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Abstract

Remote Heart Rate Estimation Using Consumer-Grade Cameras

by

Nathan E. Ruben, Master of Science

Utah State University, 2015

Major Professor: Dr. Jacob Gunther
Department: Electrical and Computer Engineering

There are many ways in which the remote non-contact detection of the human heart

rate might be useful. This is especially true if it can be done using inexpensive equipment

such as consumer-grade cameras. Many studies and experiments have been performed in

recent years to help reliably determine the heart rate from video footage of a person. The

methods have taken an analysis approach which involves temporal filtering and frequency

spectrum examination. This study attempts to answer questions about the noise sources

which inhibit these methods from estimating the heart rate. Other statistical processes are

examined for their use in reducing the noise in the system. Methods for locating the skin

of a moving individual are explored and used with the purpose for acquiring the heart rate.

Alternative methods borrowed from other fields are also introduced to find if they have

merit in remote heart rate detection.

(76 pages)
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Public Abstract

Remote Heart Rate Estimation Using Consumer-Grade Cameras

by

Nathan E. Ruben, Master of Science

Utah State University, 2015

Major Professor: Dr. Jacob Gunther
Department: Electrical and Computer Engineering

This research explores the questions related to finding a person’s heart rate using a

video camera. This field is one which has a potentially large number of applications, but

also has a large number of problems that need to be addressed. Simple and low-complexity

signal processing techniques are studied to see how well they can detect heart rate on a

variety of video samples. These are also explored alongside ways in which a person’s face

can be detected and tracked. Alternative methods are also proposed which take a different

approach on this challenging problem.
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Chapter 1

Introduction

Over the years there have been many sophisticated techniques for observing the biolog-

ical processes of the human body. These observations range from simple yet fundamental

functions like breathing to the complex chemical firings of the nervous system. One of the

most useful of these metrics, with application in both medical and personal areas, is heart

rate.

Heart rate can be observed by several methods. First, it can be easily measured when

an individual places the tips of their fingers against a large artery and counts the pulses

of blood coming from the heart. It can also be detected more autonomously by measuring

the electrical impulses generated by the heart through a well-established method known

as an electrocardiography (ECG). Another common method used in pulse oximeters is

photoplethysmography (PPG) where the use of optics helps determine the change of the

arteries due to heartbeats.

These methods all require some form of physical contact. There are instances, however,

when physical contact is undesirable. For example, in medical practice, burn victims have

skin which is too sensitive to attach probes necessary for measuring their vitals. Another

inconvenient scenario is when trying to track heart rate on exercise equipment. There are

even cases where it is best that the subject being monitored without their knowledge. This

might arise when tracking people in a high security area looking for suspicious persons

exhibiting unusual anxiety.

In this research, different methods and analysis techniques for remote heart rate esti-

mation will be explored. These methods will rely completely on 8-bit CMOS image sensors

for data acquisition. Each approach will be applied in ideal and practical scenarios and,

coupled with simple decision-makers, will be used as heart-rate estimators.
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1.1 Prior Work

One noteworthy technique for remote heart rate detection is discussed by Obeid et al.,

in which the person is subjected to a series of low-power electromagnetic pulses [1]. The

reflected waves from the chest cavity are received and then processed using the well-known

principle of the Doppler effect, which helps determine which direction and how fast an object

was moving. In this case, the objects moving are the breathing lungs and the beating heart.

Another validated but vastly different approach is to use thermal imaging in order to

detect small changes in skin temperature due to heart beat as demonstrated by Yang et

al. [2]. One great advantage of this idea is that ROI selection is relatively simple. The

skin, which stands out due to the black-body radiation, stands out from the environment,

providing its own video segmentation. While the convenience of this method is promising,

the technology is not financially and, in some cases, not physically feasible. These methods,

due to cost and physical constraints, are only usable in very narrow fields.

1.1.1 Remote Photoplethysmography

The approach seemingly best-suited for a broad set of heart rate applications is remote

photoplethysmography. By way of background, photoplethysomgraphy (PPG), as defined

by Challoner, is an optical measurement technique that can be used to detect blood volume

changes in the microvascular bed of tissue [3]. The pulse oximeter is based upon these

principles. Hemoglobin, a combination of red blood cells and plasma, absorbs varying

amounts of infrared light depending on the amount of oxygen present. As blood propagates

through the arteries, higher concentrations of hemoglobin associated with each heartbeat

can be measured [4]. Traditionally this is done by emitting light through an appendage

such as the finger or toe and measuring unabsorbed light at the other side. This process

uses what is known as transmission-mode PPG.

Because of the close contact required for transmission-mode, there is an interest in using

reflectance-mode PPG in a remote, contact-less setting. As the name suggests, reflectance-

mode measures the light reflected from the skin as opposed to light emitted through the

skin. The use of this PPG mode becomes more feasible with development of inexpensive
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cameras and the expansive work done in image processing. Both Allen [5] and Scalise [6]

have made significant strides in the reflection-mode area, proving that the reflected light

due to the expanding and contracting blood vessels is visible to sensitive modern optics.

The work by Allen, in particular, holds great value for forming a foundation for this

study. In his experiments, Allen discovered that the same sources of physiological noise

such as respiration and thermoregulation are found in remote PPG as in contact PPG.

Allen continued to analyze the PPG waveform of the signal in hopes of characterizing its

features and how they could be used to diagnose blood-related diseases.

1.1.2 Introducing the Use of Consumer-Grade Cameras

Further work on the topic of clinical diagnosis performed by Verkruysse et al. for

optically determining skin disease validated the use of consumer-grade cameras [7]. In their

study, power maps were used with respect to PPG signal strength on areas of the face to

determine which regions are most suitable for heart rate extraction. These power maps will

differ based on different types of skin conditions. This work has added value to the use of

remote PPG in the clinical world.

This is a valuable discovery, because video cameras are ubiquitous. The technology of

CMOS has improved so much in the recent years that they are on par with CCD sensors

in terms of quality and the resolution is extremely high. Another advantage of cameras is

cost. The cell phone industry and other markets have driven the price of cameras down.

This essentially means that, provided a good algorithm, a camera could be turned into a

very inexpensive bio-sensor.

An obvious, but nonetheless valuable, technique demonstrated by Verkruysse et al. was

that of spatial averaging to increase PPG SNR. This method, which will be discussed later,

is what allows for a seemingly invisible signal to become very clear and obvious. Spatial

averaging is employed in every other research project on remote PPG involving cameras.

In a short study performed by Sun et al. the quality of signal was observed between

that obtained by a high-resolution camcorder and a modern, inexpensive webcam [8]. Un-

der various lighting conditions and even with varying heart rate signals, the two devices
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performed the same with little to no statistical variation in their outputs. While intuitively

one would suppose a higher-performance device would produce better results, it becomes

clear that signal strength increase which comes from spatial averaging has little to do with

the quality of the sensor used.

1.1.3 Blind Source Separation

In spite of these ground-breaking discoveries, the art of estimating heart rate from

video was not fully appreciated until a popular paper produced by Poh et al. outlined a

method using independent component analysis (ICA) as a means of dramatically increasing

the signal-to-noise ratio (SNR) [9]. Poh treated the three time-series RGB channels as a

mixed signal. By applying blind source separation (BSS), as seen in figure 1.1, a mixing

matrix is found which decorrelates the three signals as much as possible, one of which is

representative of the PPG signal.

From experimentation elsewhere and in this study, it has been found that Poh’s method

does, in fact, work very well in relatively noisy environments where the signal strength is

very poor. However, in the extreme cases, when the signal is, in fact, very clean or it is

heavily saturated with motion-induced noise, the algorithm does not perform very well.

They also introduced the use of face-tracking software to help reduce the noise due

to head motion. They utilize the ICA approach in a heart rate tracker and dramatically

decrease the variance of the heart rate estimate when observing the spectral magnitude.

The utilization of motion-compensation and statistical algorithms spurred on several real-

time applications some of which allowed individuals to check heart rate on their smartphone

camera [10,11].

