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ABSTRACT

A Study of the Dayside High-Latitude Ionospheric Electrodynamics

During Extended Solar Minimum

by

Janelle V. Jenniges, Doctor of Philosophy

Utah State University, 2015

Major Professor: Dr. Jan J. Sojka
Department: Physics

The high-latitude electric field fall-off region connects convection in the polar cap to

the region where ring currents modify the penetration electric field equatorward of the polar

cap boundary. This region is often overlooked because it falls between the limits of low-

latitude and high-latitude ionospheric models. However, penetrating electric fields cause

large changes in ion composition; and therefore, correctly modeling the electric fields and

plasma drift in this region aids in correctly specifying the ionosphere. Many ionospheric

models use the Kp index as a physical driver, and so the latitude dependence of the plasma

drift in the fall-off region was investigated as a function of Kp using Defense Meteorolog-

ical Satellite Program ion drift data from the 2007–2010 solar minimum. Both the dusk

and dawn sectors were analyzed and fit to analytical functions describing the fall-off with

decreasing latitude. The latitude dependencies were found to differ in the dusk and dawn

sectors with a factor of two increase in the expansion of the duskside polar cap radius and

auroral region over the dawnside. Additionally, the low-Kp polar cap radius was found to

be five degrees smaller than the radius currently used in simple ionospheric models.

(172 pages)
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PUBLIC ABSTRACT

A Study of the Dayside High-Latitude Ionospheric Electrodynamics

During Extended Solar Minimum

Janelle V. Jenniges

This research investigated how electric fields, currents, and charged particles in Earth’s

high-latitude ionosphere respond to changing input from the sun. The ionosphere surrounds

the entire Earth, makes radio communication possible, and can significantly degrade satel-

lite communications and geo-positioning (navigation) capabilities. Many satellites fly within

the ionosphere where a solar storm can cause increased satellite drag or destroy onboard

electronics. Therefore, understanding and correctly predicting the behavior of this envi-

ronment is important, and the results from this research will be used to improve current

ionospheric models.

A relationship between the level of magnetic activity on Earth due to changes in the

solar wind on and the response of Earth’s high-latitude ionosphere was determined by

examining ion and electron flow patterns in the polar cap and auroral regions. The data was

obtained from a sun-synchronous polar-orbiting Defense Meteorological Satellite Program

(DMSP) satellite during a time of quiet solar activity. Using this data, averaged patterns

of the high-latitude ion and electron flow were created to examine the behavior of the polar

cap. For very low geomagnetic activity, the polar cap radius was found to be five degrees

smaller than the polar cap radius currently used in simple ionospheric models.

Additionally, each orbit was considered individually to obtain an analytic representa-

tion of the velocity profile. This was done separately in both the dawn and dusk regions

to study how the rapidly decreasing ion and electron flows are related to the geomagnetic

activity. A much larger than expected asymmetry was found between the dusk and dawn

sectors with the dawn sector flows decreasing twice as fast as the dusk sector flows.
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CHAPTER 1

INTRODUCTION

1.1. Motivation

The ionosphere is the region in the Earth’s atmosphere that consists of a weakly ion-

ized plasma and is a very dynamic medium where both long-term, global-scale patterns

and short-term, small-scale perturbations exist. The primary physical drivers for the iono-

sphere include electric and magnetic fields, current systems, and neutral winds that vary

depending on solar cycle, season, time of day, location, and geomagnetic activity. Models

are used to predict how changes in these drivers change the structure and characteristics

of the ionosphere. Realistic output from these ionospheric models can only be obtained by

accurately specifying the physical drivers.

Electric fields are the primary driving force for high-latitude ionospheric plasmas, but

a complete description of the evolving global ionospheric electric field is still not available.

Therefore, accurate measurements of the electric fields and the resulting plasma drift are

critical in understanding and creating models of the ionospheric processes. Electric fields are

also important in ionosphere-magnetosphere coupling at mid and high latitudes; creating a

dynamic model of this connection depends on a thorough understanding of the convection

electric fields.

Understanding and being able to predict the structure and dynamics of the ionosphere is

important because the characteristics and dynamics of the ionosphere affect radio frequency

propagation used for communication. Systems such as surveying and navigation systems

that use global positioning system satellites, over-the-horizon radars, high-frequency com-

munications, and the Federal Aviation Administration’s Wide Area Augmentation System

are thus affected by changes in the ionosphere [Schunk et al., 2004].

The high-latitude convection pattern has been extensively studied and modeled by

Volland [1978], Heppner and Maynard [1987], Heelis et al. [1982], Weimer [1995], and

many others. Recent work using the Super Dual Auroral Radar Network (SuperDARN)

and Incoherent Scatter Radars (ISR) has resulted in large-scale statistical ionospheric con-
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vection patterns [Cousins and Shepherd , 2010], a technique to estimate the reconnection

electric field as a function of local time [Cowley and Lockwood , 1992], and the observation of

large-scale ionospheric flows in the nightside ionosphere during relatively quiet geomagnetic

conditions [Senior and Blanc, 1984]. Another state-of-the-art model is the Assimilative

Mapping of Ionospheric Electrodynamics (AMIE) model that can be run in a real-time

mode and synthesizes various direct and indirect observations to estimate the time-varying

distributions of electric fields, currents, and conductivities over the entire polar ionosphere

[Richmond , 1992]. While all of these models have contributed to the understanding of the

high-latitude convection pattern, there is still much to be learned.

The convection pattern is highly dependent on geomagnetic activity and the orientation

of the interplanetary magnetic field (IMF), but less is understood about the dependencies of

the midlatitude fall-off region. This region connects the high-latitude polar cap convection

to the region where the ring currents modify the low-latitude penetration electric field

equatorward of the polar cap boundary. The electric field in this midlatitude region is

typically modeled in a simple manner, but magnetosphere-ionosphere dynamics may create

structure in this region that has previously been neglected by ionospheric models.

The goal of this dissertation is to examine the plasma drift in the midlatitude fall-off

region and to classify the fall-off using the geomagnetic index. This classification will enable

ionospheric models such as the Time Dependent Ionospheric Model (TDIM) that use the

Kp index as a primary driver to use the best representation of the high-latitude convection

pattern. Fine tuning the dayside electrodynamics in ionospheric models should result in a

more accurate representation of ionospheric conditions and thus, a more reliable prediction

of ionospheric impacts on communication and navigation systems.

1.2. Method

This study uses satellite measurements of the high-latitude plasma drift obtained from

the Defense Meteorological Satellite Program (DMSP) during the 2007–2010 solar minimum

period to examine the high-latitude convection pattern. The temporal and spatial resolution

of the DMSP data, approximately 14 daily polar passes with a 101-minute orbital period
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spread across a swath of magnetic latitudes and local times due to the satellite’s sun-

synchrony, requires that a climatological evolution of the convection pattern with IMF, Kp,

and season be studied versus instantaneous changes in the convection pattern.

In a method similar to Weimer [1995], average convection patterns are obtained for

different solar and geomagnetic conditions. The velocity profile in the fall-off region from

these convection patterns is compared against other empirical models and is used to dis-

tinguish patterns associated with the solar and geomagnetic conditions. Following this, a

completely different approach is used where each individual orbit is fit to a function, and

the free parameters are determined by the fit, which are investigated for trends with Kp.

In this dissertation, Chapter 2 provides an overview of the ionosphere, the plasmas-

phere, and the high-latitude electric field and plasma convection. DMSP instrumentation

for ion drift measurements are also described, and shortfalls in the data collection are out-

lined. Finally, various polar cap convection models are described. The processes used to

prepare the data for analysis and to transform the coordinate system from the satellite

frame of reference to a flat Earth Cartesian frame are discussed in Chapter 3. Chapters 4–6

discuss the results of the dissertation. In Chapter 4, the data is binned based on solar and

geomagnetic conditions and then averaged to obtain convection patterns. These averaged

convection patterns are then compared to other empirical models and are used to obtain

a relationship between the geomagnetic index and the polar cap radius. Chapter 5 shows

the results of fitting three different functions to the duskside fall-off velocity profiles, while

Chapter 6 shows the classification of the orbits in the dawnside fall-off region. Both Chap-

ters 5 and 6 show Kp trends computed by analyzing various parameters against Kp for

each function. Finally, Chapter 7 summarizes the results and outlines future work to be

accomplished.
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CHAPTER 2

BACKGROUND

2.1. Overview

The upper ionosphere is a very dynamic medium where both regular global patterns

and short-term, small-scale perturbations exist. Identifying the energy sources and processes

that generate these motions is tightly coupled to the determination of the plasma velocities

and electric fields. It is desirable to obtain electric field and plasma drift measurements

from a satellite because the geographic and temporal resolution is significantly better than

any similar ground-based measurement, and many correlative measurements can be made

simultaneously on the same satellite. These measurements can then be used to create

electric field and polar cap convection models that can be used to describe the E × B

driver for ionosphere dynamics. A short summary of the ionosphere and plasmasphere is

given in section 2.2, while the processes that create the high-latitude electric fields and

plasma convection are described in section 2.3. Section 2.4 covers DMSP and the onboard

instruments used to measure ion drift. Finally, a variety of polar cap convection models are

outlined in section 2.5.

2.2. The Ionosphere and Plasmasphere

The ionosphere is a quasi-neutral ionized plasma that is created by photoionization of

the neutral atoms and molecules in Earth’s atmosphere by solar ultraviolet radiation and

extends from about 50 km to beyond 2000 km [Schunk and Nagy , 2009]. The plasmasphere is

the region between the ionosphere and the magnetosphere consisting of low energy (≤ 1 eV),

relatively dense (10 to 103 cm−3) plasma that begins where H+ becomes the dominant

ion and ends at 3–6 Earth radii, depending on geomagnetic activity [Tascione, 1994]. In

general, the plasmasphere lies beneath the magnetic field line that maps to ±60◦ magnetic

latitude at the surface. Both the ionosphere and plasmasphere are characterized by the

vertical structure of the ion and electron densities. The structure and characteristics of

the ionospheric regions are highly dependent on solar cycle, season, time of day, geographic
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location, and geomagnetic activity. Figure 2.1 shows typical ion density profiles in the

ionosphere and plasmasphere as measured by the incoherent scatter radar at Arecibo, Puerto

Rico (18◦ N, 67◦ W). The top panel is during the day at 1436 local time (LT) and the bottom

panel is at night (2230 LT). The transition height from O+ to H+ changes from day to night

and also changes with season and geomagnetic activity. At night and during winter, the

light ions become the dominant species at much lower altitudes. As will be discussed in

section 2.4, this significantly influences the ability to measure the ion drift.

Figure 2.1. Altitude profile of typical ion densities. Daytime (1436 LT) densities are shown
on the top and nighttime (2230 LT) densities are shown on the bottom. Measurements were
taken with the incoherent scatter radar at Arecibo, Puerto Rico. Used with permission from
Hagen and Hsu [1974].
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Production, loss, and transport control the ion and electron density distributions in the

ionosphere and plasmasphere. These three processes can be described and modeled using the

ion and electron continuity and momentum equations (equations 2.1 and 2.2, respectively).

The continuity equation equates the time rate of change of the density (dns/dt) to the

combined effects of transport (−∇ · nsVs), production (Ps), and loss (Ls) of a species, s.

The continuity equation is

dns
dt

= − (∇ · nsVs) + (Ps − Ls), (2.1)

where ns is the density of the species and Vs is the velocity of the species. When thermal

diffusion, Coriolis force, and centripetal force are all assumed to be negligible, the general

momentum equation is given as

ρs
DsVs

Dt
= −∇ps −∇ · τs + ρsg + nsqs [E + Vs ×B] +

∑
t

ρsνst (Vt −Vs) , (2.2)

where the subscripts denote the species, s, and the target, t, ρs is the mass density, Ds/Dt

is the convective derivative, ps is the pressure, τs is the stress tensor, g is gravity, qs is the

charge, E and B are the electric and magnetic fields, respectively, and νst is the collision

frequency.

In general, transport is negligible below 200 km and the change in ion concentration

is described only by production and loss mechanisms and the ionosphere is in a state of

photochemical equilibrium [Schunk and Nagy , 2009]. Above 200 km production and loss

no longer dominate the continuity equation and transport must be included. In the top-

side ionosphere (above 300 km) and plasmasphere, production and loss are negligible and

transport is the dominant process that controls ion and electron concentrations.

The ion transport can be simplified into two cases; motion parallel to (along) the

magnetic field, and motion perpendicular to (across) the magnetic field. The overall plasma

motion is a combination of these two motions and can be described by looking at the

approximations, simplifying assumptions, and solutions to equation 2.2.
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For motion along the magnetic field, the diffusion approximation (steady state and

subsonic), charge neutrality (ne = ni), and zero current (neVe = niVi) assumptions are

made, resulting in the ambipolar diffusion equation

Vi|| = −Da

[
1

ni
∇||ni +

1

Tp
∇||Tp −

mig||

2kbTp
+

(∇ · τi)||
2nikbTp

− mi

2kbTp
νinVn||

]
, (2.3)

where kb is Boltzmann’s constant, the subscript n is for the neutral gas, and || denotes

flow parallel to the magnetic field. The ambipolar diffusion coefficient (Da) and plasma

temperature (Tp) are given as

Da =
2kbTp
miνin

(2.4)

Tp =
Te + Ti

2
. (2.5)

Equation 2.3 shows the ions move along the magnetic field with the neutral wind subject

to density gradients, temperature gradients, gravity, and stress forces.

The two dominant forces in this equation are the parallel density gradient (∇||ni) and

the thermospheric neutral winds (Vn||) [Schunk and Nagy , 2009]. The density gradient

points from low to high densities. For O+ below the ionization peak, the gradient is in

the upward direction because O+ is not present in the lowest portions of the ionosphere.

However, the diffusion coefficient is proceeded by a negative and the resulting motion due

to diffusion is down the field lines (toward the Earth). In the upper ionosphere, the density

gradient is downward during the day toward the ionization peak and upward at night due

to the decay of the peak. The resulting flow due to diffusion in the upper ionosphere is then

upward during the day and downward at night.

In the high-latitude ionosphere, where the Earth’s magnetic field is open (or the field

lines extend far into the magnetotail), upward diffusion of the light ions (H+ and He+)

essentially leads to an escape of the light ions from the ionosphere. This is known as the

polar wind with light ion velocities parallel to the magnetic field reaching several kilometers

per second [Kelley , 1989]. This typically leaves the heavier O+ ion as the dominant ion
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below 1000 km in the polar ionosphere. One feature related to the polar wind is the

light-ion trough; this is a region at a fixed altitude where the densities of the light ions

decrease with increasing latitude. An example is shown in Figure 2.2 where the top panel

shows the total density and the bottom panel shows the fractions of O+, H+, and He+

measured by DMSP in the northern hemisphere in September 2007. An abrupt decrease

in the light ion density marks the equatorward boundary of the trough and is typically

between 55◦ and 65◦ magnetic latitude [Kelley , 1989]. The trough is created when plasma

in the outer plasmasphere is convected away due to enhanced magnetospheric electric fields

during geomagnetic storms and substorms. Upward ionospheric diffusion then occurs both

day and night in an attempt to replace the lost plasma. The low-latitude plasmasphere

refills quickly due to the small volume within closed magnetic field lines while the upper

ionosphere at high latitudes is always in a partially depleted state due to the open field

lines [Schunk and Nagy , 2009].
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Figure 2.2. Example of the light ion trough. Ion densities were measured by DMSP in
September 2007. The top panel shows the total ion density and the bottom panel shows
the relative contributions of O+, H+, and He+.
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The thermospheric neutral winds are primarily controlled by solar heating. In general,

the thermospheric winds are directed radially away from the subsolar point with daytime

meridional winds blowing toward the poles and nighttime meridional winds blowing toward

the equator. The winds are weak near the subsolar point and increase in magnitude as

the distance from the subsolar point increases. Weak daytime winds are due to higher

ion concentrations creating increased ion drag on the neutrals. In the midlatitude region

where the field lines are tilted with respect to the Earth’s surface, the neutral winds push

the plasma down the field lines to lower altitudes during the day (poleward flow) and up

the field lines to higher altitudes at night (equatorward flow). The movement to different

altitudes and latitudes can significantly change the ion concentration.

Motion across the magnetic field can be looked at in a manner similar to motion along

the magnetic field. After transforming to a reference frame moving with the neutral wind,

the plasma flow across the magnetic field (indicated by the ⊥ symbol) is given by the

following equation:

Vs⊥ =
1

1 +K2

[
−Ds

ps
∇⊥ps +

1

νsn
g⊥ + µsE⊥

]
+

1

1 + 1/K2
[Vp + Vg + VE ] , (2.6)

where

K =
ωcs
νsn

is the gyrofrequency to collision frequency ratio, (2.7)

Ds =
kbTs
msνsn

is the diffusion coefficient, (2.8)

µs =
qs

msνsn
is the mobility, (2.9)

and

Vp =
−1

nsqs

(∇⊥ps ×B)

B2
is the gradient drift, (2.10)

Vg =
ms

qs

(g⊥ ×B)

B2
is the gravitational drift, (2.11)

VE =
(E⊥ ×B)

B2
is the electrodynamic drift. (2.12)
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The particle charge, qs, in Equations 2.10 and 2.11 indicates electrons and ions drift across

the magnetic field in opposite directions in the presence of pressure gradients and gravity,

while the lack of the particle charge in equation 2.12 requires they drift together in the

presence of an electric field that is perpendicular to the magnetic field.

At low altitudes the magnetic field strength is small compared to the collision frequency,

K → 0, and the second term in equation 2.6 becomes negligible. This occurs because of

the high concentration of neutrals in the lower atmosphere. The resulting plasma motion

is perpendicular to the magnetic field, but in the same direction as the force causing the

motion. At intermediate locations where K ≈ 1, the plasma motion is a combination of the

motion perpendicular to the magnetic field and parallel to the force [Kelley , 1989].

At high altitudes where collisions are negligible, K → ∞, and the first term in equa-

tion 2.6 drops out leaving only motion perpendicular to both the magnetic field and the

force; that is,

Vs⊥ = Vp + Vg + VE . (2.13)

Typically the drifts due to pressure gradients and gravity are small at altitudes above 150 km

and the electrodynamic drift dominates [Schunk and Nagy , 2009]. Therefore, in this regime,

we can approximate the motion of the ions perpendicular to Earth’s magnetic field with the

simple relation

V⊥ =
(E ×B)

B2
. (2.14)

At low latitudes, the electrodynamic drift is caused by the dynamo electric field created

in the E region of the ionosphere and transmitted along the highly conductive dipole field

lines to the F region. This electric field is generated by the thermospheric winds as the ions

are dragged across the magnetic field. The dynamo electric field is eastward during the day

with a resulting upward E ×B drift; the opposite occurs at night with a westward electric

field and a downward drift [Schunk and Nagy , 2009]. The daytime combination of upward

drifts and downward diffusion is responsible for the ionization peaks on both sides of the

geomagnetic equator known as the equatorial fountain or anomaly (Figure 2.3).
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Figure 2.3. Formation of the equatorial anomaly. The high electron density is a result of
an upward electrodynamic drift and diffusion down the magnetic field lines.

At high latitudes the electric field that drives the electrodynamic drift is created by

the interaction of the solar wind and the Earth’s geomagnetic field. In general, a two-cell

convection pattern is created at high latitudes with the dawn-to-dusk electric field driving

the plasma sunward across the polar cap with a return flow (antisunward) equatorward of

the polar cap. This process will be discussed in more detail in the following section.

In addition to the continuity and momentum equations, the temperature of each species

due to heat transport is required to accurately describe the true nature of the ionosphere.

This temperature change is described by the energy equation:

Ds

Dt

3ps
2

= −5

2
ps (∇ · us)−∇ · qs +Qs − Ls +

∑
t

ρsνst
ms +mt

3kb (Tt − Ts) , (2.15)

where qs is the heat flow, Qs is the local heating rate, and Ls is the local cooling rate (other

variables described previously). The left side of the energy equation shows the change in

energy due to both time and transport. The right side is a combination of compressional

heating, divergence of heat flow, local heating and cooling, and kinetic energy transfer

during elastic collisions.



12

Ion-neutral collisions are a significant source of ion heating at high latitudes. These

collisions can modify the thermosphere circulation, temperature, and composition, which in

turn affects the ionosphere. The amount of energy exchanged is dependent on the relative

velocity between the ion and neutral particles, which can be large due to the electrodynamic

drift of the ions. Ion drag on the neutrals will eventually set the neutral gas in motion as

well, resulting in an equalization of the ion and neutral velocities in steady state. Therefore,

significant ion frictional heating typically occurs at high latitudes just after the plasma

convection pattern changes. Elevated ion temperatures alter the ion composition through

temperature-dependent chemical reaction rates. According to Schunk and Nagy [2009], this

indicates that in regions where the ion drift is large, the associated frictional heating should

lead to a rapid conversion of O+ into NO+. Additional information on ionospheric processes

can be found in Appendix A.

2.3. High-Latitude Electric Fields and Plasma Convection

Electric fields are one of the primary driving forces for plasmas in the upper iono-

sphere. In the Earth’s high-latitude ionosphere, ion and electron motion is dominated by

the electrodynamic drift as shown in section 2.2. A dynamo electric field is created in the

magnetosphere by the movement of the solar wind across the Earth’s open magnetic field

lines (Figure 2.4) and is governed by the relation Ed = −Vsw ×B where Ed is the dynamo

electric field, Vsw is the velocity of the solar wind, and B is the Earth’s magnetic field.

This dawn-to-dusk electric field maps down along geomagnetic field lines into the

Earth’s polar cap region where it interacts with ionospheric plasma. The existence of a

convection electric field across the polar cap indicates there is a charge buildup on the

boundary between open and closed geomagnetic field lines. The charge is positive on the

dawnside and negative on the duskside. These charges act to induce electric fields on nearby

closed field lines that are opposite in direction to the convection electric field [Schunk and

Nagy , 2009]. These electric fields are located in the auroral zone and act to move the plasma

in a sunward direction. Figure 2.5 is an idealized diagram of the high-latitude electric fields

and the resulting plasma drift. Note the electric fields are always directed perpendicular
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B

Magnetopause

Figure 2.4. Schematic diagram of the dynamo electric field (Ed). The dynamo electric
field is created by the solar wind dynamo, maps down to ionospheric altitudes along the
highly conducting geomagnetic field lines, and causes the plasma to drift in an antisunward
direction.

to the slightly tilted magnetic field lines in the polar regions. The absence of electric fields

parallel to the magnetic field indicates very high conductivity along the field lines so they

may be considered conducting wires or equipotential lines.

When the electrodynamic drift is the dominant force on the ions, the lines of equipo-

tential in the high-latitude ionosphere also correspond to streamlines of plasma drift. In the

most ideal representation, and with a southward directed IMF, the flow pattern exhibits a

two-cell pattern, with antisunward flow over the polar cap and return (sunward) flow in the

polar oval. Therefore, the dashed lines in Figure 2.5 represent not only lines of equipoten-

tial, but also the plasma drift. When the IMF is northward, the connection between the

Earth’s magnetic field and the solar wind is drastically different. Since Bz is northward

roughly half of the time, many of the resulting flow patterns are very different from the

idealized two-cell pattern (see section 2.5.)

