Utah State University DigitalCommons@USU

Progress reports

US/IBP Desert Biome Digital Collection

1971

Models of Ingestion Rates for Desert Biome Rodents Process Study

Donald R. Johnson

Follow this and additional works at: https://digitalcommons.usu.edu/dbiome_progress

Part of the Natural Resources and Conservation Commons

Recommended Citation

Johnson, Donald R. 1971. Models of Ingestion Rates for Desert Biome Rodent Process Study. US International Biological Program, Desert Biome, Logan, UT.

This Article is brought to you for free and open access by the US/IBP Desert Biome Digital Collection at DigitalCommons@USU. It has been accepted for inclusion in Progress reports by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.

DESERT BIOME US/IBP ANALYSIS OF ECOSYSTEMS

1970

PROGRESS REPORT

PROCESS STUDY

Models of Ingestion Rates for Desert Biome Rodents

Donald R. Johnson University of Idaho

Moscow, Idaho

June 1971

1970 PROGRESS REPORT

Models of Ingestion Rates for Desert Biome Rodents

Donald R. Johnson University of Idaho Moscow, Idaho

1

· ___

June 1971

The material contained herein does not constitute publication. It is subject to revision and reinterpretation. The authors request that it not be cited without their expressed permission.

Models of Ingestion Rates for Desert Biome Rodents (2.3.5)

Donald R. Johnson, University of Idaho, Moscow, Idaho

Abstract

Ingestion rates (kcal/year) for males of four species of desert biome rodents are calculated as E_m/AE where E_m is the energy expended for maintenance and AE represents the assimilation efficiency. Ingestion rates for females are calculated as $E_m + nl(Eg_1 + Eg_2)/AE$ where n is the mean litter size, l is the number of litters per year, and Eg_1 and Eg_2 represent energy expenditures for growth of embryos and nestlings.

These estimates of ingestion rates will be improved once information on activity patterns becomes available. Those for Great Basin pocket mice compare reasonably well with the ingestion rates predicted from a model developed by Tucker (1966) for captive California pocket mice.

Models predicting heteromyid reproduction rates, ingestion rates, and density must ultimately include the pattern and amount of winter precipitation as a variable.

Objectives

With the assistance of R. K. Schreiber, I have investigated several aspects of the bioenergetics of Great Basin pocket mice (<u>Perognathus parvus</u>), deer mice (<u>Peromyscus maniculatus</u>), grasshopper mice (<u>Onychomys leucogaster</u>), and western harvest mice (<u>Reithrodontomys megalotis</u>) on the AEC Reservation, Richland, Washington, during 1970. Our objectives were: (1) to develop a model of ingestion rate, and (2) to calculate ingestion rates for these species. We were also able to make some observations on rodent density, seed and herbage production of cheatgrass (<u>Bromus tectorum</u>), the seasonal variation in fat content, and the effects of different baits on the probability of capture.

The assistance of T. P. O'Farrell, Batelle-Northwest Laboratory; Wayne Cassatt and Walter Haerer of the Joint Center for Graduate Study, Richland; R. M. Chew, University of Southern California, and Vincent Schultz and George, Hinman, Washington State University, is greatly appreciated.

Study Area

The primary study area was established on the east side of the Arc-6 Road, 11 miles northwest of Richland, Benton County, Washington, at an elevation of 650 ft (220 m). Edaphic and climatological data for the nearby Arid Lands Ecology Reserve have been summarized by Hinds and Thorp (1969). The dominant shrubs are bitterbrush (<u>Purshia tridentata</u>) and big sagebrush (<u>Artemisia tridentata</u>). Two rabbitbrushes (<u>Chrysothamnus nauseosus</u> and <u>C. viscidiflorus</u>) are also present in the area. The understory consists of several species of forbs and Sandberg's bluegrass (<u>Poa secunda</u>).

Within the last 80 years, the entire region has undergone a significant vegetational change (Daubenmire, 1970). About 1890, cheatgrass, a strongly competitive winter annual, was introduced into eastern Washington. It rapidly spread throughout the region where heavy grazing and fire had seriously depleted the original vegetation. Native species are unable to replace it, despite prolonged protection from grazing and fire. Cheatgrass remains the dominant grass at lower elevations on the AEC Reservation despite total protection since 1943.