1.1.4 Video Magnification

Rubenstein conducted research regarding the amplification of subtle changes in video

[12]. His work was able to reveal very small movements which would have otherwise gone

unnoticed by the viewer. A natural by-product of this video processing was also the ampli-

fication of color changes, such as those due to heart rate.
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Fig. 1.1: Showing the effect of the ICA algorithm on noisy data. (a) When the mixing
matrix is applied, one of the outputs is quite clearly the PPG signal. (b) This figure was
borrowed from Poh et al.

The video magnification process is illustrated in figure 1.2. In part (a) of the figure, a

time sequence of images is inserted into the magnification algorithm. Each image in part

(b) is spatially decomposed into different frequency bands. Depending on the application,

this is done either by using a laplacian or gaussian pyramid. In the case of heart rate

amplification, the skin surface where the PPG signal lies is generally smooth thus a gaussian

pyramid would be most appropriate.

The low-frequency spatial band is then temporally band-pass filtered in the range of

a normal heart rate (.7 - 3.5 BPM). The output is then amplified by some magnification

coefficient which, for heart rate, is in the range of 100 to 150 due to the weak nature of the

signal. The pyramid is then collapsed and summed with the original input images to create

a pulsating effect in the video as seen from part (c).

Because of the dual-amplification nature of this process (motion and color) it only

performs well under zero-movement conditions. Even so much as eyes blinking can cause

strange oscillations to be seen throughout the face in the output video. This makes it

non-ideal for practical applications.
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Fig. 1.2: This figure taken from Rubenstein’s work shows the process by which video mag-
nification is performed to amplify subtle changes in motion and color.

1.1.5 Other Contemporary Methods

After the initial success of Poh et al., several other methods have been established

including a principal component analysis version (PCA) which reduces the computational

complexity [13]. This method, according to the authors, was reported to be just as efficient

as the ICA approach. The authors also made use of analyzing the zero-crossing of signals

to determine the period. They also examined the possibility of using the auto-correlation

to determine a periodic correlation in the input signal. Both ideas proved to have merit but

were not seriously pursued.

1.2 Research Objectives

There has been a long-standing need for a non-invasive way to measure these vitals;

particularly heart rate. These most recent studies and algorithms go to show that the

technology has reached the computational speed necessary to sustain usable, inexpensive

applications. In spite of the great progress made by many pioneering researchers, there are

some critical disadvantages that make this technology “experimental.” In order to bridge

the gap between clinical trial and real-world use, these have to be addressed.
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1.2.1 Lower Latency

One problem with the algorithm proposed by Poh et al. and all other frequency-analysis

techniques is the amount of data necessary to make a reasonable heart rate estimate. The

blind source separation (BSS) approach (this includes ICA and PCA) requires a DFT of

sufficient length in order to attain the proper resolution. Because of the low sample rate

of standard video (around 30 fps) longer data sets translate to very long time intervals

between each heart rate calculation. In theory, the two BSS techniques require around 15

seconds of data before the algorithm outputs any metric. In some cases, this frame rate

could be even lower, costing an inordinate amount of time to acquire PPG data.

In this research, some standard and very simple analysis is performed to assess whether

other non-Fourier techniques might succeed in shortening the time it takes to compute heart

rate. These techniques, if successful, might be incorporated into larger more sophisticated

methods for estimating and tracking the heart rate. There are, however, advantages to

using frequency analysis and the latency impact in most real-world applications may be of

minor importance.

1.2.2 Motion-Compensation

As suggested by Verkruysse et al. and adopted in all of the aforementioned algorithms,

the heart rate signal is stronger when considering the average value across an area of skin

as opposed to a single point. This area is known in literature as the Region of Interest

(ROI). While computer vision has made dramatic progress in terms of object recognition

(including face recognition), the coherency of the ROI from frame to frame requires a whole

new level of accuracy. Subjects whose faces may rotate or be wholly uncooperative with the

camera pose a challenge to collecting the desired data. The idea of reducing the error which

is caused by movement will be referred to as motion-compensation. While the scope of this

research does not include developing new object recognition algorithms, it will explore the

state-of-the-art techniques and how effective they are when used in parallel with the heart

rate estimation schemes.
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1.2.3 Model-Based Design

While photoplethysmography is a very old topic, the camera-based acquisition of it is

quite recent. Thus far the different modes for increasing the observed PPG SNR have all

been analysis-based and have very little to do with the system model itself. Such models

are characteristic of other more mature fields such as speech and pattern recognition. In

this study a comprehensive yet simple model will be derived and treated as a minimization

problem.

1.3 Experiments Overview

The remainder of this research will be divided into three experiments. The first will

involve analyzing the PPG signal itself and its characteristics as observed from a camera.

The commonly-used observation model will be introduced. Several basic analysis techniques,

such as peak-detection and Fourier transforms, will be used as estimators to determine their

utility for this problem. This will all operate on ideal, relatively noise-less, data sets.

The second experiment will be testing these same techniques on practical data which

has a large amount of noise. Two modern approaches for motion-compensation will be

explored and utilized to help counteract the effects of the subject’s movement on the measure

heart rate. There will be some metrics introduced to help quantify the performance of one

technique versus another.

Lastly, the final experiment will be a complete reformulation of the heart rate estimation

problem at large. A model-based approach will be introduced which significantly differs from

every other proposed estimator to date. This experiment, if successful, will not exhaustively

determine the merits of this method but will give direction to next steps for creating a more

robust model-based algorithm than is currently available.
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Chapter 2

Remote Heart Rate Analysis in Ideal Circumstances

The purpose of this first experiment is to identify useful and effective ways for extracting

the heart rate signal using a common camera. The data, therefore, will be relatively noise-

less to promote a high SNR. There will also need to be some ground-truth data for the

signal trying to be estimated.

For the experiment setup, seven subjects were recorded at 30 FPS using a high-

resolution camcorder. A pulse-oximeter was selected for providing the true data of the

subject’s heart rate. This was selected for both its relative accuracy and ease of use. The

particular device used was the Contec C110 which outputs both the measured waveform

and the calculated average heart rate. Both of these signals were used in the analysis.

Wearing the pulse-oximeter on their finger, the participants were asked to hold still for

several minutes while being recorded with an HD camcorder. In each frame an ROI was

selected on the participant’s face over which the pixels were averaged together into a single

RGB value. The 2-D average is shown by

y(t) =
1

(cr − cl)(rt − rb)

cr∑
i=cl

rt∑
j=rb

I(i, j). (2.1)

2.1 Heart Rate Signal Analysis

It is important to consider the mathematical model of the desired signal. Consider the

equation

y(t) = DC + xhr(t) + xrr(t) + nt, (2.2)

where y(t) represents the averaged RGB value measured from frame t in a video sequence.

The signals xhr and xrr represent the heart rate and respiration rate, respectively. If only
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observing the small-signal AC components of this equation, it becomes clear, as noted

by Nilsson et al. and Johansson and Oberg, that the observed data is a combination of

respiration signal, heart rate signal, and noise [14,15]

yAC(t) = xhr(t) + xrr(t) + nt. (2.3)

Furthermore these signals can be approximated to be quasi-stationary sinusoids over an

appropriate interval [4]. This can be modeled as

xhr(t) = Chr sin(
2πfhr

60
t+ φhr), (2.4)

and

xrr(t) = Crr sin(
2πfrr

60
t+ φrr). (2.5)

.

It is important to note that heart rate and respiration rate signals rarely share close

frequency bands under normal activity. This allows for traditional filtering to help separate

the two signals. Perhaps the most problematic component of the received signal is the noise.

It is hypothesized that the noise can be further decomposed into three sub-signals

nt = nw + nmotion + nextern, (2.6)

where nw is the noise introduced by the camera electronics and quantization error. The

nmotion term signifies the noise due to voluntary and involuntary motion from the subject.

All of the noise generated by environmental changes and un-mapped biological signals are

represented by nextern.