The field lines that separate the oppositely directed electric fields in the polar cap

and polar oval contain field-aligned currents (FACs) that flow between the ionosphere and

magnetosphere. The current is downward into the ionosphere on the dawnside, across the

polar cap from dawn to dusk, and then up the magnetic field lines away from the ionosphere

on the duskside. The currents close in the magnetosheath and the entire system is analogous
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Figure 2.5. Idealized diagram of the high-latitude ionospheric electric fields (Ed and Ea)
and the resulting plasma drift (red flowlines). In the most ideal case a two-cell pattern
exists with antisunward flow in the polar cap and return (sunward) flow in the polar oval.

to a magnetohydrodynamic generator, where the solar wind is the conductor connected by

the FACs to the ionosphere, which is the load [Kelley , 1989].

Typical field strengths during quiet times are on the order of 10 mV/m in the polar

cap and 30 mV/m in the polar oval [Prölss, 2004]. The electric field is integrated across

the polar cap along a line from 0600 magnetic local time (MLT) to 1800 MLT to yield a

cross-cap potential; quiet-time electric fields yield a cross-cap potential of more than 30 kV

while the cross-cap potential during a strong geomagnetic storm can reach as high as 120 kV

[Weimer , 1995]. Typical drift velocities associated with these quiet time field strengths are

nearly 200 m/s in the polar cap and 600 m/s in the polar oval. Storm time drift velocities

can reach over 1500 m/s.

At latitudes equatorward of the oval, the electric field strength is usually quite small

(< 5 mV/m) due to the shielding of the inner magnetosphere. In the outer magnetosphere,

a cross-tail convection electric field directed oppositely to the general dawn-to-dusk electric
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field is produced by pressure gradients associated with the inner edge of the plasmasheet and

the region-2 Birkeland currents. The region-2 currents, which are generally downward into

the ionosphere on the dusk side and upward on the dawn side, form a closed loop between

the ionosphere and magnetosphere. Far from Earth, the cross-tail convection electric field

is dominant, but in the inner magnetosphere where the Birkeland currents are strong, the

cross-tail convection electric field and the dynamo electric field nearly cancel each other,

leaving the inner magnetospheric electric field much weaker than the outer field.

One exception to this is during the initial phase of a geomagnetic storm, which can cause

variations in the region-2 currents and allow penetration electric fields to reach the low to

midlatitudes at up to 10 mV/m, which is twice their normal amplitude [Fejer , 2003]. Even

during quiet times, small-scale structure within the FACs can decrease the shielding effect

and allow penetration of electric fields to lower latitudes. These penetration electric fields

generate low-latitude zonal plasma drifts and can significantly alter the ion composition.

Magnetospheric plasma flowing toward the Earth encounters an increasing magnetic

field strength. Gradient and curvature drifts are important in this region [Prölss, 2004]

and depend on the charge of the particle, so a zonal charge separation occurs with positive

charges at dusk and negative charges at dawn. This creates a dusk-to-dawn electric field in

the inner magnetosphere, which tends to cancel out the convection electric field. The inner

magnetosphere is, therefore, shielded from the magnetospheric electric field, and the plasma

flows around this region. This shielding only operates on long timescales, and fluctuations

of the convection electric field with periods shorter than several hours (as with geomagnetic

storms) can penetrate to low latitudes [Kelley , 1989].

Since the convection electric field is reduced to almost zero at low latitudes, the electric

field, due to the rotation of the Earth, becomes comparable to the convection field equator-

ward of the oval. Including corotation causes plasma drift trajectories that are significantly

different from the two-cell pattern. The most significant difference is on the duskside near

60◦ where the corotation and convection electric fields oppose each other and create com-

plex drift trajectories. Figure 2.6 shows drift trajectories for a typical two-cell pattern with
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Figure 2.6. Plasma drift trajectories with corotation and convection electric fields. The
trajectories are for a symmetric two-cell convection pattern; the circulation times for each
trajectory are shown at the bottom. Used with permission from Sojka et al. [1979].

a cross-cap potential of 64 kV. Plasma flowing on trajectories 1 and 2 essentially corotate

with the Earth. Just poleward of this, a stagnation region exists where the corotation and

convection electric fields are opposed. Plasma in this region (trajectory 4) can take more

than a day to completely circulate the Earth. Plasma that is completely contained within

the polar cap (trajectory 3, 5–8) has short circulation times because the trajectories are

short and the electrodynamic drift speeds are high. Corotation is removed from the ion

drift before constructing the polar cap convection patterns.

Coupled with the location of the solar terminator, the varying plasma drift in different

regions of the high-latitude ionosphere causes various ionospheric features. Typically, anti-

sunward flow acts to carry high-density day side plasma into the polar cap. During winter a

large portion of the polar cap is in darkness. When the plasma drift is slow, after the plasma
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convects across the solar terminator it has ample time to decay due to lack of sunlight and

recombination processes. A polar hole is formed just poleward of the night side auroral

oval due to this significant decay. As the plasma enters the oval, densities increase because

of impact ionization due to precipitating electrons. When the antisunward plasma drift is

high, the plasma moves quickly across the polar cap only decaying slightly and a tongue of

ionization is formed that extends across the polar cap form the day side to the night side.

Another interesting winter feature is the midlatitude electron density trough. This feature

occurs just equatorward of the night side auroral oval and is a region of low electron density

that has a narrow latitudinal extent, but is extended in longitude [Schunk and Nagy , 2009].

Plasma trapped in the stagnation region is in darkness for extended periods of time and

leads to very low electron densities.

The convection electric field is much more complicated than a simple two-cell convec-

tion pattern. With the significant influence of the plasma drift on ion concentration, it is

important to understand the dynamic nature of the polar cap convection pattern for all

variations of solar cycle, season, MLT, and geomagnetic activity. The convection electric

field is strongly correlated with geomagnetic activity, Kp, and it depends on the solar wind

dynamic pressure and orientation of the IMF (Bx, By, Bz) [Schunk and Nagy , 2009]. Dur-

ing the last 30 years, a concerted effort has been made to develop empirical and statistical

patterns of the polar cap convection pattern for a wide range of conditions. Both electric

field and ion drift measurements made from ground-based radars and satellite-borne instru-

ments have been synthesized, binned, averaged, and fit with analytical expressions in an

attempt to represent these patterns. The following section will discuss how in situ ion drift

measurements are made via polar orbiting satellites and section 2.5 will describe some of

the initial and more recent convection models.

2.4. Ion Drift Measurements

There are many different methods available to measure the high-latitude electric fields

and plasma convection. Direct measurement of the electric fields is possible with electric

field probes on polar orbiting satellites [e.g., Aggson and Heppner , 1964; Dolezalek , 1964;
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Kavadas and Johnson, 1964; Pfaff et al., 2010; Wygant et al., 2013]. The ionospheric

plasma convection can then be inferred from the electric field measurements. Alternatively,

the drift velocity of the ions can be obtained directly using ion traps [e.g., Hairston et al.,

2010; Hanson and Heelis, 1975; Hanson et al., 1981, 1993; Klenzing et al., 2008; Knudsen,

1966]. Additionally, ground-based radars, both coherent and incoherent scatter radars, can

be used to measure the drift velocity using the Doppler shift of reflected radio signals [e.g.,

Alcayde et al., 1986; Cousins and Shepherd , 2010; Heinselman and Nicolls, 2008; Hysell

et al., 2009; Lester , 2013; Peymirat and Fontaine, 1997]. Ion drift measurements from

the retarding potential analyzer (RPA) and ion drift meter (IDM) onboard the DMSP are

utilized in this study. The following sections discuss these ion traps including some of the

advantages and disadvantages of each.

2.4.1. Retarding Potential Analyzer

The planar retarding potential analyzer measures ion currents to determine the ion drift

velocity parallel to the satellite ram direction. The term planar refers to the configuration of

the grids within the sensor and to the aperture plane of the sensor face. Given an aperture

with area A that is perpendicular to the x̂ direction, the current flowing thru the area is

I = ANq

∫ ∞
−∞

dVy

∫ ∞
−∞

dVz

∫ ∞
0

dVx F (V)Vx, (2.16)

where N is the total particle density, q is the fundamental charge, F (V) is the ambient

plasma velocity distribution, and Vx is the particle velocity normal to the aperture. If

the ion velocity distribution is assumed to be Maxwellian, the one-dimensional distribution

function is

F (V) =

√
m

2πkT
exp

[
−mV

2
x

2kT

]
. (2.17)

Because F (V) is independent of Vy and Vz, the expression for the current diverges to

I = ANq

∫ ∞
0

Vx F (V) dVx. (2.18)
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The RPA utilizes an energy filter behind the aperture so only a specific subset of

energies will contribute to the measured current. In practice, this energy filter is a set of

wire mesh grids that are positively biased relative to the instrument ground. A diagram of

a typical RPA is shown in Figure 2.7. The number of grids may vary from instrument to

instrument, but in general the order of the biasing is the same.

The first grid, G1, is the aperture grid and is grounded to shield the external plasma

from potentials applied inside the sensor. G2 is the energy filter and for ion collection is

typically swept through a retarding voltage (RV) from 0 up to 32 volts. A pair of grids are

used instead of a single grid to provide a more uniform potential in the grid plane [Klenzing

et al., 2008]. The suppressor grid, G3, and the shield grid, G4, are both negatively biased

(G3 ≈ −15 V) to repel any incoming electrons and to prevent secondary photoemission

from the collector, respectively.

Figure 2.7. Diagram of the retarding potential analyzer.

Only ions with sufficient kinetic energy will penetrate the retarding voltage grids. Ions

must have a kinetic energy
(
Ex = mV 2

x /2
)

greater than the stopping potential of the retard-

ing voltage (Est = qΦRV ) to pass the energy filter. Additionally, the ions must overcome

the spacecraft potential Φs, which will typically be negative. Therefore, the required ram

energy is Ex = mV 2
x /2− qΦs. This means the required velocity is

Vx ≥
√

2q

m
(Φs + ΦRV ). (2.19)
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In the simplest case where this is the only factor determining what fraction of ions reach

the collector, the transmission function is a step function with

χ(V,Φs,ΦRV ) =


0, Vx <

√
2q

m
(Φs + ΦRV ),

χ0, Vx ≥
√

2q

m
(Φs + ΦRV )

. (2.20)

The transmission function maps the flux outside the instrument to the flux seen by the

collector and is included in the current equation integral:

I = ANq

∫ ∞
0

χ(V,ΦRV )Vx F (V) dVx. (2.21)

Integration of equation 2.21 leads to the analytic form used by Whipple [1959]

I =
ANq χ0 Vx

2

[
1 + erf(βf) +

1

β
√
πVx

e(−β
2f2)

]
, (2.22)

where

β =

√
m

2kT
, (2.23)

f = Vx −
√

2qΦRV /m. (2.24)

Sweeping the applied retarding voltage allows a current–voltage (I–V) curve to be

constructed. For typical orbital velocities in the upper ionosphere, all ions crossing the

aperture plane will reach the collector when no retarding voltage is applied, while a retarding

voltage of 30 volts will restrict collection to ions with mass greater than 60 amu [Heelis and

Hanson, 2013]. This voltage range effectively spans the energy range of all major planetary

ion species. In theory, the velocity parallel to the sensor normal, Vx, is then determined by

using a least squares technique to fit the I–V curve to equation 2.22. The measured current

is the linear sum over all ion species described by equation 2.22. In addition to Vx, the ion

temperature and concentrations are also found using this technique. In practice it can be

difficult to obtain accurate ion concentrations; the error can be reduced if a high-resolution

ion-mass spectrometer is used to determine the relative amounts of ions with nearly the
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same mass (e.g. N+
2 , NO+, and O+). The RPA is used to determine the absolute total

concentration for each of the widely separated ion mass groups [Hanson and Heelis, 1975].

If the spacecraft potential, Φs, is not known or measured independently, it will also need

to be derived using the least squares fit. If only a single ion or ion mass group is present,

it is difficult to separate the effect of a change in Φs from a change in Vx. For spacecraft

velocities of 8 km/s, an uncertainty of 0.1 V in Φs results in an error of approximately

40 m/s for NO+ ions and nearly 80 m/s for O+ ions [Hanson and Heelis, 1975].

In reality, many simplifying assumptions are made in order to relate the I–V curve to

the velocity distribution function. Some of these include treating the planes of the grids

as equipotential surfaces; assuming the transparency of the grids is neither a function of

retarding potential nor of angle; simplifying the sheath boundary as plane and parallel

to the RPA face; assuming all ions collected originate in the undisturbed plasma; and

approximating the grids and collector as being infinite in extent [Knudsen, 1966].

In general, the transmission function χ and optical transparency depend on the grid

geometry and the applied potential. If the potential across a grid is not uniform, excess

ions will leak through the filter and increase the current. Additionally, ions with energies

slightly greater than Est may be lensed around the grid wire, increasing the transmission for

these particular energies to a value greater than the optical transparency. These errors are

significantly reduced by using a pair of retarding grids instead of just a single retarding grid

[Klenzing et al., 2008]. However, the addition of an additional grid may cause high-energy

particles lensed around wires in the first grid to be collected by wires in subsequent grids,

leading to a decrease in the expected current.

A plasma sheath on the order of λD will form around the spacecraft body and adjacent

to the sensor. Curvature of the sheath boundary (i.e. not plane and parallel to the RPA

aperture) will cause two related effects. First, the area of ion collection becomes larger,

and second, the ions collected over the opening will have a range of angles of attack. For

typical cylindrical sensor configurations, these effects need to be taken into account unless

the sheath thickness (λD) is relatively small compared to the dimensions of the plane front of



22

the sensor [Knudsen, 1966]. This is usually not an issue in the ionosphere; e.g. λD ≈ 2.5 cm

while the flat ground plane of the RPA is 40 cm in diameter.

Typical I–V curves obtained from the RPA on Atmosphere Explorer-C (AE-C) are

shown in Figure 2.8. The top three panels show I–V curves obtained when at least two

ion mass groups are present in sufficient quantities to allow both the spacecraft potential

and the ion drift velocity to be determined. The greater ram energy of the heavier ions

in the vehicle frame of reference cause the ion current at high positive retarding potentials

(> 10 V) to be almost entirely due to heavier molecular ions (N+
2 , NO+, O+

2 ). At typical

orbital satellite velocities the ram energy is approximately 0.3 eV per amu so molecular

ions have approximately 4 to 5 eV more energy on average than the O+ ions [Hanson et al.,

1970]. At low retarding potentials (< 3 V) the current is due to the sum of all constituent

ions. It is typical that the heavier ion currents are saturated before the light ions can

produce a recognizable current and so the light ions (H+, He+) can still be determined from

the I–V curve. This is true if the concentration of the light ions is more than 5% of the

total ion concentration. The O+ and N+ current maxima can also clearly be seen in the

top three panels of Figure 2.8.

Panels 4 and 5 of Figure 2.8 show cases where large drift velocities toward and away

from the sensor face distort the natural shape of the I–V curve. If the drift velocity is large

enough, the maximum retarding voltage may not be enough to repel the ions; panel 6 shows

the I–V curve for which the observed ion drift velocity was 3015 m/s. The 32 V maximum

retarding potential was just able to produce an adequate I–V curve for computation.

Ions with large thermal velocities will disperse within the sensor and not all ions will

reach the collector. For O+ and heavier ions the errors introduced rarely exceed a few

percent and even for the lighter ions the increase in normal velocity due to the vehicle

potential tends to minimize the effects. However, corrections as large as 20% or more may

be applicable for H+ ions [Hanson et al., 1970].

Both photoemission from solar illumination of the sensor and energetic particle fluxes

must be considered as sources of error in the determination of the ion drift velocity. Current
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Figure 2.8. I–V characteristic curves obtained from the RPA on AE-C. The observed mass
groups are indicated on the curves. Used with permission from Hanson and Heelis [1975].

due to photoelectrons from solar illumination of the suppressor grid is directly related to

solar zenith angle and can be subtracted. Energetic particles will typically be repelled by

the suppressor grid and, therefore, only very-high-energy electrons will reduce the measured

current. This can occur in the auroral region where large anisotropic, non-uniform, time

dependent electron fluxes exist. Fortunately these effects are confined to small spatial

regions and the contaminated data can easily be recognized. An additional complication

associated with energetic particle fluxes is the large ion concentration and composition

gradients that accompany them. This type of error is most likely to occur at night at low

altitudes where the ion concentration is small [Hanson and Heelis, 1975].

Spatial or temporal ion density irregularities can introduce large errors in the deter-

mination of Vx. As noted by Hanson and Heelis [1975], the total retarding potential sweep

time for AE-C is 750 ms, whereas it is possible for the ion density to change by a factor

greater than two in 200 ms under disturbed conditions. A final consideration involves the

limits of the detectors. The lower limit for current detection of modern electrometers is
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about 2 x 10−11 A. This places a lower limit of about 100 cm−3 on the ion concentration

for which the ion temperature and drift velocity can be derived.

2.4.2. Ion Drift Meter

The Ion Drift Meter is also an ion trap that uses biased grids to propel ions to the

collector plate and repel electrons. Instead of measuring the energy (velocity) distribution,

the IDM measures the asymmetry in the amount of current collected on segmented col-

lector plates. This current asymmetry can be directly related to the arrival angle of the

ions, and since the parallel velocity is already known from the RPA, the ion drift velocity

perpendicular to the sensor plane can be found using simple geometry.

A side view schematic of the IDM is shown in Figure 2.9; the sensor is mounted in the

same manner as the RPA with the sensor aperture perpendicular to the satellite velocity.

When the satellite is moving supersonically with respect to a hot plasma, the sensor aperture

will produce a collimated ion beam within the sensor. The aperture grids (G3) and the

shield grids (G4 and G5) are all grounded to the sensor/spacecraft potential. Immediately

preceding the collector is a suppressor grid (G6) that is negatively biased to prevent electrons

from accessing the collector and to suppress photoelectrons emitted from the collector. The

grid just outside the aperture (G2) may be set to either the sensor ground or be positively

biased to repel H+ ions that have thermal velocities comparable to the satellite velocity and

will degrade the measurement. Because the retarding grid is external to the aperture, it

does not have an effect on the arrival angle of the ions in the collimated beam.

Figure 2.10 shows the face of the sensor plane (bottom) and the geometry of the sensor

relative to the incoming ion beam (top). The collector is sectioned into four segments so

that pairing segments AB and CD allow the determination of the vertical angle of arrival

(and thus the vertical velocity, Vz), while pairing segments AC and BD gives the horizontal

component, Vy. The other horizontal component of the velocity, Vx, which is in the ram

direction of the satellite, is determined solely by the RPA (section 2.4.1). Figure 2.11 shows

the sensor coordinates in relation to the satellite body and direction of flight, Vs. If the ion

beam is perpendicular to the sensor plane, the arrival angle will be zero and both pairs of
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Figure 2.9. Cross section of a planar ion drift meter. Used with permission from Heelis
and Hanson [2013].

collector plates will receive the same current. When the entry velocity is not perpendicular,

the current distribution will not be equal and will increase as the arrival angle increases.

The perpendicular velocity is calculated by taking a ratio of the current difference,

∆I = IAC − IBD to the total current I = IAC + IBD. The currents are defined as

IAC = kW

(
W

2
+D tanα

)
, (2.25)

IBD = kW

(
W

2
−D tanα

)
, (2.26)

where k is a number that depends on the ion density, charge, and transmission properties

of the sensor, W is the width of the aperture, D is the depth of the sensor, and α is the ion

arrival angle. Because

tanα = V · Ŷ/V · X̂, (2.27)

taking the ratio of ∆I and I gives

V · Ŷ =
∆I

I

W

2D
V · X̂. (2.28)
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Figure 2.10. The ion arrival angle, α, as measured by the IDM. The asymmetry in the
current collected from two halves of a segmented collector determines the arrival angle.
Used with permission from Heelis and Hanson [2013].

Everything on the right side is either known from the sensor configuration (W,D) or is

measured (∆I and I by the IDM and V · X̂ by the RPA). V · Ẑ is obtained in a similar

fashion when the segment pairs are switched.

IDM measurement errors originate in many of the same sources as the RPA. Photoe-

mission causes spurious currents and high thermal velocities affect the measured arrival

angle. Photoemission can cause significant errors when the resulting current is not constant

across the sensor plates. This is especially a problem when the spacecraft is illuminated just

after emerging from eclipse and the zenith angle is high. Not only is the resulting current

anisotropic, but the suppressor grid holder may also be illuminated and, depending on the
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Figure 2.11. Schematic of satellite velocity vector in relation to sensor axes.

instrument design, could significantly add to the extraneous current [Hanson and Heelis,

1975]. If the photocurrent magnitude is known as a function of solar zenith angle, this

error can be calibrated out. Ions with high thermal velocities can also significantly affect

the calculation of the drift velocities. These ions will readily enter the sensor aperture,

but the collimated beam will disperse due to the significant thermal velocity resulting in

loss of accuracy in the true ion arrival angle. If the sensor contains a retarding grid (G2 as

described above) it can be positively biased to aid in the exclusion of lighter ions. This error

is greatest when the ion composition contains a significant portion of H+, resulting in an

error classified as the H+ anomaly. Acceleration of the ions due to the plasma sheath and

the resulting negative spacecraft potential will also change the ambient ion arrival angle.

This effect can change the derived perpendicular velocity by up to 10%.

Uncertainty in spacecraft attitude can also have a significant effect in the determination

of the perpendicular ion drift velocity, much more so than in the calculation of the parallel

component. If the angle, δ, between the satellite velocity and the sensor look direction is

small (Figure 2.11), then the parallel ion drift velocity is given by

Vx = Vs cos δ. (2.29)

This is a weak function of δ, and for small angles the error imposed by using an uncorrected

Vs or from the specification of δ is quite small. The error in the perpendicular drift velocity
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(∆Vp) due to an error in the offset angle (∆δ), is given by

∆Vp = Vs sin ∆δ ≈ Vs ∆δ. (2.30)

For a satellite velocity of 7.5 km/s, an error of 1◦ in δ corresponds to a 150 m/s error in

the perpendicular velocity [Heelis and Hanson, 2013]. Therefore, knowledge of the satel-

lite attitude is very important in correctly specifying the perpendicular ion drift velocity.

Table 2.1 summarizes error sources and mitigation techniques for both the RPA and IDM.

2.4.3. Defense Meteorological Satellite Program

The mission of the Defense Meteorological Satellite Program is to provide global visible,

infrared, and passive microwave data, as well as other specialized meteorological, oceano-

graphic, and solar-geophysical data in support of worldwide Department of Defense op-

erations. DMSP satellites are in low-Earth, near-circular, sun-synchronous polar orbits

near 840 km altitude with an inclination near 98◦. This results in keeping the spacecraft’s

orbit roughly fixed in geographic local time throughout the year. The orbital period is

101 minutes resulting in just over 14 orbits per day.