A range fire swept over a large area north of the study site in 1955. It has shown little recovery and supports little other than cheatgrass. Fires set by the electrical storm of July 16, 1970, swept over 22,500 acres of the reservation (including the area burned in 1955), totally destroying the vegetation on the study area (and 250 snap traps). We then moved to another site on the B-27 Road (3 miles northwest). Rodent densities there were lower than at the original site. Our thermograph, which survived the fire, was placed in operation on the new site.

Herbivores occurring on the reservation include mule deer and black-tailed jackrabbits. Darkling beetles of four species are a conspicuous part of the insect fauna (Rickard, 1970). Grasshoppers apparently have not reached destructive densities on the reservation since its establishment. Side-blotched lizards and bull snakes are the principal reptile inhabitants.

Carnivores and raptors include coyotes, badgers, burrowing owls, short-eared owls, kestrels, and marsh hawks. Gulls gathered in large numbers following the fire, apparently to feed on disoriented mice wandering about the surface.

Methods

Rodents were collected monthly in snap traps baited with either rolled oats or a mixture of rolled oats and peanut butter. The sex and weight of each were recorded, together with the position of the testes and the number of embryos or placental scars.

The stomachs were removed, the contents washed in cool water, dried in an oven at 70 C for 24 hrs, and weighed to the nearest mg. The dried contents were combined by sex and age group, refined in a Wiley mill fitted with a 40 mesh/inch screen, and stored in stopped jars. The ash content of the food and feces was determined after combustion in a furnace at 600 C for 2 hours.

The carcasses (with stomachs excised) were dehydrated in a vacuum oven at 70 C for 48 hours, after which each was pulverized and sewn between two sheets of round filter paper. The fat was extracted in a Soxhlet apparatus using ether as a solvent. Extraction required 24 hours.

Rodents were live-trapped, acclimated to captivity, and maintained on laboratory diets for five days. Water was provided <u>ad lib</u> to all species except heteromyids which were deprived of water and subsisted upon that produced metabolically. Assimilation efficiency was calculated directly by subtracting the weight of the dried feces from that of the food ingested. Assimilation efficiencies of animals living in the wild on the natural diet were calculated using the ash tracer method (Johnson and Groepper, 1970).

Cheatgrass was harvested on 60 $0.1m^2$ circular plots placed systematically along three transect lines in the study area. The production on each plot was stored in a paper bag, air dried, and weighed to the nearest mg. The mean density and number of culms were calculated. Seed production was determined from the density-production figure in Hulbert (1955). The seeds from the cheek pouches of pocket mice collected in August (and thus assumed to be those produced in 1970) were recovered and weighed. Production was calculated as the product of the number/unit area and the mean weight. Herbage production was calculated as the difference between total and seed weight.

We monitored surface (T_s) and soil (T_d) temperatures on the study area with a 2-pen thermograph beginning in June 1970. Soil temperature was monitored at 0.5 m, an average depth of burrows exposed by a road excavation and examined by O'Farrell (personal communication). Ambient temperatures (Table 1) are those from a weather station 13 miles west of the B-27 study area. Because of the close positive relationship between-ambient temperature and those of the soil and surface, I have predicted the latter for the biological year commencing June 1, 1970 (Table 1).

Findings

Ingestion rate (I) was calculated as:

$$E_r + E_a / AE = E_m / AE$$

where E_r and E_a are the rates of energy expenditure at rest and when active, E_m is their sum, and AE is the assimilation efficiency (the proportion of the food ingested which is assimilated).

Ingestion rates:

<u>Perognathus parvus</u>: Metabolic rates for this species have been measured by Anderson (1970) and by Guthrie (personal communication). Guthrie's metabolic rates (ml $0_2/g / hr$) are: active, 8.6 - 0.24 T_a and torpor, 0.38 + 0.014 T_a where T_a is the ambient temperature. I have used his "active" rate as Er since it is similar to that measured for <u>Perognathus baileyi</u>, a species of similar body size (Chew and Chew, 1970).

1

Caloric expenditures for males and females have been calculated separately (Table 2) because of differences in body weight and seasonal activity.

We have not yet successfully determined daily and seasonal activity patterns for these species. We employed a technician who developed a burrow monitor similar to those used by Inglis <u>et al</u>. (1968), and Frigerio and Eisler (1968). The monitor records the presence of a mouse labeled with a radionuclide (Tantalum 182). We are only now beginning to gather data with this system.

