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ABSTRACT 

Influence of 2,5-Hexaned ione, Acrylamide, Tri-o-totyl Phosphate, 

Leptophos and Methylmercury on Endogenous Levels of Tryptophan, 

Serotonin and 5-Hydroxyindoleacetic Acid and 

Serotonin Turnover Rates in Rat Brain 

by 

Craig H. Farr, Do ctor of Philosophy 

Utah State Uni versity , 1982 

Major Professor: Dr . Raghubir P. Sharma 
Department: Toxicology 

Several industrial and environmental chemicals cause distal 

and/or central neuropathy among other diverse toxic effects. 

Spague-Dawley derived rats were fed doses of 2,5 -hexanedione, 

acrylamide, tri -o-tolyl phosphate, Leptophos and methylmercury 

via gavage. The dose levels and administration periods were 

established in previous experiments designed to asses s clinical 

neuropathy using rats trained to walk on a rotorod apparatus fitted 

with an electrode floor. After intravenous injections of 

3H-Tryptophan, whole rat brain homogenates were anal yzed using 

liqu id scintillation an d spectrofluorometri c tech niques for levels 

of tryptophan, serotonin and 5-hydroxyindoleacetic acid. Serotonin 

turnover rates were calculated using the specific activities of 

vi 
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tryptophan and serotonin at two different time periods. The levels of 

serotonin as well as the serotonin turnover rates were unaffected 

by dosages of 5 to 50 mg acrylamide/kg given daily for five days or 

30 to 300 mg 2,5-hexanedione/ kg given in seven dail y doses, while 

whole brain concentrat ions of 5-hydroxyindoleacetic acid increased 

significantly in a dose-dependent manner . The rise in 

5-hydroxyindoleacetic acid levels coup led with no effects on the other 

level s in acrylami de and 2,5 -hexanedione -fed animals suggests a 

possible inhibition of the energy-dependent 5-hydroxyindoleacetic 

acid efflux system in the brain. Anima l s given five doses of 

Leptophos (4. 5 to 45 mg/ kg) or six doses from 30 to 300 mg/ kg 

tri -o- tolyl phosphate, administered every third day, showed 

slightly elevated, non- s ignificant, serotonin turnover rates while 

levels of seroto nin and tryptophan remained unchanged with a slight 

decrease in 5-hydroxyindoleacetic acid levels at the highest dosages. 

Levels of endogenous indole compounds in methylmercury treated rats 

showed no significant differences from control values; however, the 

turnover rates and leve ls of serotonin were slightly lower in the 

two lower treatment levels, while t he highest dose level had no 

apparent effect on turnover rates or concentrations. Further studies 

involving longer treatment periods, alternate species or examination 

of discrete brain areas, may further cl arify the effects of these 

chemicals on brain bi ochemistry . 

(79 pages) 



INTRODUCTION 

In t he past century , the chemical and pharmaceutical indust ries 

have synthesized thousands of new chemicals. More than 1,000 new 

compounds are developed each year in addition to the 40,000 chemicals 

and 2,000,000 mi xtures and formulations presentl y in industrial use 

(Landrigan et a ~ . , 1980) . Amo ng the di verse array of compo unds 

causing toxic effects, a number of chemicals cause central and/or 

peripheral neuropathic effects. Often the neurotoxic properties of 

new compounds hav e not been recognized before their introduction to 

the market . Workers in the pesticide and chemical industries are 

particularl y susceptib le to chemically-induced neurologic disease 

while the general population is also susceptab l e to increased 

exposure to these and other chemicals in the environment. 

Severa l neuroto xic chemicals have been shown to affect the 

metabolism of biogenic amines in the central nervous system (C NS ). 

Sharma (1976) reported an increase in 5-hydroxyindoleacetic acid 

(5- HIAA ) in dieldrin treated mice while levels and turnover rates of 

5-hydroxytryptamine (serotonin or 5-HT) were unchanged, suggesting 

a possible effect of 5-HIAA efflux from the brain. Changes in the 

metabolism of 5-HT and norep inephrine (NE) may be responsible for 

DDT-induced hyperthermia (H rdina eta~ . , 1973). Other chemi cals , 

including metals, alter brain biogenic amine metabolic activity . 

Manganese and nickel treatments depress level s of 5-HT, NE, and 

dopamine (DA) in whole rat brain (Neff eta ~ ., 1969; Mustafa and 

Chandra, 1971 ) while lead exposure increases NE synthesis rates 
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coupled with lower leve ls of NE in brain tissues (Mic hae lson et a Z., 

1974; Hrdina et aZ ., 1976 ) . 

The chemicals used in this study , i ncluding 2,5-hexanedione 

{2,5-HD), ac rylamide, tri-o-tolyl phosphate (TOTP ) , 0-4-bromo-2, 

5-dichlorophenyl 0-methyl phenylphosphonothioate (Leptophos ) and 

methylmercuric chloride (ME-Hg), represent a broad spectrum of 

chemicals causing distal and/or cent ral neuropathy . The literature 

concerning their histopathological effects is very extens ive {Spencer 

and Shaumburg, 1974a, 1974b; Chang, 1977; Davis and Richardso n, 1980; 

Spencer et a Z., 1980) but they also influence brain enzyme activities . 

Acrylamide reduces levels of 5-HT, NE and DA in rat brain (Di x,i t 

et a Z., 1980), while mercury influences biogenic amine metabolism 

(H rdina et d . , 1976) and ami ne uptake in synaptosomal preparations 

(Brac ke n et d. , 1981 ) . Ava i 1 ab i 1 i ty of tryptophan , the precursor 

fo r serotonin synthesi s is reduced after exposure to lead (Lo renzo 

and Gewirtz, 1977 ) with Me-Hg (Yoshino et aZ . , 1966 ) and acrylamide 

(Schotman et a Z., 1977a ) both inhibiting CNS uptake of leucine . 

Several i ntermediate gl yco lyti c enzymes in the br a in 

are also affected by acrylamide, 2,5-HD and Me - Hg (Damstra and Bondy, 

1980 ). Moreover, leptophos and TOTP also show central effects through 

inhibition of brain neuroto xic esterase activities (Hussain and 

Oloffs, 1979; Davis and Ri chardson, 1980). 

Delayed neuroto xic ity is difficult to visually assess in a 

quadrapedal anima l . Although various psyc hological and physiological 

procedures have been used for these studies (Tilson and Cabe, 1978a), 

accurate assessments of acrylamide-induced clinical neuropathy have 

been made with a rotorod device which is inexpensi ve and easi ly 
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operated (Kaplan and Murphy, 1972). 

This investigation was undertaken to evaluate individual effects 

of 2,5-HD, acrylamide, TOTP, Leptophos and Me-Hg on various aspects 

of serotonin synthesis and metabolism (i. e. endogenous levels of 

Trp, 5-HT and 5-HIAA and 5-HT t urnover rates) i n rat brains using 

established spectrofluorometric and liqu id scintillation techniques 

(Neff et al. , 1971; Marini et al., 1979). 

Rotorod observations provided the basis for establishing the 

dosing regimes for the brain biochemistry studi es. Neuromuscular 

deficiencies were quantified based on set dose levels administered 

for prescribed periods of time. 



REVIEW OF LITERATURE 

Serotonin ~let abo 1 ism in the Centra 1 Nervous System 

The biosynthesis of 5-HT is dependent upon the uptake of 

Trp through the blood-brain barrier from the plasma. The first 

biochemical transformation involves the hydroxylation of Trp by 

tryptophan-5-hydroxylase to form 5-hydroxytryptophan (5-HTP) which 

is decarboxylated by aromatic-L-amino acid decarboxylase to form 

5-HT (Cooper et al. , 1974 ) . Several authors have provided evidence 

that serotonin exerts proquct inhibition over its own synthesis at 

the tryptophan-5-hydroxylase step (Maco n et al. , 1971; Millard 

et a l ., 1972 ) . Although Trp hydroxylation is regarded by many as 

therate-li mitingstep in 5-HT synthesis, observations that suggest 

that the amount of Trp available to the brain actually cont rols 

5-HT synthes is include : 1) daily and parallel rhythm in the bra i n 

5-HT and Trp; 2) a high Michaelis constant for Trp hydroxylase 

relative to the whole brain Trp concentration; and 3) a large 

increase of brain 5-HT levels and its metabolite, 5-HIAA, after 

a greater systemic dose of Trp (Wur tman and Fernstrom, 1972 ) . 