The first DMSP satellites were launched in 1965, but it was not until 1976 that the

payload included space weather sensors. Of the five space environment sensors flying on

DMSP, the Special Sensor Ion and Electron Scintillation Monitor (SSIES) package built at

the Center for Space Sciences at the University of Texas at Dallas contains the thermal

plasma instruments (RPA and IDM) that measure ion drifts. DMSP launched the first

satellite with RPA and IDM sensors in 1987 and they have been on every DMSP spacecraft

since. The flight-15 (F15) spacecraft, launched into a 2100 MLT orbit in December 1999,

is in a suitable location to study the dawn–dusk convection patterns.

2.4.4. DMSP Measurement Errors

When direct particle detection is employed to make velocity measurements, it is im-

portant to consider which gas species are involved and the precise nature of the interaction

between the satellite and the ambient gas being detected. The dominant constituents of
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the upper atmosphere below 500 km have average thermal velocities that are small compared

to satellite velocities. In the high-altitude region, which is populated with hot hydrogen

and helium ions, the mean thermal ion velocities can be comparable to or greater than

the satellite velocity. When the ions have large thermal velocities, the ion beam disperses

within the sensor altering the measured arrival angle and current ratios. Atomic oxygen is

normally the dominant ion in the 250–500 km altitude range with mean thermal velocities

around 1 km/s at 1000 K, which is less than the typical satellite velocity of approximately

8 km/s. Due to their smaller mass, H+ ions have thermal velocities around 4.4 km/s; the H+

anomaly occurs when the ratio of H+ to O+ exceeds 20% and the high thermal velocities

of the hydrogen ions become comparable to the spacecraft velocity causing error in the

velocity determination. Electrons have a very large thermal velocity around 190 km/s and

cannot be used to determine the plasma drift velocity [Schunk and Nagy , 2009].

The DMSP ion drift velocity data suffer from two main sources of error. The first is due

to satellite attitude knowledge and the second occurs when there is a large percentage of

light ions (H+ and He+). The high thermal velocity of the light ions causes significant errors

in the IDM data. As mentioned previously, this is because these ions cause the collimated

beam to disperse resulting in an incorrect arrival angle measurement. For DMSP, this

typically becomes a problem when the light ion concentration reaches 20 to 25% of the

total ion density [Hairston and Heelis, 1993]. This environment occurs primarily at night

in the winter hemisphere and both the horizontal and vertical velocity show anomalously

large values (> 1.9 km/s) and large scatter (∼0.4 km/s) as seen in Figure 2.12. The main

correction for the H+ anomaly is done in the ground processing.

The second source of error is in the attitude determination of the spacecraft. The DMSP

spacecraft is spin stabilized and uses a horizon scanner and momentum wheels to maintain

its orientation. If the orientation is not precisely known, a direct current offset appears in

the data that typically varies with season [Berg et al., 2013]. This offset accumulates across

the orbit and is observed as nonzero zonal velocities at low latitudes (after corotation has

been removed). The drift data are typically converted to an electric field and then integrated
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Figure 2.12. DMSP ion density and drift velocities in the northern hemisphere. The plot
starts at the equator and goes over the northern polar region. The H+ anomaly is apparent
as the large nonzero velocities in both the horizontal and vertical flows on prior to the
northern polar region. Errors due to the satellite attitude can be seen in the offset from
zero of the horizontal drift velocity.

to obtain the potential. The integrated potential is then calibrated so it goes to zero at

low latitudes [Hairston and Heelis, 1993]. Figure 2.13 shows both the original integrated

potential (red line) and the adjusted potential with the direct current offset removed (black

line). The same process for removing the direct current offset from the potential can be

applied directly to the plasma drift velocities.

Although accurate measurements are critical in understanding and creating models of

the ionospheric processes, no matter the method used to obtain either ion drift or electric

field measurements in the polar cap, the data is limited both spatially and temporally. Addi-
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the original integrated electric field data that includes the spacecraft attitude error. The
black line is the data recalibrated to return to zero at low latitudes.

tionally, the real-time assimilation of this data into physical models is still being developed.

Therefore, the need exists for a comprehensive description of the entire polar cap convection

pattern. The following section describes the various empirical polar cap convection models

that are typically used as drivers for ionospheric models.

2.5. Polar Cap Convection Models

Many polar cap convection and electric field models have been developed including

empirical, statistical, theoretical, and physical models. Most are climatological models with

the weather features of the polar cap convection being difficult to capture as the polar

cap field distributions can shift on a time scale of minutes in response to changes in the

IMF configuration [Heppner and Maynard , 1987]. Kamide et al. [1982] captured the full

convection pattern using seventy magnetometer stations to deduce patterns of electric fields

and currents for a three day period in March 1978. A five minute time resolution allows the

growth and decay of the high-latitude three-dimensional current system during individual

magnetospheric substorms to be studied.

Volland [1975] and Heppner [1977] were two of the first to create models of the high-

latitude electric fields for different solar and geomagnetic conditions. The analytical model

of Volland [1975] provides a simple parameterization of the electric potential. Self-consistent

calculations have shown the electric field intensity outside the polar cap decreases rapidly
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with decreasing latitude due to the effect of ring current ions and the coupling of the

ionosphere and magnetosphere with FACs, which tends to shield the internal magnetosphere

and the midlatitude ionosphere from the magnetospheric convection field. The simplest form

of the Volland [1975] electric field potential is a function of only two parameters: the total

potential drop across the polar cap (Φ0), and the attenuation exponent (γ). The analytical

expression is given as

Φ =
1

2
Φ0

(
sin Θ0

sin Θ

)2γ

sinφ, (2.31)

where the electrostatic potential at ionospheric heights is given as a function of the magnetic

local time, φ, and of the invariant colatitude, Θ, for all colatitudes equatorward of the

colatitude, Θ0, of the polar cap/auroral zone boundary. A uniform electric field is obtained

with γ = 1. The inverse power sine wave was chosen as the best analytical representation

of the middle- and low-latitude electric potential decay. The two regions considered by

this model included one within the polar cap and another for middle and low latitudes. A

simplistic representation of the two-cell convection pattern as obtained by modeling these

two regions (see Figure 2.5) with a region of positive electric potential on the dawnside

and a region of negative potential on the duskside. The plasma flows antisunward within

the polar cap and sunward at lower latitudes. Although this simplistic model was updated

[Volland , 1978] to include a third region in the auroral zones to better approximate the

transition region of the meridional electric field, equation 2.31 is still valid in the polar cap

and the midlatitude fall-off region and is still being used today in ionospheric models such

as the Utah State University (USU) TDIM as a simple representation for the convection

electric field. In the USU TDIM model, the total potential drop, Φ0, depends on Kp while

the attenuation exponent is fixed at γ = 2.

The Volland [1978] model is still being used primarily because it is one of the few

simple analytical models. The Heppner and Maynard [1987] empirical model was hand fit

to data from many satellite passes and takes into account IMF conditions with the three

different convection electric field models shown in Figure 2.14. Models A and DE represent

pattern distributions encountered under northern hemisphere negative IMF By conditions,
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Model A Model DE Model BC

1
Figure 2.14. Heppner and Maynard [1987] convection patterns. Three different IMF
conditions are shown with all three models correlating to −Bz IMF. Model A represents
IMF 0 > By > −10 nT in the northern hemisphere. Model DE represents By < −10 nT
IMF conditions in the northern hemisphere. Model BC represents +By IMF conditions in
the northern hemisphere. All contours are plotted in 4-kV intervals. Used with permission
from Heppner and Maynard [1987].

while model BC represents positive IMF By conditions in the northern hemisphere. Model

A best represents IMF By close to zero (but still negative), while model DE represents

conditions with a largely negative By component. All three models represent negative

IMF Bz conditions. The models also take into account the fact that the signatures in the

southern hemisphere for negative IMF By conditions are the same as those in the northern

hemisphere for positive IMF By conditions, and vice versa, analogous to the hemispherical

reversal of the dawn–dusk polar cap electric field [Heppner , 1972, 1973, 1977]. To represent

Bz positive, the BC and DE models are distorted by stretching the evening cell towards

noon and rotationally twisting the foci clockwise. The pictorial results of Heppner and

Maynard [1987] were later converted into a more useful numerical representation by Rich

and Maynard [1989] using spherical harmonics.

One of the more widely used empirical models is that of Weimer [2001]. This model uses

the electric field data available from Dynamics Explorer-2 to construct a global statistical

representation of the high-latitude convection pattern as a function of magnetic local time

and geomagnetic latitude. It shows the dependence of the convection pattern on the IMF

clock angle and magnitude, the dipole tilt angle, the solar wind velocity and density, and the



35

AL index. The data was divided into different groups based on the geophysical conditions

and a least square fitting technique using spherical harmonics was used to obtain a global

map of the electric potential for each group. The Weimer [2001] model is an updated

version of the Weimer [1995] and Weimer [1996] models. An example of the statistical

patterns is shown in Figure 2.15. An update in 2005 combined the electric potential model

with a model for FACs in order to obtain more accurate electric field values and boundary

locations [Weimer , 2005]. The addition of the FAC model allows the calculation of the total

Poynting flux and Joule heating in the ionosphere.

While many other empirical and mathematical models [e.g., Hairston and Heelis, 1990;

Papitashvili and Rich, 2002; Rich and Hairston, 1994; Sojka et al., 1986] have been devel-

oped in an attempt to more accurately describe the global distribution of the high-latitude

convection pattern, satellite data is not the only source for high-latitude ionospheric con-

vection models. Ground-based magnetometers [e.g., Friis-Christensen et al., 1985; Kamide

et al., 1982; Papitashvili et al., 1994], as well as ground-based radars, have been used to

develop empirical models of the high-latitude ionospheric convection. Foster et al. [1986]

used ISR data from Millstone Hill, United States and Sondre Stromfjord, Greenland to

derive a pattern very similar to Heppner and Maynard [1987]. The Millstone Hill ISR data

was also used by Holt et al. [1987] to develop an empirical convection model while Alcayde

et al. [1986] and Peymirat and Fontaine [1997] used the European incoherent scatter (EIS-

CAT) radar to develop their model. The most recent iterations of observationally based

statistical models come from SuperDARN [e.g., Cousins and Shepherd , 2010; Grocott et al.,

2012; Lester , 2013; Pettigrew et al., 2010], which at the end of 2012 consisted of a network

of 31 operational high-frequency coherent scatter radars.

SuperDARN has been used extensively in the past decade as a source for the electric

field and ion drift data used in constructing high-latitude convection models. The radars

use the doppler shift of the signal imposed by the motion of ionospheric particles to deter-

mine the vector velocities perpendicular to the magnetic field [Lester , 2013]. With radars

located at both high and midlatitudes the entire convection pattern can be mapped to in-
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Figure 2.15. Weimer [1995] convection patterns for BT > 7.25 nT. The positive and
negative potentials are indicated by solid and dashed lines, respectively. The numbers in
the lower left and right corners of each graph show the values of the smallest and largest
potentials in each pattern, while plus symbols mark the locations of these points. Used
with permission from Weimer [1995].
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clude periods when strong magnetic storms occur. A discrete set of statistical convection

patterns was obtained by Pettigrew et al. [2010] using an averaging and fitting technique

applied to the plasma drift data obtained from SuperDARN backscatter measurements.

Taking into account the dipole tilt angle, separate patterns for the northern and southern

hemisphere were calculated and it was shown the dipole tilt has significant impacts on the

convection patterns that were not symmetric between hemispheres. Cousins and Shepherd

[2010] extended the work of Pettigrew et al. [2010] by modifying the binning and averaging

methods and adding in a dependence on the solar wind velocity, which has been shown to

be effective in driving ionospheric convection. In addition, the model has increased func-

tionality that allows the results to be used as a dynamical, rather than discrete, model for

high-latitude convection [Cousins and Shepherd , 2010]. The basis functions of the spheri-

cal harmonic expansion of the ionospheric electric potential to the radar measurements are

examined in detail by Grocott et al. [2012] to describe the different characteristic elements

of the ionospheric convection pattern. This examination shows approximately two-thirds

of the voltage associated with the typical convection pattern is described by a simple twin

vortex basis function while the remaining one-third is associated with deviations from the

twin vortex, namely the IMF By dawn–dusk asymmetries and high-latitude sunward con-

vection cells associated with IMF Bz > 0. A recent major discovery with SuperDARN is

the observation of large-scale ionospheric flows in the nightside ionosphere during relatively

quiet magnetic conditions [Lester , 2013].

The Assimilative Mapping of Ionospheric Electrodynamics procedure is different from

all other high-latitude convection models in that it was devised to estimate the time-varying

distributions of electric fields, currents, conductivities, and related quantities over the en-

tire polar ionosphere by the mutually consistent synthesis of a variety of direct and indirect

observations [Richmond , 1992]. The AMIE model has been used in a wide range of studies

where several different data sources have been assimilated; some of these sources include

electric fields from radars and satellites, electric currents from satellites, magnetic pertur-

bations from satellites, and ground-based magnetometers [Richmond and Kamide, 1988].
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However, in its real-time mode, only the ground-based magnetometer data is assimilated

with convection patterns produced in one-minute increments. Bekerat et al. [2005] showed

these real-time specifications of the convection pattern adequately represent the DMSP

observations about 32% of the time, which is a significant improvement over statistical

convection patterns [Bekerat et al., 2003].

Several kinetic and magneto hydrodynamic (MHD) models that use fluid equations to

describe the particle populations are also in use. The Rice Convection Model is one of these

kinetic models and treats the large range of particle energies within the inner magnetosphere

as approximately 100 different fluids [Toffoletto et al., 2003]. The kinetic equations and

numerical methods chosen provide an accurate treatment of the inner magnetosphere and

include the flow of electric currents along magnetic field lines to and from the conducting

ionosphere. The currents and associated electric fields are self-consistently computed, where

perfectly conducting field lines are assumed. Induction electric fields associated with a

time-dependent magnetic field are also used [Toffoletto et al., 2003]. Coupling the kinetic

model to an ionospheric convection model allows a self-consistent solution for the solar

wind–magnetosphere–ionosphere system. Significant MHD models in use include the Lyon–

Fedder–Mobarry (LFM) model [Lyon et al., 2004], the Space Weather Modeling Framework

(SWMF) [Toth et al., 2005], which is built around the BATS-R-US MHD core [Powell et al.,

1999], the Open General Geospace Circulation Model (OpenGGCM) [Raeder et al., 2008],

and the Grand Unified Magnetosphere–Ionosphere Coupling Simulation (GUMICS).

The MHD and kinetic models are based on first-principals physics and take into consid-

eration physical properties such as joule/frictional heating through the Poynting flux. The

empirical models of Heppner and Maynard [1987], Weimer [2005], and Foster et al. [1986]

use various parameterizations to characterize the high-latitude plasma convection pattern.

The Volland [1978] model solution falls between these two regimes with a parameterized

solution based on physical properties. Most current models can reproduce the climatolog-

ical structure of the high-latitude convection pattern, but few are designed to capture the

instantaneous features needed in space weather applications.
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CHAPTER 3

METHODOLOGY

3.1. Overview

This chapter discusses the data used in this study and how it is prepared for use.

The first section discusses the method used to calibrate and smooth the data. Section 3.3

outlines the coordinate system used for the data and the transformations applied to each

orbit. The last section discusses the method used to bin the data according to the solar

wind configuration and geomagnetic activity.

3.2. Data Preparation

In this study, ion drift velocities obtained from DMSP during the low solar activity

period from January 2007 through December 2010 are investigated. DMSP satellites are in

polar orbits that are sun synchronous at an altitude of 830 km with an orbital period of

101 minutes. Along with all three velocity components for the ion drift, the SSIES instru-

ment suite onboard the DMSP satellite measures the total ion density, ion composition, ion

and electron temperatures, and calculates the corotation velocity components and space-

craft and sensor potentials. The RPA and IDM data is binned into 4-second averages, which

translates into approximately 30 km of spatial coverage, so root mean square errors and

standard deviation values are also available. The data file includes positioning information,

such as the date and time, altitude, magnetic latitude and local time, geographic latitude

and longitude, solar zenith angle, and spacecraft mean velocity. The F15 satellite is used

because the orbits are primarily on the dayside in an approximately dusk to dawn path in

the northern hemisphere. The southern hemisphere passes are primarily on the nightside

and will not be used in this study. Additionally, a large swath of coverage in magnetic

coordinates is available due to the offset of the Earth’s dipole from its spin axis. Figure 3.1

shows the orbit paths in magnetic coordinates for three days throughout the study period.

As time progresses, the satellite slowly precesses westward; by 2010 the ascending node has

shifted to 1600 MLT, while the descending node has shifted to 0500 MLT.
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DMSP F15 Northern Hemisphere Single Day Orbits
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1Figure 3.1. DMSP F15 orbit paths. Three different days spread across the study period are
shown. The offset of the Earth’s dipole from its spin axis causes the sun synchronous orbits
to create a swath of coverage in magnetic coordinates. The satellite is also slowly precessing
westward such that the ascending node shifts from 1900 MLT in 2007 to 1600 MLT in 2010.

Before an analysis of the data is possible, it must first be calibrated and smoothed.

Calibrating the data will remove any instrument inaccuracies, while smoothing the data

removes the smallest scale perturbations. These small-scale perturbations represent phe-

nomena on the order of 50 km or less, including gravity waves and traveling ionospheric

disturbances. Though interesting, these phenomena are too small to be captured by the

DMSP instruments that have just a 30 km resolution. The instrumentation is able to cap-

ture the medium and large-scale features of the ionosphere, including atmospheric tides

and gravity waves that are on the order of 50 to 500 km, respectively. The methods used

to prepare the data for analysis were done in collaboration with Dr. Roderick Heelis, the

Principal Investigator for the IDM and RPA instruments on DMSP.

As discussed in section 2.4, the two main sources for instrument error are satellite

attitude errors and the H+ anomaly. Errors in satellite attitude create an offset that must

be consistently removed from the data while the H+ anomaly (regions where the percentage

of H+ is large) results in inaccurate ion drift measurements. Errors due to the H+ anomaly

are removed by setting four specific filters. First, any data point with an ion density less

than 1.5 × 104 cm−3 or greater than 8% of an 11-point median is removed. Second, if

the fraction of oxygen ions is less than 80% (or greater than 100%), the data is ignored.
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Next, any data point with an ion or electron temperature greater than 12,000 K is removed.

Finally, any velocity with an absolute value greater than 4,000 m/s is removed. After

these three tests have been applied, the velocity data is smoothed using a 5-point running

boxcar filter to remove the small-scale perturbations. While small perturbations in the data

may represent actual physical features, this study is to investigate medium-to-large-scale

features, so the smallest perturbations in the data will be ignored.

Next, the satellite attitude error is addressed. The error due to the direct current offset

is removed from the x and y velocity components in a manner similar to the calibration of

the electric potential shown in Figure 2.13. The velocity is used instead of the potential or

the electric field because it is the quantity being directly measured. More approximations

and assumptions are required in the calculation and integration of the electric field to

obtain the electric potential. As many simplifying assumptions are already being made, it

was decided to adjust the velocity directly, instead of propagating the error into the electric

potential before removing it. Even so, it is possible the adjustments made to the velocity

components may contaminate the fall-off gradients that are of interest.

To correct the velocity profiles, the low-latitude velocity is assumed to go to zero after

corotation is removed; this assumption arises from the fact the low-latitude equipotential is

also assumed to be zero due to the shielding by Birkeland currents. If the measured low-

latitude velocity is not zero, an offset is calculated for both the ascending and descending

nodes of the orbit. The entire orbit is shifted equally by the ascending node offset, but the

descending node offset is distributed linearly across the polar region.

As recommended by Dr. Heelis, instead of calibrating each orbit individually, the offset

is determined on a monthly basis, and this monthly offset is then applied to each individual

orbit. The calibration is done this way because the attitude error should have a seasonal

or monthly trend making the day-to-day error consistent [Berg et al., 2013]. The offset is

determined by first finding the latitude between 40◦ and 60◦ where the standard deviation of

an entire month’s worth of velocity data is the smallest. The calibration is done separately

for each velocity component. Once the offset latitudes for both the ascending and descending
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nodes are chosen, the monthly mean is calculated at each location—these are the offsets.

First the entire orbit is shifted by the ascending node offset; this shift is also added to

the descending node offset. The descending node offset is then removed from the orbit.

The full adjustment is taken at the descending node offset latitude and the amount of

the adjustment is decreased linearly back over the polar region so no additional change is

applied at the ascending node offset latitude. Figure 3.2 shows the original and adjusted

horizontal velocity components both before and after the offset has been applied for the

month of June 2009, and Figure 3.3 shows the monthly offsets applied to the Vy velocity

component for a single orbit in June 2009. Data equatorward of the offset latitude is not

used for any further analysis.

Figure 3.2. Original (top) and adjusted (bottom) velocities for June 2009. The offset was
determined at the latitude with the smallest standard deviation and was subtracted linearly
across the orbit.
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Figure 3.3. Original (red) and adjusted (black) Vy for a single orbit in June 2009. The
offset latitudes and values were determined using Figure 3.2.

3.3. Coordinate Transformation

The satellite data is given in a reference frame based on the satellite’s current position.

The z direction is vertically upward, the x direction is the satellite ram direction, and the y

direction is perpendicular to the x direction to complete a right-handed coordinate system.

Because the ram direction for each orbit is oriented differently to the dusk–dawn line, the

data must be transformed from the satellite reference frame to a general reference frame.

This new reference frame is a Cartesian coordinate frame with the z direction remaining

vertically upward, but the positive y direction becomes sunward. The positive x direction

is perpendicular to y to complete the right-hand coordinate frame. Figure 3.4 shows an

example of both the original satellite coordinates and the new Cartesian coordinates for two

locations on a typical DMSP F15 orbit. The coordinates in the satellite reference frame are

indicated with a prime (i.e., V ′x and V ′y); the new coordinates used for the remainder of this

research are the unprimed variables. To complete this transformation, first the Cartesian

location of each data point on the satellite path (Cx and Cy) are found by converting the

magnetic latitude (MLAT) to magnetic colatitude (90 - MLAT) and magnetic longitude

(MLON: MLT converted to degrees) and taking

Cx = (90−MLAT )× cos
(
MLON × π

180

)
(3.1)

Cy = (90−MLAT )× sin
(
MLON × π

180

)
. (3.2)
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Figure 3.4. Coordinate transformation from satellite to general reference frame. V ′x and
V ′y are the original velocity magnitudes, while Vx and Vy are the velocities rotated into the
Cartesian coordinate system.