Lacking specific activity patterns, I have estimated them (Table 2) based on seasonal changes in trapping success and the observations of Scheffer (1938). He found pocket mice inactive (presumably in torpor) from late November to early March in eastern Washington. We have found little above-ground activity since early October. Scheffer also found that males became active earlier in the spring than did females; a fact we have also observed.

In calculating E_m , I have assumed that (1) this species is active above ground 4 hours daily during months of favorable weather, (2) it encounters above-ground temperatures of T_a rather than T_s since surface activity has been completed by dawn; the time when T_s is measured (Scheffer 1938; Haerer, personal communication), (3) this species remains in torpor 20 hours daily during the winter months since Tucker (1966)

found that <u>Perognathus californicus</u> did not remain in torpor more than 24 hours, and, 4) this species consumes sufficient food from undergroundcaches to maintain it body weight during the winter months (Table 2).

To account for the insulating effects of a nest, I have used 7.0 - 0.165 T_d as the resting rate below 20.5 C. This was plotted as .81 E_r at 1 C and .87 E_r at 12 C, metabolic rate reductions (Pearson, 1960; Fig. 1) measured for the harvest mouse in a natural nest. Because of the low metabolic rate while in torpor, the presence of a nest results in only a 4% saving in the energy cost of maintenance (Table 2).

Pocket mice living in the wild on natural diets demonstrated assimilation efficiencies of 83.8, 90.8, 88.5, and 88.4% in April, May, July, and August respectively. Using the mean of 87.9% the ingestion rate for males in calculated as:

 $I_m + E_m$; AE = 2539/ .879 = 2889 keal/year.

Table 2.	Estimated resting,	active	and	maintenance	metabolic	rates	for Perognathus	paryus.

3.8 · r			Male	s					Female	S				
Month	Hrs. [Body Wt.		Kcal		Hrs. Da		Body Wt.		Kcal			
	Rest.	ACT.	(g)	Ĕr	^E a	Em	Rest. A	ct.	(g)	Ĕr	Ea	Em		
Jun	20	4	19.62	164	90	254	20 4		17.17	143	80	223		
Jul	20	4	18.37	115	81	196	20 4		16.92	106	75	181		
Aug	20	4	16.39	107	76	183	20 4		15.64	102	73	175		
Sept	23	1	18.76e	217	25	242	23 1		13.87e	161	19	180		
0ct	23.5	0.5	18.76e	295	15	310	23.5 0	.5	13.87e	218	11	229		
Nov	4	20t	18.76e	83	0	83	4 2	Ot	13.87e	62	0	62		
Dec	4	20t	18.76e	88	0	88	3 2	Ot	13.87e	65	0	65		
Jan	4	20t	18.76e	90	0	90	4 2	0t	13.87e	66	0	66		
Feb	4	20t	18.76e	78	0	78	4 20	Ot	13.87e	58	0	58		
Mar	22	2	18.76	289	62	351	23.5 0	.5	13.87	228	12	240		
Apr	20	4	19.68	238	118	356	22 2		16.08	214	48	262		
May	20	4	18.91	203	105	308	20 4		16.64	178	93	271		
Sum		and an	1400000-016-029-014-020-020-029-029-029-029-029-029-029-029	1967	572	2539			·····	1601	411	2012		
Without	nest					2643	(104%)					2092	(104%)	

In order to calculate the ingestion rate for females,one must account for the energy cost of pregnancy and lactation (Kaczmarski, 1966; Johnson and Groepper, 1970). This energy is used for both respiration and growth by embryos. I have already accounted for respiration by embryos by including gravid females in the calculations of mean weight (Table 2). The energy cost of growth can be calculated as $W_1K_1/E_1 + W_2K_2/E_2 + W_3K_3/E_3$ (Chew and Chew, 1970), or simply as $Eq_1 + Eq_2 + Eq_3$, where W_1 , W_2 and W_3 are the weight gains from conception to birth, from birth to weaning, and from weaning to adult weight respectively. K_1 , K_2 , and K_3 represent the caloric values of the tissues during these time periods. E_1 , E_2 and E_3 represent growth efficiencies (that proportion of the food assimilated used in growth).