The principle catabolic pathway of 5-HT involves oxidative 

deamination catalyzed by monoamine oxidase (MAO). The reactant 

product, 5-hydroxyindole acetaldehyde, is then oxidized by aldehyde 

dehydrogenase to 5-HIAA (Cooper et al ., 1974). The existence of 

an alternative route by 6-hydroxylation has been demonstrated 

(Lemberger et al. , 1971 ) , and whether or not this metabo 1 i te may 

4 



interfere with normal function of the 5- HT-containing terminals 

remains to be explored. 

Many compounds alter 5-HT metabolism. When administered 

systemical ly, p-chloroph enylal anine (PCPA) selectively decreases 

the level of 5-HT in the brain by i nhibit ing Trp hydroxylase 

activity (Koe and \~ie ss man, 1966; Gal et aZ. , 1970), whereas 5- HT 

synthes i s f rom 5- HTP remains normal (Pujol et aZ. , 1971). The 

methyl xant hines, caffe ine, theophy l line and theobromine, are some 

of the mos t widely consumed drugs. A single dose of caffeine 

elicits a signif ic an t increase in both 5- HT and 5-HIAA levels i n 

5 

rat brains, after either one or five hours, while theophylline is 

less potent in elevating brain 5-HT although a significant increase 

is observed (Berkowitz and Spector, 1973). The mode of action of 

several mild tranquilizers has been hypothesized to be through a 

reduction of 5-HT synthesis and metabolism . Dominic (1973 ) reported 

decreases in levels of brain 5- HT coupl ed with increases in 5-HIAA 

after exposure to chlordiazepox ide (Librium), diazepain (Valium) 

or flurazepain (Dalmane). Other drugs alter 5-HT metabolism by 

increasi ng the turnover rate as is seen with morphine (Yarbrough 

et aZ. , 1973) or by decreasing 5-HT while increasing 5-HI AA levels 

as with ethanol treatment (Gothoni and Ahtee, 1980). 

Severa l pesticides have cause changes in the 5-HT metabolic 

pathway . Dieldrin-treated mice show no change in brain 5-HT levels 

while 5-HIAA values increase suggesti ng a possible influence of 

dieldrin on 5-HIAA efflux from mouse brain (Sharma, 1976). 

Conflicting reports indicate both significant increases and 

decreases of rat brain 5-HT after similar doses of dieldrin (Kohli 



et a l ., 1977; Wagner and Greene, 1978). Activity of MAO is reduced 

in dieldrin treated hamster brain homogenates with increased level s 

of 5-HIAA in vivo while 5-HT values increased (Willhite and Sharma, 

1978). Increases i n ra t brain concentration of 5-HI AA without 

affecting that of 5-HT, which the investigators attributed to 

enhanced 5-HT turnover, are seen after DDT exposure (Hrdina et al ., 

1973). Other studies show increased levels of rat brain 5-HT with 

similar increases in 5-HIAA in carbaryl-treated rats whi ch the 

i nvestigators suggested may be due to an effect on the energy­

requiring membrane transport for the acid metabolite (Has san and 

Santoluc ito, 1971 ). 

Metals, including manganese, ni ckel and mercury, influence the 

5-HT biosynthetic and metabo lic pathways . A signifi cant decrease 

in 5- HT levels with an accompanying lower activity of L-aromatic 

amino acid decarboxylase has been reported in rats fed subacute 

doses of manganese (Kimura et a l . , 1978), while nickel-fed hooded 

rats showed a signi ficant lowering of serotonin levels in both the 

ce rebral cortex and basal ganglia (Ali et al ., 1980 ) . Rat pups 

exposed in utero to methylmercury (Me-Hg) and sacrificed as 

28-day-old weanlings were reported to have a signifi cant reductio n 

of 5-HT co ncentration in the midbrain-diencephalon with decreased 

but non-si gn i fica nt levels of 5-HIAA. Pons-medullary 5-HT values 

were reduced but did not reach an acceptable level of signifi cance 

(Sobotka et al ., 1974) . 

Several methods have been utilized to determine turnover rates 

of 5-HT . Al l are based on the assumption that 5-HT and 5-HIAA 

are in a steady-state, with rates of formation equal to rates of 

6 
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metabo li sm and elimi na tion . Probenecid reduces the renal excretion 

of organic acids including that of 5-HIAA (Despopo ulos and Weissbach, 

1957), and injection of probenecid increases the brain concentrations 

of 5-HIAA (Neff et aZ. , 1964 ). The accumulation of 5-HIAA after 

probenecid treatment is used as an index of serotonin turnover 

rates (Neff et al., 1967) but a recent study (van Wijk et aZ ., 

1979) suggests that probenec id also increases 5-HT formation by 

elevating Trp levels in rat brain. 

The decline of brain 5-HI AA after MAO inhibition has been used 

as an estimator of 5-HT turnover rates. Tozer and co-workers {1966) 

demonstrated that after monoamine oxidase activity was blocked with 

either parglyi ne or tranylcypromine, brain levels of 5-HIAA declined 

exponentiall y . 

A third widely used method involves the injection of radioactive 

Trp and calculating turnover rate of brain 5-HT from the accumu lati on 

of 3H- 5-HT coupled with the decline of the labelled Trp (Neff et aZ ., 

1971). This method also allows the investigator to determine levels 

of Trp, 5-HT and 5-HIAA in the same animals. 

Overview of Clinical Neuropathy Assessment 

Numerous methods for detecting neurotoxicity have been reported 

i n the l iterature . General motor activity is often used as an 

indication of neurotoxic status. Obse rvational methods, both 

qual i tati ve and quantitative, and automated techniques have been 

developed to assess general activity (Reiter and Macphail , 1979). 

Peripheral neuropathy, in bipedal animals such as ch ickens, 

is readily assessed by observation and applying an ataxic index for 



quantifi cation (Watanabe and Sharma, 1977 ). An earl y man ifestati on 

of mercury - induced rat peripheral sensory neuropathy is "tail 

rotation", characterized by a sustained vigorous circling movement 

of the tail when held by the body. This syndrome is seen t wo t o 

three weeks prior to the onset of crossing and/ or ataxia of the 

8 

hind legs commonly seen in Me-Hg poisoning (Ohi e t aZ. , 1978) . Other 

motor- involvement indices include fatige, measured by swim endurance 

(Campbell, 1976) and frequency of tremor occurrence (Remington and 

Ani sman, 1976). Tilson and Cabe {1978b) have deve l oped an inclined 

screen procedure in wh i ch the rat is picked up by the tail and, 

f rom a distance of 3 m, is gently tossed with an upward mo t ion 

toward the middle of a rectangular screen . The animals are then 

rated in abi li ty to cling to the screen on a 0 to 5 point scale . 

Forelimb grip strength and hindlimb extensor response tests are 

procedures which utilize strain gauges to monitor musc ular strength 

by isol ating either the front or rear extremities (Cabe and Tilson, 

1978; Cabe et aZ., 1978). 