2.1.1 SNR and Signal Acquisition

In order to better acquire and detect the heart rate signal it is important to identify

the contributing factors to the signal’s SNR. Knowing which parameters are critical to
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amplifying signal power will help determine hardware specifications which will maximize

the SNR and thus give the observer more confidence in the signal he is trying to measure.

Before proceeding, it is important to note that the green channel of RGB has historically

given the strongest SNR of the three channels [7]. From this point forward, speaking about

a scalar-valued PPG signal will almost exclusively be referring to the green channel. Figure

2.1 sheds light on the signal chain which will be used in the data acquisition.

It becomes clear that the signal of interest xhr(α, β), which is continuous, is sampled

and, more importantly, quantized. This quantized signal is then summed over W pixels

to produce the spatially-averaged heart rate signal, xhr[ROI]. A topic of interest is to

understand how the quantization of the camera’s A/D converter affects the measured heart

rate signal (xhr[i, j]) SNR. Rice introduces a formula for calculating this quantity as it

relates to quantization noise [16],

SNRq = 4.8 + 6.02b− 20 log10
Xm

Xp
− 20 log10

Xp

Xrms
. (2.7)

In this equation b represents the number of bits of the quantizer which, in the case of normal

commercial cameras, is 8 bits. Xm is the largest value achievable from the quantizer which

is 28 = 256. Xp is the largest peak of the signal (assumed to be zero-mean). Lastly, Xrms

is the RMS value for the signal which can be computed by simply finding the standard

deviation.

An issue arises when attempting to calculate xhr[i, j] directly. Consistent with other

literature and as shown in figure 2.2 the amplitude of the heart rate signal is smaller than

one quantization level of the 8-bit CMOS ADC found in most cameras. This means that

the signal xhr[i, j] is not directly measurable without finer resolution.

light from face camera A/D

8 bit ∑W digital
processing

xhr(α, β) xhr[i, j] xhr[ROI]

Fig. 2.1: Data acquisition flow diagram.
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Fig. 2.2: The RAW green channel (zero-mean) shows amplitude of the PPG as measured
from the output of the accumulator xhr[ROI].

The problem of insufficient resolution gives rise to the common method of averaging

over a sufficient number of pixels in order to boost the SNR to an observable level. Consid-

ering the mathematics of the problem, let the following expression represent the observed

quantized signal

xn = sn + vn n = 1, 2, ...,W

vn ∼ U(0, σ2v),

where W is the number of pixels in a region, sn is the heart rate signal and vn is the

quantization noise. The noise is reasonably assumed to be spatially independent. Now, if

the assumption can be made that the signal is coherent across all pixels (i.e. the region is

contiguous on a area of skin) then it can be said

Wxn = W (sn + vn)

var(Wxn) =var(W (sn + vn))

W 2Pxn = W 2Psn +WPvn
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SNRW =
WPsn

Pvn

= W (SNRq), (2.8)

where SNRW is signal power measured by an averaging window of size W . This result

suggests that the output PPG signal strength is proportional to the power of the PPG

signal as seen by the quantizer. Converting the above formula into decibels produces:

SNRq = SNRW − 10 log10W. (2.9)

In order to accurately ascertain the SNR in any given video, one must recognize that

the true signal power can never be measured as it is always in the presence of noise. A very

common method to approximate the SNR of a channel is to use the following expression:

ˆSNR =
var(Y )− var(N)

var(N)
, (2.10)

where Y = S +N .

The measured signal Y can be thought to include both signal and noise power, hence

the noise power is removed. The noise power itself is attained by the sampled covariance of

areas of the image which contain pure noise (no signal). Using multiple window sizes, the

results in figure 2.3 were attained.

It is clear that there is a linear correlation between SNRw and W which coincides

with the mathematical model. By fitting a line to the data and examining (2.8) one can

determine that the slope of the line is SNRq. This gives the result:

SNRq = 0.0004.

Converting to decibels, we find

SNRq = −34dB.

The power of the PPG signal is astonishingly small. It is so small that spatial pooling

of pixels is absolutely necessary in order to raise the signal strength above that of the

quantization noise, excluding all other noise. This gives a bit of perspective on the enormity
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Fig. 2.3: The samples relating a measured PPG SNR with a given window size show the
linear correlation between the two.

of the challenge at hand. This also provides a threshold for the minimum number of pixels

to use in the window.

2.1.2 Effects of Video Compression

It is always important to consider sources of signal degradation when selecting equip-

ment for experimentation/application. Video contains such a massive amount of data that

recording and processing it can be an arduous task for even the most powerful computing ar-

chitectures. It is therefore necessary to compress the video and throw away data which will

be missed the least. There is always the possibility, however, that the compression meant

to preserve the visual aesthetics of the video may be throwing away the human-invisible

data which is used to find the PPG signal.

The most commonly used standard to date for video compression is H.264. This stan-

dard is well known for its high video quality achieved at very low bit-rates. For this reason

it is ubiquitous in video recorders, video players, and video streamers. There are varying

degrees of compression found within the H.264 family but the key principle is the same: to
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remove inter-frame redundant data. This means, for example, that smooth surfaces whose

appearance changes very little from one frame to the next will experience the greatest

compression.

An exploratory test was run using a Cannon HD Camcorder (1920x1080 resolution)

and a Microsoft Lifecam Studio HD webcam. The Cannon used the H.264 standard for

video storage and the webcam was recording using Matlab’s Image Acquisition Toolbox

at full resolution in uncompressed AVI format. These two cameras were synchronously

recording the same subject under optimal conditions (natural lighting, holding still). Both

videos were processed using the same window size and visually inspected for the PPG signal.

Figure 2.4 contains a portion of the results.

The heart rate signal quality, contrary to intuition, looks more favorable on the com-

pressed camcorder. This result, though surprising, is consistent with the finding of Rustand

that little to no signal data was lost due to compression [17]. From other samples it seems

that the PPG may be stronger in the uncompressed video, but the noise also has more

power. This would seem to suggest that while inter-frame compression does effect the tem-

poral data, it has almost no effect on the signal of interest. This is a valuable result in that

this allows experiments to be carried out with inexpensive devices and with significantly less

storage. The participants in these experiments were all recorded using the same camcorder

as was demonstrated in this test.

2.1.3 Underlying Signal Model

From the computed average over an area of pixels it is possible to hypothesize the am-

plitude of the heart rate signal as being less than one quantization level of an 8-bit CMOS

camera. If it were assumed that a subject could hold perfectly still and no other environ-

mental or physiological noise were present, it might be possible to model the quantization

of the heart rate as follows.

From figure 2.5, it is obvious that there are other signals present in the AC signal

received at the camera sensor, or else it would be impossible to amplify the signal through

pixel averaging. However, it is important to establish from this concocted scenario that the
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Fig. 2.4: Comparing the PPG signal measured from two videos using different storage
formats.

presence of other time-varying signals (although considered noise) are critical in allowing

the heart rate signal to be detected on a per-pixel basis.

A far more interesting model is found when considering the different noise structures

and their roles in exposing the PPG signal. Now (2.3) will be used to initiate a new

underlying analog signal. Combining motion noise, respiration rate, and heart rate create

a more realistic model and lend credibility to the earlier hypothesis of the PPG signal’s

nature. Figure 2.6 demonstrates this simulated quantized input.

The waveform of the heart rate, while not clearly defined, is nonetheless present in the

discrete output of the camera sensor. This would justify the simple yet intelligent practice

of averaging over a sufficient number of pixels in order to achieve greater apparent resolution

of the signal. Figure 2.7 comparison was performed between the simulated quantized output

and several actual randomly-selected pixel outputs corresponding to the same time period.

