutes

after landing.

6.5 Chapter Summary

Characteristics of the Minion UAV have been given. Sensors and their characteristics

have been detailed. Maneuver input and test flight procedures have discussed.
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Chapter 7

Data Processing

In an ideal experiment the data is noiseless, captures all dynamics, has no lag, and is

already in the correct coordinate system. This is not the case with real world flight data.

Flight data is often very noisy due to propulsion system vibrations, air turbulence, and

inherent sensor noise. Even more not all sensors give data in the same coordinate system.

For example a GPS gives data in an inertial frame whereas an IMU gives measurements

in a body frame. Thus it is necessary to process and check data for consistency prior to

conducting the system ID.

The following sections detail the data processing procedure used prior to carrying out

system ID on the UAV flight data. Within these sections is a detailed progression of how

each data set is processed to ensure that none of the flight dynamics are lost. Graphs are

provided to visually verifying the consistency between raw data and processed data.

7.1 Raw Data

There are two set of flight data collected for system identification. Flight one contains

sine wave, frequency sweep, and doublet system ID maneuvers. Flight two contains sine

wave, frequency sweep, and singlet system ID maneuvers, These maneuvers are detailed in

6.3. The system ID maneuvers are defined as follows:

• Sine wave: at 0.25, 0.5, and 1 Hz

• Frequency sweeps: from 0.25 to 1 Hz

• Doublets: holding elevator deflection for 1 seconds

• Singlets: a quick full deflection of the elevator
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Only the frequency sweeps are used as training data for system ID of nominal model pa-

rameters. Sine waves, doublets, and singlets are used for testing and validating the model

developed from the system ID. Since the UAV model being identified is a linear longitudinal

model only data sections consisting of longitudinal flight are used.

Four sensors on the Minion UAV have been described in Chapter 6. The following list

details the data variables from each sensor that can be used in the system ID, elevator input

being the input from the autopilot and not a sensor.

• 3DM GX3 IMU

– x acceleration

– z acceleration

– q rotational rate

– θ Euler angle

• GPS

– N velocity

– E velocity

– D velocity

• Differential pressure pitot tube

– Airspeed

• Autopilot

– Elevator input signal

• VN-200

– x velocity

– z velocity

– q rotational rate

– θ Euler angle
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7.2 Linearly Interpolate Between Data Dropouts

During the data storage process, occasionally data is lost from one or more sensors.

Unlike a Kalman filter, batch least squares requires data from all sensors at each complete

measurement and is unable to handle data dropouts. Thus the data is resampled at 400

Hz with the gaps filled through linear interpolation. Figures 7.2, 7.3, 7.4, 7.5, and 7.9 show

the states and control input that have been resampled.

7.3 Low-pass Filter Data at 4 Hz

The flight data is low-pass filtered at 4 Hz to remove noise from sensors and propulsion

vibration. Figures 7.4, 7.6, 7.7, and 7.7 clearly show the filtering of the state and state

derivatives. Filtering flight data can alter the flight dynamics if not done properly. Filtering

can produce phase lag in the data or change the amplitude of oscillations. To ensure data

fidelity and consistency a phase neutral backwards-forwards filter can be used which does

not introduce lag into the filtered data. Low-pass filtering cuts out high frequency noise

and smooth out discrete data. Each filtered data set is examined visually to ensure that

the flight dynamics are retained. The data is low-passed at 4 Hz, and all maneuvers are at

1 Hz or less so the low-pass filter will not filter out any dynamics of interest.

7.4 Differentiate Velocity and Rotational Velocity Data

System ID of the linear longitudinal equations of motion for the Minion UAV requires

data from the state, u, w, q, and θ, the state derivatives u̇, ẇ, q̇, and θ̇, and the input δe.

In practice the state, and the input can be observed. As for the state derivatives, u̇, ẇ, and

θ̇ are observable by the MEMS sensors and have data sets. The MEMS sensors aboard the

Minion UAV do not record rotational acceleration in pitch, q̇, data. This presents an issue

for the system ID, which is overcome by taking the derivative of the states.