The weight of pocket mice at birth is unknown but assumed to be l.e q, the greatest weight of an embryo found in utero. Adding 27% for the weight of embryonic tissues (Kaczmarski, 1966), $W_1 = 1.7$. Using the weight of the smallest pocket mouse trapped (6.4 g) as the weaning weight, $W_2 + 4.7$. Adult males weight about 19 g and adult nongravid females about 14 g (table 2). Thus, $W_{m3} = 14.3$ and $W_{f3} = 9.3$.

Until data for this species are available, I have used growth efficiencies of 0.138, 0.146, and 0.5 respectively (Kaczmarski, 1966; Brody, 1945) and tissue caloric values of 1.03, 1.43, and 1.5 kcal/g respectively (Kaczmarski, 1966; Gorecki, 1965).

Thus $I_f = E_m + nl (Eg_1 = Eg_2) / AE$ where n is the mean litter size (4, N = 48) and l is the number of litters per year (1.14, N =48). Therefore $I_f = 2012 + 268 / .879 + 2594 \text{ kcal/year}$.

Eg3 (growth of weaned mice) has been ignored in this and later calculations. It amounts to only 49 kcal/year for males and 32 kcal/year for females.

Based on the kinds of food carried in the cheek pouches, about 95% of the diet of pocket mice consists of cheatgrass seeds (caryopses). Cheatgrass density on sixty o.lm² plots averaged 94 plants (9.4/dm²). From Fig. 15 of Hulbert (1955) cheatgrass at this density produces about 21 seeds/dm² (2100/m²).

Cheatgrass seeds removed from the cheek pouches of pocket mice weighed an average of 590/g. Thus seed production is calculated as 3.56 g/m^2 (35.6 kg/ha). Since the caloric value of brome seeds is 4.35 kcal/g (Johnson and Robel, 1968), seed production represents 154,860 kcal/ha.

The catch of pocket mice from single trap lines of 50 traps each averaged 17.5, 13.125, and 10.25 for three consecutive days of trapping in June, 1970 (Table 3). Using the technique of Zippin (1958) the total trapable population (\pm S. E.) is estimated as 74 \pm 33. Continued trapping would have narrowed the confidence limits but this estimate will suffice to make a rough calculation of density.

One must know the effective trapping area (the area occupied by mice susceptible to trapping) in order to determine density.

The pair of lines placed 50 feet apart (Table 3) caught fewer pocket mice than those placed at greater distances. Lines only 50 feet apart have overlapping effective areas while those spaced at 100 feet or more show no interference. Thus the distance from the trap line to the edge of the effective area was more than 25 feet but less than 50 feet. I have chosen the intermediate distance (37.5 ft) as the extent of effectiveness on each side of the trap line. Each 500-foot line of traps had an effective area of 500 x (37.5 x 2) + π (37.5)² or about 43,000 sq. ft. (0.4 ha). Therefore the density of pocket mice in June was 74/.4 = 185/ ha. This is perhaps an overestimate but density was very high on the study area at this time.

Table 3. Catch of pocket mice from pairs of trap lines (50 traps each), June 9-11, 1970

	Spacing		Catch		
Pair No.	between lines (ft)	1st Day	2nd Day	3rd Day	Sum
	50	37	21	10	68
2	100	40	24	20	84
3	150	31	24	26	81
4	200	42	22	17	81
5	250	27	35	19	81
Means for	single line (Pairs 2-5)	17.5	13.125	10.25	

If pocket mice could recover one-half of the cheatgrass seeds produced, no more than 28/ha could survive for one year on the 1970 seed crop (using the ingestion rates calculated and assuming a balanced sex ratio). I would predict then disaster for this population, something, regretably, that cannot be verified because of the holocaust of July 17.

Peromyscus maniculatus:

For this species I have used E = 9.3 - 0.2 T by adjusting the minimum rate measured by McNab and Morrison (1963, Table 1 and Fig. 13) to a resting level as suggested by Chew and Chew (1970). The insulating effects of a nest (Pearson 1960) reduce this to 7.4 - 0.13 Td below 26.5 C.

Deer mice are active throughout the year even in rigorous climates (Johnson and Groepper 1970). I have assumed that cached food was not available (i. e. a 20-4 activity cycle throughout the year, Table 4). The use of a nest represents a saving of 8% in maintenance energy cost (Table 4).