Once the location of the data point is found in the Cartesian system, the angle between the

satellite’s current trajectory and the dusk–dawn line is found by taking the inverse tangent

of the current trajectory’s slope by calculating

θ = arctan

[
Cy(j + 1)− Cy(j)
Cx(j + 1)− Cx(j)

]
, (3.3)

where the index, j, indicates the data point in the orbit. Finally, a rotation matrix (equa-

tion 3.4) is used to find the new velocity components: Vx, Vy, and Vz. The x and y velocities

are rotated by an angle of θ while the z direction velocity is unchanged.


Vx

Vy

Vz

 =


cos θ − sin θ 0

sin θ cos θ 0

0 0 1




V ′x

V ′y

V ′z

 . (3.4)
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3.4. Data Binning

To obtain coherent convection patterns, the data must be categorized. Some typical

categories are based on solar cycle, season, geomagnetic index, and the IMF configuration.

The data used is all from the solar minimum period of 2007 to 2010. Figure 3.5 shows

the geomagnetic 3-hour Kp index and the F10.7 solar radio flux measured during this solar

minimum. The geomagnetic index remains almost exclusively below six, and the F10.7

ranges between 67 and 93 solar flux units (sfu) with an extended period in late 2008 through

early 2009 when it barely topped 70 sfu. Although a solar minimum, all configurations of the

IMF were present. Different IMF configurations result in significantly different convection

patterns, while an increase in the geomagnetic index is typically correlated to an increase

in the polar cap radius. To capture both relations we first bin the data by IMF clock angle

and IMF magnitude (IMF Bins) and then by IMF clock angle and Kp value (Kp Bins).

Solar and Geomagnetic Indices

   3

6

9

K
p

 60

 70

 80

 90

 100

2007 2008 2009 2010 2011

F1
0.

7

Year

Figure 3.5. Solar and geomagnetic indices for 2007–2010. The top plot shows the 3-hour
Kp geomagnetic index and the bottom plot shows the F10.7 solar radio flux.



46

3.4.1. IMF Average and Delay

Each orbit is put into one of 32 IMF bins based on the polarity (positive or negative)

of the By and Bz component and the total magnitude of the IMF (BT ). The IMF data

used is from the Advanced Composition Explorer (ACE) satellite 64-second data obtained

from the Magnetic Field Experiment/Solar Wind Electron, Proton, and Alpha Monitor

(MAG/SWEPAM) 64-Second Level 2 Data Server at www.srl.caltech.edu. The level 2 data

have been verified by the instrument team and include calibration data and transformation

into appropriate coordinate systems. The data do not account for the time it takes for

the solar wind to transit to the magnetopause or the delayed response time of the Earth’s

magnetosphere. Adding a delay to the timing of the measurements accounts for the transit

time, while taking an average of the measurements helps take into account the structure

of the IMF just before and throughout the polar pass. Averaging the data is done before

delaying because it is possible (and occurred in a few instances) that the adjusted times

become out of order due to variable solar wind speeds. By averaging first, the problem of

dealing with disordered timestamps is avoided.

A 40-minute average of the 64-second ACE data was calculated starting from 30 minutes

prior to the start of the polar pass through 10 minutes past the start of the pass. Using 30

minutes prior to the start of the orbit was done to account for the fact that the convection

pattern does not change instantly with changes in the IMF, but is influenced by the prior

configuration of the IMF [Weimer , 1995]. Small IMF changes during the orbit are accounted

for by including in the average ten minutes of data within the orbit. The standard deviation

of the IMF data used in the averaging was also looked at and if the standard deviation for

By, Bz, or BT was larger than a set threshold the orbit was rejected due to the variable IMF

configuration during the orbit. Figure 3.6 shows a histogram of the standard deviations for

the IMF Bz component average and the thresholds set for each magnitude bin.

The ACE data need to be delayed because the satellite is at the L1 Lagrangian point,

which is 1.5 million km away from the Earth—about 235 Earth radii (RE) away—while the

magnetopause is located near an average of 10 RE from the Earth. However, there has been
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controversy over the best method to delay the data. Two different variables exist that can

be adjusted: the first is the point to which the data is delayed, i.e., the magnetopause, the

top of the ionosphere, the Earth’s surface, etc., and the second is which speed to use for

the delay: the actual measured speed, or a typical solar wind speed value. On top of the

delay, the polar cap convection pattern can take an additional 15–45 minutes to respond to

the IMF [Hairston and Heelis, 1995]. We briefly investigate five different delay methods.

The first method was to delay the measurements from L1 to the magnetopause at

approximately 10 RE using the measured solar wind speed. The second method was to

again delay the measurements to the magnetopause, but this time using the average solar

wind speed of 450 km/s. The third method was to delay the measurements from L1 to the

Earth’s surface using the measured solar wind speed. The fourth method was to again delay
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the measurements to the Earth’s surface, but this time using the average solar wind speed of

450 km/s. The final method was to delay the measurements from L1 to the magnetopause

using the measured solar wind speed and then adding 20 additional minutes to the delay

to account for the polar cap response time. The methods are summarized in Table 3.1.

Table 3.1. Methods Used to Calculate the IMF Delay*

Method Delay Location Wind Speed Adjustment

1 Magnetopause (10 RE) Measured None
2 Magnetopause (10 RE) 450 km/s None
3 Earth’s Surface Measured None
4 Earth’s Surface 450 km/s None
5 Magnetopause (10 RE) Measured +20 min

*Five different methods were used to calculate the delay in solar wind
measurements from ACE for the IMF data. The location indicates the
distance the measurement was delayed, while the speed used is either
the value measured by the ACE satellite or an average solar wind speed
value. The last column indicates if any additional adjustments were
made after the calculation.

The timestamps for each measurement were adjusted by adding a delay time calculated

by taking distance between L1 and the delay location and dividing by the solar wind speed

for that same reading. For the methods where the measured solar wind speed is used, if no

solar wind measurement is available, the delay for the previous measurement is used.

Delay Time =
L1−Delay Location

Wind Speed
+ Adjustment. (3.5)

Each orbit is binned according to the averaged and delayed IMF conditions at the time

the satellite crosses 50◦ on its ascending node. Only northern hemisphere passes are used

for this study because the inclination of the DMSP orbit steers the southern hemisphere

pass into the nightside. For the years 2007–2010, there are 20,455 total orbits; no matter

which method is used, each IMF bin contains at least 100 orbits with a maximum bin size

of over 1400 orbits for the By = 0, Bz > 0, BT < 3.5 nT bin. The bin obtained for each

orbit using the five different methods are then compared to each other (Table 3.2).
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Table 3.2. Bin Comparison Using Different Delay
Methods*

Methods Compared Percent of Orbits with Same Bin

1 vs. 2 65%
1 vs. 3 91%
1 vs. 5 49%
2 vs. 4 91%
3 vs. 4 65%
3 vs. 5 53%

*Percentage of orbits that were assigned to the same bin for the
two methods indicated.

Two significant results stand out; the first shows the location to which the data is

delayed is unimportant. This is seen in the comparison between methods one and three

and between two and four where the location was changed from the magnetopause to the

Earth’s surface. In both of these comparisons, the orbits were placed in the same bin 91% of

the time. Therefore a distance of 10 RE appears negligible, which is important because the

magnetopause only varies between 6 and 12 RE for a large and small solar wind dynamic

pressure, respectively.

The second result shows it is important to include the wind speed in the delay cal-

culation. For methods two and four in this study a typical average solar wind speed of

450 km/s was used to calculate the delay and resulted in the same bin as the methods using

the measured solar wind speed only 65% of the time. This indicates it is important to use

the measured wind speed. However, since all the data was taken during solar minimum,

the typical average solar wind speed of 450 km/s is most likely too high. To check this

result, the wind speed was changed in methods two and four to 350 km/s. The delay time

difference between using 350 km/s and 450 km/s is around 15 minutes, but the percentage

of orbits that received the same bin changed by less than one percent. This indicates an

average solar wind speed of 450 km/s is an acceptable value to use for this study.

The comparison of methods one and three to method five also showed the IMF con-

figuration does not change significantly within a 20 minute period in approximately half

of the orbits. This is good because it means that for these orbits, the IMF configuration
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can be considered fixed while the satellite passes over the northern hemisphere polar cap.

One last note is that even though we are discussing the delay method, the data was also

averaged. There are just as many (or more) ways to average the IMF data, which were not

investigated. Based on the results of this study, method one, which is using the measured

solar wind speed delayed to the magnetopause at 10 RE , was chosen as the preferred binning

method and is the method employed throughout this analysis.

3.4.2. IMF Binning

After all the IMF data are averaged and delayed, the orbit files are read and the time

that the satellite passes 50◦ on its ascending node is used to indicate the start of the polar

pass (first measurement point for magnetic latitude greater than 50). For this study, only

northern hemisphere polar passes were used. This orbit time is then compared to the

delayed timestamps for the IMF data. The averaged IMF By, Bz, and BT for first delayed

IMF timestamp past the orbit time is then saved as the IMF configuration for that pass.

These three values are then used to place the orbit into one of the 32 IMF bins. The

magnitude is separated into four levels with separations at 3.5, 5.2, and 7.25 nT. Eight

By/Bz configurations are used such that there are categories where By is close to zero for

large values of Bz and vice versa. These categories are the same as used by Weimer [1995]

and are shown in Figure 3.7; each red cross represents an orbit. Figure 3.8 shows the number

of orbits that fall into each IMF bin.

3.4.3. Kp Binning

For the Kp bins the Kp index is used instead of the magnitude of the IMF for catego-

rizing each orbit. To retain the cases where the Kp influence is most clear, only four IMF

clock angle bins were used: By = 0, Bz > 0;By = 0, Bz < 0;By > 0, Bz = 0;By < 0, Bz = 0.

After the orbits were separated into these four categories, they were further separated based

on integer Kp values for a total of 20 bins. The bins and number of orbits that fall into

each Kp bin are shown in Figure 3.9. As can easily be seen, very few orbits have Kp > 4,

and these bins are not used in the final analysis.
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Figure 3.7. Interplanetary magnetic field data distribution. This graph shows the IMF By
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CHAPTER 4

COMPARISON OF DATA TO CURRENT MODELS

4.1. Introduction

As described in Chapter 2, multiple models currently exist that attempt to describe

the polar cap convection pattern. The degree to which the models account for solar and

geomagnetic conditions varies, but all use these conditions as the primary model drivers.

The data used in this study was obtained during conditions of low solar activity, when the

Kp index was low. In this chapter, we investigate averaged convection patterns obtained

from DMSP data and compare these patterns to established empirical models. Because

averaged data is used, the patterns represent a climatological pattern and not the short-

term dynamics of the high-latitude region. Comparisons to the Sojka et al. [1986] model,

which is based on Volland [1978] and used in the USU TDIM, Weimer [2005] model, and

Heppner and Maynard [1987] (H-M) model are made, and the relationship of the polar cap

radius to the geomagnetic index is investigated.

4.2. Methodology

For this portion of the study, an averaged convection pattern is calculated separately for

each IMF and Kp bin. The data is first filtered and smoothed and then the offset is removed

as described in Chapter 3. Each velocity data point is gridded using a 41 × 41 square

grid covering all magnetic latitudes greater than 50 degrees. The average and standard

deviation for each velocity component is then calculated for each grid box. A single vector

is plotted in the center of each grid box using the Vx and Vy velocity components. Figure 4.1

shows the resulting velocity vectors (panel a) and standard deviation (panel c) for the IMF

bin with By = 0,−5.2 < Bz < −3.5. Also shown in this figure is the number of points in

each bin used to calculate the average velocity (panel b) and the standard deviation as a

percentage of the magnitude of the velocity (panel d).

A coherent convection pattern is obtained for all 20 Kp bins and 32 IMF bins with

narrow bands of strong sunward flow surrounding a widespread area of antisunward flow
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across the polar cap. The largest standard deviations occur in the region encompassing the

convection reversal boundary due to the rapid change in both magnitude and direction of

the flow. In particular, it can be seen in panel d) that the standard deviation percentage is

significantly lower on the duskside near 70◦, which corresponds to the region of the strongest

sunward flow in panel a). The largest values of the standard deviation and the standard

deviation percentage occur in the polar cap boundary region where the flow velocities turn

from sunward to antisunward and vice versa. The number of points used for calculating

the average is typically smaller at lower latitudes due to the precession of the DMSP orbit

over the four-year period studied. The number of points is particularly low on the dawnside

due to the filtering done previously for erroneous data. The late afternoon sector on the

duskside has a particularly large number of data points in each bin as most of this data

was taken during daylight, which significantly reduces the occurrence of the H+ anomaly.

These trends are consistent for all IMF and Kp bins with the exception that the number of

points decreases steadily as IMF magnitude and Kp increase. The unique characteristics of

the convection patterns for each IMF and Kp bin are discussed in detail in section 4.3.

The averaged convection patterns were used to determine a polar cap boundary. First a

cubic spline function was calculated for each horizontal grid row of the averaged DMSP data,

and then the roots of the spline function were found using the secant method [Burden and

Faires, 2005]. After plotting these roots on a polar plot, a circle was hand fit to approximate

the polar cap boundary. An elliptical polar cap was considered, but was discarded due to

lack of data in the noon and midnight sectors to aid in fitting the ellipse to the roots.

Figure 4.2 shows examples of how the polar cap boundary was determined. The aver-

aged velocity vectors in the background serve as the starting point; the red stars indicate

where the roots are located and the red circle is the final polar cap boundary. Many plots

have roots at low latitudes (< 65◦ MLAT), which were considered to be erroneous and

mainly due to averaged velocities near zero. Of interest is the cluster of roots in the cusp

region, typically around 65–75◦ MLAT and 1000–1100 MLT; this locus of roots indicates

a much more complicated pattern than a simple circular polar cap. However, as the cusp
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Figure 4.1. Averaged convection pattern statistics. All four panels are for IMF By =
0,−5.2 < Bz < −3.5. Panel a) shows the velocity vectors; panel b) shows the number of
data points available for each bin; c) shows the standard deviation for each bin; and d)
shows the standard deviation as a percentage of the velocity magnitude.
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is in a region where the data begins to become sparse, further analysis was not possible.

From the polar cap boundary, both a polar cap radius (PCR) and offset were computed.

The offset was computed for both the dawn–dusk and noon–midnight directions; however,

as mentioned previously, the lack of noon–midnight data makes this offset somewhat unre-

liable. These results will be discussed in the following section.

Polar Cap Radius Determination
IMF Bz Southward
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1Figure 4.2. Method used to determine polar cap boundary. Velocity vectors represent the
magnitude of averaged values of the Vx and Vy components of the ion drift measured by
DMSP. A cubic spline was calculated for each horizontal row of the averaged DMSP data.
The polar cap boundary was then determined by hand fitting a circle (red) to the roots
(red stars) of the cubic spline function. The radius of the hand-fit circle and the offset of
the center of the circle from the magnetic pole were then computed. This was done for all
20 Kp bins and 32 IMF bins; shown here are the five Kp bins for IMF By = 0, Bz < 0.
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Finally, the sunward/antisunward flow in a dusk-to-dawn cross section is analyzed for

each Kp and IMF bin. The cross section was obtained from the Vy velocity component

from 1800 and 0600 MLT. This analysis was done to compare the velocity profiles of the

averaged data to various empirical convection models. The three models that were chosen

for comparison are the USU TDIM, Weimer [2005], and H-M models. The Sojka et al. [1986]

model uses only Kp as a driver while both Weimer [2005] and H-M use IMF conditions.

Heppner and Maynard [1987] uses Kp to scale the size of the polar cap while Weimer [2005]

requires the tilt, solar wind velocity, and solar wind density. For this study, a tilt of zero

was used along with typical values of 450 km/s for the velocity and 1 cm−3 were used.

Slight variations on these values were investigated, but the change to the velocity profile

was negligible compared to difference in the averaged data. The Sojka et al. [1986] and H-M

models were run to cover geomagnetic conditions up to Kp = 5 with By = 0, Bz = −10 nT;

Weimer [2005] was run for four IMF configurations: By = 0, Bz < 0; By = 0, Bz > 0;

By < 0, Bz = 0; and By > 0, Bz = 0. All three of these models are designed to output

electric potential. The velocities are determined by first finding the electric field by taking

the gradient of the potential, E = −∇Φ, and then using the International Geomagnetic

Reference Field to calculate V = E×B/B2.

4.3. Results

The averaged polar cap convection pattern plots show surprisingly coherent flow pat-

terns. For comparison with accepted electric potential patterns, the IMF binned patterns

are plotted in a fashion similar to Weimer [1995] in Figures 4.3–4.6. Both the arrow length

and color indicate the vector magnitude; warm colors indicate antisunward flow while cool

colors indicate sunward flow. The IMF magnitude and angle for the IMF binned plots and

the IMF configuration and Kp range for the Kp binned plots are indicated in each figure.

As noted in the previous section, the data behind these averages often have large standard

deviations and/or very limited number of data points used in the calculation. These limita-

tions leave some unphysical velocity vectors that are still plotted, but do not detract from

the overall flow pattern.
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Polar Cap Convection Patterns
BT ≤ 3.5 nT
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1Figure 4.3. Polar cap convection patterns binned by IMF for BT ≤ 3.5 nT. Vectors repre-
sent the magnitude of averaged values of the Vx and Vy components of the ion drift measured
by DMSP for each IMF configuration. Sunward and antisunward flow are indicated by cool
and warm colors, respectively; vector length is also proportional to magnitude.
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Polar Cap Convection Patterns
3.5 nT < BT ≤ 5.2 nT
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2Figure 4.4. Polar cap convection patterns binned by IMF for 3.5 < BT ≤ 5.2 nT. Plot
convention is the same as Figure 4.3.
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Polar Cap Convection Patterns
5.2 nT < BT ≤ 7.25 nT
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3Figure 4.5. Polar cap convection patterns binned by IMF for 5.2 < BT ≤ 7.25 nT. Plot
convention is the same as Figure 4.3.
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Polar Cap Convection Patterns
BT > 7.25 nT
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4Figure 4.6. Polar cap convection patterns binned by IMF for BT > 7.25 nT. Plot conven-
tion is the same as Figure 4.3.
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Two results are immediately obvious from the IMF binned patterns: first, the flow

velocities increase significantly as IMF magnitudes increase for both the antisunward flow

within the polar cap and the sunward flow within the auroral regions. Bz < 0 polar cap

velocities range from 100–200 m/s for small BT to more than 700 m/s for large BT . Second,

the asymmetry of the two-cell pattern is pronounced for By 6= 0 and Bz < 0, especially for

larger magnitudes, with a larger dusk cell for By > 0 and a larger dawn cell for By < 0.

For almost all cases, the sunward flow on the duskside slightly enhanced over the dawnside

flow. This is consistent with a stronger duskside cell as shown in Weimer [1995].

When By = 0 is zero, the obtained convection patterns do not support a multi-cell

pattern for Bz positive. For the By = 0 cases, the flow also tends to diverge around the

pole with the lowest velocities in the polar cap centered over the pole. It is unclear whether

this is an artifact of a coordinate transformation or is actually a characteristic of the data.

However, this type of flow pattern is reminiscent of the crescent shaped Heelis et al. [1982]

electric potential patterns.

For the cases where Bz is zero and By is either purely positive or negative, the convec-

tion patterns support the asymmetry shown by Weimer [1995]. For cases with By positive,

although the tilt in the convection cells is not very apparent, the dusk cell is larger than the

dawn cell, especially for lower BT , and the strongest polar cap flows are on the dawnside

in the same location as where Weimer [1995] shows the strongest gradient in the electric

potential. For By negative, the patterns show strong antisunward flow distributed evenly

across the polar cap. Of interest in Figure 4.6 is the middle right plot (By > 0, Bz = 0);

this plot shows sunward flow near 83◦ MLAT and 1400 MLT in what should be a strong

dusk–dawn flow. This region corresponds with the elongation of the dusk cell maximum in

the Weimer [1995] pattern and could indicate a double electric potential maximum instead

of just an elongation.

Both the asymmetry and the tilt in the polar cap flows are seen with the mixed IMF

conditions (By 6= 0, Bz < 0). The strongest flows are seen when Bz is negative and BT >

7.25 nT for both By positive and negative as shown in the bottom right and left plots in
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Figure 4.6, respectively. These plots show both sunward and antisunward flow velocities

over 600 m/s, the convection cell vortices line up well with the location of the maximum

and minimum electric potential, and the maximum flow speeds align with the strongest

gradients in the electric potential when compared to Weimer [1995].

The averaged DMSP data is plotted for the Kp bins just as was done for the IMF bins

in Figures 4.7–4.10. Some of the conclusions remain the same: the velocities increase with

higher Kp; there is no multi-cell pattern for Bz > 0; duskside sunward flow is stronger for all

cases; antisunward flows diverge and/or weaken around the pole. Additionally, it was found

the cusp is more apparent in the Kp bins, especially for the 1 < Kp ≤ 2 and 2 < Kp ≤ 3

bins. Also the areal coverage for the region of antisunward flow increases with increasing

Kp; this observation led to the analysis of the polar cap boundary to be discussed later.

Finally, the Kp > 4 bin does not have many data points, and so the results may not be

statistically significant. However, even though the data is sparse, strong antisunward flow

extends to almost 50◦ MLAT for Kp > 4, By < 0, Bz = 0 (Figure 4.9).

Both IMF and Kp bins were used to analyze the dependency of the polar cap radius.

The top four panels in Figure 4.11 and both panels in Figure 4.12 show the radius values

obtained from the polar cap boundary determintion method described in section 4.2. A least

square fit of the data points versus Kp is shown for each of the four IMF configurations; all

trends are fairly similar (panels a–d in Figure 4.11) and combining all 20 of the data points

indicates the relation for the polar cap is

PCR = 12.2 + 1.1×Kp (4.1)

with a goodness of fit value of R2 = 0.87 (where R2 = 1.0 is a perfect fit). The smallest

radius observed is approximately 12◦ for Kp < 1, and it reaches a maximum of 19◦ for

Kp > 4. This relation is significantly different in both the starting radius and change

with Kp than the relation used by the USU TDIM. The default electric potential model in

the TDIM is a simplified Volland [1978] approximation with a polar cap radius equal to

17.0 + 0.3×Kp. This relation is shown by the green line in panel e) of Figure 4.11. Also
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shown in this panel are the results of Xiong and Lühr [2014] (blue line) which used FACs

to deduce the poleward boundary of the auroral oval using ten years of magnetic field data

(August 2000–August 2010). An elliptical description was used to describe the polar cap

boundary for three Kp ranges. The elliptical dusk–dawn semi-major axis parameter is used

for comparison here as it comes from a similar region as our calculated radius values. If

a least square fit were to be drawn to the Xiong and Lühr [2014] dusk–dawn semi-major

axis values, the result would be PCR = 10.1 + 1.2 × Kp with R2 = 1.0. Even though the

starting radius is two degrees smaller, the slope is nearly identical to that derived in this

study. One possibility for the discrepancy is the polar cap radius in the TDIM was most

likely calculated using active geomagnetic conditions, while equation 4.1 was calculated

using only data from quiet geomagnetic conditions.