While performing system ID, it became apparent that the accelerometer data u̇ and ẇ

could not be used due to an uncompensated bias. Both the GX3 and VN-200 have filters

which are designed to remove the bias in real-time. However, when the data is integrated

and compared to body velocities, the integrated acceleration does not have a zero-mean
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velocity, whereas the velocity data u and w have a zero-mean or close to zero-mean velocity.

Thus u and w data are both differentiated and used instead of the accelerometer data. This

uncompensated bias is especially observable in the comparison of integrated acceleration

and velocity flight data shown in Fig. 7.1. The state derivatives are shown in figs. 7.6, 7.7,

and 7.7.

Fig. 7.1: Comparison of VN-200 velocity vs. integrated acceleration data, showing acceler-
ation has a bias that causes velocity drift. Note: the nominal velocity of 22 m/s has been
removed.

7.5 Remove Steady State Values

Linearized Longitudinal equations of motion assume that the UAV is in steady level

flight and that deviations from that state are small. To satisfy this condition the steady

state values are removed from the velocity u, fig. 7.2, Euler angle θ, fig. 7.5, and elevator

deflection ∆δe, fig. 7.9. All other states are a deviation from a steady state value of zero

during steady level flight.
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7.6 Separate System ID Flight Maneuvers

Once the data has been processed for system ID, the next step is to separate the data

into each maneuver. This is done to separate out longitudinal maneuvers from lateral data.

Data is selected three seconds before and after each maneuver. These three second of data

correspond to when the UAV is in trimmed steady level flight.

Fig. 7.2: The raw, resampled, and steady state removed u velocity data. The u velocity
data from the VN-200 is already smooth due to the extended Kalman filter and does not
need to be low-pass filtered, where data from a GPS does.
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Fig. 7.3: The raw, and resampled w velocity data. The w velocity data from the VN-200 is
already smooth due to the extended Kalman filter and does not need to be low-pass filtered,
where data from a GPS does. Also the w velocity data does not need to be normalized. At
steady state the w velocity is zero and when the aircraft is performing system ID maneuvers
the oscillations are deviations from zero velocity.

Fig. 7.4: The raw, resampled, and low-pass filtered q rotational rate data.
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Fig. 7.5: The raw, resampled, and normalized θ Euler angle data.

Fig. 7.6: Differentiated u velocity and low-passed differentiated u velocity. The differenti-
ated u velocity is used in place of u̇, which has uncompensated bias.
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Fig. 7.7: Differentiated w velocity and low-passed differentiated w velocity. The differenti-
ated w velocity is used in place of ẇ, which has uncompensated bias.

Fig. 7.8: Differentiated q rotational rate and low-passed differentiated q rotational rate.
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Fig. 7.9: The raw, resampled, and normalized ∆δe elevator deflection angle data.

7.7 Chapter Summary

System ID data processing is as follows:

• Linearly interpolate between data dropouts

• Low-pass data at 4 Hz

• Differentiate velocity and rotational velocity data

• Remove steady state values

• Separate system ID flight maneuvers

Table 7.1 summarizes how each variable is processed for system ID. A yes in the dif-

ferentiate column indicates that the flight data was differentiated to determine that state.
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Table 7.1: Summary of the data processing procedure of each data type

Sensor Data
Variable

Interpolate Filter Differentiate Remove
Steady
State

VN-200 ∆u̇ Y 4Hz Y N
VN-200 ∆ẇ Y 4Hz Y N
VN-200 ∆q̇ Y 4Hz Y N

VN-200 ∆θ̇ Y 4Hz N N
VN-200 ∆u Y N N Y
VN-200 ∆w Y N N N
VN-200 ∆q Y 4Hz Y N
VN-200 ∆θ Y N N Y
Auto Pilot ∆δe Y N N Y
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Chapter 8

Results and Comparison

The following chapter presents the results of the system ID of the small unmanned

aerial vehicle (UAV) using batch least squares (BLS) and BLS with the Error Filtering