Deer mice living in the wild on the North Plains on natural diets demonstrated assimilation efficiencies of 86-91% (Johnson and Groepper 1970). Using a mean of 89.1%, the ingestion rate for males is calculated as:

 $I_m = 4420/.891 = 4961 \text{ kcal/ year.}$

Deer mice at birth weigh an average of 1.4 g (McCabe and Blanchard 1950). Correcting for embryonic tissues, $W_1 = 1.8$. Deer mice at weaning weigh about 8.6 g (McCabe and Blanchard 1950). Therefore, $W_2 = 6.8$. Adult body weight of males averaged 17.8 (N = 52) and that of non-gravid females 16.6 g (N = 9). Thus, $W_{m3} = 9.2$ and $W_{f3} = 8.0$.

Using the caloric values and growth efficiencies cited earlier, a mean litter size of 5.1 (Scheffer, 1924; N - 48) and assuming 1.5 litters per year:

$$I_{f} = 4246 + 612/.891 = 5452$$
 kcal/ year.

The ingestion rates for deer mice greatly exceed those for pocket mice (Table 2), evidence of the energy saved in torpor.

÷

Month	Er	Males E _a	E _m		Ēŗ	Females E _a	E _m	·
Jun Jul Aug Sept Oct Nov Dec Jan Feb Mar Apr May	212 188 193 227 276 283 308 323 278 287 257 240	91 90 93 103 119 126 131 137 117 122 112 107	303 278 286 330 395 409 439 460 395 409 369 347		204 180 185 218 265 271 296 311 267 275 247 230	87 87 90 99 114 122 126 131 113 118 107 103	291 267 275 317 379 393 422 442 380 393 354 333	
Sum	3072	1348	4420		2949	1297	4246	<u> </u>
Without	nest		4781	(108%)			4592	(108%)

Table 4. Estimated resting, active and maintenance metabolic rates for Peromyscus maniculatus.

The caloric value of the food ingested by deer mice varied 5.52 to 5.60 (Johnson and Groepper 1970). Using a mean of 5.56 kcal/g, each male in the population under study would ingest about 890 g/year and each female 980 g of food/year.

Deer mice are omnivorous, subsisting upon a variety of arthropods, seeds, and herbage (Johnson 1961). They demonstrate marked seasonal variation in diet (Johnson 1964). Their effect on the availability of cheatgrass seeds, the primary food of pocket mice, remains to be determined.

Onychomys leucogaster

For this species I have used $E_r = 7.24 - 0.17 T_a$, that determined by Chew and Chew (1970) for 0. torridus, a species of similar body size. The insulating effects of a nest (Pearson 1960) reduce this to 5.86 - 0.12 T_d below 27.5 C.

Grasshopper mice are active throughout the year. I have assumed that cached food was not available (a 20-4 activity cycle occurred throughout the year, Table 5). The use of a nest represents a saving of 9% in maintenance energy (Table 5).

Grasshopper mice living in the wild on the North Plains demonstrated assimilation efficiencies of 85.7-87.0% (Johnson and Groepper 1970). Using the mean of 86.3%, the ingestion rate for males is calculated as:

I_m = 4881/.863 = 5656 kcal/year.

I have calculated the additional energy cost of embryo and nestling growth (Eq and Eg₂) as follows: grasshopper mice at brith weight 2.8 g (Horner 1968). With embryonic tissues, W_1 = '3.6. At weaning they weight 13.1 g (Horner 1968). Therefore, W_2 = 9.5. Adult body weight of males averaged 25.1 g (N=14) and that of non-gravid females 27.1 g (N= 8). Thus, W_{m3} = 15.6 and W_{f3} =17.6

Using the caloric values and growth efficiencies cited earlier, 3.7 as the mean litter size (Pinter 1970), and assuming 1.5 litters/ femal/ year, the ingestion rate for females is calculated as:

 $I_{f} = 5354 + 666/ .863 = 7873$ kcal/ year.

Grasshopper mice subsist on a variety of arthropods, seeds, and leaves. Some use of flesh has also been observed (Bailey and Sperry 1929; Johnson 1961). Captives demonstrated a seasonal change in food preference (Jahoda 1970). The caloric value of the stomach contents of North Plains grasshopper mice was 5.65 kcal/g (Johnson and Groepper 1970). Thus each male in the population under study would ingest about 1 kg of food per year and each female about 1.4 kg.