The abi lity of rats to mai ntain their balance on a rotating 

rod (rotorod) has been used as an index to assay clinical effects 

of neurotoxic chemicals (Dunham and Mi ya, 1957) . Kaplan and Murphy 

(1972) described a rotorod assembl y with a scrambled shock device, 

in contact with an electrode floor, to discourage jumping from the 

rotorod. Investigations by them showed that acrylamide (50 mg/ kg/ day ) 

produced mean rotorod failure times of 5.3 days. The authors 

co ncluded the rotorod was a sensitive indicator of clini cal 

neuropathy . Another study of acrylamide-induced motor dysfunction, 

as measured by the hindl imb extensor response and inclined screen 
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tests, sh01~ed hindlimb impairment while no effect was seen on 

forelimb grip (Tilson and Cabe , 1979). The cumulative dose required 

to induce t hese effects was 100 mg/kg compared to the 180 mg/kg 

req uired for changes in ambulation and rearing in the open field 

(G ipon et al ., 1977), the 420 mg/kg reported to produce failure on 

the rotorod (Kaplan and Murphy, 1972) and similar level s used in a 

procedure which measured the spread of the hindlimbs upon landing in 

rats which were dropped from a standard height (Edwards, 1977). 

Several of the procedures described require a large investment 

of time and resources. The choice of tests to use in neurobehavioral 

toxicology is dependent upon several factors related to the 

characteristics of the animal model, the availability of technology 

and training for measuring a specific function, and the cost 

effectiveness/time efficiency factors associated with the number of 

animals and doses of compounds under study (Tilso n and Cabe, l978a). 

Aspects of Hexacarbon Neurotoxicity 

Methyl-n-butyl ketone (MN BK ) and n-hexane have been found to 

cause neurotoxicity following prolonged human exposure. A few cases 

of neuropathy have been attr ibuted to methyl - isobutyl ketone 

(AuBuchon et al. , 1979) and to cyclohexane (Lande e t al., 1976), but 

these compounds have failed to produce neuropathy in experimental 

animals (Spencer et a l ., 1975). Exposure to MNBK was initially 

suspected as a peripheral neuropathogenic agent subsequent to an 

outbreak of neuropathy in a plant producing pl astic -coated and 

color-printed fabrics (Billmaier et al., 1974; Allen et al ., 1975). 

Mallov (1976) found evidence to suspect MNBK as the causative agent 
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in neuropathy in spray pai nters. Humans exposed to n-hexane as 

cabinet finishers (Herskowitz et al. , 1971, shoe factory workers 

(Franchini et al. , 1978) and paper adhesive workers (Paulso n and 

Waylonis, 1976) have also exhibited varying degrees of polyneuropathy. 

The most common cause of hexacarbon neuropathy has been the 

deliberate i nhalation vapors of laquers, solvents or glues con taining 

n-hexane (Gonzales and Downey, 1972; Prockop et aL , 1974, Korobkin 

et al. , 1975). Hexane mixtures free of n-hexane gave no evidence 

of neuroto xic effects (Ega n et aZ., 1980). 

Serum from guinea pigs dosed with MNBK showed three major gas 

chromatography-mass spectrometry peaks which were identified as 

MN8K, 5-hydroxy-2-hexanone (5 -0H- 2H) and 2,5 -hexanedi one (2,5-HD ) 

while n-hexa ne-exposed animals produced the same metabolites 

(DiVincenzo et aZ. , 1976) . In the rat, MNBK has been reported to 

be metabolized to 2-hexa nol, 5-0H-2H and 2 ,5 -HD (D iVincenzo et aZ ., 

1977). The principal metabolites of n-hexa ne in the rat are reported 

to be 1-hexa nol and 2-hexanol which are further metabolized to 

2,5-HD (Peribellini et aZ. , 1978) while the primary urinary n-hexane 

metabolite in· man has been identified as 2,5-HD with smaller amounts 

of 2-hexanol, suggesting that n-hexa ne in men and animals follows the 

same metabolic pathway (Perbellini et aZ ., 1980) , Since 2-hexanol 

is a common metabolite of n-hexane and MNBK, this alcohol may be 

considered a neurotoxic product connecting the metabolic pathways 

of n-hexa ne and MNBK. Kras avage et aZ., (1980) investigated the 

relative neurotoxicity of r~NBK, n-hexane and their metabolites by 

administering equimolar doses of each compo und by gavage. Clinical 

evidence of severe hindlimb weakness or paralysis was the endpoint 



used to determine neurotoxicity. All test compounds produced both 

clinical and histological neuropathy. The relative neurotoxicity 

of the tes t compounds in decreasing order of potency was : 2,5-HD, 

5-0H-2H, 2,5-hexanediol, MNBK, 2-hexanol and n-hexane. These 

researchers also found that the neurotoxi c potency was directly 

related to the amount of 2,5-hexanedione produced by each compound . 

The magnitude of body weight changes paralleled the neuroto xic 

11 

potency of each compound. Other studies have confirmed these res ults 

(Spencer et a l ., 1978; Eben et al ., 1979 ) . 

Neurotoxic hexacarbons produce distal axonopathies in the 

longer and larger axons in both the peripheral (PNS ) and centra l 

nervous system (CNS). Earl y changes show axonal swelling with a 

decrease in axonal transport (Griffin et al ., 1977) . As the dying-

back process continues, the axonal swelling ascends the nerve fiber 

with a resultant focal demyelination followed by remyelination 

(Powell et al . , 1978). 

Neurotoxic hexacarbon compounds, 2,5 - HD and MNBK, have been 

shown to inhibit brain gl ycolytic enzymes including phosphofructo­

kinase (Sabri et al ., 1979a), glyceraldehyde-3-phosphate dehydrogenase 

Sabri et al. , 1979b) and enolase, while neither compound affected 

lactate dehydrogenase (Howland et al ., 1980). These results support 

the hypothesis that neurotoxic hexacarbon compounds inhibit the 

activity of enzymes required for energy production. Gilles and 

co-workers (198la, 198lb) recently reported significant decreases 

in the in vitro incorporation of [l -14c] acetate into ubiquinone 

in sciati c nerve and brain of rats fed 1% 2,5-HD in drinking water 

for 6 week s while acetate incorporation into phospholipids, fatty 
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acids and cho lesteryl esters was simi lar in tissues of 2,5-HD- treated 

rats an d pair-fed controls. Loss of body wei ght induced by 2 ,5-HD 

was similar to that seen in pair fed co ntro l rats. These authors 

hypothesized that since ubiquinone has been shown to transfer 

electrons between NADH dehydrogenase and cytochrome b in the electron 

transpo r t chai n of the mitochondria (Rama sa rma, 1968), an inhib iti on 

of oxidative-phosphory lati on co uld result from decreased ubi qu inone 

biosynthesis. 

Endogenous levels of brain indoleamines in neurotoxic 

hexacarbon-treated anima l s have not been reported i n the literature . 

Aspects of Acrylamide Neurotoxicity 

The major use of acrylamide is as a vinyl monomer in t he 

production of high molecular polymers which are useful f l occu lators. 

Ac rylami de became commercially important in the early 1950 's with 

applications in min ing ope rations, purification of water supp lies 

and disposal of industrial waste. About the same time acrylamide 

was used as a strengthener in the ma nufacture of paper and cardboard 

(McCollister et al ., 1964), as well as a grouting agent in min ing 

and tunnel construction {Ful lerton and Barnes, 1966). 