Online Learning scheme (EFOL). The system ID uses a set of seven chirp maneuvers from

two different flights to identify seven sets of model parameters. The mean value of the

identified parameters are used to populate the nominal linear longitudinal model of the

UAV. This step is called model training. Three other types of maneuvers: sine wave,

doublet, and singlet, are used to evaluate how well the nominal model identifies the actual

flight dynamics of the UAV. This step is called model validation. Statistical analysis is used

to give metrics of how well the identified model fits the flight data. The process of model

training and validation is summarized in Fig. 8.1. The system ID results from both BLS

and BLS with EFOL are presents as follows:

• Mean and standard deviation of identified model parameters

• Mean and standard deviation of identified aerodynamic coefficients

• Identified nominal model

• Error and mean error of the identified nominal model’s response vs. validation flight

data

• Eigenvalues of the nominal model

Also, a model that uses all longitudinal flight data is compared to the BLS and BLS with

EFOL models to determine if there is a significant advantage. The results of this comparison

are given at the end of the chapter.
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Fig. 8.1: Model training, evaluation, and average model validation process overview

8.1 Identified Model Parameters

Twelve parameters of the linear longitudinal equations of motion have been identified

using BLS and BLS with EFOL. The mean value of the parameters with their associated

standard deviations are presented in Tables 8.1 and 8.2 and in Figs. 8.2 and 8.3. In all cases

the mean value of the parameters from BLS and BLS with EFOL lie within the standard

deviation of each other. This is to be expected since the two methods are using the exact

same set of data. The matching values confirm that using BLS with EFOL will not degrade

the system identification.

Examining the standard deviation of the parameters in the A and B matrix, shows

that some of the standard deviations are of the same magnitude as the parameters. This

is especially evident in A12, A13, A33, and B1. These standard deviations all correspond

to relatively small parameters. The larger parameters, A22, A23, and B3, have significantly

smaller standard deviations compared to the parameter value. The parameters with larger

values are those that have been identified to dominate the dynamics. Since these parameters

dominate the dynamics, they are more consistently resolved than parameters which have a

smaller contribution to the dynamics. Thus parameters which have a larger influence on the

motion of the aircraft are more consistently identified compared to the parameters which
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have a smaller influence on the motion of the aircraft.

Table 8.1: The mean value of the identified parameters of the A matrix with standard
deviations. BLS and BLS with EFOL consistently identify the same parameters and have
the same standard deviations.

Parameter BLS mean BLS std EFOL mean EFOL std

A11 -0.1811 0.05746 -0.1807 0.05725

A12 0.1919 0.2412 0.1924 0.2421

A13 0.1894 0.7662 0.1850 0.7743

A21 -0.7612 0.2277 -0.7588 0.2276

A22 -5.134 0.6511 -5.121 0.6531

A23 14.05 2.465 13.98 2.483

A31 -0.1130 0.09859 -0.1162 0.09948

A32 -1.897 0.4998 -1.912 0.5097

A33 -1.136 1.463 -1.084 1.488

Table 8.2: The mean value of the identified parameters of the B matrix with standard
deviations. BLS and BLS with EFOL consistently identify the same parameters and have
the same standard deviations.

Parameter BLS mean BLS std EFOL mean EFOL std

B1 -0.4355 2.567 -0.4513 2.618

B2 -18.12 9.025 -18.35 9.113

B3 -37.53 5.654 -37.69 5.686
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Fig. 8.2: The mean value of the identified parameters of the A matrix with standard de-
viation error bars. All BLS and BLS with EFOL parameters over lap within the error
bounds.

Fig. 8.3: The mean value of the identified parameters of the B matrix with standard de-
viation error bars. All BLS and BLS with EFOL parameters over lap within the error
bounds.
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8.2 Identified Aerodynamic Parameters

The 12 model parameters identified from each chirp maneuver are used to solve for

the aerodynamic coefficients. The mean and standard deviation of the 12 aerodynamic

coefficients from each chirp maneuver are presented in Table 8.3 and graphically in Figs.