The difference between the simulated pixel output and the actual pixel output is quite

obvious. The true PPG signal is much stronger than expected; emitting obvious peaks of

two to three quantization levels in the actual received data. This raises the question of

whether the previous assumption of the signal’s coherency was correct.
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levels of the image sensor. Thus, without any perturbations the signal is invisible to the
camera. Rounding is assumed to be truncation.
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Fig. 2.6: This represents a more realistic case for the hypothetical PPG signal source with
noise present. The low frequency noise allows the heart rate signal to toggle the bits of the
quantizer.
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Fig. 2.7: The simulated pixel signal is compared to an actual pixel output corresponding to
a point on the subject’s forehead.
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2.1.4 Future Work Regarding PPG Signal Propagation

Averaging has many statistical advantages when seeking to reduce zero-mean noise

present in a signal across time or space. As shown in the derivation of (2.9), averaging

is very effective if the signal is indeed coherent. However, the recent comparison of the

hypothetical PPG signal as measured by an 8-bit quantizer and the actual measured signal

suggests that the heart rate may not be uniformly in-phase across all regions of the face.

It is not hard to imagine that some regions of the facial tissue may emit the heart rate

better than others [17]. It is also conceivable that there may be phase distortion due to

blood arriving at facial capillaries at different times. If indeed there exists some propagation

path for which the blood moves through the face, this would mean that a particular spatial

linear combination is required to attain the maximum SNR.

It may be suggested that there is much more research to be done regarding the nature

of the PPG signal as observed from the facial skin. There has yet to be a study performed

on the effects of distance, image resolution, bit depth, level of illumination, and artificial

lighting have on the signal. A greater understanding of these effects may be necessary to

advance the art of the field. Also, the previous observations lead one to believe that the

signal may not be coherent across the face. In order to maximize the observed heart rate

signal’s strength, the principles and techniques of array processing may introduce useful

methods for biometric sensing.

2.2 Reporting Peak-Detection Estimates

To begin the exploration of techniques of heart rate estimation it seemed most fitting

to start with the most intuitive and naive approach: peak detection. This is, after all,

the method that medical staff and phlebotomists alike use when assessing an individual’s

pulse. The data from the green channel was filtered using a 4th order band-pass zero-phase

Butterworth filter in order to remove the mean and respiration rate signals.

As seen in figure 2.8 a simple peak detector was then applied in order to calculate the

time between two peaks ( Thr) which could then be interpreted as the instantaneous period

of the heart rate. The heart rate would naturally be calculated as fhr = 1
Thr

. There is
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one major disadvantage to his method of estimation. Because of the inverse relationship

between period and frequency, small errors in estimating shorter periods result in large

errors in higher frequencies.

The accuracy of peak detection deteriorates for higher heart rate estimates. The error

margin increases for shorter periods as shown in figure 2.9. This gives cause for concern

when using this kind of processing for determining infant heart rate or in exercise scenarios

where the PPG is elevated in frequency. One method to help reduce the error may be

to employ a peak approximation formula derived by Jacobsen and Kootsookos [18]. The

estimated peak is determined by

δ = −
[

xk+1 − xk−1

2xk − xk+1 − xk−1

]
(2.11)

x̂peak = xk − δ.

By using the two adjacent values next to a detected peak, one can make a reasonable

estimate as to where the true peak lies. Updating the calculated heart rate using only one

peak-to-peak period, however, is in and of itself inaccurate because of the inherent variation

from heart beat to heart beat. Remembering the common practice of counting pulses over

a period of time leads one to believe that perhaps a moving-average (MA) model might be

adopted for a local average in time:

ŷMA =
M−1∑
i=0

βix(k − i). (2.12)

The terms in x are the current and previous heart rates calculated from the periods.

In this example, allow the coefficients to be conditioned as follows:

βi = 1
M such that

∑M−1
i=0 βi = 1.

There is also an element of auto regression in the problem seeing that the most recent heart

rate estimates should influence the current estimate. For demonstration purposes, let a

second linear predictor be defined as
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ŷAR ≡
M∑
i=1

αi−1yAR(k − i). (2.13)

For simplicity’s sake, assume that the α’s are equivalent to the β’s. These two non-optimized

predictors were used across the subject’s first stage recordings with results that are very

similar to figure 2.10. Both predictors, in most cases, performed well enough for practical

heart rate estimation. As was measured by the error power and can be visually inspected,

the AR predictor usually faired better than that of the MA model. If the MA and AR

models are thought of as FIR and IIR filters, this should come as no surprise. Both of

these, however, still suffer from high frequency ringing which might make them mildly

irritating to use for medical purposes.

As demonstrated by this experiment, peak detection may be a viable option for heart

rate estimation under ideal circumstances. The advantages to peak detection is much lower

latency depending on the coefficient length used by the predictor. However, the price for

lower latency is increased error margin for elevated heart rates. It may also be difficult to

robustly extract the actual signal peaks in a noisy environment. A further study on the

PPG waveform as observed from the skin may allow the ability to provide an matched filter
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to aide peak detection.

Beyond the scope of this thesis, it could be proposed to investigate further the use

of filters with peak detectors. The difficult part of this signal is that it does not have a

constant period between samples. Thus there is not only error in the signal but also in the

time domain. In order to minimize the error power from the predictor, one might use a

partial Total Least Squares approach to account for signal as well as sampling error.

2.3 Using the FFT

In any frequency analysis problem the FFT (or DFT) will be one of the first tools used.

In most problems it does a very good job. However, in the case of heart rate estimation

there are two opposing factors: sample rate and frequency resolution. While there are

some cameras capable of capturing hundreds or even thousands of frames per second, most

consumer-grade cameras, which are the focus of this thesis, can only capture at a lowly 30

FPS. This sample rate is more than adequate for the detection of heart rate seeing that

it is well above Nyquist. However, searching for a signal with a narrow bandwidth in a

slowly-sampled channel can be problematic. Consider the following equations:

Fs
N = xhr

60k

Fs

N
60k = xhr. (2.14)

In these two equations Fs is the sample rate, N is the total number of samples (used

in the FFT), k is the frequency bin, and xhr is the calculate heart rate (as measured in

BPM). By fixing k to 1, (2.14) gives the frequency resolution between any two bins in the

FFT output. Using this same equation, if the desired accuracy of the heart rate estimator

were 3 BPM,

Fs
N 60 = 3

30
3 ∗ 60 = N = 600 samples,

the number of samples required for the desired accuracy would take 20 seconds to acquire

at 30 FPS. This is problematic for two reasons. First, in some applications, like exercise, it
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is important to have timely and frequent updates of your current heart rate. The latency to

perform an FFT becomes undesirable in this case. Also, the heart rate cannot be assumed

to be stationary over such a long interval.

One answer to the first problem would be to use a sliding window. As the data comes

in, instead of completely starting a new data set, replace the oldest samples with the most

recent data. This will allow for very rapid updates of the frequency spectrum. It is also

entirely justified to use an update scheme which is composed mostly of the same data used

in the previous estimate due to the averaging nature of the heart rate signal. There is

enough variation between pulses as seen with the peak detector that averaging over the

current and previous values produces the most useful results.

The PPG signal, before it can be inspected for frequency content must first be filtered.

A bandpass filter is applied over the range where a normal heart would be expected (0.6 -

3.5 Hz). This is necessary because the massive DC and respiration rate components wash

out the PPG signal with spectral leakage and spectral spreading otherwise. The data is

also zero-padded up to 1024 in order to allow for a more accurate picture of the frequency

content. The DFT output of the filtered green channel from the ROI, as shown in figure

2.11, readily exploits the dominant heart rate signal.

In order to test its utility, the output of a sliding-window FFT estimator was compared

to the average heart rate reported by a pulse oximeter. The PPG as measured per the finger

by the pulse oximeter was also reported.

Figure 2.12 demonstrates that under ideal conditions simply taking the FFT of the

green channel has a comparable output to the pulse oximeter. This method only differs

from the BSS technique in that it does not require a mixing matrix in order to statistically

separate the red, green, and blue channels [9]. From inspection, the estimator, in most

cases, never differed more than 5 BPM from the true heart rate.

While the sliding windows gives frequent updates, it is still dealing with a quasi non-

stationary signal. While the heart rate, in general, varies only a little over an extended

period, there are times where it transitions very quickly. Such a case might be an adrenaline
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rush when someone is asked a sensitive question. The sliding window, in many ways, acts

as a low-pass filter and would thus miss any “transient” behavior in heart rate.