The neurotoxic characte ristics of acrylamide were di scovered 

soon after the substance wa s manufactured. Observations showed that 

th e acrylamide monomer was neurotoxic, but when polymerizatio n 

occurred the product was no longer tox ic {Spencer and Schaumburg, 

1974a), which limits the exposed population of workers to those 

involved in manufacture of the monomer or in the polymerization 

process (Garl and and Patterson, 1967). Intoxications have occurred 
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during grouting operations conducted in confined spaces when the 

mo nomer is pumped into the soil and, with the addition of catalys ts, 

in situ po lymerization occurs . Auld and Bedwell (1967 ) provided 

the first clin ical description of a worker intoxicated in this way 

and, more recently, fou r men working together in a tunnel were 

simila rl y affected (Kesson et aZ ., 1977). Spencer and Schaumburg 

(1974a ) concluded that most instances of industrial toxicity have 

resulted f rom dermal absorption rather than inhalation. The only 

report of to xicity unrelated to work was to a family in Japan who 

developed acute toxicity after their well water became co ntaminated 

with acrylamide used in nearby underground construction (Igisu 

et aZ. , 1975). Following remova l f rom exposure, which is the only 

effective remedy known , affected persons showed a reduction of 

symptoms. In patients with mild neuropathy, complete recovery may 

be expected (Garland and Patterson, 1967; Kesson et aZ . , 1977 ) while 

in those more severe ly affected, there may be residual abnormalities 

(Fullerton, 1969). 

Kuperman (1958) published one of the first reports of acrylamide 

to xicity in animals. He investigated intoxication in cats and 

reported the cumulative nature of acrylamide and demonstrated the 

effect was not dependent on the route of administrat ion. Kuperman 

al so studied changes in cerebra l electrical activity, but pathological 

studies showed no abnormalities in the central nervous system . In 

1964, McCollister and cowo r kers did further work with acrylamide on 

rabbits, cats, monkeys, guines pigs and rats, The functional effects 

were similar to those seen before, and again no central nervous 

system pathology was seen. 
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Repeated acrylamide exposure produces a bilater al , dis tal 

neuropathy. More distal axons innervating the hindlimbs are affected 

by acryl amide before those more proximal which correlates with motor 

deficits first seen in the hindlimbs (Spencer and Schaumburg, 1975 ) . 

Though systematic study of the pattern of nerve damage in exper imental 

animals demonstrated that distal regions of nerves are more severel y 

affected than prox imal areas, distal fiber degeneration is seen in 

conjuncti on with proximal preservation (Fullerton and Barnes, 1966 ). 

The term "dying-back" is used to describe the pattern of slow, 

progressive retrograde degeneration seen with acrylamide intoxication 

(Prineas, 1969; Schaumburg et al. , 1974). Long and large myelinated 

fibers are affected more than short and thin fibers with t he most 

severe damage near blood vesse l s (Suzuki and Pfaff, 1973). Initial 

motor ne rve termi na 1 degeneration is widespread and not restricted 

to the terminals of the longest axons (Jennekens et al ., 1979 ) . 

Schaumburg and co -workers detected the earliest morphological 

changes in nerve terminals of Pacinian corpuscles i n the foot pad 

followed by degeneration of nerve endings in the muscle spindles 

{1974 ). It is also known that in dying-back syndrome, axononal 

degeneratio n occurs in long fiber nerve tracts of the central nervous 

system including regions of the medulla, spinal cord and cerebellum. 

Deplet ion of brain biogenic amines, including NE, DA and 5-HT 

has been observed following nine daily 50 mg acrylamide/kg 

intraperitoneal injections (Dixit et al. , 1980). Acrylamide-treated 

chick ganglia cell cultures showed morphological alterations of 

neurons and neuroglia which could be prevented by addition of 

various nucleotides or cofactors (Sharma and Obersteiner, 1977 ) . 
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Several biochemical effects are seen in acrylamide intoxication. 

A significant depression of leucine incorporation into brain proteins 

has been corre lated with the progress of acrylamide neuropathy 

(Schotman et aZ ., 1977a ) , while similar findings were observed in 

the incorporation of labelled lysine and methionine in the spinal 

cord (Hashimoto and Ando, 1973). A decrease in spinal cord and 

brain stem protein synthesis rates has been demonstrated with acute 

and chronic acrylamide intoxication (Schotman et aZ ., 1977b ). 

Acrylamide has also been shown to reduce the act ivi ties of brain 

glyceraldehyde-3-phosphate-dehydrogenase, phosphofructokinase and 

neu ronal specific enolase in the glycolytic pathway. These studies 

were based on the proposal by Spencer and Schaumburg (1975) that the 

multiple axonopathy seen after acrylamide i ntoxication is caused 

by 1) impair_ed axonal transport, 2) failure of the synthetic 

machinery in the neuronal cell bodies, and/or 3) changed in axonal 

met abo 1 ism. 

Aspects of Organophosphorus Neurotoxicity 

Organophosphorus (OP) compounds have been shown to affect both 

the central and peripheral nervous systems. Inhibition of 

acetylcholinesterase (AChE),with the resultant effects, has been 

widely studies and reviewed (Eto, 1974). Many OP compounds have 

been shown to produce a central -peripheral distal axonopathy similar 

to the axonal degeneration seen with acrylamide and neurotoxic 

hexacarbons (Cava nagh, 1973; Bouldin and Cava nagh, 1979) : This 

effect is not dependent upon the inhibition of AChE but a strong 

correlation has been made involving the i nhibiti on of another 
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esteratic enzyme, neuroto xi c esterase (NTE ) , a membrane bound 

nerve- cell protein. Neu rotoxic esterase is present in va ri ous brain 

regions, and in spinal cord and sciatic nerve, and is inhibited by 

phosphorylating a serine residue within i ts active site (Jo hnson, 

1975 ). Reactions of NTE with several carbamyl and phosphinyl esters 

produce NTE inhibition without the resulting neurotoxic effects. 

Johnson (1 976) suggested that these compounds may provide a 

protective function by occupying the NTE active site. Although NTE 

has been identified as the target enzyme for neurotoxic OP compounds 

in the nervous system, the physiologi ca l role of this enzyme is 

unknown. 

Alterations of centra 1 neurotransm"i tter 1 evel s have been 

resported after exposure to some OP compounds. Cerebral cortex 

levels of DA and NE in parathion-fed rats were reduced (Fiscus and 

Van Meter, 1977 ) while disulfoton reduced rat hippocampal NE levels 

(Holt and Hawkins, 1978) . 

Severa 1 widespread huma n i ntoxi cations have occurred with TOTP, 

also referred to as tri-o-cresyl phosphate (TOCP), which is 

commonly used as a lubricating oil addit i ve. The most serious human 

exposure to TOTP was in 1930 when thousands of people in the southern 

U.S .A. exhibited symptoms of paralysis. Al l had ingested varieties 

of "Jamaica ginger" to which substances had been added to enhance 

the potency (Davies, 1963) and subsequent analysis showed that all 

compounds which caused paralysis were found to be contaminated with 

TOTP (Smith et al ., 1930; Burley, 1931) which gave this syndrome the 

name, Ginger Jake. Many poisonings relating to the accidental or 

deliberate addition of tricresylphosphates to edible oi ls occurred 



during the following several years (Mednikyan and Mirzoya n, 1936) . 

Smith and Spaulding (1959 ) described a mass poisoning in Meknes, 
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N. Africa affect ing 10,000 people when they ingested a mixture of 

olive oil an d lubricating oils containing a hig h amou nt of TOTP. 

Other cases of TOTP neuropathies have occurred in the Fiji Islands 

(Soroki n, 1969) and in workers of the Spani sh shoe industry 

(Bermejil l o, 1971 ) . An outbreak of acute polyneuropathy affected 

more than 20 young females in Sri Lanka during 1977-78 . The illness 

was seen only in girls, soon after menarche and is related cu ltural ly 

to the custum of restricting meat and fish in the diet du rin g that 

period and su bstituting raw eggs and gi ng i l i oil which is not 

norma ll y eaten because of its cost. Each woman was given one or 

two doses of TOTP-contaminated oil dail y for two weeks (Senanayke 

and Jeyaratnam, 1981 ) . Unfortunately, the prognosis for recovery 

from organophosphate neuropathy is poor due to the degeneration of 

long-tracts in th e sp inal cord (Morga n and Penovich, 1978). 