8.4-8.6. The same correlation drawn between the model parameters values and their stan-

dard deviation cannot be applied here completely. However, the aerodynamic coefficients

that correspond to the model parameters that dominate the dynamics do indeed have a

relatively small standard deviations. The aerodynamic coefficients are calculated using the

model parameters and Eqs. (4.107)-(4.109) derived in Chapter 4.

Table 8.3: Summary of the identified aerodynamic coefficients

Parameter BLS mean BLS std EFOL mean EFOL std

CX -0.0064 0.0020 -0.0064 0.0020

CZ -0.026 0.0080 -0.026 0.0080

Cm -0.52 0.45 -0.53 0.46

CX,α 0.013 0.017 0.013 0.017

CZ,α -0.36 0.046 -0.36 0.046

Cm,α -17.56 4.62 -17.70 4.71

CX,q 0.00058 0.0023 0.00057 0.0023

CZ,q -0.027 0.0076 -0.027 0.0076

Cm,q -0.45 0.58 -0.43 0.59

CX,δe -0.0013 0.0079 -0.0013 0.0080

CZ,δe -0.055 0.027 -0.056 0.028

Cm,δe -15.10 2.27 -15.17 2.28
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Fig. 8.4: The mean value of the identified aerodynamic coefficients with respect to x with
standard deviation error bars. All BLS and BLS with EFOL coefficients over lap within
the error bounds.

Fig. 8.5: The mean value of the identified aerodynamic coefficients with respect to z with
standard deviation error bars. All BLS and BLS with EFOL coefficients over lap within
the error bounds.
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Fig. 8.6: The mean value of the identified aerodynamic coefficients with respect to m with
standard deviation error bars. All BLS and BLS with EFOL coefficients over lap within
the error bounds.

8.3 Identified Nominal Model vs. Flight Data

This section presents the nominal models identified using BLS and BLS with EFOL.

The models are evaluated on how well they fit flight data. Three maneuvers are used to

evaluate the nominal models: sine wave, doublet, singlet. It is important to note that

the nominal models have been trained only with chirp maneuver flight data. The other

maneuvers are only used to evaluate the identified nominal model’s performance. This is

standard procedure for evaluating identified models and determines if the nominal models

have identified all dynamic modes. The BLS nominal model in Eq. 8.1 and the BLS with

EFOL model in Eq. 8.2 are presented in context of the linear longitudinal equations of

motion.



100


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∆δe (8.2)

In evaluating the nominal models and comparing them to validation flight data, the

nominal models are initialized with the validation flight data at time = 0. The models are

then excited using the elevator deflection flight data. To be concise, only 3 model responses

to flight data inputs will be presented. The results of the nominal models response display

the characteristic results of the system ID. Figures 8.7-8.9 show the three types of inputs.

Figures 8.10-8.15 show the comparison of validation flight data vs. the BLS and BLS with

EFOL nominal model responses. Figures 8.16-8.21 show the error between the flight data

and the nominal models. Table 8.4 shows the mean values of the error of the flight data

and nominal models response.
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Fig. 8.7: The sine wave elevator command angle.

Fig. 8.8: The doublet elevator command angle.
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Fig. 8.9: The singlet elevator command angle.

The comparisons in Figs. 8.10-8.15 show the response of the nominal models with

respect to the change in the state: x acceleration, z acceleration, pitch acceleration, and

pitch rate and the state: x velocity, z velocity, pitch rate, and Euler angle.

In the comparison using the sine wave input in Figs. 8.10 and 8.11, the response of

the nominal models compared to the change in the state show a good fit. A good fit is

defined as following closely the overall shape of the flight data and having no offset. The

comparison of the states show that the nominal models are able fit the pitch rate and Euler

angle data well. The nominal models’ pitch rate does differ only in its response at the peaks

of the oscillations. The models do have trouble with the x and z velocity. The x velocity

comparison shows that the models are able to capture the correct frequency response, but

the amplitude is not consistent with the flight data. This is confirmed by the Fig. 8.17,

which shows an error that is independent of the frequency but drifts in time.
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Fig. 8.10: The state derivative comparison of the flight data to the BLS and BLS with
EFOL nominal models using a sine wave input.