One approach would be to shrink the FFT window size. This would allow for sudden or

rapid shifts in frequency to surface sooner in the spectrum output. This, however, conflicts

with the original problems of window size and frequency resolution. The common practice

of zero-padding still applies to a smaller window, however this does not technically gain any

frequency resolution. However, the peak-approximation formula (2.11) used with the peak

detector may possibly provide the additional accuracy needed.

It can be seen from figure 2.13 that the short window FFT performed surprisingly well

in the heart rate tracking test. While not quite on par with the full window tracker, it was

exceptionally close considering that it used half of the data as the former and would be

expected to have a frequency resolution of 6 BPM. There are a couple of interesting points

worth noting from the comparison of these two estimators.

First, there appears to be a trade-off between estimating the resolution error using

the peak approximation and introducing noise into the average heart rate. The small

window estimator appears to have a high frequency noise component perhaps due to the

approximation error. It would be expected that this ”noise” would increase if the window

size decreased and the estimator relied more heavily on the peak approximations.

Secondly, there is a noticeable phase lead in the short window estimator. This is due

to the fact that it relies less on previous data which introduced a lag in the update step of

the long window estimator. Intuitively the smaller the window size the closer one comes to

finding the instantaneous heart rate.

2.4 Power Spectral Density Frequency Analysis

One key feature to exploit when modeling the observed PPG signal (assumed to be

stationary) is that it’s periodic. This is significant because it means that the signal will also

periodically correlate with itself. The cyclo-stationary nature of this signal suggests that

examining the auto-correlation function will boost the SNR in the presence of uncorrelated

noise.
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2.4.1 Least-Squares De-Trending

In order to perform a relatively accurate calculation of the autocorrelation function,

the signal should have the large low-frequency artifacts removed as to clearly see the AC

signals of the PPG and noise. This can be done through conventional filtering, however

this starts to become a problem when dealing with a slowly-sampled signal. The group

delay of the filter can be on the order of several seconds, which adds to the latency of the

estimator. One possible avenue to remove the mean and low-frequency signals is to simply

apply a least-squares fit. By forming a subspace spanned by the frequencies that are to be

removed, one can project the data onto the subspace and then remove the projection from

the signal. Sampled low-frequency signals are used to construct the projection matrix

A =

[
a1 a2 ... an

]
where

ai(k) = e
j2πfik

fs

sfit = s−AA-s. (2.15)

The results from (2.15) can be seen in figure 2.14. The columns ofA contain the sampled

sinusoids (both the real and imaginary portions). This de-trending can occur iteratively in

“chunks” or blocks of sequential data to give the appearance of filtering. While the initial

starting phase of the sinusoidal basis functions is inconsequential (just start at zero), the

phase between processing blocks should be continuous in order for the de-trended output to

be continuous. As seen in the spectral plot, the low frequencies are drastically reduced. This

method of “filtering” is just as effective as a high-pass, low-cutoff filter with substantially

less latency.

2.4.2 Observed Periodicity in the Autocorrelation Function

The results from the previous signal de-trending prove very useful for computing the

auto-correlation of a data set. Without the low-frequency removal, the AC ripple of the

PPG signal would be drowned out by the larger also-correlated signals due to respiration
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and motion. The magnitude spectrum of the auto-correlation function, or power spectral

density (PSD) function, can be observed in figure 2.15. As seen from comparing the spectral

output of the de-trended data, the auto-correlation perceptibly removes uncorrelated noise

that is present with the signal of interest. It can also be clearly seen from the time-domain

auto-correlation that a periodic signal is present.

The autocorrelation is simply computed using two windows, one long and the other

short. The length of the shorter window will determine the number of points used to

estimate the auto-correlation whereas the difference in size between the longer and shorter

windows determines the length of the function. The longer window sizes lead to better

accuracy but also lead to more samples being needed. There is a delicate balance in the

size and accuracy of the autocorrelation function. In this case, the longer window size is

400 samples which is approximately 13 seconds if data. The shorter window was 75 sample

which is 2.5 seconds of data. This would mean that after an initial “warm up” period used

to fill the longer window, the auto-correlation and consequently PSD could be computed

every 2.5 seconds. This is a greatly improved latency factor.

2.4.3 PSD Heart Rate Estimator

The next and final step for using the auto-correlation function in heart rate estimation

is to track the frequency changes over time as done in the FFT approach. This will be

referred to as the PSD heart rate estimator. Figures 2.16 and 2.17 show the results of

using this processing on the three different channels. This example vindicates the choice to

exclusively use the green channel when analyzing the PPG signal.

While the other channels (red and blue) carry a hint of the PPG signal, the heart rate

is very dominant and clear in the output of the green channel as seen in figure 2.16. A

visual comparison between the green channel spectrum over time and the average heart

rate reported by the pulse oximeter are compared in figure 2.17.

As seen above, the frequency of the periodic auto-correlation function does indeed

coincide with the PPG signal. There is, however, a noticeable phase lead in the estimator.

This may be due to the fact that the internal calculations of the pulse oximeter rely on real-
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Fig. 2.17: The average heart rate is plotted over the frequency magnitude graph of the
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time filters which introduce a phase delay whereas the current processing utilizes the zero-

phase causal “filtering” from the least-squares de-trending. It is clear from this experiment

that auto-correlation analysis is just as useful in the ideal case for monitoring heart rate as

other contemporary methods.
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Chapter 3

Heart Rate Estimation in Non-ideal Circumstances

Remote heart-rate estimation is not terribly practical when the subject is expected

to remain completely still. A wide variety of applications become readily available when

discussing the need for heart rate detection of persons who are in motion. While the number

of use cases for acquiring the heart rate of moving subjects is great, so is the complexity

of the problem. In order to prepare to minimize the effects of motion-induced noise on the

signal, two motion-compensation techniques will be explored.

3.1 Kanade-Lucas-Tomasi (KLT) Algorithm

The KLT algorithm was developed over 20 years ago in a combined effort to estimate the

rotation and translation of a detected object over a video sequence [19,20]. The procedure

attempts to identify features within a frame corresponding to the lowest eigenvalues in

an image (because they are less like the total image, thus they are distinctive). Between

consecutive frames a rotation matrix is estimated which will minimize the distance of the

respective feature sets. This technique becomes valuable because it lends itself to facial

tracking very easily.

In what has become traditional facial-tracking, classifiers are trained to identify Haar-

like facial features in images. This method was first introduced by Viola and Jones to be

used in cascaded classifiers to quickly and decisively rule out areas of an image which do

not contain a face [21]. This method is most widely used in real-time applications because

of its low computational complexity.

During the second stage of experiments, the same seven subjects from Experiment 1

were allowed to act naturally as they were asked a series of questions which would help elicit

an emotional response. During the course of the interview the subjects’ heart rates varied
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as well as the motion-induced noise. By applying the same tests used in the first stage, it

was discovered whether these techniques are effective in high-noise, practical scenarios.

As shown in figure 3.1, the reference frame (or the window rotated by the KLT algo-

rithm) was used to provide the motion compensation for the inner ROI window used to

extract data. If the compensation was ideal, the ROI would correspond to the same region

of the forehead from frame to frame regardless of how the head moved. The initial facial

frame must first be set via traditional face detection techniques reported on earlier.

Once the frame is set, the eigen-features are computed within the boundaries of the

frame. In subsequent images, the eigen-features are computed within the previous image’s

reference frame. The rotation and translation between the two feature sets are then applied

to the reference frame.

The greatest advantage of using the KLT algorithm is the higher accuracy and al-

most non-existent “jitter” the reference frame had in tracking the face. In other motion-

compensation methods used for this same purpose a lowpass zero-phase filter must be

applied to the path of the window in order for it to smoothly follow the subject. Because

KLT does not rely on filtering, it is very applicable for real-time applications. One other

advantage is that is it can be highly automated. Relying on already robust face detection,

the algorithm does not need any tuning in order work on a variety of different subjects out

of the box. The one caveat is that the initially frame of reference must be set when the

subject’s head is upright and looking directly at the camera.

