
• Presents guidelines on conducting a radiometric calibration of an electro-optical (EO) sensor for 
space-based remote sensing

• Intended as a useful reference for planning and successfully carrying out a sensor calibration
 - Managers, technical oversight personnel, scientists, and engineers
• Represents lessons learned by authors from academic institutions, US Government, and industry
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• Contents address calibration throughout the lifetime of the sensor

A Publication Background

D Calibration Planning

B Publication Content

E Calibration Success Example

J Environmental Conditions for Pre-Launch Calibration

H System-Level Testing Provides the Best Representation of 
Sensor Performance

I Both Pre- and Post-Launch Calibrations are Critical to Mission Success

F Calibration Planning Should Begin During the Sensor Design Phase

• Beginning calibration planning in the early stages of sensor design: 
 - Promotes an optimum sensor calibration approach 
 - Reduces costs and expenditures 
 - Minimizes uncertainty for the intended application
• Experienced calibration personnel must be involved throughout the 

sensor’s development phase to optimize calibration e�orts
• Planning should address calibration throughout the lifetime of the sensor
 - Data management and analysis should be considered in the planning 

process
  · Today’s sensors produce large amounts of data 

C What Is Calibration and Why Is It Important? 

G Calibration Measurements Should be Traceable to Standards

G Tradeo�s Must be Made When Planning and Implementing a Calibration

• Calibration is the process of characterizing the parameters required to understand, 
describe, and quantify the performance of a sensor
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• Calibration characterizes interactions and dependencies between internal optical components
 - Example: Component level prediction versus system level measurement of Sounding of the 

Atmosphere using Broadband Emission Radiometry (SABER) relative spectral response (published 
in the International Journal of Remote Sensing)
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Component and system level spectral response di�erences were observed by as much as 23.5% 

• Calibration discovers sensor speci�c performance dependencies
 - Example: Optical focus with changing sensor temperature

• Calibration is critical to the success of a mission
 · Unfortunately, it is often an afterthought in the 

development of a sensor 
  – Lack of planning can lead to increased cost 

and schedule and inaccurate results
• Calibration considerations should begin during 

the sensor design phase
 · Promotes an optimum sensor calibration 

approach 
 · Reduces costs and expenditures 
 · Minimizes uncertainty
• Planning should address calibration throughout 

sensor lifetime

• SABER 
 – 10-channel radiometer spans range of wavelengths from 1.27 to 17 µm
 – Launched December 7, 2001
 – Still on orbit collecting data 
• Calibration planning began early in the sensor 

design1 
 – Coordinated with science, instrument, and 

calibration teams
 – Iterated on calibration approach (strawman plan 

formulated)
 – Updated sensor design capability to support 

calibration
 – Drafted uncertainty budget and tracked 

throughout the development process
 – Performed comprehensive ground calibration 

before launch
• Both pre- and post-launch calibrations were used 

to minimize uncertainty2

1 Tansock et al., SABER Ground Calibration, IJRS, 2003;  2Tansock et al., “An Update of the SABER Calibration,” 2006 

• Sensor must provide measurements that can be trusted
• Three properties work together to provide con�dence in sensor data

 - Traceability
  · Traceability is the ability to track a measurement to a known 

standard unit within a given uncertainty
 - Measurement uncertainty
  · De�nes an interval that is likely to enclose the true value of a 

quantity (see JCGM 200:2012, 2.26)
 - Veri�cation and validation (V&V)
  · V&V ensures that the instrument operates as designed and 

produces relevant data by proven processes and standards

• When performing calibration, there is always a tradeo� between what is ideal, what is desired, and 
what is strictly required

  – Sensor programs have limited funding, which can a�ect the scope of the calibration e�ort
  · Reducing the scope of pre-launch calibration e�orts may impart additional requirements for 

post-launch calibration, where options for collecting particular data sets are either limited or 
unavailable

  – Knowledgeable experts should be involved to identify trades among available budget, schedule, 
and impact to sensor performance/mission objectives

• Component-level testing may not be adequate to represent 
a full system-level calibration

 - Components may behave di�erently than expected once 
assembled into an EO sensor 

 - Characterizing the interactions and dependencies between 
the optical and electronic components: 

  · Provides information on how the integrated system 
operates

  · Enables systematic errors to be discovered, evaluated, 
and resolved before �ight

 - System-level calibration can be visualized as the quality 
control aspect of system design and testing (Wyatt 1991)

When conducting pre-launch calibration, it is best to follow the axiom “test as you �y” or “test like 
you �y” (Datla et al., 2011; Russell 2008)
 - Instruments should be calibrated under the same environmental conditions as expected during 

operation

Space Flight Sensor

TVAC chamber to simulate the space environment
 Croygenic operating pressure: ~10-7 Torr

 LN2 shroud provides low background

Airborne or Aircraft Sensor

Altitude simulation:  (0 to 100,000 ft.)
Temperatures: -60°C to 125°C
Pressure: Ambient to ~10 Torr
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• Pre-launch calibration, or ground calibration, provides the capability to perform tests in a 
controlled environment with known sources that cannot be duplicated on orbit

 - Can discover and resolve anomalies prior to launch
• Post-launch testing, or on-orbit calibration, has the advantage of being performed under true 

�ight conditions rather than simulated �ight-like conditions
• Hubble Space Telescope (Example)
 - Component-level testing was performed prelaunch 
  · Decision was to proceed without performing sensor-level validation on the ground prior to 

launch
 - A serious sensor focus problem was identi�ed on orbit
  · “The Hubble Space Telescope Optical Systems Failure Report” (NASA-TM-103443, November 

1990)
 - This anomaly could have been identi�ed during pre-launch system level calibration, 

potentially saving millions of program dollars
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