Reithrodontomys megalotis

For this species I have used E_r = 11.41 - 0.27 T_a (Pearson 1960). The insulating effects of a nest will reduce this to 9.2 - 0.18 T_d below 26.5 C.

		Males			Females		
Month	Ĕŗ	Ea	E _m	Ĕr	Ea	Em	
June	210	110	320	230	120	350	aan ah
Jul	187	107	294	205	117	322	
Aug	194	112	306	213	122	335	
Sep	232	124	356	253	136	389	
0ct	292	142	434	319	156	475	
Nov	311	147	458	341	161	502	
Dec	344	160	504	376	176	552	
Jan	359	164	523	393	180	573	
Feb	304	143	447	334	155	489	
Mar	307	148	455	336	162	498	
Apr	275	135	410	301	148	449	
May	247	127	374	270	139	409	
Sum	3262	1619	4881	3571	1772	5353	
Without	: nest		5303 (109%)			5807	(109%)

Table 5. Estimated resting, active and maintenance metabolic rates for <u>Onychomys leucogaster</u>.

Harvest mice are active throughout the year. As with deer mice and grasshopper mice, I have assumed a 20-4 activity cycle. The use of a nest represents a saving of about 12% (Table 6).

I have calculated assimilation efficiency as 94.8% by the ash tracer method. Ingestion rate for males is calculated as:

 $I_m = 3236/ .948 = 3413 \text{ kcal/year.}$

I have calculated the energy cost of embryo and nestling growth as follows: harvest mice at birth weight 1.5 g (Svihla, 1931). Correcting for embryonic tissues, $W_1 = 1.9$. Weaning weight is assumed to be 5.4 g (prorated from that for deer mice). Therefore, $W_2 = 3.9$. Based on a small sample size (N=14) adult body weight average 10.8 g. Thus $W_3 = 5.4$.

Table 6.	Estimated resting, active and maintenance metabolic rates	
	for Reithrodontomys megalotis.	

Month	Er	Ea	E _m	
June	149	63	212	<u> </u>
July	132	62	194	
August	138	66	194	
September	165	73	238	
October	202	87	389	
November	212	90	302	
December	235	98	333	
January	244	102	346	
February	209	88	297	
March	212	90	302	
April	187	81	268	
May	174	77	251	
Sum	2259	977	3236	
Without nest			3508 (112	%)

Using the caloric values and growth efficiencies cited earlier, a mean litter size of 3.6 (Bancroft 1968), and assuming 1.5 litters/ female/ year, the ingestion rate for females is calculated as:

 $I_{f} = 3236 + 283/ .948 = 3712 \text{ kcal/year}.$

Harvest mice subsist upon a variety of arthropods, seeds, and herbage (Johnson 1961). The caloric value of their food is assumed to be the same as that of deer mice (5.56 kcal/q). Thus each male in the population under study would consume about 614 g/year and each female 668 g/year.

Seasonal Variation in Fat Content:

Rodents demonstrate three types of seasonal change in fat content: 1) the peak occurs during the winter months as in <u>Apodemus flavicollis</u> (Sawicka-Kapusta, 1960), 2) peaks alternate with the spring-fall breeding seasons as in <u>Peromyscus polionotus</u> (Caldwell and Connell, 1968), and 3) the peak occurs during the summer months as in <u>Peromyscus crinitus</u> (McNab, 1968). Although all samples have not been analyzed, it appears that <u>Perognathus parvus</u> exhibits a Type I (winter) peak (Appendix I).

Bait Effectiveness:

Pocket mice show a strong preference for rolled oats in a paste form over that of a mixture of rolled oats and peanut butter used as bait (Appendix II).

Discussion

Although many investigators have measured ingestion rates of small mammals in the laboratory (Sealander, 1952 and literature cited there), it was Pearson (1960) who first attempted to calculate the ingestion rate of a small mammal living in the wild. McNab (1963) developed an energy budget model with time, microenvironmental temperature, and metabolic rate as variables. McNab lacked specific information on activity patterns, microenvironmental temperatures, and assimilation rates. His model ignored the energy cost of pregnancy and lactation.

The study of-ingestion rates of heteromyid rodents offers a particular challenge because of the added complexity of torpor and its relationship to food availability and microenvironmental temperature. Tucker (1966) described the relationship between weight loss, food intake, and torpor for <u>Perognathus californicus</u> as:

 $Y = 7.63 - 0.44X_1 - 0.26X_2$

where Y is the percent of the original body weight lost per day, X_1 is the food intake in g/100 g original body weight, and X_2 is the hours in torpor daily at 15 C. When body weight is constant:

 $X_1 = 17.3 - 0.59X_2$.