There are some disadvantages in using the KLT algorithm in practical situations. While

the KLT can adapt to the translational and rotational movements of the subject, it does not

account for left-to-right or up-and-down motions of the head. In some cases, the movements

can be so severe that the reference frame is lost altogether and must be reset.

Additionally the frame of reference is prone to “drifting” and shrinking if the subject

undergoes rapid movements (like jogging in place). This may be due to the higher degree

of feature disparity between two images which causes the estimator to maker larger errors.

Over time these errors result in an offset or skewness of the original frame of reference.
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Fig. 3.1: A captured image of the KLT algorithm tracking a subject. Box 1 indicates
the reference frame which is rotated according to the subject’s motion. Box 2 is the ROI
selected within the window.
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This condition can be circumvented if the frame of reference is periodically reset by a face

detector.

3.2 Video Segmentation

An alternative solution to motion compensation is making use of video segmentation.

Image segmentation is a maturing field which makes use of minimum spanning trees which

allow for similar pixels to be grouped into regions. For more consistent regions, the seg-

mentation is usually run again over the regions to allow for small obscure regions to be

combined with larger ones.

In a recent project undertaken by Grundmann et al., this method was extrapolated to

three dimensions applied across video segments using spatio-temporal trees [22]. In their

approach, the color distances of the adjacent pixels in space and time were used in the

graph construction. As in the previous two dimensional case, the video was processed in a

hierarchical manner to ensure less disparity of regions over time.

In figure 3.2, the original and segmented video frames are placed next to each other

to give a sense for the outcome of video segmentation. It is clear from the image to the

right which area would be used as the ROI. This method of motion compensation is entirely

different from the KLT method with its own set of strengths and weaknesses.

The obvious strength is that, if properly selected, the ROI will always contain the

maximum number of eligible pixels without including bad pixels (like those associated with

hair or eyebrows). It may not provide a mapping of a set of pixels in one time frame to

another time frame, but this is irrelevant in the case where spatial averaging is used. The

greatest advantage of video segmentation is that it will always associate like-pixels to the

same region, almost without any regard to the orientation of the head. That is more than

can be said for the KLT approach.

There are, however, a few disadvantages with this form of motion compensation as well.

It is a little less practical in that the selection of a facial region is not very autonomous.

One could apply a face detector and select the ROI as the largest region above the eyes,

but there are no guarantees that multiple regions won’t fit that criteria. The parameters
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Fig. 3.2: A comparison between original anonymous image (left) and segmented image
(right). The “ROI” marker indicates which shaded area would be used to collect pixel data.

associated with an optimal segmentation are also different depending on the scene of the

video. For example, a subject who is standing in front of a smooth skin-colored backdrop

requires finer segmentation as to not mistakenly include background pixels in the ROI.

There is an optimal level of segmentation that must be carefully chosen for each case.

It was also found in scenarios ranging from little to extreme motion that the regions

had a tendency to “shift” over time. For many subjects, a region which was manually

selected as the ROI could move from the forehead down to the cheek or begin including

non-PPG noisy areas like the eyes. To compensate, as with the KLT method, the ROI

should be periodically checked by a face detector and, if necessary, changed.

3.3 Evaluating the Performance of Experiment 1 Analysis Techniques

During the second stage of experiments, the same seven subjects from Experiment 1

were allowed to act naturally as they were asked a series of questions which would help elicit

an emotional response. During the course of the interview the subjects’ heart rates varied

as well as the motion-induced noise. One two-minute video segment from each participants’

interview was selected which would allow for both motion-compensation approaches to be

used. By applying the same tests used in the first stage, it was discovered whether these
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techniques are effective in high-noise, practical scenarios.

In order to prove the effectiveness of one technique over another, there must be a set of

metrics to compare. It is difficult, however, to find a sensible metric which really describes

how an estimator performs. Most of the analysis, so far, has centered on how closely

the estimator path conforms with the pulse oximeter average heart rate. This naturally

leads one to think in terms of error. Heart rate monitoring is not about finding the exact

instantaneous heart rate but rather about following the trend of heart rate over time. Thus

large deviations in the heart rate would cause a misinterpretation of the trend whereas small

errors are acceptable. The metric of choice, then, will be the percentage of time that the

estimator lies within a given error tolerance.

This metric alone may not encompass the essence of a good heart rate estimator.

After all, one could conceive of an estimator being correct only every other sample yet still

garnering an accuracy score of 50%. The metric of average time of consecutive accurate

readings should also be taken into account in order to determine the sparseness of the

estimator’s accuracy.

3.3.1 Revisiting Peak Detection

One of the main drawbacks of peak detection is it is very sensitive to noise. In order

to observe the periodic signal of interest in the time domain it must be dominant in the

observed data sequence. With such low expectations, the results in Table 3.1 are not

surprising.

Even though the segmentation motion-compensator marginally outperformed the KLT

implementation, both estimators functioned very poorly. In some cases a random number

generator would have better statistics than those found in Table 3.1. This data reflects the

peak detector’s greatest weakness. While delivering rapid and frequent updates, the peak

detector ignore a vast amount of the data available for estimating the signal’s dominant

frequency. Such methods like the FFT use every data sample for frequency analysis but the

peak detector is only concerned with the largest points.

The sudden spikes and drops in the signal due to the changing orientation of the head
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Table 3.1: Accuracy statistics for the peak detector estimator.

Subject
KLT Segmentation

% Accurate Avg. Time % Accurate Avg. Time

1951 6.5% 1.5 s 22.6 % 1.4 s

1952 4.5% 1.0 s 3.4 % 1.0 s

1953 15% 2.33 s 16 % 1.25 s

1954 17% 1.23 s 19 % 1.5 s

create many false peaks which give the estimator a very noise look. Figure 3.3 is a sample

of the estimators’ output compared to the reference heart rate. This demonstrates the need

for using both the accuracy percentage and the correct-consecutive-reading time average

metric when comparing techniques. The shorter average time windows indicate that the

estimator is much more sporadic and less dependable as seen from the previous figure. More

metrics could be used such as the variance in time of the correct consecutive readings, but

for the purposes of this study these two metrics have been found to be both simple and

sufficient.

3.3.2 FFT and PSD Revisited

Frequency analysis has its own set of strengths and weaknesses. As mentioned previ-

ously, the FFT uses all discrete data points in order to assess the spectrum of the signals.

This makes the best use of the data already on hand. There are, however, two detractors

to the signal quality.

First, spectral leakage caused by large, low-frequency signals can distort the frequency

of interest. Despite enormous efforts to the contrary, there is still a great deal of noise due to

the motion of the subject. Motion-compensation, while keeping the ROI fixed regardless of

the subject’s position, cannot account for the changes in lighting. Though lighting variation

may seem subtle, one must remember that the extremely weak PPG signal is even smaller

still.

The second source of spectral noise is due to spectral spreading. Abrupt movements

of the head, even seemingly small ones, cause the data to shift in amplitude. These shifts,

being seen as a step function, cause large harmonic ripples to be seen throughout the
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spectrum. Results were collected for both the sliding FFT and auto-correlation techniques

and displayed in Table 3.2 and Table 3.3. Both types of motion-compensation were used.

The average time of correct consecutive frames in the autocorrelation approach appears

to be much lower than that of the sliding-window FFT. This is due to the fact that the

update time for the PSD estimator is 33 ms as opposed to one full second in the FFT case

which cause that particular metric to appear less appealing.

After experimentation, it is found that the PSD estimator coupled with the segmen-

tation motion-compensator consistently produce the most accurate results. The results,

however, are not far from those of the peak-detection estimator and are still fall very short

of the ideal heart rate estimator.

As seen in figure 3.4, there are abrupt shifts on the order of several pixel values which

cause a great deal of spectral noise in the frequency domain. These shifts can be associated

with movements of the forehead (i.e. raising an eyebrow) or the surface of the head picking

up reflective glare. Having demonstrated this, it comes as no surprise that the large noise

harmonics can dominate the heart rate signal (see figure (b)).

Table 3.2: Accuracy statistics for the sliding-window FFT estimator.