Figure 4.12 shows trends in the polar cap radius based on IMF magnitude and clock

angle. The smallest polar cap radius is again just over 12◦ and increases to almost 17◦ for

BT < −7.25 nT but increases only to 14◦ for BT > 7.25 nT. This is the case regardless of

the dominant component of the IMF. The average trend for negative IMF values (By or

Bz) is PCR = 11.8 − 0.5 × IMF with R2 = 0.97 and the average trend for positive values

is PCR = 12.5 + 0.2 × IMF with R2 = 0.48. The relation for the positive values is not as

statistically significant as for the negative trend. This analysis shows an increasing polar

cap radius with increasing IMF magnitude, but positive values of both By and Bz have

smaller radii than negative values of the same magnitude.

In addition to the radius, the offset of the center of the polar cap in both the dawn–

dusk and noon–midnight directions were computed. The values are plotted in Figures 4.13

and 4.14 in a manner similar to the polar cap radius plots. Trendlines are shown for the

four IMF configurations, but the goodness of fit values are low, ranging from R2 = 0.11 for

the noon–midnight trend (blue line) in panel d) to R2 = 0.83 for the noon–midnight trend

in panel a). All of the data is consistent, however, and shows a tendency for the polar cap

to move from dawn to dusk (positive offset to negative offset) as Kp increases, while at the

same time moving from midnight to noon. The equation for these relations are given in
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Figure 4.11. Polar cap radius trends based on averaged Kp convection patterns. Each
panel shows data points for different IMF configurations: panel a) shows By = 0, Bz < 0;
b) shows By = 0, Bz > 0; c) shows By < 0, Bz = 0; panel d) shows By > 0, Bz = 0; and
panel e) shows radius values for all four IMF configurations in addition to a least square
fit line (red). Panel e) also shows polar cap radius relations used in the USU TDIM model
(green) and recent findings by Xiong and Lühr [2014] (blue).
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Figure 4.12. Polar cap radius trends based on averaged IMF convection patterns. Trends
for when IMF By = 0 are shown in panel a) while trends for IMF Bz = 0 are shown in
panel b). The least square fit was done separately for positive and negative IMF values.

panel e) with the dawn–dusk offset going as

Dawn–Dusk Offset = 0.37− 0.4×Kp, (4.2)

and the noon–midnight offset as

Noon–Midnight Offset = −1.02 + 0.4×Kp. (4.3)

Both equations have low goodness of fit values with R2 = 0.42 for the dawn–dusk offset and

R2 = 0.48 for the noon–midnight offset.

Offsets were also calculated using the IMF bins and are shown in Figure 4.14. This

method did not produce any significant trends with all R2 values below 0.80 except for the

noon–midnight offset for Bz = 0 (blue line in panel b). However, while the dawn–dusk
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Figure 4.13. Polar cap offset trends based on averaged Kp convection patterns. Each
panel shows data points and least square fit lines for different IMF configurations: panel
a) shows By = 0, Bz < 0; b) shows By = 0, Bz > 0; c) shows By < 0, Bz = 0; panel d)
shows By > 0, Bz = 0; and panel e) shows offset values for all four IMF configurations.
Dawn–dusk (noon–midnight) offsets are represented by green (blue) data points and lines.
Positive values indicate an offset toward dawn/noon, while negative values are offsets toward
dusk/midnight.
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Figure 4.14. Polar cap offset trends based on averaged IMF convection patterns. Trends
for when IMF By = 0 are shown in panel a), while trends for IMF Bz = 0 are shown in
panel b). The y-axis and color scheme are the same as in Figure 4.13.

offsets are backed by fairly robust data as discussed previously and shown in Figure 4.1, the

lack of data in the noon and midnight sectors leads to an incomplete picture of the entire

polar cap region.

Arguably, one of the only data-dense cross sections for the time period studied is the

dusk–dawn cross section. Therefore, this cross section was chosen for further investigation.

Additionally, the near-polar orbit of the DMSP satellite means some orbits do indeed make

a pass across the magnetic north pole from dusk to dawn. This cross section is used to look

at the two-dimensional slice of sunward/antisunward velocities derived from the DMSP data

and compared to empirical model output.

The dusk–dawn cross sections were initially compared to the USU TDIM output. The

TDIM requires as input Kp, a dawn–dusk offset, a noon–midnight offset, and a skew value.

For this study, the Kp values were varied, while the other three parameters were kept at zero.
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This model output was then compared to the averaged velocity data for the Kp bins with

By = 0, Bz < 0. Figure 4.15 shows these cross sections; only the Vy component is plotted

and the solid lines are the averaged DMSP data, while the lines with the cross symbol

are the TDIM output. The Kp > 4 bin is not shown because it did not contain enough

data to result in a physically realistic profile. The TDIM computes the electric potential

fall-off from the auroral zones to the midlatitudes using a 1/ sin4 Λ function (where Λ is the

magnetic colatitude) as recommended by Volland [1978]. This fall-off and the relation to

Kp is quite obvious with the peak sunward (positive) velocity around 70◦ MLAT increasing

from just over 500 m/s for Kp ≤ 1 to almost 1500 m/s for 3 < Kp ≤ 4. Neither a sharp

reversal in the flow nor such a drastic increase in sunward velocity is apparent in the data.

In fact, the data shows a much more gradual change from the negative, antisunward flow

in the polar cap to the positive, sunward flow in the auroral zone. The latitude at which

the reversal occurs follows the expected trend for both, starting at a higher latitude for low

Kp and extending the antisunward flow to lower latitudes as Kp increases. The model is

symmetrical about the pole, while there are clear asymmetries in the averaged data. The

peak velocity for averaged data sunward flow is slightly higher on the duskside than the

dawnside with values ranging from 400–600 m/s in the dusk peak and from 200–500 m/s

in the dawn peak. Antisunward velocities in the polar cap are constant for the TDIM

output with values increasing by approximately 75 m/s for every integer increase in Kp.

The DMSP velocities are fairly consistent across the polar cap, but a slight decrease near

the pole occurs for all Kp ranges.

The next dusk–dawn cross section comparison was done to compare the data to the

Weimer [2005] model output. This empirical model is driven by solar wind and IMF

conditions and so the Kp bins were not relevant to this comparison. As mentioned in

section 4.2, the model was run using a solar wind velocity of 450 km/s, a solar wind density

of 1.0 cm−3, and a dipole tilt of zero degrees. Four IMF clock angles were run with the

nonzero IMF component stepped through the eight different magnitude ranges indicated in

Figure 4.16. Each panel in this figure is for a different IMF clock angle, and the line color
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Figure 4.15. Comparison of Volland [1978] sunward/antisunward flow velocities to aver-
aged DMSP data for a dusk-to-dawn cross section. Different colors indicate four different
Kp bins for both model (lines with the cross symbol) output and averaged DMSP data
(solid lines). Positive values indicate sunward flow.

indicates the magnitude range. The model output is shown as lines with the cross symbol

and the averaged DMSP data is shown as solid lines. With the exception of By < −7.25 in

panel c), all of the data profiles have lower peak velocities than the model output.

The top panel represents a typical two-cell convection pattern with no By influence

and an open IMF with Bz southward. In this scenario, the auroral zone peaks for the

model output are 2–4 times greater than the data, but polar cap velocities are quite similar,

especially on the duskside. On the dawnside, the model output again reaches much larger

magnitudes than the data reaches. The model shows more symmetric flow across the pole

than the significantly asymmetric flow velocities in the model output. However, there is a

significant dip towards zero near the pole for both the model and averaged data; this was

noted earlier in the averaged convection pattern plots. The reversal latitudes for the data

are almost all poleward of the model output latitudes, which supports the previous finding

for a smaller polar cap radius than is typically used.

Although the Weimer [2005] output clearly shows sunward flow across the center of

the polar cap for the Bz northward (panel b), the data does not reflect this; instead there

are fairly constant velocities across the polar cap. The dawnside reversal of the averaged

data is closer to the pole than the model output, but the peak velocities of the data and

model are the most similar of all the cases. The duskside peak latitude is equatorward of

model peaks with the resulting fall-off extending further equatorward, as well.
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DMSP Data vs. Weimer
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1Figure 4.16. Comparison of Weimer [2005] sunward/antisunward flow velocities to aver-
aged DMSP data for a dusk-to-dawn cross section. Each panel contains both model (lines
with the cross symbol) output and averaged DMSP data (solid lines) for different IMF con-
ditions. Positive values indicate sunward flow, and the IMF clock angle is indicated in the
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For the By < 0, Bz = 0 IMF conditions shown in panel c), both the model output and

the averaged data show larger peak velocities on the duskside than on the dawnside; this is

consistent with negative By values. However, By < −7.25 is the only magnitude bin in this

case that has significant peak on the dawnside; all other bins have peaks less than 250 m/s

while the model indicates peak velocities from 500–700 m/s. The only IMF magnitude

where the data shows a larger peak velocity than the model is when By < −7.25; this

occurs on the dawnside with a model peak of 700 m/s and a data peak of approximately

1050 m/s. The location of the peaks are also separated by two degrees in latitude with

the data peak velocity equatorward of the model peak velocity. The expected asymmetry

across the polar cap is not present in the data cross sections.

The bottom panel also does not show the asymmetry expected across the polar cap for

positive By. The model output shows a large asymmetry across the polar cap with all of

the antisunward flow on the dawnside of the pole, but the averaged data show a constant

magnitude of antisunward flow within the polar cap. There is, however, a slight asymmetry

in the magnitude of the peak velocities in the auroral regions, but the peak velocities for

the data profiles are still much lower than the model output.

The differences between a dusk–dawn cross section of the averaged data and the H-M

model output were also examined and are shown in Figure 4.17. In this case, four specific

IMF conditions were used (shown at the top left of each panel), and the changes driven

by geomagnetic activity were studied. There appears to be a slight interpolation error in

the model output at the pole, but this does not significantly detract from the analysis.

Additionally, some of the cases may not have enough data in the 3 < Kp ≤ 4 range to

produce a reliable cross section; this is especially true for By 6= 0. The gradual reversal from

sunward to antisunward flow is similar to Weimer [2005], but the peak velocity magnitudes

are much lower. This results in a much better agreement between the data cross sections and

the H-M model output for the three IMF conditions in panels b–d. For the Bz southward

conditions in panel a) the peak model velocities in the auroral regions are still 200–400 m/s

larger than the data. The H-M model does not show sunward flow across the polar cap
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region for Bz positive, but the velocities are quite small compared to the data velocities.

The model again shows asymmetries for the By 6= 0 cases, and while the data do not agree

for By negative, they are quite similar to the model output for By positive.

The final comparison shown in Figure 4.18 is of the four empirical models versus the

averaged DMSP data for the same four IMF conditions as in Figure 4.17 with 2 < Kp ≤ 3.

It is clear from this plot the USU TDIM output is a very simplified representation of the

high-latitude convection. Neither of the other two models nor the data show the same sharp

and instantaneous reversal in the flow direction. Instead, the much more realistic pattern is

a gradual decrease from the peak sunward flow in the auroral region until the flow reverses

direction and then gradually increases to the peak antisunward flow in the polar cap. The

decrease from the auroral region peak to a velocity of zero at the polar cap boundary occurs

across approximately 3–10 degrees in latitude. With the exception of panel c) the data most

closely correlates to the Heppner and Maynard [1987] model output.

4.4. Summary

Binning and averaging the data results in surprisingly coherent two-cell convection

patterns; however, the data shows no evidence of a multi-cell pattern with sunward flow

in the polar cap for Bz northward. When examining dusk–dawn cross sections, the model

asymmetries associated with positive By are much larger and more pronounced than any

asymmetry that shows up in the data. Additionally, the Weimer [2005] auroral region

velocities can be up to four times larger than the data, and in general, the cross sections of

the averaged data are best represented by the H-M model output. When a circular polar cap

is fit to the averaged data, a clear relation between the polar cap radius and Kp emerges that

is significantly different in both starting radius and change with Kp than what is currently

being used to drive the USU TDIM model. The Volland [1978] type TDIM should be

adjusted for the low Kp values experienced during very low solar minimum conditions to

account for a polar cap radius at least four degrees smaller. The significance of such a

compression of the polar cap radius in the TDIM model should be investigated.



78

DSMP Data vs. Heppner-Maynard
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1Figure 4.17. Comparison of H-M sunward/antisunward flow velocities to averaged DMSP
data for a dusk-to-dawn cross section. Each panel contains both model (lines with the cross
symbol) output and averaged DMSP data (solid lines) for different IMF and Kp conditions.
Positive values indicate sunward flow. Panel a) shows By = 0, Bz = −10, b) shows By =
0, Bz = +10, c) shows By = −10, Bz = 0, and panel d) shows By = +10, Bz = 0. Each
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DMSP Data vs. Empirical Models
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1Figure 4.18. Comparison of all three empirical model sunward/antisunward flow velocities
to averaged DMSP data for a dusk-to-dawn cross section. Positive values indicate sunward
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CHAPTER 5

DUSKSIDE FALL-OFF REGION CLASSIFICATION

5.1. Introduction

Although there are many high-latitude convection models, none are able to capture the

instantaneous changes in the polar cap electric field and all have specific advantages and

disadvantages. In the previous chapter we examined how a convection pattern obtained from

averaging four years of DMSP data compared to different empirical high-latitude convection

models. It was noted, although the data was binned according to solar and geomagnetic

conditions, the simple fact that multiple orbits were averaged, blended together any orbit-

specific features. In this chapter we examine each orbit individually in an attempt to fit

different functional forms to the velocity profile of the fall-off region. These fits are first

examined individually, then averaged together according to their solar and geomagnetic

conditions, and the results are compared to the same empirical models used in the previous

chapter.

5.2. Methodology

For this comparison the Volland [1975] sine function, along with an exponential and a

Gaussian, were used to fit the velocity profile. A single peak followed by a rapid decrease

to a platform value typify each of these three functions, which were chosen because they

are expected to represent the rapid decrease in the plasma drift velocity outside the polar

cap just as the Volland [1975] sine function represents the rapid decrease in electric field

intensity outside the polar cap with decreasing latitude (section 2.5). The three functions

are given as

Exponential: y = y0 +A× exp

[
(x− x0)

B

]
, (5.1)

Sine: y = y0 +
A

sinB(x)
, (5.2)

Gaussian: y = y0 +A× exp

[
−(x− x0)2

2B2

]
, (5.3)
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where y0 is a platform value, x0 is the latitude of the peak velocity, and A and B are

the parameters to be fit. For all three functions, A is related to the magnitude of the

peak, while B is related to the gradient of the curve. The portion of the orbit to be fit

is constrained between the offset latitude as described in Chapter 3 and x0, which is the

latitude of the peak velocity. An example of these parameters defining the fit region are

shown in Figure 5.1.

In order to perform a linear least square fit (LLSF), each expression needs to be trans-

formed into a linear equation. For the exponential, this was done with the following steps:

y = y0 +A exp

[
(x− x0)

B

]
, (5.4)

y − y0 = A exp

[
(x− x0)

B

]
, (5.5)

ln(y − y0) = ln

{
A exp

[
(x− x0)

B

]}
, (5.6)

ln(y − y0) = lnA+
(x− x0)

B
, (5.7)

Y = A′ +B′X, (5.8)

where Y = ln(y−y0), X = (x−x0), A′ = lnA, and B′ = 1/B to obtain equation 5.8, which

is the equation for a line. The LLSF is performed using an automated algorithm and once

the A′ and B′ are returned, the parameters A and B are recovered by taking

A = expA′, (5.9)

B =
1

B′
. (5.10)

Similar transformations are done for the sine and Gaussian functions. For the sine:

y = y0 +
A

sinB(x)
, (5.11)

y − y0 =
A

sinB(x)
, (5.12)

ln(y − y0) = ln

[
A

sinB(x)

]
, (5.13)



82

ln(y − y0) = lnA− ln
[
sinB(x)

]
, (5.14)

ln(y − y0) = lnA−B ln [sin(x)] , (5.15)

Y = A′ +B′X, (5.16)

where in this case, x is the colatitude and Y = ln(y − y0), X = ln [sin(x)], A′ = lnA, and

B′ = −B, and we take

A = expA′, (5.17)

B = −B′ (5.18)

to recover A and B. For the Gaussian:

y = y0 +A exp

[
−(x− x0)2

2B2

]
, (5.19)

y − y0 = A exp

[
−(x− x0)2

2B2

]
, (5.20)

ln(y − y0) = ln

{
A exp

[
−(x− x0)2

2B2

]}
, (5.21)

ln(y − y0) = lnA− (x− x0)2

2B2
, (5.22)

Y = A′ +B′X, (5.23)

where Y = ln(y−y0) and A′ = lnA are still the same, but X = (x−x0)2 and B′ = −1/2B2.

To recover A and B we take

A = expA′, (5.24)

B =

√
− 1

2B′
. (5.25)

One issue encountered when solving for the LLSF occurred when trying to determine

where to set the platform value, y0. It was initially set to the adjusted velocity at the offset

latitude (OL) because, while the velocity of most orbits should be trending towards zero

at low latitudes, a penetration event could cause the velocity to level out at some finite
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Figure 5.1. Orbit fit parameters for an example orbit. Each function is fit between the
offset latitude and the latitude of the peak velocity, x0. y0 is the low-latitude velocity limit,
typically zero.

value above zero (i.e., a platform). However, because of the small-scale structure within the

orbit data, this value often does not represent the low-latitude platform and many instances

occur where Vy poleward of the offset latitude is less than y0. This created a problem in

the fitting algorithm because the natural logarithm is undefined for negative numbers.

One solution to this problem is to set y0 to the minimum value in the region to be

fitted. With y0 = ymin, the natural logarithm is always defined and all data points are

included in the LLSF. However, this solution still may not be, and usually is not, close to

the actual platform value. Another solution is to simply set the platform value to zero.

While this solution does not explicitly solve either problem, on examination of hundreds of

orbits, it was hypothesized it may be the best solution.

Figure 5.2 shows four examples of fits obtained using the three different values for y0.

These plots show only the fall-off region and extend equatorward to 20◦ to show actual

platform value of the velocity data at low latitudes. All plots show exponential fits; the

red line uses y0 = ymin, the green line is obtained when y0 = Vy(OL), and the blue line is
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a) Orbit 166 / 2008 1912 MLT b) Orbit 167 / 2010 1511 MLT
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c) Orbit 186 / 2008 0349 MLT d) Orbit 153 / 2009 1209 MLT
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Figure 5.2. Comparison of linear least square fits (LLSF) using different values of y0. The
left vertical brown dashed line indicates the offset latitude while the right vertical brown
dashed line indicates the peak latitude. The black line is the orbit data, the red line is the
LLSF using y0 = ymin, the green line uses y0 = Vy(OL), and the blue line uses y0 = 0.

for y0 = 0. The left vertical brown dashed line indicates the offset latitude while the right

vertical brown dashed line indicates the peak latitude. When the orbit data is well-behaved,

there is little difference in the resulting fit (panels a and b); however, when significant

structure exists in the velocity data at low-latitudes (panel c) or velocities in the fit region

decrease below the velocity at the offset latitude (panel d), then the different values of y0

can result in different fits either at low latitudes, at the peak latitude, or both. However, it

is difficult to say which fit is most correct. Therefore, because for the well-behaved orbits,

the fits are all very similar, and in most cases velocities are expected to go to zero at low

latitudes, the platform value was chosen as zero. Velocities in the fitted region less than

zero were ignored and not included in the fit.

Even with these measures taken to achieve the best fits possible, some orbits still

returned unexpected parameters and showed up as outliers in scatterplots of the fit param-
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eters. These orbits were examined individually to determine if they represented a class of

interesting phenomena or unique set of conditions, or if the unexpected parameters were the

result of bad orbit data or poor specifications for the fit parameters. Figure 5.3 shows some

of these orbits. Note, the functional fits for all of these orbits have a very high goodness of

fit value (R2 > 0.80), but most of the original data is erroneous.

For these plots, the vertical brown dashed lines are the same as in Figure 5.2, but here

the red line is the exponential fit, the green line is the sine fit, and the blue line is the

Gaussian fit. The left panel shows the entire orbit from 40◦ in the ascending node on the

duskside across the pole, to 40◦ in the descending node on the dawnside. Missing data in

the middle of the plot indicates the orbit did not cross 90◦ mlat; the small inset shows the

orbit path in a polar plot. The right panel shows only the duskside of the orbit from 40◦ to

75◦ in order to zoom in on the fitted region. The solar and geomagnetic conditions at the

time of each orbit are shown in the upper left corner of each left panel plot.

Panel a) shows a near perfect fit for all three functions, but on closer inspection, the

fitted region is only five degrees in latitude and the peak velocity occurs at a low magnetic

latitude of 50◦. While this technically could be possible, examination of the rest of the orbit

and the Kp index give no indication for this low-latitude velocity peak. This is most likely

a case where the data is bad due to a high ratio of H+. Apart from the highly fluctuating

velocities from 70–80◦ on the duskside, the orbit in panel b) appears quite normal. However,

velocities of nearly 3 km/s are not typical of quiet solar and geomagnetic conditions with Kp

= 0.7 and a slightly negative IMF Bz component. Orbits like this are typical for the winter

months of 2007, which was the beginning of the most recent extreme solar minimum. Again

the R2 values are very high, but the resulting fit parameters do not coincide with other

orbits that have the same solar and geomagnetic conditions. Because there are so many

orbits in 2007 that have this signature, and many of the duskside sectors of the 2007 orbits

are in darkness, all orbits from 2007 were discarded for this analysis. The fitted portion

of the orbit in panel c) is similar to panel a), but the rest of the orbit data is missing.

Therefore, it is difficult to determine if the location and value of the peak velocity is the
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b) Orbit 326 / 2007 0117 MLT
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c) Orbit 020 / 2008 1628 MLT
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d) Orbit 304 / 2009 0323 MLT
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Figure 5.3. Linear least square fits for bad dusk orbit data. The left vertical brown dashed
line indicates the offset latitude, while the right vertical brown dashed line indicates the
peak latitude. The black line is the orbit data, the red line is the exponential LLSF, the
green line is the sine fit, and the blue line is the Gaussian fit.
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actual peak or is just where the data cut off. And while panel d) shows perfectly acceptable

velocity data for quiet geomagnetic conditions (Kp = 0), the resulting fit parameters are

atypical due to the lack of an actual peak in the velocity data in the auroral region.

In an attempt to remove as many bad orbits from the analysis as possible the following

parameters were set. All orbits from 2007 were discarded. If the fitted region was less than

five degrees, the orbit was discarded. If more than half the data points in the fitted region

were missing or negative, the orbit was discarded and was not included in the analysis.