The ability of TOTP to cause neuropathy is dependent upon the 

a-hydroxylation of a ring s idecha in followed by the formatio n of 

a cyc lic phosphate ester in conjunction with the expulsion of a 

tolyl ring. If the side chain is in the para or meta position, 

cyclization do es not occur, but, instead further oxidation to an 

acetyl group takes place (Eta et aZ. , 1962 ) rendering these compou nds 

inactive for neuropatho genic activity (Aldridge, 1954; Hine et aZ. , 

1956) . 

Leptophos or Phos vel (o -4-b romo -2 ,5-di ch l oro phenyl 0-methyl 

phenylphosphonothioate) has been imp l icated i n the death and/ or 

p·aralysis of a large number of water bu f falo in Egypt (Abou -Donia 



et aZ ., 1974) as well as possible human paralysis (Abou- Donia and 

Graham, 1978) . Leptophos has been reported to be an inhibitor of 

NTE (Hussa i n and Oloffs, 1979). These same researchers repo rted 

that rats fe d doses of 5,0 mg Leptophos / kg showed neither signs of 

ataxia nor hi stological alterations but did have a signi ficant 

weight decrease. Chickens dosed orally or by topical application 

to the comb were affected by paralysis, loss of weight, plasma 

cholinesterase inhibition and increased activity in plasma acid 

phosphatase (Abou- Do nia and Preissig , 1976; Abou-Donia and Graham, 

1978) . Herin and co-workers (1978) reported that mal lard ducklings 

showed a similar respo nse after Leptophos exposure. 
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The neuropatho l ogy of Leptophos is similar to that seen after 

TOTP exposure i .e . paral ys is correlated with the degenerati on of t he 

anterior des cending tract of the spinal cord and degeneration of the 

sciatic nerve (Prei ss ig and Abo u-Donia, 1978) . 

Aspects of Methylmercury Neurotoxicity 

Industrial processes account for over 20,000 tons of mercury 

being released into the environment each year (Magos , 1975). Amo ng 

mercury compounds, Me -Hg is known to be more neurotoxic than 

inorganic mercury (Berlin and Ullberg, 1963) . Initial indications 

of a public health threat caused by Me-Hg exposure came after an 

epidemic in Japan had affected 126 people, with 46 deaths, mo stly 

fishermen and their families. The cause was traced to Minamata 

Bay effluents from a chemical factory utilizing mercuric chloride 

as a catal ys t in the manufacture of vinyl chloride. Consump-

tion of Me-Hg- treated seed grain has also produced several 
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epidemics of neurotoxicity in humans. The most catastrophic episode 

occurred in 1972 in Iraq where thousands were hospitalized and 459 

people died after eating contaminated grain (Marsh, 1979). 

Impairment of the blood-brain barrier has been demons t rated 

after injection of trypan blue dye or fluorescein-labelled albumin 

into the nervous system of mercury-treated rats (Steinwall and 

Klatzo, 1966 ) . Chang and Hartman (1972) have demonstrated the 

disposition of mercury within many biological membraines after 

mercury exposure. Several studies show that the increased 

permeability and dysfunction of the blood brain barrier after mercury 

intoxication is probabl y due to damage of the endothelial and glial 

membranes by the mercury ions forming cross-linkages with a cell 

membrane protein moiety, resulting in the leakage of plasma solutes 

(Ware et aZ. , 1974) and a reduction of the uptake of amino acids 

(Steinwall and Klatzo, 1966). 

Distri bution studies showed that after chronic, continuous 

administration of radio-labelled methylmercuric hydroxide to rats, 

the spinal dorsal ganglia contained the highest concentration of 

mercury, followed closely by the cerebral cortex and the cerebellum, 

then by the subcortical part of the forebrain (Somjen et ai ., 

1973). Cerebellar changes in rats, after exposure to Me-Hg i n uter o , 

have shown disintegration in the endoplasmic reticulum and Golgi 

complex in Purkinje cells {Spyker and Chang, 1974). The sensory 

neurons of the dorsal spinal ganglia were found to be extremely 

sensitive to the toxicity of mercury. Changes included the 

disintegration of endoplasmic reticulum and ribosomes (Herman et a i ., 

1973) which supports the discovery of a reduction of RNA (Chang 
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eta~ ., 1972) . Pathological examination of peripheral nerves of 

Me-Hg-treated rats showed swelling and degeneration of Schwann cells 

with notab le changes in both myelin sheaths and axons whi ch tend to 

begin at the nodes of Ranvier (Miyakawa eta~ ., 1970). 

Myelinated cultures of cerebellum were sensitive to exposure to 

methylmercuric acetate. Severe vacuolar degeneration was observed 

in nerve cells, particularly in granule and Purkinje cells while 

axons and myelin sheaths also underwent a considerable degree of 

degeneration (Kim, 1971 ) . Sharma and Obersteiner (1981) have also 

reported a dose-dependent cell growth inhibition in mercury-exposured 

chick ganglia cultures. 

Several glycolytic enzyme activities are affected by Me-Hg . 

Using histochemical techniques, Chang et aL (1973) demonstrated 

a decrease in the activities of succinic dehydrogenase. Levels of 

glucose-1-phosphate and glyceraldehyde phosphate have been shown 

to be increased one hour after mercury administration (Patterson and 

Usher, 1971 ) . 

Other biochemical effects of methylmercury show decreased 

levels and turnover rates of acetylcholine (Kobayashi eta~. , 1980). 

In 28 day old rat pups exposed in utero to 2.5 mg methylmercuric 

chloride/kg from day six through day five of gestation, decreased 

cholinesterase activity was found in the telencephalon and cerebellum 

while reduced levels of serotonin and norepinephrine were seen in 

the midbrain-diencephalon region (Sobotka et a ~ ., 1974) . 
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METHODS 

Experimental Animals 

Male Sprague-Dawley derived rats [Sim:(SD)sBR], weighing 120 

to 140 g were obtained from Simonsen Laboratories, Inc. of Gilroy, 

CA. Upon arrival the animals were randomly assigned to groups, 

earmarked, and placed in po lycarbo nate rat cages with screened pine 

shavings as bedding. Laboratory feed (Wayne Lab-Blox, Allied Mills, 

Chicago, IL) and water were provided ad libitum. All animals were 

acclimated at least 10 days to the animal care facility maintained 

under constant environmental condit ions (22±2°C, 45 -60% relative 

humidity and illuminated 12 hr/day beginning at 7 a.m.) 

Distal Neuromuscular Pathology Assessment 

The rotorod apparatus (Figu re l) was similar to one described 

by Kap lan and Murphy (1972) . The dimensions were 0.92 X 0.46 X 0.61 

M (length X width X depth) with the enclosure divided into three 

compartments of equal size. An acrylic-plastic front wall was used 

for ease of observation. A wooden dowel (7.62 em diameter) was 

placed 33.0 em above the floor, which was fashioned of stainless 

steel rods (0 . 64 em diameter) placed l .57 em apart at the centers. 

The electrode floor was supplied with an elecritcal potential through 

a scrambled shock device. The speed of the belt-driven rod was 

varied using different combinations of pulleys on the shaft of the 

dowel and, a 25 rpm, constant-speed motor. 



For the first few days , a speed of 12 rpm was utilized to 

train the rats, while the final testing speed was 20 rpm . Rat s 

with normal neuromuscular status could perform well without 

distractions or attempts to jump from the rotorod . After a 7-10 

day training period, rats were randomly assigned to four groups 

of five an imals each. To be considered normal in neuromuscular 

fu nction, each rat was required to walk on the rotorod for at 

least 1 min during any of three attempts on the testing days. 

Al l compounds were administered by gavage with a 3 in., 

16 gauge feeding need l e, bent slightly at the ball end . In each 

case, intubuation was after the rotorod testing. The dosages 
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were designed to elicit a clinical neuropathy in the highest dose 

groups with no observable effects in the l owest dose groups. Three 

dose levels and a control were used in each study, while the vehic l e 

varied according to the solubility of the test chemica l . Dosing 

solutions were prepared such that each animal received 1 ml/100 g 

body weight with the doses measured to the nearest 0.1 ml. 