Subject
KLT Segmentation

% Accurate Avg. Time % Accurate Avg. Time

1951 23.7% 5.5 s 24.7 % 7.7 s

1952 0% 0 s 0 % 0 s

1953 4.7% 1.5 s 7.5 % 1.75 s

1954 7.5% 1.75 s 2.2% 2 s

Table 3.3: Accuracy statistics for the sliding-window PSD estimator.

Subject
KLT Segmentation

% Accurate Avg. Time % Accurate Avg. Time

1951 20% 0.77 s 30 % 0.92 s

1952 6.1% 0.726 s 1.44 % 0.27 s

1953 4.5% 0.25 s 20 % 0.764 s

1954 10% 0.46 s 16% 1.4 s
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Abrupt shifts also effect the computation of the auto-correlation function. Figure 3.5

shows how large artifacts in the input signal (upper) translates a large, periodic auto-

correlation function (lower). To clarify, the autocorrelation function is represented along

the vertical axis while x axis indicates the time index of the data from which the function

was computed. Thus, by taking a cross-section of the graph with respect to some time

index t one would be left with the autocorrelation associated with that time. This function

is then operated on by the FFT and analyzed for the heart rate frequency component.

In each red box it can be seen that the input waveform experiences some large change

which may appear to be similar to a step or rect function. When the signal is de-trended, the

step function is projected to a large low-frequency harmonic which statistically washes out

the under-lying PPG signal. This then causes the resulting frequency spectrum function to

suffer from the same problems found with the sliding-window FFT. The larger and steeper

the artifact is, the greater effect it has on the PSD output.

3.3.3 Insufficient Techniques

From Experiment 2 it is clear that these simple approaches for uncovering the subtle

PPG signal may have worked well under ideal circumstances but are insufficient for more

real-world practical scenarios. The signal power is simply too weak in most of these noise-

ridden cases. Using basic frequency and statistical techniques are not enough to build a

quality and reliable estimator of the heart rate. These results, although disappointing,

provide a valuable insight in what direction to take next. One must now take this problem

out of the realm of simply analyzing the input signal and place it in that of statistical

models and parameter estimation. To do this problem justice it must be considered in the

light of probabilistic error minimization.
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Fig. 3.4: Comparing the effects of spectral spreading in the output of the sliding-window
FFT heart rate estimator. Figure (b) and (c) represent the frequency magnitude plots
of the respective time-domain windows indicated in Figure (a). Figure (a) represents the
green-channel collected from the ROI using segmentation motion-compensation.
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Chapter 4

A Model-Based Approach

Under realistic circumstances, the heart rate is simply immersed in large quantities

of noise. It is clear that pure analysis of the data is not enough to separate the signal of

interest from the rest of the channel. Experiments 1 and 2 have added insight into the

challenging task at hand. The problem will now be considered in a different light. Consider

the following system level equation which is a combination of (2.3) and (2.6).

xi(t) = hi(t) +mi(t) + n (4.1)

n ∼N(0, σn) i.i.d.

In this model, hi(t) is the discretized PPG signal at pixel i on the forehead. The term mi(t)

represents the underlying motion, lighting interference, and other physiological signals (such

as respiration) all lumped into one signal. The Gaussian random variable n represents the

noise due to the camera electronics. The observation equation is simply put as:

yi(t) = Q(xi(t)) = vi(t) ∈ {0, 1, 2, . . . , 2b − 1}. (4.2)

The function Q(.) represents the quantization of the system variable where b is the number

of bits in the quantizer. The system and observation equations are consistent with those

used in other studies and are certainly not unreasonable. This now provides a framework

for error minimization

4.1 Design Constraints

In these equations, let it first be considered that ui is, in fact, deterministic and not

the output of a random process. This assumption seems reasonable when considering what
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is entailed in ut. Noise due to physiological signals, sudden movements, and illumination

changes are not actually random. From a signal perspective, the sources of this noise appear

to follow a first-order Markov model.

Having determined that there is only one random noise source governing this problem,

it is necessary to identify what constraints must be placed on this system as an attempt is

made to minimize the error between the true signal and the estimate. Three key observations

are made to help formulate an algorithm.

4.1.1 Likelihood Function

It is natural to start with defining a likelihood function which will help determine the

most probable value of the input signal given an observation. The only random signal in

the observation equation is assumed to be Gaussian which means the likelihood function is

of the same distribution. Due to the quantization effect of Q(.), the following formulation

must be made:

P (yi(t) = v|hi(t), ui(t)) = (2πσn)−
1
2

∫ v+ 1
2
−ui(t)−hi(t)

v− 1
2
−ui(t)−hi(t)

e−
n2

2σn dn

= G(v +
1

2
− ui(t)− hi(t), σn)−G(v − 1

2
− ui(t)− hi(t), σn),

(4.3)

where G(., σn) is a zero-mean Gaussian distribution evaluated at the first argument with

variance σn. This expression is easy enough to compute, however there must be another

constraint to help separate hi(t) and ui(t).

4.1.2 System Noise Markovity

As mentioned before, ui(t) is assumed to be first-order Markov. This assumption

drastically reduces the complexity of the algorithm. Some linear combination of the previous

frame’s pixels forms the current frame’s pixels with some additive noise. This leads one to

the following set of equations:
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u(t+ 1) = Au(t) +Bw(t) (4.4)

where w ∼N(0, Qw)

and

u(t) =



u1(t)

u2(t)

...

uM (t)


,

where M is the number of pixels being considered. In this case, the noise can be treated

as an error. The A and B matrices are assumed to be known. To reduce the noise and

improve the estimate of u(t), the following minimization may be considered with respect to

the L2 norm:

û(t) = argmin
u(t)
‖Bw(t)‖22

= argmin
u(t)
‖u(t+ 1)−Au(t)‖22 .

(4.5)

This is a trivial least squares problem to solve. The effect of applying this constraint would

be to “smooth out” all of the AC components in ui(t) making it representative of simply

the combination of all deterministic non-PPG signals in the system.

4.1.3 Signal Predictability

It is reasonably assumed that ht(t) is periodic. Periodic signals can be approximated

by a truncated Fourier series of harmonically-related sinusoids. One fact about sinusoids

is that a linear combination of previous samples can exactly compute future samples. In

other words, they’re predictable.

2L−1∑
k=0

hi(t− k)pk ≈ hi(t+ T ). (4.6)
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In (4.6), T is an arbitrary time constant (not necessarily the period as that is not

given). As a rule of thumb, it should stay relatively small so as to increase the amount of

data that can be used in the minimization. The term pk represents a set of coefficients of

length 2L that also can be estimated in this problem. Finally a set of equations have been

derived which help maximize the likelihood of the input signal as well as separate it into

the interpreted noise and heart rate signals.

4.2 Super Pixel Model

Before attempting to identify a solution for the previous set of equations, there are

some simplifications that must be performed. The first major reduction in the model is to

assume that the heart rate signal hi(t) is in fact uniform across all pixels. While this may

not be a strictly valid assumption as per the discussion on page 15, it does greatly reduce

the complexity of the algorithm which is of greater importance in this experiment.

The other simplification comes by way of sheer data volume. The number of pixels that

can be found on a forehead in HD video is large. That would make the size of the vectors

and matrices used in this minimization unwieldy. In an effort to minimize the number of

samples without having to discard hard-won data, the principle of local pixel-averaging is

employed once again. These local averages of pixels will be referred to as super pixels.

These benefit the model for two reasons.

First, the aforementioned data size is reduced significantly when only considering super

pixels making the problem more computationally feasible. Second, by averaging one gains

an effective resolution which is much higher than the bit depth of the quantizer. With a

sufficient number of pixels, the observed data becomes nearly continuous, thus (4.2) and

(4.3) simply become

yi(t) = xi(t)

= h(t) + ui(t) + n,

(4.7)



52

and

P (yt(t) = xi(t)|h(t), ui(t)) = G(xi(t)− h(t)− ut(t)). (4.8)

The final assumption for this simplified model is to simply approximate u(t+ 1) as

u(t+ 1) = u(t) +Bw(t), (4.9)

which makes for a very simple minimization problem:

û(t) = argmin
u(t)
‖u(t+ 1)− u(t)‖22 . (4.10)

4.3 Gradient Descent Optimization

Despite the efforts made to create the most simplified model, there is no closed-form

solution which allows one to compute h(t) and ui(t) directly. When taking into account

the likelihood, predictability constraint, and Markovity constraint, the solution is simply

intractable.