Using this equation and assuming a 20-hour daily torpor (Table 2), $X_1 = 5.5/100$ g or 1 g daily for a 19 g pocket mouse (male) and 0.77 g daily for a 14 g female. These ingestion rates amount to 155 and 113 kcal/month (on Tucker's laboratory diet of 4.9 kcal/q). They exceed the ingestion rates I have calculated byabout 70% (E_m /AE estimates for winter months). However, <u>Perognathus californicus</u> weighs about 25% more than <u>Perognathus parvus</u>. Thus our estimates are reasonably close despite the different approaches used in calculating them.

My estimates of ingestion rates for these four species will be improved once specific information on activity cycles becomes available. My assumption that a 20-4 cycle persists throughout the year is almost certainly in error since Hatfield (1940) found that excursions of captive deer mice from the nest to a food source were greatly reduced at 0 C.

The survival, reproduction, and density of heteromyid rodents is closely tied to the availability of seeds of winter annuals, a fact recognized almost 50 years ago (Vorhies and Taylor, 1922), and, most recently by Beatley (1969). Speth <u>et al</u>. (1968) found juvenilePerognathus parvus breeding during the summer of 1967, a year of high seed production. The survival of annuals is in turn dependent upon the amount and pattern of precipitation (Beatley 1967).

Cheatgrass yields in southern Idaho are correlated closely with precipitation. Sneva (1965) has described this relationship as:

Y = 37.5 + 1.368X

where Y is the yield estimate is percent of the mean yield and X is the total precipitation for October, April, and May expressed as a precent of the mean for those months.

The pattern and amount of precipitation than should be used as a variable in a model predicting the frequency and pattern of breeding in heteromyids of the Desert Biome, and, ultimately, in prediciting their density.

Literature Cited

Anderson, S. H. 1970. Effect of temperature on water loss and CO₂ production of <u>Perognathus parvus</u>. J. Mammal. 51: 619-620.

Bancroft, W. L. 1967. Record fecundity for Reithrodontomys megalotis. J. Mamal. 48: 306-308.

Bailey, V, and C. C. Sperry. 1929. Life history and habits of the grasshopper mouse, genus <u>Onychomys</u>. USDA Tech. Bull. 145, 19 p.

Beatley, J. C. 1967. Survival of winter annuals in the northern Mojave desert. Ecology 48: 745-750.

Beatley, J. C. 1969. Dependence of desert rodents on winter annuals and precipitation. Ecology 50: 721-724.

Brody, S. 1945. Bioenergetics and growth. Reinhold, New York. 1023 p.

Caldwell, L. D., and C. E. Connell. 1968. A precis on energetics of the old-field mouse. Ecology 49: 542-548.

Chew, R. M., and A. E. Chew. 1970. Energy relationships of the mammals of a desert shrub (Larrea tridentata) community. Ecol. Monographs 40: 1-21.

Daubenmire, R. 1970. Steppe vegetation of Washington. Wash. Agri. Exp. Sta. Tech. Bull. 62, 131 p.

Frigerio, N. A. and W. J. Eisler. 1968. Low cost, automatic, nest and burrow monitor using radioactive tagging. Ecology 49: 788-791.

Gorecki, A. 1965. Energy values of body in small mammals. Acta Theriologica 10: 333-352.

Hatfield, D. M. 1940. Activity and food consumption in <u>Microtus</u> and <u>Peromyscus</u>. J. Mammal. 21: 29-36.

Hinds, W. T., and J. M. Thorp. 1969. Biotic and abiotic characteristics of the microclimatological network on the Arid Lands Ecology Reserve. Batelle Northwest Laboratory, SA-2733, 25 p. and appendices.

Horner, B. E. 1968. Gestation period and early development of <u>Onychomys</u> <u>leucogaster</u> <u>brevicaudus</u>. J. Mammal. 49: 513-515.

Hulbert, L. C. 1955. Ecological studies of Bromus tectorum an dother annual bromegrasses. Ecol. Monographs 25: 181-213.