Levels of 3.0, 1.0 and 0.3 g 2,5-hexanedione (Eastman grade, 

Eastman Kodak Co., Rochester, NY)/kg made up in propylene glycol and 

acrylamide (Eastman grade, Eastman Kodak Co.) doses of 50,15 and 

5 mg/kg prepared with water , were admin i stered daily along with the 

appropriate vehic le controls. Solutions of Leptophos (98% analytical 

standard, Chern Service Co . , Westchester, PA), tri-o-tolyl phosphate 

(practical grade, Eastma n Ko dak Co.) and Methylmercuric (II) chloride 

(95%, Ventron Corp ., Danvers, MA) were given at three day intervals. 

Leptophos was dissolved in propylene glycol in doses of 90, 30, and 

9 mg/kg. One hour prior to receiving Leptophos, the animals were 



inject ed IP with 50 mg/kg (0 .5 ml of a 20 mg/ml solution ) atropine 

sulphate (S igma Chemical Co., St. Louis, MO). Solutu ions of TOTP 

were solubilized in oil and administered at levels of 1.0, 0.3 and 

0.1 g/kg. Dosages of 10.0, 3.3, and 1.0 mg/kg Me-Hg were made 

by dissolving 10 mg Me-Hg/ml in 95% ethanol. The fin al mercury 

so lutions were prepared in corn oil containing 95 % ethanol . 

B i ochemi ca 1 Studies 
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From the results of a rotorod testing, the dosages and duration 

of dosing in a separate set of animals for biochemical evaluations 

were establ ished as shown i n Table 1. Each of the dose groups for 

the various compounds had 14 rats, except acrylamide, which had 16 

in each group. On the day following the last treatment, tai l vein 

injections of 0.050 mCi (0.20 ml) L-[ 3H(G)]-tryptophan (7 .88 

Ci / mmol, obtained through New England Nuclear, Boston, MA) were 

administe red. The specific activity of 3H-Trp shows linear decline 

over time (Neff et aZ ., 1971 ), and after one hour, half of the an imals 

i n each dose level were guillotined, while the remainder were 

decapitated after two hours. The data showing the decline of 3H-Try 

specific activity was reconfirmed to establish sacrifice periods. 

Brains were quickly removed, frozen on dry ice, and stored at 

-80°C until assayed. The acrylamide-treated animals were similarl y 

sacrificed in two groups after 40 min and two hours, respectively . 

The injec tions were consistently timed for sacrifice to coincide with 

the third and fourth hours of the light cycle. 

CoZumn Separation procedures followed in the separation of Trp , 

5-HT and %-HIAA were based on a method developed by Costa et aZ. 



TABLE l 

COMPOUNDS AND DOSAGE S USED IN BI OC HEMI CAL STUDI ES 

Dosages (mg/kg) Total 
Compound Structure Vehicle Frequency Number 

high me d. low of Doses 

0 0 
II II propylene 2,5-hexanedione CH3CH(CH2)2CHCH3 300 100 30 glycol daily 7 

Acrylamide CH2 = CHCONH2 50 15 5 H20 daily 5 

s Cl 

Leptophos 
Or-o-t(Br 

45 15 4.5 propylene every 3rd day 5 
glycol 

~ OCH3 Cl CH
3 

0....._ -;::;- 0 CH 
TOTP o"P' oo 300 100 30 corn oi 1 every 3rd day fi 

OcH3 ::::,... I 
methyl mercuric CH3-Hg-Cl 10.0 3. 3 1.0 10% ethanol every 3rd day 5 

chloride in corn oil 

"' U1 
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(1968) and later modified by Mar ini et al . (1979 ) to include 5-HIAA . 

Columns constructed f rom Pyrex glass , me~s uring 6 mm x 120 mm , were 

fu sed to a reservoir wi th a capacity of 10 ml. The column outlet 

was narrowed to accomodate a 25 em length of Tygon tubing (2 mm !D ) , 

used to regulate the flow rate depending on the height of the tubing. 

Dowex 50X- X4, 200-400 mesh size , a strongly acidic cation exchange 

resin, was obtained from Sigma Chemical Co. (St. Louis, MO ), subjected 

to a thorough washing and pa cked into the columns which had been 

loosel y plugged with a small piece of cotton to support th e resin . The 

col umns were packed to a height of 3511l11 with resin in the hydrogen form. 

Al l chemicals were reagent grade unless otherwise indicated . 

Water was pu rified by deionization and reverse osmosis . Whole brains 

were homogenized in 0.4 N HC104 with l mg / ml Na 2s2o, at 0°C, using 

a Teflon and glass apparatus. Five ml of HC104/Na 2s2o solut ion per 

gram of brain tissue were used in each case. The homogenate was 

centr ifuged {14,000 x gat 0°C fo r 15 min), after which the 

supernata nt of ea ch sample was decanted into individual 50 ml 

plastic centrifuge tubes followed by pH adjustment to 2.0-2.5 with 

5 N KO H. During a five min storage in an ice bath, KC104 was 

precipitated after which the mixture was centrifuged {8 .000 x g at 

0°C for 10 min) to allow separation. An aliquot {4.9 ml ) of each 

supernatnat, as well as a l ml distilled water rinse, were added 

to the column reservoir. The supernatnat was passed through the 

resin followed by a series of eluting s.olutions (Table 2). Internal 

standards of Trp, 5- HT and 5-HI AA (all obta ined through Sigma 

Chemica l Co. , St. Lou is, MO) were processed in a similar fas hion 

using a mock homogenate consisting of 1.31 g NaCl and 100 mg 



TABLE 2 

FLOW CHART FOR SEPARATION OF INDOLE COMPOUNDS l!ITH DI)WEX 50-X4 RESIN 

Elution solutions 

1. Supernatant, pH 2-2.5 and 1 ml H2o rinse . 

2. 7 rnl 60% methanol - H20. 

3. 9 ml 0.1 m sodium phosphate buffer, pH 6.5. 

4. 2 ml 1 N HCl . 

5. 6 ml 4 N HCl . 

6. 2 ml H20. 

7. 6 ml 0.5 m Na 3Po4. 

8. 5 ml resin washes with H20, 4 N HC l and sodium 
phosphate buffer. 

Compounds in Effluent 

1. Supernatant. Discard . 

2. 5HIAA for assay. Discard first 0.5 ml. 

3. Trp for assay. Discard first 2 ml. 

4. HCl wash. Discard. 

5. HCl wash. Discard. 

6. H2o wash. Discard . 

7. 5HT for assay. 

8. Resin washes. Discard. 



28 

Na 2s2o5 prepared to a total volume of 100 ml wHh0 .4 N HCl 04. 

Fluorometric assays were performed us ing an Aminco-Bowman 

Spectrofl uorometer with the slits set at 4 mm and the photomulti plier 

set at 4 for all assays. A modification of the o-pthaldialdehyde­

co ndensate me thod of Atack and Lindquist (1973) was used to assay 

5- HIAA. Two thoro ughly mixed, l ml po rtions of each sample effluent, 

one for the sample, the other for the oxidized blank, were taken . 

After addition of 0.1 ml H20 to t he sample, 0.1 ml of cysteine­

potassium ferricyanide sol ution (equal vo lumes of 6% cystei ne and 

0.2% K3Fe(CN) 6) was added and mi xed. When ready for assay, 1.4 

ml cone . HCl and 50 \.1 1 0.3% o-pthald i al dehyde (O PT ) were added and 

mi xed. The oxidized blank was then formed by mixing 0.1 ml H2o and 

0.2 ml cone. HCl to the second 1 ml sample al iquot . Noting the time , 

50 ~ l of the 0.2% K3Fe(CN) 6 solution was added and mixed followed 

after 10 min by 50 \.l l of the 6% cys teine . Afte r the so luti on was 

mixed, 1. 2 ml cone . HCl and 50 \.1 1 of the OPT solution were added and 

shaken. The solutions were heated for 20 min in a water bath set at 

78°C after which they were cooled in room temperature water for 3 min, 

mixed thoroughly and read at excitation and emission wavelengths 

of 360 nm and 480 nm, respectively. 