The easiest solution, in this case, is to use gradient descent to optimize the estimates.

Gradient descent rests on the ability to differentiate some cost function with respect to the

parameters of interest and then advance those parameters in the negative slope direction

(because this is a minimization problem). In creating the cost function, the likelihood

function is modified to use the negative log-likelihood function. The sign change is to

change it from maximization or minimization. The log-likelihood makes differentiation

within Gaussian distributions simple and is justified due to the monotonically increasing

property of logarithmic functions. Let the cost function J be defined as follows:

J(h, U,p, Y ) =−
N∑
i=1

M∑
j=1

1√
2πσ2n

e
1

2σ2n
(yi,j−hi−ui,j)

2

+ λ1 ‖Hp− ht+T ‖22

+ λ2

N−1∑
i=1

M∑
j=1

‖pj(i+ 1)− pj(i)‖22 ,

(4.11)
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where

H =



h(0) h(1) · · · h(2L− 1)

h(1) h(2) · · · h(2L)

...
. . .

...

h(N − 2L) h(N − 2L− 1) · · · h(N − 1)



p =



p(0)

p(1)

...

p(2L− 1)



Y =

[
y1 y2 · · · yM

]

U =

[
u1 u2 · · · uM

]
.

Both λ1 and λ2 are user-defined parameters to ensure equal weighting among the

different constraints. Fortunately, due to the previous simplifications, this cost function is

differentiable. Exploiting this fact, the update equations for both h and ui will appear as:

hk+1 = hk − µ∇hkJ, (4.12)

uj,k+1 = uj,k − µ∇uj,kJ, (4.13)

∇hkJ =
∂

∂hk
J =

1

MN

M∑
j=1

[
1

σ2n
(hk − yj + uj)

]
+ λ1P

TPhk, (4.14)
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and

∇uj,kJ =
∂

∂uj,k
J = (

1

σ2n
+4λ2)uj,k(t)− 1

σ2n
(yj(t)−h(t))−2λ2(uj,k(t+1)+uj,k(t−1)), (4.15)

where

uj =



uj(0)

uj(1)

...

uj(N − 1)


, yj =



yj(0)

yj(1)

...

yj(N − 1)


, h =



h(0)

h(1)

...

h(N − 1)


,

P =



p(0) p(1) · · · p(2L− 1) 0 · · · −1 0 · · · 0

0
. . .

. . . · · · . . .
. . . · · · . . .

. . . 0

...
. . .

. . .
. . .

. . . · · · . . .
...

0 · · · 0 −1


.

Meanwhile, there is a closed-form solution for p since it neither depends on the Markovity-

constraint or likelihood:

pk+1 = 2λ1(H
TH)−1HTht+T , (4.16)

where

ht+T =



h(T )

h(T + 1)

...

h(N − 1)


.
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4.4 Experimentation

This algorithm designed on the simplified system model was put into practice on the

same data sets used in Experiment 1. No formal estimator was built from this algorithm as

there is yet no iterative solution base. The primary focus of this experiment is to implement

the adaptive formula and observe it the input signal is indeed extracted from the observed

samples.

4.4.1 Setup

Ten seconds of data recorded at 30 FPS were collected from each of the super pixels

outlined in figure 4.1. Each super pixel was the average of approximately 12,000 actual

pixels. By experimentation, λ1, λ2, and µ were determine to deliver the optimal results

such that the minimization occurred in a balanced way across all of the constraint factors

and converged the quickest. A reiteration of the parameters:

total number of samples (N) = 300

sensor count (M) = 21

super pixel area = 11800

estimate σn = 0.0266

λ1 = 100

λ2 = 10000

T = 25

L = 10

step size µ = .000025

iterations = 100

Initialization:

U = Y

h = 0
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p = 1
2L



1

1

...

1


.

4.4.2 Results

This gradient-descent algorithm was applied to several Experiment 1 videos, all using

close to the same parameters mentioned under the setup. Figure 4.2 shows the observed

data measured by the super pixel array.

After many iterations, the cost function significantly reduced which indicates the algo-

rithm is operating as it was designed. Figures 4.3, 4.4, and 4.5 contain the results of the

algorithm.

From figure 4.5 it is obvious that the PPG signal is indeed present marking this exper-

iment as a success. The fundamental frequency and its harmonics correspond to a 60 BPM

which is exactly the heart rate associated with this particular data set. The noise data

U(t) appears to have captured the powerful low-frequency underlying noise while rejecting

the AC periodic signals. While the heart rate was not hard to compute using traditional

analysis in experiment 1, the model-based approach makes one important point: there is

merit to solving the problem of remote heart rate estimation using intelligent models as

found in other mature fields.

This experiment demonstrates that perhaps the answer to tracking heart rate in sce-

narios where conventional methods fail lies in accurate system modeling and minimization.

The ability to make a reasonable heart rate estimate in the presence of great amounts

of noise is out of reach with current analysis techniques. By moving the art of the field

into using proven algorithms designed for dealing with noise such a the Kalman filter, the

insurmountable challenge may actually become achievable.
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Fig. 4.1: A 3 by 7 pixel grid was used to collect “super pixels” for the algorithm. Four
independent noise samples were taken to estimate σ2n.
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Fig. 4.2: The measured data of the M forehead super pixels is plotted over time.
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Fig. 4.3: The cost function J(h, U,p, Y ) as measured over iterations.
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Fig. 4.4: The estimated 1st-order Markov noise U(t).
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Fig. 4.5: The self-predicting signal h(t) which represents the heart rate is shown along with
its frequency spectrum.
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Chapter 5

Research Conclusion

The goal of this research was to determine what could be learned about estimating

and tracking the human heart rate using a consumer-grade camera. The use cases for this

technology have a vast range which partially motivates the question in the first place. One

can conceive of its utility when wanting to monitor an infant at risk of SIDS without placing

wired sensors around or near the baby’s body. Another might see this in light of security

applications by using the heart rate from cameras as a preliminary lie detector. There

are various ways in which the solution to this difficult problem might find itself in medical,

research, and industrial cases alike. The advances in computer vision and remote biometrics

further adds value to this field.

The novelty of remote heart rate tracking has encouraged several new algorithms in

recent years. All of these algorithms, while working very well in some circumstances, have

certain deficiencies which were addressed in this research. It was a goal to help reduce the

latency of the heart rate update which plagues every Fourier-based estimator. While this

was accomplished using peak-detection methods, there was a trade-off with the estimate

reliability.

Motion compensation was also addressed which helps to acquire the signal of interest

and also reduce the noise due to the subject’s movements. The two techniques explored,

KLT and video segmentation, were found to be viable options for tracking the ROI. The

use of such trackers in heart rate estimation has never been examined before this study.

It was also discovered that heart rate estimation based purely on band-pass filtering

and spectrum analysis is simply insufficient for tracking the heart rate in most practical

scenarios. A model-based approach, while not thoroughly explored, was deemed to be a

viable option for heart rate extraction in the most generic sense. From Experiment 3 it
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became clear that an alternative method exists which does not rely upon temporal filters

to remove the noise. It has been identified that a more thorough examination of the PPG

system model may help improve upon the model’s accuracy and even make it robust in

areas where conventional analysis-based estimators fail.

In conclusion, the world is rapidly changing and so is the way in which information

is collected. The rapid growth of inexpensive cameras has prompted their innovative uses

in ways which were never before imagined. The field of remote photoplethysmography is

itself a very recent and challenging field. If mastered, it could espouse great change in

the respective areas of the medical, security, and exercise communities. This study may

not have satisfied the unanswered questions, but it has provided a well-needed step in the

advancement of the art.
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