The z velocity comparison also shows that the models are able to identify the correct

frequency response but there is a bias in the mean value of the oscillations. This is confirmed

in the Fig. 8.17, where the z velocity error plot shows a non-zero mean error. As with the

pitch rate, the nominal models do not track well the motion at the peaks of the oscillation.

This is most likely due to the fact that the models assumes a rigid body when in fact the

UAV, especially the joints in the outboard wing panels are not rigidly attached. This results

in the wings bending and flapping at the min and max of each oscillation.
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Fig. 8.11: The state comparison of the flight data to the BLS and BLS with EFOL nominal
models using a sine wave input.

The doublet and singlet maneuvers are designed to excite both the short and long

periods. These maneuvers differ from the sign wave and chirp maneuvers in that, after the

control input is given, the aircraft is allowed to oscillate freely without additional control

inputs. These maneuvers are especially important in evaluating how well the nominal

models have identified the long period mode. The nominal models responds similarly to

both maneuvers. In both the x acceleration and x velocity, the nominal models predicts an

oscillatory motion that is at a higher frequency than the flight data. The oscillatory motion

of the model is also more pronounce than the flight data. The x acceleration errors, shown

in Figs. 8.18 and 8.20, indicate that nominal model predicts a frequency response different

than the flight data. The x velocity errors, shown in Figs. 8.19 and 8.21, indicate that the

models predict oscillations with a different amplitude seen as a none zero mean oscillation

in the error. The 1-2 Hz osculations in all the state derivatives and the states is not resolved

by the nominal models. This oscillation could be something structural and further analysis

should be performed.
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Fig. 8.12: The state derivative comparison of the flight data to the BLS and BLS with
EFOL nominal models using a doublet input.

Fig. 8.13: The state comparison of the flight data to the BLS and BLS with EFOL nominal
models using a doublet input.
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Fig. 8.14: The state derivative comparison of the flight data to the BLS and BLS with
EFOL nominal models using a singlet input.

Fig. 8.15: The state comparison of the flight data to the BLS and BLS with EFOL nominal
models using a singlet input.
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Fig. 8.16: The error from the state derivative comparison of the flight data to the BLS and
BLS with EFOL nominal models using a sine wave input.

Fig. 8.17: The error from the state comparison of the flight data to the BLS and BLS with
EFOL nominal models using a sine wave input.
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Fig. 8.18: The error from the state derivative comparison of the flight data to the BLS and
BLS with EFOL nominal models using a doublet input.

Fig. 8.19: The error from the state comparison of the flight data to the BLS and BLS with
EFOL nominal models using a doublet input.
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Fig. 8.20: The error from the state derivative comparison of the flight data to the BLS and
BLS with EFOL nominal models using a singlet input.

Fig. 8.21: The error from the state comparison of the flight data to the BLS and BLS with
EFOL nominal models using a singlet input.
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Table 8.4: The mean values of the error from the comparison of flight data to the nominal
models

Parameter Sine wave Doublet Singlet

BLS EFOL BLS EFOL BLS EFOL

u̇ [m/s2] 0.6899 0.6902 0.8134 0.8151 0.8905 0.8969

ẇ [m/s2] 0.9170 0.9178 1.220 1.222 1.255 1.255

θ̇ [deg/s] 5.184 5.202 2.951 2.979 3.661 3.672

u [m/s] 1.806 1.811 2.118 2.119 2.519 2.521

w [m/s] 0.6400 0.6411 0.4682 0.4686 0.4487 0.4497

q [deg/s] 5.184 5.202 2.951 2.979 3.661 3.672

θ [deg] 4.721 4.738 5.236 5.242 5.821 5.861

Overall the nominal models are able to identify the oscillatory motion of the UAV when

the oscillation is being driven by an input. The models are not, however, able to identify the

oscillations that accompany a doublet or singlet. One of these maneuvers could be added

to the model to increase the amount of training data the model has.