£- tryptophan assays involved an extraction of the fluorescent 

derivative as outlined by Marini et al ., 1979. A 2.6 ml aliquot was 

taken from each of the pH 6.5 phosphate buffer column effluents and 

placed in a 8 ml screw-cap tube. Blan ks co nsisted of 2.0 ml of the 

phosphate buffer. A 50 \.1 1 aliquot of 18% formaldehyde solutions was 

mi xed i nto each tube followed by 50 \.l l of 0.01 M FeC1 3 in cone . HCl . 

The tubes were mixed, covered with marbles and placed in a 100°C oil 
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bath. After one hr. the tubes were removed from the bath and placed 

in cold tap water for a few minutes, followed by a thorough mixing, 

addition of 0.2 ml 5 N KOH and a second mixing. 

Washed ethyl acetate (4.5 ml) was added to each tube. The tubes 

wer€ tightly capped, shaken for 10 min and centrifuged 5 min at 2500 

rpm. A 3.0 ml aliquot of the ethyl acetate layer was transferred to 

an 8 ml screw-cap tube containing l . 5 ml 0. l N HCl . These tubes 

were capped, shaken 10 min, and centrifuged 5 min at 2500 rpm after 

which the ethyl acetate layer was carefully aspirated from the tubes. 

The HCl extract was assayed directly with excitation and emission 

wavelengths of 376 nm and 458 nm, respectively. 

Ser ot onin is not stabl e in strong base (Na 3P04) so the extraction 

procedure (Marini et al ., 1979) was performed shortly after the samples 

were eluted from the columns. After a thorough mixing, 4 ml of each 

sodium phosphate effluent was taken for assay, placed in a 50 ml 

polypropylene tube and mi xed after each addition of l .5 g NaCl, 2.0 ml 

borate buffer and 15 ml ethyl acetate. The samples were shaken 10 

mi n, and centrifuged 5 min after which 12 ml ethyl acetate were 

transferred to tubes containing l .5 ml 0.1 N HCl and 25 ml cyclohexane. 

After shaking 10 min and centrifuging, the combined organ ic phase 

was removed by aspiration. The resulting HCl extract was assayed as 

out l ined by Karasawa et a l. , 1975 . A 1.0 ml portion of the HCl 

solution was combined with 0.05 ml 6% L-cysteine hydrochloride, 

vortexed and mixed with l .5 ml OPT solution (10 mg % in cone. HCl). 

An oxidized blank was made by combini ng a l ml aliquot with 0.02 ml 

of 0.1 M ethanolic iodine for 15 min at room temperature. This was 

then treated, in a similar fashion, as a sample. These solutions were 
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all heated at 75 "C for 10 min . After coo ling in tap water for 2 

mi nu tes , the solu tions were assayed on the spectrofluorometer at 355 

nm and 480 nm as the excitation and emission wavelengths, respectively. 

Radiometric assays. Radioactive samples of 3H-Trp and 3H-5-HT 

were made up to 30% aqueous suspensions using 0.6 ml of the 

respective phosphate effluent and l .2 ml H20 with 4.2 ml f l uor 

solution cons ist ing of scintillation grade to luene :Triton X-1 00 

(2:1 ) and 7 g/ l 2a70 fluor (98% PPO, 2" bis-MSB, Research Products 

Internati onal , El k Grove Village, IL) . The vi a l s were mixed, placed 

in a 40"C water bath for 30 min, mixed aga in and placed in a Packard 

2660 tri-carb scintillation counter to equilibrate to the l ower 

temperature (l2"C) and darkness for at least six hours prior to 

counting. The samples were co unted 10 min. using a samp le cha nnel s 

ratio efficiency correction program which was calibrated with 

mi ni- vial standards. 

Data Analysis 

Levels of Trp, 5-HT and 5-HI AA expressed as nmol /g whole wet 

brain and 5-HT turnover rates (nmol/g/hr) were calculated using 

external standards in co njunction with derivatization procedures. 

These numbers were then multiplied by the inverse of the fractional 

recovery and by t he in verse of the grams of tissues per sample to 

calculate the nmo l / g values for each compo und as follows: 

nmol indole compound per gram of brain tissue = 
l 

nmol compound in sample (fractional) ( g tissue 
recovery per samp le 

The specific activiti es (DPM/nmol) for Trp and 5-HT were 



calculated and used in the determination of turnover rate constants 

.for 5-HT based on the eq uat ion of Neff et aZ . (1971). The turnover 

rate was determined by the steady state equation for the change in 

5- HT concentration, d5 - HT/ dt = K (Trp-5HT ). This equation ca n be 

rearra nged to: 

K = [ (5 HT t -5HTt )/(t2- t 1)]/([(Trp -5HT )t + (Trp - 5HT)t ]/2) 
2 1 1 2 

where: 

K = co nstant for the turnover rate of 5HT 

5HTt , 5HTt = 5HT specific activity at 1 and 2 hours, 
1 2 

respective ly, after 3H- Trp injection 

tj, t 2 = 1 and 2 hours, respectively 

5-HT turnover rate = k[5 -HT] 

A s ingle-factor analysis of variance was employed to anal yze 

the effect of the vario us test compounds. Signifi cant differences 

among treatment means (p < 0.05) were calculated by a Tukey's - HSD 

multiple mean comparison test (Neter and Wasserman, 1974). 
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RESU LTS 

The objective of this study was to assess the biochemical status 

of the brain 5-HT pathway after in vivo exposure to a series of 

occupational neurotoxic compounds including 2,5 -hexanedione, 

acry l amide, tri-o - tolyl phosphate, Leptophos and Me - Hg. Preliminary 

i nvestigat ions of neurotoxic indices, as measured by performance on 

the rotorod, were necessary to establish optimal dose per iods and 

levels fo r each compound. 

Roto rod Studies 

In animals gavaged with 2,5 - hexa nedione, a high mortality rate 

was seen in the 3.0 g/kg/day group, with 80% of the rats dead by the 

third day while 1 rat in the 1 g/kg group died on day five (F ig. 2). 

Because of these deaths, dosing was discontinued in the 3.0 g/kg 

group after day three and in the 1. 0 g/kg animals after day 4. 

The animals given dail y doses of 0.3 g/kg showed a gradual loss 

of coordination on the rotorod with compl ete failure seen in all 

animals after the fifth day . No tremors were observed in the animals 

at any dose level and the 0.3 g/kg/day dosed-group showed a slightly 

higher weight gain than those animals given equal volumes of 

propylene glycol only (Table 3) . 