With these stipulations in place, functional fits were performed on 12,592 orbits. The

goodness of fit value, R2, was used to classify which orbits had good fits. Table 5.1 shows

the number and percentage of orbits with certain R2 values for the three functional fits. A

perfect fit is R2 = 1.0 and so a very good fit would be an orbit with R2 > 0.9. For both

the exponential and sine fits, only 11% of the orbits fall into this category and only 5% for

the Gaussian fit. If the criteria for a good fit is extended down to R2 > 0.8, the number of

orbits increases to around 31% (about 4,000 orbits) for the exponential and sine fits and to

18.5% for the Gaussian fit (2,300 orbits). Figure 5.4 shows the histograms of R2 for each

functional fit. Both the exponential and the sine are more concentrated at the high R2

values, while the Gaussian fits are more evenly distributed among the lower R2 values. In

order to evaluate only orbits with good fits but still retain enough orbits for to maintain a

statistical significance in the analysis, an R2 value of 0.8 was chosen as the cutoff.

These restrictions leave us with orbits such as those shown in Figure 5.5 where four

examples of orbits with good fits for all three functions are shown. The plot layout is the

same as for Figure 5.3. Now that the analysis is restricted to orbits with good functional

fits, we can examine the results.

It should be mentioned that the majority of the orbits, nearly 9,000 of them, are not

used in this analysis because a good fit was not obtained with the functions chosen. This is

evidence that capturing the real structure of the convection pattern is still a problem. These

simple models may be adequate in capturing climatological patterns, but the capturing the

weather of the ionosphere is needed to model the remaining 70% of the orbits.
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Table 5.1. Duskside Goodness of Fit Statistics*

Exponential Fit Sine Fit Gaussian Fit
Number Percent Number Percent Number Percent

R2 > 0.9 1407 11.2% 1473 11.7% 625 5.0%
R2 > 0.8 3889 30.9% 4015 31.9% 2332 18.5%
R2 > 0.7 5958 47.3% 6264 49.7% 4320 34.3%
R2 < 0.6 4979 39.5% 4653 37.0% 6464 51.3%
R2 < 0.4 2609 20.7% 2303 18.3% 3680 29.2%
R2 < 0.2 1140 9.1% 980 7.8% 1714 13.6%

*Total number and percentage of the 12,592 duskside orbits with goodness of fit
R2 values within the listed categories.
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Figure 5.4. Duskside goodness of fit histograms. The top plot is the exponential fit, the
middle plot is the sine fit, and the bottom plot is the Gaussian fit.
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b) Orbit 181 / 2009 1826 MLT
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c) Orbit 167 / 2010 1511 MLT
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d) Orbit 167 / 2010 1835 MLT
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Figure 5.5. Linear least square fits for good dusk orbit data. The left vertical brown
dashed line indicates the offset latitude, while the right vertical brown dashed line indicates
the peak latitude. The black line is the orbit data, the red line is the exponential LLSF,
the green line is the sine fit, and the blue line is the Gaussian fit.
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5.3. Results

First, we look at some of the parameters to check the fitted functions are behaving as

expected. Figure 5.6 is a plot of the latitude of the peak velocity versus Kp. The red crosses

indicate the values for individual orbits, the black dots represent the mean latitude, and

the blue squares are the median latitude for each Kp value. The vertical black lines extend

to plus/minus one standard deviation from the mean. The angled black line is a LLSF to

the mean values, while the blue line was obtained from the TDIM model, and the green

line was obtained from the H-M model. The 1800 MLT radian was used to obtain the data

for both models.

For low Kp values, the latitude of the peak velocity is around 75◦ and decreases to

60◦ for Kp = 6.7; this indicates the polar cap and the auroral zone expand equatorward as

Kp increases. The trend obtained from the two models also indicates this expansion, but

at a much slower rate than the data. The data follow an expansion of approximately two

degrees for every integer increase in Kp, while the TDIM expands only three degrees from

Kp = 0 to Kp = 9. The H-M model falls in between with an expansion of just over one

degree for every integer increase in Kp. The outlying points in the 50–60◦ range for low Kp

occur because of orbits such as panel a) and c) in Figure 5.3.

Next the velocity at 60◦ obtained from each of the functional fits is examined as a

function of Kp. These plots are shown in Figure 5.7. Panel a) shows the data for the

exponential fit, panel b) is for the sine fit, c) is the Gaussian fit, and the bottom plot shows

the mean values for all three fits (solid lines) in addition to lines obtained from the two

models (dashed). Although there is a large spread in the data, the trend in the mean and

median values is very similar for all three fits, as can be seen in the bottom panel. The

velocity starts out around 50 m/s for low Kp, and gradually increases up to nearly 500 m/s

for Kp = 6. The trend is not linear, as it was with the latitude of the peak velocity, but it

indicates a similar expansion. Either the width of the region with strong sunward flow is

increasing, or the entire region is moving equatorward. The latter is the most likely since

previous analysis indicated both the polar cap and the peak velocity expand equatorward
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Figure 5.6. Duskside latitude of the peak velocity as a function of Kp. Red crosses indicate
values for individual orbits, black dots represent the mean latitude, and blue squares are
the median latitude for each Kp value. The vertical black lines extend to plus/minus one
standard deviation from the mean. The angled black line is a LLSF to the mean values,
while the blue line was obtained from the TDIM model, and the green line was obtained
from the H-M model. The 1800 MLT radian was used to obtain the data for both models.

with larger Kp. Although the three fits show a similar trend, it is quite different from the

trend obtained from each empirical model. Both models show an increase in the velocity

with Kp, but the TDIM increases at a slower, more linear rate, while the H-M model shows

a similar trend, but seems to be shifted to the right by 2 Kp.

Similar to the comparison of the velocity at 60◦, Figure 5.8 shows the slope of the

functional fit at 60◦ as a function of Kp. The slope was calculated as the change in velocity

per degree of latitude; therefore, a small slope represents a flatter line and a large slope

indicates a a steeper line. The trend shown by these plots is consistent with the previous two

results; as Kp increases, the slope of the line at 60◦ becomes steeper. Both the exponential

and sine fits have similar trends, but the Gaussian in this case more closely resembles the

TDIM output. Both show only a small increase in the slope across Kp. For the TDIM this

is still consistent with the expansion seen in both Figures 5.6 and 5.7. However, for the

Gaussian, this can be explained by the nature of the function. While both the exponential
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Figure 5.7. Duskside velocity at 60◦ obtained from functional fits. The top panel is the
exponential fit, panel b) is for the sine fit, and panel c) is the Gaussian fit; data is shown in
the same manner as the previous figure. Panel d) shows the mean value of the velocity for
each fit as solid lines and velocity values at 60◦ obtained from the TDIM (blue) and H-M
model (green) as dashed lines.
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and the sine functions continue to increase poleward of the peak velocity latitude, the

Gaussian reaches a maximum at the peak velocity latitude. Therefore, as the peak moves

closer to 60◦, the slope must start to decrease since at the maximum, the slope will be zero.

Especially interesting is the output from the H-M model shown by the green dashed line.

If Figure 4.17 is examined closely in the fall-off region, it can be seen that the H-M model

output has a slight sinusoidal variation, which is most likely due to the interpolation of the

convection patterns.

As discussed earlier, each function has two free parameters that are determined using

the LLSF algorithm. Parameter A is related to the magnitude of the function and parameter

B is related to the slope. Figures 5.9, 5.12, and 5.15 are histograms for the two parameters

for the exponential, sine, and Gaussian fits, respectively. The equation for each function

is shown at the top of each figure with parameter A in the top panel and parameter B

in the bottom panel. This analysis only includes parameters from orbits with a goodness

of fit of R2 > 0.8. None of the histograms show a truly normal distribution, especially

for parameter A, but the distributions for parameter B are close to normal, but with a

positive skew. In addition to the histograms, the parameters are plotted against each other

in Figures 5.10, 5.13, and 5.16 to show how A and B are related for each function. Examples

of curves plotted using different combinations of A and B are shown in Figures 5.11, 5.14,

and 5.17 to show how each parameter affects the curve. In general, as A increases (i.e.,

larger peak velocities) B decreases.

For the exponential fit parameters shown in Figure 5.9, 67% of the orbits have param-

eter A below 750; 29% fall between 750 and 2000, and only four percent are larger than

2000. This is not surprising as the data is from a period of low solar activity when veloci-

ties are not expected to be large. For the exponential function, the inverse of parameter B

represents the exponential decay of the curve; a larger decay constant indicates a steeper

gradient. This analysis shows for 67% of the orbits, parameter B is between four and nine.

Values less than four account for 15% of the orbits, and the remaining 18% have values

greater than nine. Using the median values for parameters A and B, the orbits can be fit



94

Fitted Slopes

 0

 20

 40

 60

 80
dV

y/
dθ

  @
  6

0°
Median

Mean
±1 StDev

a) Exponential Fit

 0

 20

 40

 60

 80

dV
y/

dθ
  @

  6
0°

Median
Mean

±1 StDev

b) Sine Fit

 0

 20

 40

 60

 80

dV
y/

dθ
  @

  6
0°

Median
Mean

±1 StDev

c) Gaussian Fit

 0

 20

 40

 60

 80

 0  1  2  3  4  5  6  7

dV
y/

dθ
  @

  6
0°

Kp

Exponential
Sine

Gaussian
TDIM

H-M

d) All

Figure 5.8. Duskside slope at 60◦ obtained from functional fits. The top panel is the
exponential fit, panel b) is for the sine fit, and panel c) is the Gaussian fit; data is shown
in the same manner as the previous figure. Panel d) shows the mean value of the velocity
for each fit as solid lines, velocity values at 60◦ obtained from the TDIM (blue), and H-M
model (green) as dashed lines.
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Exponential Fit Histogram
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Figure 5.9. Histogram of duskside exponential fit parameters A and B. The function is
shown at the top center. Parameter A is in the top panel and parameter B is in the bottom
panel.

with an exponential using

y = 575× exp

[
x− x0

6.4

]
. (5.26)

In order to understand the gradient, both A and B must be considered. If A remains

the same, the function with the smallest B value will have the steepest curve. However,

because A can also change, larger values of B do not necessarily mean a flatter curve. In

Figure 5.10, the lowest values of B cover all ranges of A. In contrast, only for the lowest

values of A do the largest values of B occur. The Roman numerals in Figure 5.10 correspond

to the curves shown in Figure 5.11. The curves show exponential functions for three different

sets of A and B. The latitude for the peak velocity was held constant at 75◦ in computing

these functions. From this figure, it is clear parameter A also has a large influence on the

steepness of the curve. While both the blue and green curves have the same value for B,

the blue curve is much steeper because its A value is three times larger. The red and green

curves, on the other hand, have the same value for A, but different B values. Because the

green curve has a lower B value, it falls off more quickly than the red curve.
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Figure 5.10. Scatterplot of duskside exponential fit parameters A and B. The inset
shows the full range of values for A and B, while the main plot shows the region with the
largest concentration of points. The Roman numerals correspond to the curves shown in
Figure 5.11.
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The sine fit histogram, scatterplot, and example curves are shown in Figures 5.12–

5.14, respectively. For the sine function, A does not explicitly give the peak velocity, but is

instead a scaling factor of the inverse sine function. In this case the largest concentration of

A values falls near zero with 23% of the orbits having A < 0.5. Another quarter of the orbits

fall in the range of 0.5 < A < 2.5 and the rest are spread out fairly evenly from A = 2.5 to

A = 40. The largest number of orbits have a B parameter near 4.5, which is nearly identical

to the value used by Volland [1978]. Using the median values for parameters A and B, the

orbits can be fit with a sine using

y =
2.3

sin(x)5.1
. (5.27)

The sine function is different than the exponential in that a larger B parameter means

a steeper curve for the same A value. Figure 5.13 shows a scatterplot of all the values for A

versus the values for B. While the trend between A and B is similar for the sine, as it was

for the exponential with B decreasing for larger values of A, there is not nearly as much

spread in the data. For A > 3, the spread in the B values is only about four points and is

3 < B < 7 for A = 3 and between 2 < B < 6 for A = 10. For the smallest A values, B

ranges from just over four up to nearly 30. The curves with small A and large B are very

steep, as can be seen by the red curve in Figure 5.14. Each of the three curves in this figure

correspond to the locations marked by Roman numerals in Figure 5.13. The flattest curve

(green line) occurs for low values of both A and B and the steepest curve occurs with the

largest value of B.

The next set of plots are for the Gaussian fit. The histograms shown in Figure 5.15 are

very similar to those returned by the exponential. The A values are concentrated at even

lower values with 62% of the orbits falling below A = 400. Only five percent of the orbits

have A > 1000 with the rest of the orbits falling in between these two values. The bottom

panel of Figure 5.15 shows the histogram for parameter B for the Gaussian fit. Using the

median values for parameters A and B, the orbits can be fit with a Gaussian using

y = 332× exp

[
−(x− x0)2

2× 8.6 2

]
. (5.28)
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Figure 5.12. Histogram of duskside sine fit parameters A and B. The function is shown
at the top center. Parameter A is in the top panel and parameter B is in the bottom panel.
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Figure 5.13. Scatterplot of duskside sine fit parameters A and B. The inset shows the
full range of values for A and B, while the main plot shows the region with the largest con-
centration of points. The Roman numerals correspond to the curves shown in Figure 5.14.
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numerals correspond to the locations shown in Figure 5.13.

The spread in the value of B is apparent in the wide curve the histogram makes; 63%

of the orbits fall in the range 6 < B < 11 with 20% below B = 6 and above B = 11.

The large spread in B can again be seen in Figure 5.16. This plot is different from the

exponential in that the extent of parameter A is much less. In general, this indicates the

Gaussian returns a smaller peak than the exponential. For A < 800, nearly any value of

B is possible; however for A > 1500 (seen in the inset plot), the only possible values of B

are 3 < B < 6. Representative curves for different combinations of A and B are shown in

Figure 5.17. Just like the exponential, both larger values of A and B create steeper curves.

The Gaussian is significantly different from both the exponential and the sine in that the

curve reaches its maximum at the latitude of the peak velocity.

Now that A and B have been examined in general for each function, the next step is to

investigate how they are related to the geomagnetic index, Kp. As was seen in Figures 5.7

and 5.8, both the velocity and the gradient at a fixed latitude increase with Kp. Therefore,

it is logical to assume A should also increase with Kp as it is related to the magnitude of the

curve. This is indeed the trend for all three functions as can be seen in Figure 5.18. Each



100

Gaussian Fit Histogram

 0
 50

 100
 150
 200
 250
 300

 0  500  1000  1500  2000

Fr
eq

ue
nc

y

Parameter A

y = y0 + A exp[-(x-x0)2/2B2]

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 0  5  10  15  20

Fr
eq

ue
nc

y

Parameter B

y = y0 + A exp[-(x-x0)2/2B2]

Figure 5.15. Histogram of duskside Gaussian fit parameters A and B. The function is
shown at the top center. Parameter A is in the top panel and parameter B is in the bottom
panel.
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data point is shown by a red cross and the mean and median are shown as black dots and

blue squares, respectively. The standard deviation of the mean is plotted with the vertical

black bars and a LLSF to the mean is shown by the sloping black line. Only the data with

Kp ≤ 4 were used to obtain the LLSF; this was done because the lack of data for Kp > 4

significantly altered the trend and slightly lowered the goodness of fit value.

The y-intercept, slope, and R2 values for both Kp ranges are shown in Table 5.2. For

the exponential, parameter A, which is directly related to the peak velocity, starts near

500 m/s at Kp = 0 and increases by 130 m/s for every integer value in Kp. Following

this trend, the average peak velocity of the curve would be 1700 m/s for Kp = 9. The

Gaussian (panel c) has a similar relation to parameter A; in this case, the peak velocity

starts out at 275 m/s and increases to 945 m/s. Both of these values seem low, especially

when compared to values from the TDIM and H-M models. The TDIM has a starting peak

velocity of 420 m/s at Kp = 0 and increases to 2500 m/s by Kp = 9. The H-M model is

much more conservative, starting at 390 m/s for Kp = 0 and increasing to 1900 m/s by

Kp = 9. The results for the sine function follow a similar trend, but because A is not as
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Figure 5.18. Duskside parameter A versus Kp. Data points are shown as red crosses and
the mean and median are shown as black dots and blue squares, respectively. The standard
deviation of the mean is plotted with the vertical black bars and a LLSF to the mean is
shown by the sloping black line. Only the data with Kp ≤ 4 were used to obtain the LLSF.
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Table 5.2. Duskside Statistics for A vs. Kp*

Exponential Fit Sine Fit Gaussian Fit

Kp ≤ 4
Y-Intercept 514.12 3.47 273.97

Slope 131.50 0.75 74.47
R2 0.89 0.63 0.88

Kp ≤ 9
Y-Intercept 596.49 1.64 299.50

Slope 83.97 1.85 59.68
R2 0.80 0.58 0.85

*A lack of data for Kp > 4 alters the trend and lowers the goodness of fit
value for a linear least square fit.

closely related to the magnitude of the peak velocity, it is difficult to make useful inferences.

The results show that parameter A starts at 3.5 and increases by 0.75 for every integer Kp

up to 10.25 at Kp = 9.

The relationship of Kp to parameter B is examined in Figure 5.19 and Table 5.3. The

table again shows the specific values for the y-intercept, slope, and R2 when a LLSF is done

on the mean values of B. The improvement when only data for Kp ≤ 4 is quite substantial

here as evidenced by the significant increase in the R2 values. While parameter B decreases

with Kp for both the exponential and Gaussian, it increases for the sine fit. Larger values

mean a steeper curve, and so instead of using a static value for this value in the TDIM

(FALLOFF = 4), the following equation could be used to achieve better results:

FALLOFF = 4.86 + 0.52×Kp. (5.29)

For the exponential and Gaussian, even though the trend is only slight (-0.21 and -0.15,

respectively), a decrease in parameter B indicates the slope of the curve increases for larger

Kp which is in line with what is expected.

Most of the analysis so far has been in relation to the peak velocity. Figure 5.20 instead

looks at the latitude where the slope of the functional fit is equal to a given value. Typically,

a gradient of 15–20 m/s/deg is used to delineate where the midlatitude fall-off region ends

[R. Heelis, personal communication, February 20, 2014]. Therefore, gradients of 15, 20,

and 25 m/s/deg were used as the threshold value. Each functional fit was investigated



104

Parameter B Trends

 0

 5

 10

 15

Pa
ra

m
et

er
 B

Median
Mean

±1 StDev
R2 = 0.61

a) Exponential Fit:  y = y0 + A exp[(x-x0)/B]

 0

 5

 10

 15

Pa
ra

m
et

er
 B

Median
Mean

±1 StDev
R2 = 0.90

b) Sine Fit: y = y0 + A/sin(x)B

 0

 5

 10

 15

 0  1  2  3  4  5  6  7

Pa
ra

m
et

er
 B

Kp

Median
Mean

±1 StDev
R2 = 0.45

c) Gaussian Fit:  y = y0 + A exp[-(x-x0)2/(2B2)]

Figure 5.19. Duskside parameter B versus Kp. Data points are shown as red crosses and
the mean and median are shown as black dots and blue squares, respectively. The standard
deviation of the mean is plotted with the vertical black bars and a LLSF to the mean is
shown by the sloping black line. Only the data with Kp ≤ 4 were used to obtain the LLSF.
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Table 5.3. Duskside Statistics for B vs. Kp*

Exponential Fit Sine Fit Gaussian Fit

Kp ≤ 4
Y-Intercept 7.11 4.86 8.88

Slope -0.21 0.52 -0.15
R2 0.61 0.90 0.45

Kp ≤ 9
Y-Intercept 6.89 4.99 8.90

Slope -0.06 0.43 -0.13
R2 0.05 0.41 0.16

*A lack of data for Kp > 4 alters the trend and lowers the goodness of fit
value for a linear least square fit.

to determine at what latitude these threshold gradients were met. Figure 5.20 is a plot

of these latitudes versus Kp for a threshold gradient of 20 m/s/deg. Twenty degrees was

chosen because the variance in the trend for the three different gradients was less than the

variance in the different functional fits. The mean latitude for the three different threshold

gradients varied by less than three degrees and the slope of the LLSF to the mean was

nearly identical.

All three fits show a distinct trend of decreasing latitude with increasing Kp with the

trends for the exponential and sine functions almost identical. For comparison, the Gaussian

starts out at a latitude of 62◦ for Kp = 0, while both the sine and exponential start at 68◦.

The bottom panel of Figure 5.20 shows all the LLSF to the mean for all three functions

as well as values obtained from the TDIM and H-M models. In this plot, it is easy to see

the LLSF for the sine and exponential are nearly overlapping; also of note is all three lines

converge for larger Kp values. The TDIM (blue line) follows a similar trend, starting at an

identical latitude of 68◦, but decreasing much more slowly (1.4 versus 3.1) with Kp. The

output from the H-M model starts and ends at the same latitude as the TDIM, but again

shows fluctuations caused by the interpolation.

Although the geomagnetic index is used in this analysis as the primary indicator of

solar and geomagnetic activity, many other indices are available. To be thorough, many of

the relationships already discussed were also compared to the index used to describe the

symmetric disturbance field in the horizontal direction, SYM-H, obtained from OMNIWeb
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Figure 5.20. Duskside latitude at which dV y/dθ = 20 m/s/deg versus Kp. Plot setup is
similar to Figure 5.8.
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server run by NASA’s Goddard Space Flight Center. The one-minute SYM-H index is

essentially the same as the hourly disturbance storm time (Dst) index, except in terms of

time resolution [Lyemori and Rao, 1996]. SYM-H and Kp are related as can be seen in

Figure 5.21. SYM-H is near zero for low Kp and decreases as Kp increases.

Although many different comparisons were completed and examined, the only one that

showed a significant trend was for the latitude of the threshold gradient; the result is shown

in Figure 5.22. In this plot, the red crosses are data points with Kp ≤ 3, and the green

crosses are for Kp > 3. The black line is a LLSF to all the data. A few outliers exist in the

lower right portion of the plot with positive SYM-H values and high Kp; it is most likely

that the time resolution of the Kp index (three hours) has caused its value to lag behind

the SYM-H index. Because the LLSF is to all of the data (and not the mean as in previous

plots), the goodness of fit value is quite low (R2 = 0.28). The biggest problem when using

this index was the tendency of the data to produce a large blob near SYM-H = −10, as

seen in this figure. This made determining any kind of relationship between SYM-H and

the parameter being investigated impossible.
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Figure 5.21. Comparison of SYM-H index to Kp index.
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Figure 5.22. Duskside latitude at which dV y/dθ = 20 m/s/deg versus SYM-H. The red
crosses are data points with Kp ≤ 3 and the green crosses are for Kp > 3. The black line
is a LLSF to all the data.

The final figure in this chapter is a combination of three of the relationships that were

examined previously with a new statistical model. Figure 5.23 shows trends for the polar

cap radius (solid black line, determined in Chapter 4), the peak latitude (dashed black

line), and the latitude of the threshold gradient for each functional fit (red dashed lines).

These trends have been overlaid on output from the Hardy et al. [1985] auroral oval model.