Inglis, J. M., L. J. Post, C. W. Lahser, and D. V. Gibson. 1968. A device for automatically detecting the presence of small animals carrying radioactive tags. Ecology 49: 361-363.

Jahoda, J. C. 1970. Seasonal change in food preference of <u>Onychomys leucogaster breviauritus</u>. J. Mammal. 51: 197.

Johnson, D. R. 1961. The food habits of rodents on rangelands of southern Idaho. Ecology 42: 407-410.

Johnson, D. R. 1964. Effects of range treatment with 2, 4-D on food habits of rodents. Ecology 45: 241-249.

Johnson, D. R., and K. L. Groepper. 1970. Bioenergetics of North Plains rodents. Amer. Midl. Nat. 84: 537-548.

Johnson, S. R., and R. J. Robel. 1968. Caloric values of seeds from four range sites in northeastern Kansas. Ecology 49: 956-961.

Kaczmarski, F. 1966. Bioenergetics of pregnancy and lactation in the bank vole. Acta Theriologica 11: 409-417.

McCabe, T. T., and B. D. Blanchard. 1950. Three species of Peromyscus. Rood Assoc., Santa Barbara. 136 p.

McNab, B. K. 1963. A model of the energy budget of a wild mouse. Ecology 44: 521-532.

McNab, B, K. 1968. The influence of fat deposits on the basal rate of metabolism in desert homoiothetms. Comp. Biochem, Physiol. 26: 337-343.

McNab, B. K., and P. Morrison. 1963. Body temperature and metabolism in subspecies of <u>Peromyscus</u> from arid and mesic environments. Ecol. Monographs 33: 63-82.

Pearson, O. P. 1960. The oxygen consumption and bioenergetics of harvest mice. Physiol. Zool. 33: 152-160.

Pinter, A. J. 1970. Reproduction and growth for two species of grasshopper mice (Onychomys) in the

Rickard, W. H. 1970. The distribution of ground-dwelling bettles in relation to vegetation, season, and topography in the Rattlesnake Hills, southeastern Washington. Northwest Sci. 44: 107-113.

Sawicka-Kapusta, K. 1968. Annual fat cycle of field mice, <u>Apodemus flavicollis</u> (Melchoir, 1834). Acta Theriologica 13: 329-339.

Scheffer, T. H. 1924. Notes on the breeding of Peromyscus. J. Mammal. 5: 258-260.

Scheffer, T. H. 1938. Pocket mice of Washington and Oregon in relation to agriculture. USDA Tech. Bull. 608, 15 p.

Sneva, F. A. 1965. Cheatgrass yield and precipitation fluctuations. Proc. Cheatgrass Symposium, USDI, Bur. Land Mgmt., Oregon-Washington State Office, 92 p.

Speth, R. L., C. L. Pritchett, and C. D. Jorgensen. 1968. Reproductive activity of <u>Perognathus</u> parvus. J. Mammal. 49: 336-337.

Tucker, V. A. 1966. Diurnal torpor and its relation to food consumption and weight changes in the California pocker mouse Perognathus californicus. Ecology 47: 245-252.

Vorhies, C. T., and W. P. Taylor. 1922. Life history of the kangaroo rate, <u>Dipodomys spectabilis</u> spectabilis. USDA Bull. 1091, 39 p.

Zippin, C. 1958. The removal method of population estimation. J. Wildl. Mgmt. 22: 82-90.

Appendix I

Fat content (mg) \pm S.E. of <u>Perognathus</u> parvus. Sample size in parentheses.

March, 1970 790 ± 0.05 $41es$ FemalesApril 610 ± 0.03 $(31) \pm 0.2$ (4) April 610 ± 0.03 $(31) \pm 0.03$ (12) May 580 ± 0.03 $(43) = 530 \pm 0.02$ (41) June 630 ± 0.04 $(33) = 540 \pm 0.04$ (18) July 610 ± 0.04 $(18) = 560 \pm 0.1$ (17) August 660 ± 0.04 $(24) = 620 \pm 0.05$ (16)
--

Ap	pen	di	Х	1	ľ
rφ	pen	ui	~	х.	.

Catch from 500 traps on July 16, 1970.

	Peanut butter	Rolled oats
Perognathus parvus	43	80 [*]
Peromyscus maniculatus	2	0
Onychomys leucogaster	3	1
Reithrodontomys megalotis	3	1

Ŝignificant difference (P <.05).