8.4 Identified Nominal Model Eigenvalues

The Eigenvalues of equations of motion are used to determine the stability an response

of a system. In flight mechanics there are two modes associated with the linearized longitu-

dinal equations of motion: short period and long period (phugoid). For a general aviation

aircraft these two modes are convergent and oscillatory meaning that the eigenvalues are

pairs having a negative real part and an imaginary part. The short period is always as-

sociated with the largest real Eigenvalue pair of the longitudinal motion and is generally

characterized by a short period and large damping. The long period is then associated with

the smaller Eigenvalue pair. For a general aviation aircraft the long period is characterized

by a long period oscillation that is slightly damped. The Eigenvalues for the Minion class

UAV are presented in Table 8.5 and Fig. 8.22.
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Table 8.5: Summary of the Eigenvalues

Parameter BLS mean BLS std EFOL mean EFOL std

Short Period -3.17 ±4.70i 0.54 0.65i -3.14 ±4.70i 0.55 0.66i

Long Period -0.05 ±0.48i 0.035 0.12i -0.05 ±0.4876i 0.035 0.12i

The Eigenvalues shown in Fig. 8.22 indicate that the Minion class UAV has a conver-

gent short period as is expected. The long period mean Eigenvalue indicates that the mode

is convergent. Taking in to consideration the standard deviation of the real part indicates

that the long period for this UAV could be slightly divergent. Since the long period stability

is related to aircraft drag, it is possible that the Minion UAV, which is very stream lined,

could indeed have a slightly divergent long period. In practice it is difficult to fully capture

the long period mode. In order to identify the long period the UAV must be allowed to

oscillate with no pilot input for at least one full period. This becomes difficult for a pilot

when the aircraft must stay within visual line of sight. Consistently identifying the long

period would require several full oscillations to be recorded. This is however impractical for

a human pilot, which is the case here.

Fig. 8.22: The mean value of the eigenvalues of the identified models with standard deviation
error bars. All BLS and BLS with EFOL coefficients over lap within the error bounds.
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8.5 Identified All-Data Model vs. Flight Data

In an attempt to improve the performance of the identified model, all flight data (both

training and evaluation data) is used to train the model. The data is from both flights and

includes all maneuvers. This section presents the results of the all data model compared to

the flight data.

The model identified from all longitudinal maneuvers tracks well the sine maneuvers as

shown in Figs. 8.23 and 8.24. The all-data model has a same performance as the nominal

models from BLS and BLS with EFOL with respect to tracking sine wave maneuvers.

Fig. 8.23: The state derivative comparison of the flight data to the BLS all-data model
using a sine input.
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Fig. 8.24: The state comparison of the flight data to the BLS all-data model using a sine
input.

Figures 8.25 and 8.26 show the all-data model’s response to a doublet input. The all-

data model follows well the frequency of the flight data but has difficulty at the end of the

maneuver following the response. The all-data model predictive capabilities are similar to

that of the nominal BLS and BLS with EFOL models.

Fig. 8.25: The state derivative comparison of the flight data to the BLS all-data model
using a doublet input.
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Fig. 8.26: The state comparison of the flight data to the BLS all-data model using a doublet
input.

The singlet maneuver comparison of flight data and the all-data model is shown in

Figs. 8.27 and 8.28. The all-data models does not match the frequency of the oscillations

in the flight data. This response is similar to that of the nominal models.

Fig. 8.27: The mean value of the eigenvalues of the identified models with standard deviation
error bars. All BLS and BLS with EFOL coefficients over lap within the error bounds.
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Fig. 8.28: The mean value of the eigenvalues of the identified models with standard deviation
error bars. All BLS and BLS with EFOL coefficients over lap within the error bounds.