This model uses the Special Sensor–Precipitating Electron and Ion Spectrometer (SSIES)

on DMSP to determine the average characteristics of auroral electron precipitation as a

function of MLT, magnetic latitude, and geomagnetic activity as measured by Kp [Hardy

et al., 1985]. The log of the energy flux is plotted with the highest flux in red. The top

panel shows data for the 1700 MLT radian; panel b) is for 1800 MLT, c) for 1900 MLT,

and panel d) shows data along the 2000 MLT radian. The Hardy et al. [1985] model was

run for each MLT, and the trendlines were obtained by sorting the data by year. The

precession of DMSP F15 allowed it to start in the 2000 MLT radian in 2007 and move

clockwise approximately one hour in local time every year. Although most of the 2007 data



109

is questionable, the months of May, June, and July contain orbits completely in sunlight

above 50◦; only the orbits from these three months were used to obtain the trends shown in

panel d). Similarly, the 2008 data is a proxy for 1900 MLT, 2009 for 1800 MLT, and 2010

for 1700 MLT (see Figure 3.1). It can easily be seen that the energy flux increases both at

larger Kp and in the nightside.

The PCR lines up quite well with the poleward edge of the region with the strongest

energy flux, and the latitude of the threshold gradient for each functional fit lines up with the

equatorward edge of the flux. The auroral zone should be the region with the largest energy

fluxes and therefore, falls between the line for the PCR and the peak velocity latitude; while

these two lines do not exactly outline the largest energy fluxes, panel c) at 1900 MLT does a

good job. Although a few discrepancies exist, in general the model data and the trendlines

shift equatorward from panel a) 1700 MLT to panel d) 2000 MLT.

5.4. Summary

In this chapter, three functions were used to classify the velocity profile in the fall-off

region. An exponential, sine, and Gaussian function were fit to the data using a LLSF

algorithm. Due to questionable data, the orbits from 2007 were not used for the majority

of this analysis. Many orbits displayed realistic structure that was not able to be captured

by the functional fit; those orbits were not included in the analysis and only orbits with R2

values greater than 0.8 were used. Overall, the exponential and sine functions are equivalent

within the data variability.

Using the median values for parameters A and B, it was found, in general, the orbits

can be fit using the following functional forms:

Exponential: y = 575× exp

[
x− x0

6.4

]
, (5.30)

Sine: y =
2.3

sin(x)5.1
, (5.31)

Gaussian: y = 332× exp

[
−(x− x0)2

2× 8.6 2

]
. (5.32)
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c) 1900 MLT
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Figure 5.23. Duskside Hardy et al. [1985] auroral oval and Kp trends for four MLTs. Kp
trends are for the polar cap radius (solid black line), the peak latitude (dashed black line),
and the latitude of the threshold gradient for each functional fit (red dashed lines). The
background is the log of the energy flux obtained from the Hardy et al. [1985] auroral oval
model. Each panel is for the MLT indicated in the top left corner.
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In an empirical model driven by the Kp index, quiet geomagnetic conditions (Kp < 4) can

be recreated using any one of the following sets of functions and Kp-dependent parameters:

Exponential Fit: y = A× exp

[
x− x0
B

]
, (5.33)

A = 514.12 + 131.50×Kp, (5.34)

B = 7.11− 0.21×Kp. (5.35)

Sine Fit: y =
A

sin(x)B
, (5.36)

A = 3.47 + 0.75×Kp, (5.37)

B = 4.86 + 0.52×Kp. (5.38)

Gaussian Fit: y = A× exp

[
−(x− x0)2

2B 2

]
, (5.39)

A = 273.97 + 74.47×Kp, (5.40)

B = 8.88− 0.15×Kp. (5.41)

A lack of data during active conditions leaves reconstructing velocities in the fall-off region

questionable. Equation 5.38 would be especially useful in the TDIM. Additionally, the

strong correlation between the analysis done on the functional fits and output from the

Hardy et al. [1985] auroral oval model gives significance to these results.
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CHAPTER 6

DAWNSIDE FALL-OFF REGION CLASSIFICATION

6.1. Introduction

In this chapter, the dawn fall-off region velocities are examined and a common descrip-

tion based on IMF and geomagnetic conditions is attempted using a method similar to the

classification of the duskside fall-off region velocity profiles. While the IMF By component

may introduce an asymmetry in the dawn and dusk convection cells, the fall-off behavior for

both regions is typically assumed to be similar. The USU TDIM assumes complete symme-

try and uses the same inverse sine function (sin−4(Λ)) for both regions. Other models are

more complex due to how the model was created (e.g., hand-drawn, spherical harmonics,

etc.). The fits are examined individually and are then averaged together according to their

solar and geomagnetic conditions, the results are compared to the TDIM and H-M empirical

models, and the Hardy et al. [1985] statistical auroral oval model.

6.2. Methodology

For the dawnside, only the exponential and sine functions were used to obtain a LLSF

to the orbit data. The Gaussian was not used because nearly 10% fewer of the duskside

orbits had acceptable goodness of fit values. Also, because the orbits are now being fit from

the peak latitude to the offset latitude, a negative must be included in the exponential to

indicate a decay of the function. The platform value y0 is still kept at zero; therefore the

two functions used are

Exponential: y = A× exp

[
−(x− x0)

B

]
, (6.1)

Sine: y =
A

sinB(x)
, (6.2)

where x0 is the latitude of the peak velocity and A and B are the parameters to be fit. The

transformation into linear equations is the same as for the duskside (see equation 5.8) with

the exception that X = −(x− x0) for the exponential function. The fit was not completed
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if the fall-off region was less than five degrees in latitude or if over half the data points

in the fall-off region were missing data or had negative values. To remain consistent with

the analysis completed in Chapter 5, only the 2008–2010 DMSP data were used for the

majority of this analysis. This left 10,705 orbits to be fit on the dawnside. Of those, 2,399

(22.4%) had a goodness of fit better than 0.80 for the exponential fits and 2,344 (21.9%) for

the sine fits. Table 6.1 shows the number and percentage of orbits with different goodness

of fit values for the dawnside. From these numbers and the histograms in Figure 6.1 it

is easy to see the dawnside orbits are distributed more evenly across all goodness of fit

values than on the duskside. Over half the orbits for both the exponential and sine fits

have a goodness of fit less than 0.60. Somewhat surprising is the large number of orbits

that have goodness of fit values near zero (around 600). A few examples of these orbits are

shown in Figure 6.2; the commonality between these orbits is the presence of a region of

antisunward flow equatorward of the peak latitude. This antisunward flow results in a very

flat fit line and low R2 values. Most of these orbits do not cross the pole, but instead reach

a high latitude of 80◦ around 1200 MLT and therefore, may be missing the majority of the

convection pattern. Only orbits with R2 ≥ 0.8 are included in the analysis.

Examples of the orbits included in this investigation are shown in Figure 6.3. The

orbits are plotted similar to previous orbit plots with the fitted region between the vertical

dashed brown lines. The R2 values are shown in the top right corner and the IMF By

and Bz and Kp values are listed in the top left corner. Most of the orbits have specific

characteristics that correspond to the solar and geomagnetic conditions. For example, plot

a) has asymmetrical antisunward flow in the polar cap with stronger on the dawnside, which

is consistent with a positive By component. Panel f) shows sunward flow in the polar cap

consistent with its low Kp and positive Bz [Heppner and Maynard , 1987]. A comparison of

panels g) and h) shows the impact of negative IMF Bz on the flow velocities. Both panels

show similar velocities even though panel g) has Kp = 5.7, while panel h) only has Kp = 3.7.

The difference is in the negative IMF Bz component for panel h) that allows a reconnection

between the IMF and geomagnetic field. Panels c) and d) appear to be outliers with very
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Table 6.1. Dawnside Goodness of Fit Statistics*

Exponential Fit Sine Fit
Number Percent Number Percent

R2 > 0.9 811 7.6% 777 7.3%
R2 > 0.8 2399 22.4% 2344 21.9%
R2 > 0.7 3789 35.4% 3828 35.8%
R2 < 0.6 5674 53.0% 5607 52.4%
R2 < 0.4 3758 35.1% 3660 34.2%
R2 < 0.2 2195 20.5% 2131 19.9%

*Total number and percentage of the 10,705 orbits with
goodness of fit R2 values within the listed categories.

low velocities; just like in Figure 6.2, these orbits pass on the dayside of the pole and miss

the majority of the convection pattern. Including orbits such as these in the analysis is not

ideal as they do not represent a typical fall-off profile. However, they are difficult to discard

without visually inspecting every orbit and are therefore included the analysis.

6.3. Results

The latitude of the peak velocity as a function of Kp is plotted in Figure 6.4. The

data shows the peak falls between 63◦ and 78◦ for low Kp and shifts equatorward by half a

degree for every integer increase in Kp. The trend for the data agrees with the output from

both the TDIM and H-M models. The goodness of fit for the LLSF to the mean is quite

low with R2 = 0.34. This could be the result of the lack of data for Kp > 4 and because of

the anomalous behavior of the peak latitude for Kp < 0.7. This sudden decrease at low Kp

may be an artifact of the orbits with very low velocities and no distinct peak, which cause

the LLSF algorithm to incorrectly identify the peak latitude and the region to be fit.

An analysis of the velocities of the fitted functions at 60◦ in Figure 6.5 shows a trend

similar to the duskside except for the two lowest Kp values. For Kp = 0.0, the velocity is

near 100 m/s; it decreases to approximately 75 m/s for Kp = 0.3 before leveling out around

25 m/s at Kp = 0.7. Velocities stay low until Kp = 2.3 when they slowly start increasing

with larger Kp. This trend is nearly identical for both the exponential and sine functions. If

the lowest Kp values are ignored, the data again are similar to the empirical model output
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Figure 6.1. Dawnside goodness of fit histograms. The top plot is the exponential fit and
the bottom plot is the sine fit.

as shown in panel c). The H-M model shows negative velocities for Kp < 1.5, but this is

likely an artifact of the interpolation and fitting of the hand-drawn H-M patterns.

The slope, shown in Figure 6.6, and the velocity at 60◦ have similar trends. Steep

slopes occur at low Kp values before dropping close to zero and then rising gradually with

higher Kp. The TDIM output agrees very well with the data, but the H-M output is again

influenced by the interpolation of the model. Velocities and gradients increasing with Kp

indicate the strongest sunward flows expand equatorward during geomagnetic activity.

Next, A and B are examined for each of the functional fits. Figure 6.7 shows histograms,

and Figure 6.8 a scatterplot of parameters A and B for the exponential fit. Parameter A,

which controls the magnitude, has a mean value of 1101 and a median value of 624. The

majority of the orbits fall below 1000, but 32% have A > 1000 with A > 4000 occurring in

127 of the orbits. Parameter B is more normally distributed with a mean and median of

5.0 and 4.3, respectively. The population is slightly skewed to the right with 4.5% of the

orbits having a value of B greater than two standard deviations from the mean.
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a) Orbit 174 / 2008 0514 MLT b) Orbit 095 / 2009 0007 MLT
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c) Orbit 281 / 2009 1245 MLT d) Orbit 237 / 2010 0525 MLT
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Figure 6.2. Dawn orbits with R2 near zero. The left vertical brown dashed line indicates
the peak latitude, while the right vertical brown dashed line indicates the offset latitude.
The black line is the orbit data, the red line is the exponential LLSF, and the green line is
the sine fit.

When A and B are plotted together as in Figure 6.8, it is easy to see most of the

orbits have low values for both parameters, labeled as region II in the plot. The type of

curve generated by these values is shown by the green line in Figure 6.9. The velocity has

a reasonable peak value and then falls off to zero fairly quickly (within 10◦). The blue

curve in this figure corresponds to orbits in region III that have large A values, but small B

values. This curve starts with a larger peak velocity, but also falls off to zero within 10–15

degrees. The last type of orbit with lower values of A but high B values, is represented

by the red curve in Figure 6.9 and by region I in the scatterplot. These curves will have

a peak velocity of less than 1000 m/s, but the large B value means it takes much longer

for the velocity to fall off to zero with positive velocities extending 25◦ equatorward of the

peak. These orbits may indicate the presence of a penetration electric field that is required

for the velocities at midlatitudes to remain above zero.
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a) Orbit 082 / 2008 1900 MLT b) Orbit 141 / 2008 1349 MLT
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c) Orbit 191 / 2009 0216 MLT d) Orbit 197 / 2009 0406 MLT
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e) Orbit 203 / 2009 1748 MLT f) Orbit 234 / 2009 1449 MLT
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g) Orbit 242 / 2009 1607 MLT h) Orbit 069 / 2010 1700 MLT
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Figure 6.3. Linear least square fits for dawn orbits. The left vertical brown dashed line
indicates the peak latitude, while the right vertical brown dashed line indicates the offset
latitude. The black line is the orbit data, the red line is the exponential fit, and the green
line is the sine fit.
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Figure 6.4. Dawnside latitude of the peak velocity as a function of Kp. Red crosses indicate
values for individual orbits, black dots represent the mean latitude, and blue squares are
the median latitude for each Kp value. The vertical black lines extend to plus/minus one
standard deviation from the mean. The angled black line is a LLSF to the mean values,
while the blue line was obtained from the TDIM model, and the green line was obtained
from the H-M model. The 0700 MLT radian was used to obtain the data for both models.

Similar plots comparing A and B for the sine function are shown in Figures 6.10–6.12.

Most of the orbits have a very small A value with a mean and median of 2.9 and 0.9,

respectively, but 15% of the orbits have A > 5. As shown by the scatterplot in Figure 6.11,

orbits with A > 5 only correspond to low values of B (region III). This combination of

parameters results in a curve similar to the blue line in Figure 6.12. This curve has the

slowest fall-off of the three curves shown, and most likely represents a penetration event for

the sine function. Parameter B has a mean of 7.8 and a median of 6.6, again indicating

a distribution close to normal, but skewed to the right. The most frequently occurring B

values are from 4.5–5.5, and only 12% of the orbits have a B > 12.7. The bulk of the orbits

lie in region II of the scatterplot with low values for both A and B. Curves in this region

are represented by the green line in Figure 6.12, which is a very flat curve. For orbits with

the same A value but larger B values (region I), the curves are much steeper and reach to

much higher magnitudes as shown by the red line in Figure 6.12.
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Figure 6.5. Dawnside velocity at 60◦ obtained from functional fits. The top panel is the
exponential fit and panel b) is for the sine fit; data is shown in the same manner as the
previous figure. Panel c) shows the mean value of the velocity for each fit as solid lines,
velocity values at 60◦ obtained from the TDIM (blue), and H-M model (green) as dashed
lines.
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Figure 6.6. Dawnside slope at 60◦ obtained from functional fits. The top panel is the
exponential fit and panel b) is for the sine fit; data is shown in the same manner as the
previous figure. Panel c) shows the mean value of the velocity for each fit as solid lines,
velocity values at 60◦ obtained from the TDIM (blue), and H-M model (green) as dashed
lines.
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Exponential Fit Histogram
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Figure 6.7. Histogram of dawnside exponential fit parameters A and B. The function is
shown at the top center. Parameter A is in the top panel and B is in the bottom panel.
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Figure 6.8. Scatterplot of dawnside exponential fit parameters A and B. The inset shows
the full range of values for A and B while the main plot shows the region with the largest
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Figure 6.10. Histogram of dawnside sine fit parameters A and B. The function is shown
at the top center. Parameter A is in the top panel and B is in the bottom panel.
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Also of interest is how parameters A and B change with Kp. Figure 6.13 shows pa-

rameter A versus Kp for the exponential fit (top) and the sine fit (bottom). Neither set

of data has a clear trend. For 1.0 ≤ Kp ≤ 3.3, the exponential fit mean and median of

A are mostly unchanged. For Kp < 1.0, the spread in the data increases significantly and

the mean and median rise by 500–1000. The mean and median for large Kp are also much

higher; however, very few data points exist at these Kp levels. Table 6.2 shows the results

for a LLSF of this data. If all Kp values are used, the fit is very poor with R2 = 0.05,

but improves to R2 = 0.40 if only Kp ≤ 4 are used. The lines produced by these two fits

are also significantly different; the line using all Kp values starts near A = 1000 and has a

positive slope, while the line using Kp ≤ 4 starts near A = 1300 and has a negative slope.

As in Figures 6.4–6.6, the values for Kp < 0.7 are inconsistent with the rest of the data.

To examine how the LLSF was influenced, these values were removed from the dataset and

the LLSF was recalculated. The results from this fit are shown in the middle column of

Table 6.2. A negative slope is again obtained when only Kp ≤ 4 is used, but when all Kp

values are used, the slope becomes significantly positive. Not only does the fit line show the

best visual agreement with the data, but it also has R2 = 0.35, which is an improvement.

Furthermore, the positive slope implies the expected increase in velocities with Kp.

In comparison to the exponential fit values for A, the sine fit A values show a much

clearer trend. The deviation at low Kp is not present and so a LLSF to all the data produces

a goodness of fit of R2 = 0.31; if only Kp ≤ 4 is included, the fit improves to R2 = 0.78.

Again, the scarcity of data for the larger Kp values makes the mean and median suspect.

The y-intercept and slope for the sine fit trend of A with Kp are also shown in Table 6.2.

Although outliers with high A values at low Kp exist, the standard deviation is small and

so the outliers do not influence the trend. The trendline in Figure 6.13, starts at A = 0.30

and has a slope of 1.79×Kp showing an increase in A with Kp for the sine function.

The data for parameter B is significantly different than for parameter A. Whereas the

data for A had large standard deviations and a large difference between the mean and the

median, the data for parameter B, shown in Figure 6.14, have a much smaller standard
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Table 6.2. Dawnside Statistics for A vs. Kp*

Exponential Fit Mod Exp Fit Sine Fit

Kp ≤ 4
Y-Intercept 1323.70 976.93 0.30

Slope -139.31 -17.13 1.79
R2 0.40 0.02 0.78

Kp ≤ 9
Y-Intercept 1005.89 680.99 1.42

Slope 44.64 114.90 1.26
R2 0.05 0.35 0.31

*A lack of data for Kp > 4 alters the trend and lowers the goodness of
fit value for a linear least square fit. The modified exponential fit does not
include the lowest two Kp bins in the analysis.
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Figure 6.13. Dawnside parameter A versus Kp. Data points are shown as red crosses, and
the mean and median are shown as black dots and blue squares, respectively. The standard
deviation of the mean is plotted with the vertical black bars, and a LLSF to the mean is
shown by the sloping black line. Only the data with Kp ≤ 4 were used to obtain the LLSF.
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deviation and nearly identical mean and median for each Kp value resulting in a better

LLSF. The same lack of data for Kp > 4 still exists and so the LLSF shown in each plot

only used the mean values for Kp ≤ 4. Table 6.3 contains the y-intercept and slope for

these trendlines. The exponential fit B values increase with Kp, starting near B = 4 and

increasing by 0.60×Kp. The goodness of fit is extremely high at R2 = 0.91. The standard

deviation of the sine data is slightly larger than the exponential data; however, a clear trend

is still apparent. In this case, parameter B decreases with increasing Kp. The LLSF has

a goodness of fit value of R2 = 0.81 and decreases y 0.96 × Kp after starting at B = 9.30

for Kp = 0.0. A decreasing B value is interesting as it means that for a given latitude

and constant A value, the slope of the curve gets flatter with increasing Kp (e.g., red line

versus green line in Figure 6.12). This could mean the auroral oval region is being pushed

poleward on the dawnside instead of expanding equatorward as the duskside does. However

the total picture is not contained in the B value because both A and B have an impact on

the slope and magnitude of the sine function.

Another way to examine how the auroral region moves with Kp is to choose a specific

gradient and find the latitude at which it occurs. This was done for both the exponential and

sine LLSF; the results are shown in Figure 6.15. A velocity gradient (dVy/dθ) of 20 m/s/deg

was chosen and was found to move equatorward with increasing Kp. Both exponential and

sine trendlines have goodness of fit values over 0.7 and are both in good agreement with

the TDIM and H-M model output shown in the bottom panel of Figure 6.15. However, this

finding is in direct contrast to the results from parameter B that implied poleward movement

of the auroral region on the dawnside. Although there is a factor of two difference between

the duskside and the dawnside (3.1 × Kp and 1.5 × Kp, respectively), this figure clearly

shows as Kp increases, the auroral region moves equatorward. Therefore, it is clear that

parameter B alone cannot be used to infer how the curves change with Kp.

Finally, the results on the dawnside are compared to the Hardy et al. [1985] statistical

auroral oval model. The same type of comparison was done on the duskside. For the

dawnside, MLTs of 0500, 0600, 0700, and 0800 correspond to the years 2010, 2009, 2008,
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Table 6.3. Dawnside Statistics for B vs. Kp*

Exponential Fit Sine Fit

Kp ≤ 4
Y-Intercept 4.08 9.30

Slope 0.60 -0.96
R2 0.91 0.81

Kp ≤ 9
Y-Intercept 4.71 8.37

Slope 0.25 -0.46
R2 0.20 0.34

*A lack of data for Kp > 4 alters the trend and lowers the
goodness of fit value for a linear least square fit.
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Figure 6.14. Dawnside parameter B versus Kp. Data points are shown as red crosses, and
the mean and median are shown as black dots and blue squares, respectively. The standard
deviation of the mean is plotted with the vertical black bars, and a LLSF to the mean is
shown by the sloping black line. Only the data with Kp ≤ 4 were used to obtain the LLSF.
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and 2007, respectively, due to the precession of the satellite over time. The results are

shown in Figure 6.16. The background colors are the energy flux from the Hardy et al.

[1985] model with warm colors indicating a larger flux. The solid black line is the polar

cap radius obtained from data in Chapter 4, the dashed black line is the latitude of the

peak velocity, and the red dashed lines are the latitude at which dVy/dθ = 20 m/s/deg.

For all four MLTs, the PCR lines up fairly well with the poleward edge of the region with

the largest flux. While the line for the peak latitude is consistent from 0500–0700 MLT,

the location changes in the 0800 MLT plot. The results in the 0800 MLT plot are more

consistent with the results seen on the duskside, whereas the location of the peak latitude

in the 0500–0700 MLT plots seem to indicate the peak energy flux into the ionosphere is

equatorward of the maximum velocity; i.e., the location of the auroral oval indicated by the

data and the model are not consistent. The main cause of this inconsistency is the latitude

of the peak velocity changes very little with latitude. Instead, the lines for the threshold

gradient are consistent with the equatorward boundary for the region of large fluxes. These

two results indicate the region of the largest energy flux is spread out across the entire

fall-off region on the dawnside.

6.4. Summary

This chapter examined the fall-off region on the dawnside where the exponential and

sine functions were used to classify the velocity profile obtained from the DMSP data. A

LLSF algorithm was used to determine the best fit line for each orbit. The Gaussian function

was not used as it produced poorer results on the duskside than the other two functions. For

the majority of the study, only 2008–2010 data were used; however, in the final figure, the

2007 data were used to obtain information for the 0800 MLT. Additionally, only orbits with

an R2 > 0.80 were used in the analysis. Overall, the sine function performed marginally

better than the exponential function on the dawnside. This is evident in the lack of a Kp

trend for parameter A for the exponential function. Using the median values for parameters

A and B, it was found that, in general, the orbits can be fit with an exponential function
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Figure 6.16. Dawnside Hardy et al. [1985] auroral oval and Kp trends for four MLTs. Kp
trends are for the polar cap radius (solid black line), the peak latitude (dashed black line),
and the latitude of the threshold gradient for each functional fit (red dashed lines). The
background is the log of the energy flux obtained from the Hardy et al. [1985] auroral oval
model. Each panel is for the MLT indicated in the top left corner.
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using

y = 624× exp

[
−(x− x0)

4.3

]
, (6.3)

or with a sine function using

y =
0.38

sin(x)6.6
. (6.4)

The relationships derived for use in an empirical model driven by the Kp index are

questionable. For quiet geomagnetic conditions (Kp < 4), the two functions are given by

the following sets of equations:

Exponential Fit: y = A× exp

[
−(x− x0)

B

]
, (6.5)

A = 680.99 + 114.90×Kp, (6.6)

B = 4.08 + 0.60×Kp. (6.7)

Sine Fit: y =
A

sin(x)B
, (6.8)

A = 0.30 + 1.79×Kp, (6.9)

B = 9.30− 0.96×Kp. (6.10)
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1. Conclusions

This research focused on the high-latitude convection pattern and specifically on the

fall-off of the midlatitude velocities. DMSP ion drift data obtained during the 2007–2010

solar minimum was used for the analysis. Because only solar minimum conditions were

used, these results may not hold for high Kp. The data was first smoothed and calibrated

in an attempt to remove instrumentation errors. The two main problems with the data

included errors caused by regions with a large fraction of H+ ions and by inaccuracies in

the satellite attitude specification. Removing these errors required calibrating the velocities

so both the dusk and dawn sectors went to zero at low latitudes. This calibration effectively

increased the dawnside velocities twice as much as the duskside velocities, and as such, only

served to equalize the magnitude of the dusk and dawn velocities.

The first portion of this research focused on determining convection patterns by av-

eraging all data binned by solar and geomagnetic conditions. This process resulted in

surprisingly coherent two-cell convection patterns, but the convection patterns lacked evi-

dence of a multi-cell pattern with sunward flow in the polar cap for Bz northward. In the

dusk–dawn cross sections, asymmetries associated with positive By found in the empirical

model output are much larger and more pronounced than any asymmetry in the data, and

the Weimer [2005] auroral region velocities are up to four times larger than the data. In

general, it was found the dusk–dawn cross sections are best represented by the Heppner and

Maynard [1987] model output. The most important result found is the averaged patterns

produced a succinct relationship between the polar cap radius and the geomagnetic index.

Not only is there a clear dependence on Kp that is larger than what is currently being used,

but the initial radius for Kp= 0.0 is also much smaller than expected.

After the averaged convection patterns were examined, the dusk and dawn fall-off

region Vy velocity component for each individual orbit was fit to different functions. An

exponential, a sine, and a Gaussian were used on the duskside, but only the exponential
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and the sine functions were used on the dawnside because the best fits on the duskside were

obtained with the exponential and sine functions. Only 30% of the orbits were used in the

analysis because the rest had fits with R2 < 0.8. The remaining 70% of the orbits did not

fit the assumption of a smooth fall-off, which is evidence that capturing the real structure

of the convection pattern is still an issue.

The sine fits showed their primary difference in parameter A with twice as many orbits

having A ≤ 0.1 on the dawnside as the duskside, which can be seen in a comparison of

Figures 5.12 and 6.10. The trends, however, were the same in both sectors with A increasing

with Kp for both the exponential and sine functions. On the dawnside, the exponential fit

data for the two lowest Kp values was inconsistent with the rest of the data; although this

anomaly was assumed to be caused by orbits external to the convection pattern, further

investigation is warranted.

From Figures 5.9 and 6.7 it can be seen the difference for the exponential fits is primarily

in parameter B with a mean of 6.5 on the duskside, which is nearly twice as large as the

mean of 3.5 on the dawnside. Parameter B also exhibited opposite trends in the dusk and

dawn sectors for both the exponential and sine functions. The dusk sector trend seemed to

indicate a steepening of the gradient with an increase in Kp, while the dawn sector trend

supported curves that were flatter at higher Kp values.

Although the trends for B were not as expected on the dawn side, it is understood that

B alone cannot describe the curve. The curves in Figure 7.1 are obtained when the trends

for A, B, the latitude of the peak velocity, and the peak velocity are combined for both the

exponential and sine functions. As expected, the duskside (left) show lower magnitudes and

flatter curves for Kp = 0.0 than for Kp = 4.0. Additionally, the latitude of the peak moves

equatorward with increasing Kp. The exponential dawnside curves show the same trend

as the duskside, but with smaller changes in the steepness of the curve and equatorward

movement of the peak (8.5◦ on the duskside and 2.2◦ on the dawnside). The magnitude

of the peak doubles from Kp = 1.0 to Kp = 4.0 on both the dusk and dawn curves. The

dawnside curves for the sine function do not show as clear of a picture. The movement
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equatorward with higher Kp is not evident although the magnitude of the peak velocity

more than doubles. One trend still clear for the sine function is the dawnside changes are

much smaller than the duskside.
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Figure 7.1. Dusk and dawn curves using A and B Kp trends. The top plots show curves
for the exponential function and the bottom plots show the sine function. The green line is
for Kp = 0.0 and the red line is for Kp = 4.0

The Kp trends obtained for the polar cap radius, peak latitude, and equatorward

boundary of the auroral oval all show a consistent pattern of equatorward motion that is

twice as large on the duskside than on the dawnside. The polar cap radius is the most similar

in both sectors increasing by 4◦ on the duskside and by 3◦ on the dawnside. The largest

difference is seen in the latitude of the peak velocity, which drops by 15◦ from Kp = 0.0 to

Kp = 7.0 on the duskside, but only 4◦ on the dawnside. Finally, the equatorward boundary

of the auroral region, represented by the latitude at which dVy/dθ = 20 m/s/deg, moves

equatorward by 22◦ on the duskside and exactly half that, 11◦, on the dawnside. The

exact values are shown in Table 7.1 and a schematic of the boundary movement is shown in
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Figure 7.2. The green lines represent Kp = 0.0 and the red lines Kp = 7.0. The polar cap

radius is shown by the solid lines, the peak latitude by the dashed lines, and the equatorward

boundary of the auroral oval by the dotted lines. The equatorward motion on the dayside is

much smaller than the expansion on the nightside resulting in an inhomogeneous expansion

of the polar region and auroral oval. The auroral oval is known to be the most dynamic in

the evening sector because the strongest particle precipitation occurs there, however many

empirical models use a symmetric expansion of the polar region, which is very different from

the results shown here.

7.2. Future Work

This research has set the stage for much additional work. First, expanding the temporal

coverage of the data, especially to periods of higher solar activity, could extend the results

to higher levels of Kp. This would be particularly useful for the polar cap radius function.

Although the use of data from more DMSP satellites would increase both the spatial and

temporal coverage in the dawn–dusk sector, it would not expand coverage to the noon–

midnight sectors because the DMSP satellites do not fly in a noon–midnight orientation.

Another area of research could involve correlating these results to other solar and

geomagnetic indices. While the Kp index was used almost exclusively for this dissertation

based on the desire to link convection pattern parameters to ionospheric model drivers,

improvements in modeling techniques mean more information is being used to drive and

couple these models. Some possible parameters and indices include the solar wind speed

and density, the Auroral Electrojet (AE) index, the polar cap (PC) index, and perhaps a

closer examination of the Dst index.

During the course of this research, it was noted various methods used to obtain these

results could be improved upon or modified. One of these methods was the hand fitting of

circles to the polar cap. Instead of doing this by hand, a least square fit of the roots to

either a circle or an ellipse may provide an even more consistent result. An additional way

to improve this work is to use a different version of the sine function instead of using the

form introduced by Volland [1978] and to force the function to its maximum at the latitude
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Table 7.1. Boundary Kp Trend Statistics*

Polar Cap Radius Peak Latitude dVy/dθ = 20 m/s/deg
Dusk / Dawn Dusk / Dawn Dusk / Dawn

Kp = 0.0 12.2 / 12.5 74.6 / 71.4 67.8 / 65.5
Kp = 4.0 16.6 / 15.7 66.2 / 69.3 55.4 / 59.2
Kp = 7.0 19.9 / 18.1 59.9 / 67.6 46.0 / 54.5

*Values obtained using equations for LLSF trendlines.
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Figure 7.2. Boundary Kp trends. The trends are derived from the averaged convection
patterns and functional fits. The green lines are for Kp = 0.0, and the red lines are for Kp
= 7.0. The solid lines indicate the polar cap radius, the dashed lines are the latitude of the
peak velocity, and the dotted lines show the equatorward boundary of the fall-off region
(i.e., dVy/dθ = 20 m/s/deg).
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of the peak velocity. Finally, it was noted many of the orbits from winter months in 2007

presented an interesting signature that may not be caused solely by the presence of large

amounts of the hydrogen ion. Further investigation into these orbits is warranted.

An important piece of future work for this dissertation is the verification of these results

against other data sets. Coincident data is available from SuperDARN, the Poker Flats and

Millstone Hill ISR, and from various other satellite platforms, which should be used to verify

both the polar cap radius relationship and the functional fits. Ultimately, the results from

this research should be used in an ionospheric model to determine both the sensitivity of

the model to these parameters and the overall changes induced by these results. In fact,

this work has already been started using the USU TDIM.
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APPENDIX A

GOVERNING PROCESSES IN THE IONOSPHERE

A.1. Neutral Atmosphere

The major neutrals in the ionosphere are molecular nitrogen (N2), molecular oxygen

(O2), and atomic oxygen (O), with minor concentrations of argon (Ar), helium (He), and

hydrogen (H). The concentrations of each of these species varies with height and can

be approximated using a hydrostatic equilibrium solution. Hydrostatic equilibrium occurs

when the forces due to pressure and gravity are in balance. Where this balance occurs, the

density of a species as a function of altitude (z) is given as

Ns(z) = Ns(z0) exp

[
−z − z0

Hs
(z)

]
, (A.1)

where Ns is the number density, z0 is a reference altitude, and Hs is the scale height for

the species, s, given by

Hs(z) =
kb Ts(z)

ms g(z)
, (A.2)

where kb is Boltzmann’s constant, Ts is the temperature, ms is the mass, and g is gravity.

In this approximation, the concentration of the species falls off primarily as a function

of mass. Therefore, the concentrations of N2 and O2 decrease more rapidly with height

than does the concentration of O. Figure A.1 shows the vertical variation up to 1000km

of the neutral concentrations during solar maximum using this assumption. The relative

abundance of each neutral compared with the other neutrals is important when calculating

the production and loss of ions.

A.2. Production and Loss

Photoionization is the primary production mechanism for creating ion-electron pairs in

the low to midlatitude ionosphere. This ionization results from the absorption by neutrals of

solar extreme ultraviolet and X-ray radiation. Production due to photoionization depends

on the incoming solar flux, the optical depth, the neutral concentrations, and the ionization
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Figure A.1. Major and minor neutral concentrations. Densities are computed by MSIS and
represent solar maximum conditions as a function of altitude. Heavier ion concentrations
decrease with altitude faster than the light ions.

cross section. Each of these factors may also depend on species, altitude (z), wavelength

(λ), or zenith angle (χ); for a particular species, s, the photoionization rate is given as

Ps(z, χ) = Ns(z)

∫ λsi

0
I∞(λ) exp [−τ(z, χ, λ)]σis(λ) dλ, (A.3)

where

I∞(λ) is the solar flux at the top of the atmosphere, (A.4)

Ns(z) is the number density, (A.5)

τ(z, χ, λ) is the optical depth, (A.6)

σis(λ) is the ionization cross section, (A.7)

λsi is the threshold wavelength for ionization. (A.8)

Also contributing to ion production are chemical reactions, secondary electron production,

and impact ionization.
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The primary ion loss mechanisms in the ionosphere are chemical reactions. The major

loss reactions include ion-ion recombination, radiative recombination, dissociative recombi-

nation, ion-atom interchange, and associative detachment. An example of each reaction is

given below.

Ion-ion Recombination: O+
2 +O−2 −→ O2 +O2. (A.9)

Radiative Recombination: O+ + e−n −→ O + hv. (A.10)

Dissociative Recombination: N+
2 + e− −→ N +N. (A.11)

Ion-atom Interchange: O+ +H −→ O +H+. (A.12)

Associative Detachment: O− +O −→ O2 + e−. (A.13)

Production and loss due to chemical reactions are dependent on the rate of the partic-

ular reaction and on the concentrations of the reactants. For a reaction such as

O+ +N2
k−→ N+

2 +O, (A.14)

the production rate of N+
2 (and the loss rate of O+) is given as

P (N+
2 ) = L(O+) = k

[
O+
]

[N2] , (A.15)

where k is the reaction rate constant for the specific reaction and [O+] and [N2] denote the

species’ concentration. The production and loss rate for each chemical reaction is the term

used in the continuity equation (Equation 2.1). The reaction rate constant, k, is dependent

on the temperature of each species in addition to the activation energy of the reaction,

which can be described as the minimum energy needed to form the new species [Schunk

and Nagy , 2009]. The reaction rate constant is determined by the equation

kst = 2d2

√
2πkb
µst

√
Tst exp

(
− Ea
kbTst

)
, (A.16)
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where the subscripts denote each species in the reaction, d describes the cross section, kb

is Boltzmann’s constant, µst and Tst are the reduced mass and temperature, respectively,

and Ea is the activation energy. This reaction constant varies by orders of magnitude for

the different reaction types listed above, which means some processes will dominate over

others. For example, radiative recombination reaction rate constants are on the order of

10−12, while dissociative recombination reaction rate constants are on the order of 10−7

[Schunk and Nagy , 2009].

In the D region, high neutral concentrations lead to complex chemical reactions. One

of these reactions, electron attachment, creates the only significant population of negative

ions in the ionosphere. Deep penetration of short wavelength X-ray and EUV radiation also

contributes to the complexity of the D region.

The relatively high neutral concentrations in the E region lead to the following chemical

reaction production mechanisms for NO+:

N+
2 +O −→ NO+ +N, (A.17)

O+
2 +NO −→ NO+ +O2, (A.18)

O+
2 +N2 −→ NO+ +NO. (A.19)

Ion-atom interchange is relatively fast compared to dissociative recombination in this region

resulting in low concentrations of O+ and leaving the molecular ions (N+
2 , O+

2 , and NO+)

as the major ions. In the F1 region, O+ becomes an important ion due to the higher

neutral atomic oxygen concentrations at F1 altitudes. The reaction rate constants determine

the loss mechanisms in these regions. Radiative recombination is slow and unimportant,

whereas dissociative recombination occurs 105 times faster [Hargreaves, 1992]. The primary

dissociative recombination reactions in the E and F1 regions are

O+
2 + e− −→ O +O, (A.20)

N+
2 + e− −→ N +N, (A.21)
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NO+ + e− −→ N +O. (A.22)

The F2 region has the same production and loss processes as the E and F1 regions;

however, at and above F2 region altitudes, plasma transport is significant and determines

the density structure. While the F2 region is controlled by all three processes, the topside

ionosphere is controlled by transport alone.

A.3. Transport

The movement of plasma within the ionosphere is described by the full momentum

equation, which is given as

ρs
Ds~us
Dt

= −∇ps −∇ · τs + ρs ~G+ nsqs

[
~E + ~us × ~B

]
+
∑
t

ρsνst (~ut − ~us) . (A.23)

In this equation, the subscripts denote the species, s, and the target, t, ρs is the mass

density, Ds/Dt is the convective derivative, ps is the pressure, kb is Boltzmann’s constant,

τs is the stress, and νst is the collision frequency. In obtaining Equation A.23, thermal

diffusion, Coriolis force, and centripetal force were all assumed to be negligible. After also

making the diffusion approximation (steady state and subsonic) Equation A.23 reduces to

∇ps +∇ · τs − ρs ~G− nsqs
[
~E + ~us × ~B

]
=
∑
t

ρsνst (~ut − ~us) . (A.24)

Further simplification of the momentum equation is accomplished by considering two sep-

arate cases. Diffusion along and perpendicular to the magnetic field will be examined

separately. The overall plasma motion is a combination of both solutions.

For diffusion along the magnetic field, the plasma is confined to orbit the magnetic field

lines. In this situation the electrons and the major ion species move together and charge

neutrality (ne = ni), and zero current (ne~ue = ni~ui) conditions prevail. This ambipolar

diffusion behavior is a result of the polarization electric field that develops due to the

slight charge separation of the electrons and ions due to their different masses. With this

ambipolar diffusion approximation and the previously mentioned assumptions, the ion and
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electron momentum equations along the magnetic field are given as

∇||pi + (∇ · τi)|| − ρi ~G|| − nie ~E|| = ρiνie (~ue − ~ui)|| + ρiνin (~un − ~ui)|| , (A.25)

∇||pe + (∇ · τe)|| − ρe ~G|| + nee ~E|| = ρeνei (~ui − ~ue)|| + ρeνen (~un − ~ue)|| , (A.26)

where ~E|| is the polarization electric field. Adding these equations together and solving for

the ion velocity gives the ambipolar diffusion equation

~ui|| = −Da

[
1

ni
∇||ni +

1

Tp
∇||Tp −

mi
~G||

2kbTp
+

(∇ · τi)||
2nikbTp

− mi

2kbTp
νin~un||

]
, (A.27)

where terms containing the electron mass (me) were neglected and the ideal gas law was

used, and where the ambipolar diffusion coefficient (Da) and plasma temperature (Tp) are

given by

Da =
2kbTp
miνin

, (A.28)

Tp =
Te + Ti

2
. (A.29)

Equation A.27 shows that ions move along the magnetic field with the neutral wind subject

to temperature gradients, density gradients, gravity, and stress forces.

For diffusion across the magnetic field, the stress term in Equation A.24 is also assumed

to be negligible giving

∇ps − ρs ~G− nsqs
[
~E⊥ + ~us × ~B

]
= ρsνsn (~un − ~us) , (A.30)

where ~E⊥ is an applied electric field, the subscript, s, denotes either an electron or ion, and

the electron-ion collisions are neglected because the momentum transfer is small [Schunk

and Nagy , 2009]. Transforming Equation A.30 to a reference frame moving with the neutral

wind (~us → ~u
′
s + ~un) simplifies the solution and introduces an effective electric field given
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by ~E
′
⊥ = ~E⊥ + ~un × ~B. Equation A.30 then becomes

∇ps − ρs ~G− nsqs
[
~E

′
⊥ + ~u

′
s⊥ × ~B

]
= −ρsνsn~u

′
s⊥. (A.31)

Solving for ~u
′
s⊥ gives

~u
′
s⊥ −

qs
msνsn

(
~u

′
s⊥ × ~B

)
=

−1

nsmsνsn
∇⊥ps +

1

νsn
~G⊥ +

qs
msνsn

~E
′
⊥. (A.32)

Equation A.32 is simplified as

~u
′
s⊥ −K

(
~u

′
s⊥ × b̂

)
=
−Ds

ps
∇⊥ps +

1

νsn
~G⊥ + µs ~E

′
⊥ (A.33)

using the following relations:

ps = nskbTs, µs =
qs

msνsn
,

ωcs =
qsB

ms
, b̂ =

~B

B
,

Ds =
kbTs
msνsn

, K =
ωcs
νsn

.

Because ~u
′
s⊥ is perpendicular to the magnetic field, it can have two orientations. Con-

sider a coordinate system at the equator where the magnetic field ~B is pointed north in

the b̂ direction. Then the components of ~u
′
s⊥ can be in the downward (̂i) direction or the

horizontal eastward (−ĵ) direction. Separating ~u
′
s⊥ in Equation A.33 into these components

and simplifying gives

~u
′
s⊥D

î− ~u ′
s⊥H

ĵ +K~u
′
s⊥D

ĵ +K~u
′
s⊥H

î =
−Ds

ps
∇⊥D

psî+
1

νsn
~G⊥D

î+ µs ~E
′
⊥D
î, (A.34)

where the variations of the density gradient, gravity, and electric field are small in the

horizontal direction and can be neglected. Equating all the terms in the î direction and all
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the terms in the ĵ direction, we can write

~u
′
s⊥D

+K~u
′
s⊥H

=
−Ds

ps
∇⊥ps +

1

νsn
~G⊥ + µs ~E

′
⊥, (A.35)

~u
′
s⊥H

= K~u
′
s⊥D

. (A.36)

Substituting ~u
′
s⊥H

from Equation A.36 into Equation A.35 and simplifying gives

~u
′
s⊥D

=
1

1 +K2

[
−Ds

ps
∇⊥ps +

1

νsn
~G⊥ + µs ~E

′
⊥

]
. (A.37)

Equation A.37 describes the vertical drift that is perpendicular to the magnetic field, but

parallel to the force causing the drift. For ~G⊥ = ~E
′
⊥ = 0 in an unmagnetized case (K = 0),

Equation A.37 reduces to Fick’s Law, which states the particle flux is proportional to the

density gradient. Substitution of Fick’s Law into the continuity equation results in the

classical diffusion equation [Schunk and Nagy , 2009].

The horizontal drift is obtained by substituting Equation A.37 for ~u
′
s⊥D

back into

Equation A.36 and simplifying, which results in

~u
′
s⊥H

=
1

1 + 1/K2
[~uP + ~uG + ~uE ] , (A.38)

where

~uP =
−1

nsqs

(
∇⊥ps × ~B

)
B2

is the gradient drift, (A.39)

~uG =
ms

qs

(
~G⊥ × ~B

)
B2

is the gravitational drift, (A.40)

~uE =

(
~E

′
⊥ × ~B

)
B2

is the electrodynamic drift. (A.41)

These three drifts are perpendicular to both the magnetic field and the force (pressure

gradient, gravity, or the electric field) causing the drift. Electrons and ions drift across the

magnetic field in opposite directions in the presence of pressure gradients and gravity, but
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they drift together in the presence of a perpendicular electric field. Typically the pressure

gradient and gravitational drifts are small and the electrodynamic drift dominates. Since

~u
′
s⊥ = ~u

′
s⊥D

+ ~u
′
s⊥H

, the total plasma drift across the magnetic field is

~u
′
s⊥ =

1

1 +K2

[
−Ds

ps
∇⊥ps +

1

νsn
~G⊥ + µs ~E

′
⊥

]
+

1

1 + 1
K2

[~uP + ~uG + ~uE ] . (A.42)

When collisions are negligible K → ∞ and the first term of Equation A.42 drops

out leaving only the motion perpendicular to both the magnetic field and the force. This

approximation is valid at high altitudes. In locations where K → 0, the second term drops

out leaving only the motion perpendicular to the magnetic field, but parallel to the force.

This situation occurs at low altitudes where the magnetic field strength is small compared

to the collision frequency. At intermediate locations where neither approximation is valid,

the plasma motion will be a combination of these motions and will move perpendicular to

the magnetic field and at an angle to the force causing the motion [Kelley , 1989].
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