Overall using all longitudinal flight data to train the model does not seem to have a

clear advantage over the nominal BLS and BLS with EFOL models. This is most likely

due to the singlet and doublet maneuvers and not sufficiently long to identify properly the

dynamics of the long period. If the aircraft was allowed to fly without input for 3 full cycles

then the model may be more accurate at identifying the dynamics.

8.6 Chapter Summary

The identified linear longitudinal nominal model and its parameters have been shown.

It has been shown that BLS with EFOL give the same response as BLS. The UAV has been

simulated using the identified model and elevator inputs from flight data. The simulated

data has been compared to the flight data. The error between the two sets of data has been

discussed. The nominal model fits the chirp and sine wave data well, but does not correctly

resolve the long period mode in the doublet and singlet maneuvers. The all-data models

shows no significant advantage over the nominal models.
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Chapter 9

Conclusion and Future Research

System identification has been and will continue to be an invaluable tool for deter-

mining mathematical models that accurately simulate dynamic systems. It is particularly

useful for manned and unmanned aircraft where analytical solutions may fall short, wind

tunnel testing is not available, or CFD methods maybe too time intensive. There are many

advantages of system identification of UAVs but there are also several difficulties that must

also be properly dealt with.

9.1 Summary

This thesis has presented the current state of system identification of small low-cost

unmanned aerial vehicles. Research objectives have been described. The linear longitudinal

equations of motion of the UAV have been rigorously derived. The least squares system

identification method with an Error Filtering Online Learning Scheme has been developed.

The batch least squares and batch least squares with EFOL has been applied to the Minion

class UAV linear longitudinal dynamics. The flight test procedure and maneuvers have

been described along with the data processing procedure. Finally the results of the system

identification have been examined and a comparison of the identified UAV linear longitudinal

flight dynamics to flight data have been given.

9.2 Lessons Learned

There are several important lessons to be learned about system identification of small

unmanned aerial vehicles, especially when low-cost is the highest priority. The lessons

learned are a direct result of struggling obtaining kinematically consistent flight data and

identifying the linear longitudinal equation of motion parameters using Batch Least Squares.
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The lessons learned are summarized:

• Flight data must be kinematically consistent or the system ID will be unsuccessfully.

• MEMS accelerometers have bias which is extremely difficult to remove, even for sys-

tems with Kalman/Extended Kalman filters.

• GPS is not susceptible to the same errors as MEMS accelerometers but have low

update rates (4 Hz).

• For system ID using Least Squares, the sensor requirement is a GPS-Aided Inertial

Navigation System with Kalman filtering.

• Do not use accelerometer data for Least Squares system ID. Instead use differentiated

body velocity from a GPS-Aided Inertial Navigation System with Kalman filtering.

9.3 Conclusion

The BLS and BLS with EFOL system ID using flight data from VectorNav VN-200

GPS/INS is successful in identifying the linearized longitudinal equation of motion param-

eters for chirp maneuvers. The mean value of these parameters are used to form nominal

models of the UAV. The nominal models fit flight data of sine wave maneuvers but have a

poorer fit for the doublet and singlet maneuvers. This poor fit corresponds to incorrectly

identifying the long period mode. A better fit can be obtained by using a doublet or singlet

maneuver as part of the model training data. Also the nominal models do not predict the

1-2 Hz oscillations seen in the doublet and singlet maneuvers. The cause of these oscillations

should be investigated to see if they are a result of aerodynamics or the structure of the

aircraft.

9.4 Future Research

Future system identification efforts should focus on:

• Applying and evaluating continuous least squares with EFOL to the flight data that

has been collected



118

• Expanding the system ID method to include lateral dynamics

• Expanding system ID method to include nonlinear dynamics

• Applying full state Extended Kalman Filter using the aerodynamic parameters as

states

• Determining how well this system ID method is able to identify changes in the control

surface aerodynamic coefficients for fault detection

• Determining how well suited this method is for online identification with limited com-

puting resources

• Developing an online system identification process for real time parameter estimation

• Using the online system ID for adaptive control
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