Acrylamide-treated rats at the lower dose levels had l i ttle 

difficulty in maintaining their balance on the rotorod (Fig. 3), 

while animals in the 50 mg/kg group exhibited a time-related 

decrease in performa nce with signs of tremors by the fourth day, 
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TABLE 3 

RAT \'EIGHT CHANGES FR011 DAY OF THE FIRST DOSE 
TO THE DAY OF SACRIFIC E 

Duratio n of Anima l Weights (g)b 
Treatment 

(Days) Initi al Fi nal 

2,5 hexanedione (mg/ kg) 8 
Ce nt ro 1 192 ± 3 224 ± 6 

30 187 ± 3 226 ± 4 
100 191 ± 4 219 ± 5 
300 186 ± 4 211 ± 4 

Acryl ami de 6 
Contra 1 236 ± 1 272 ± 3 

5 234 ± 4 267 ± 4 
15 237 ± 5 278 ± 3 
50 241 ± 4 271 ± 3 

TOTP 17 
Control 182 ± 3 283 ± 4 

30 183 ± 4 282 ± 4 
100 185 ± 2 288 ± 4 
300 174 ± 3 272 ± 5 

Leptophos 14 
Co ntra 1 234 ± 6 322 ± 9 

4.5 228 ± 5 311 ± 6 
15 .0 233 ± 3 311 ± 9 
45.0 235 ± 5 293 ± 6 

Me- Hg 14 
Centro 1 218 ± 3 285 ± 4 

1.0 223 ± 5 293 ± 7 
3.3 226 ± 3 296 ± 6 
1.0 226 :!: 3 275 ± 5 

% 
change 

+ 17 
+ 21 
+ 15 
+ 13 

+ 15 
+ 14 
+ 17 
+ 12 

+ 55 
+ 54 
+ 56 
+ 56 

+ 38 
+ 36 
+ 33 
+ 25 

+ 30 
+ 31 
+ 31 
+ 22 

al4 animals in each treatment group except acrylamide which had 16 
animals per group. 

bWeights in grams are shown as mean± S.E . 

34 



100 

80 

Q) ... 60 
::i 

co 
u. 
~ 40 
0 

20 

0 

control 
5 mg/kg 
15 mg/kg - - --
50 mg/kg -·-

2 3 4 5 6 7 

Days of Acrylamide Dosing 

FIG. 3. Percentage of rats unable to remain on the rotorod for 60 seconds at 
20 RPM prior to acrylamide dosages (n = 5 in each group). The animals were dosed 
daily . w 

"' 



until they were unable to walk on the rotorod by day six. Weight 

gains in the acrylamide-treated animals were similar to gains. in 

2,5-hexanedione-fed rats with a 12% increase in the high-dose 
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gro up compared to a 15% gai n in control animals while the other dose 

groups increases were similar to control values (Table 3). 

TOTP had a severe effect on animals given oral doses of l .0 

g/kg. The entire group died within two days after the first dose was 

given. Rats i n the 0.33 g/kg group were affected in their attempts 

at the rotorod and by the sixteenth day, all showed slight tremors 

and none were able to perform satisfactorily on the rotorod (Fig. 

4). During the same time per iod, treatments with 0.1 g TOTP/kg 

caused no impairment in rotorod performance. TOTP had no effect 

on weight gain at any of the dose levels studied (Table 3). 

Leptophos-treated animals showed signs of tremors after the 

first dose of 90 mg/ kg . Two animals in that group died after the 

third atropi ne dose but prior to oral administration of the 

Leptophos. Dosing was then discontinued because the general 

appearance of the animals showed they were very lethargic and 

emaciated . Anima ls dosed with either 30 mg/kg or 9 mg/kg had 

little difficulty performing the rotorod test for a total of six 

doses in sixteen days (Fig. 5). Animals in the 45 mg/kg dose group 

showed a 25 % weight gain in sixteen days compared to 38% in control 

animals (Table 3). Leptophos had no effect on weight ga in at lower 

dose levels . 

Time- and dose-related responses were seen in methyl mercury­

treated animals. By the sixteenth day, animals given doses of 

10 mg/kg failed completely while attempting to wa l k on the rotorod 
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(Fi g. 6). At the same time ra t s in the 5.0 mg/kg and 2.5 mg/kg 

trea tment groups showed 60% and 40% failure rates, respectively. 

A 22% weight gain was seen in the 1 .0 g Me-Hg/kg group compared 

to gains in co ntrol and other treated ani mals of 31 % (Ta bl e 3). 

Biochemical Studies 

These studies were do ne with brai ns of a separate group of 

animals treated in vivo with various chemicals at the doses 

established by rotorod testing. Animal s dosed with 2,5-hexanedione 

showed no sig ni f i cant differences from co ntrol animals in levels 

of Trp or 5-HT (Table 4). Serotonin tu rnover rates dec li ned 

slightly in both the 30 mg/ kg and 100 mg /kg dose level s, but 

the 300 mg 2,5-HD/kg-treated animals had· tu rnover rates equal to 

control values. At the 30 mg/ kg dose, level s of 5-H IAA were 

slightly higher (1. 81 nmol /g) than control values , (1. 59 nmol /g) , 

whi le both the 100 mg/kg and 300 mg/kg treated animals had 5-HIAA 

va lues which were significant ly different (p < 0.05) f rom propylene 

glycol- treated an imals (F ig. 7). 
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Acrylamide-treated animals showed cons tant levels of Trp and 

5-HT with no differences in serotonin turnover rates compared to 

va lues in control animals (Table 5). Aga in, 5-HIAA levels increased 

in a dose-dependent manner with the two highest dose levels, 15 and 

50 mg acrylamide/ day, showing significant differences (p < 0.05) 

from contro l animals (Fig . 8). 

Levels of endogenous indole compounds in the brains of TOTP­

treated ani ma l s showed no effect ( init i al 6%, non-s igni ficant in ­

crease ) onTrp levels in the 30 and 100 mg TOTP/kg dose groups while 
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TABLE 4 

WHOLE BRAIN LEVELS OF ENDOGENOUS INDOLE COMPOUNDS AND 5- HT TURNOVER RATES 
AFTER 2, 5-H EXANED IONE TREAT11ENT in vivo a 

2,5-hexaned i one (mg/kg) 

Control 30 100 300 

Tryptophanb 24.03 ± 0.75 23.78 ± 0. 57 24.42 ± 0.83 

5-HTb 2.75 ± 0.07 2.69 ± 0.07 2.82 ± 0.05 

5-HIAAb l. 59 ± 0.11 1 .81 ± 0.07 l. 98 ± O.lOd 

5-HT turnover ratec 2.01 ± 0.08 1.90 ± 0.11 1.82 ± 0. 12 

al4 animals in each treatment group. 

bConcentrations are expressed as nmol/g. Da ta are shown as means ± S.E. 

cRates are expressed as nmol/g/hr. Data are shown as mean ± S.E. 

dSignifi cantly different (p < 0.05) from control values . 

24.87 ± 

2.67 ± 

2.02 

l. 98 l 

0.90 

0 .09 

0.08d 

0.08 



2.5 

* * 01 2.0 -<( 

~ 
J: 1.5 

II) 

0 1.0 
E 
c: 

0.5 

2,5 - hexandione dosage (mg/kg) 

FIG. 7. Levels of rat brai n 5-HIAA l eve l s af ter 2,5-hexanedione administration 
for 7 consecutive days . The vertical bars represent the standard error of the 
mean; n = 14 in each dose level . Asterisk ind i cates a significant difference 
(p < 0.05 ) from control values. 



TABLE 5 

WHOLE BRAIN LEVELS OF ENDOGENOUS INDOLE COMPOUNDS AND 5- HT TURNOVER RATES 
AFTER ACRYLAt~IDE TREATI 1ENT In v·ivoa 

Acryl ami de (mg/kg) 

Contra 1 5 

Tryptophan b 23.38 ± 0.54 22.78 ± 0. 72 23.00 

5-HTb 2.56 ± 0. 05 2.60 ± 0.04 2.69 

5-HIAAb 1 .68 ± 0.03 l. 90 ± 0.07 2. 16 

5-HT turnover ratec 1.88 ± 0.07 2.02 ± 0.10 l. 94 

al4 animals in each treatment group 

bConcentrations are expressed as nmol/g . Data are shown as mean ± S.E . 

cRates are expressed as nmol/g/hr. Data are shown as mean ± S.E. 

dSignificant ly different (p < 0.05) from contro l values 

15 

± 0.57 

± 0.05 

± 0.08d 

± 0.08 

50 

23.05 ± 0.63 

2.58 ± 0 .04 

2.30 ± 0 .05d 

l. 95 ± 0.10 
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FIG. 8 . Levels of rat brain 5-Hl.AA levels after acrylamide administration for 5 
consecutive days. The vertical bars represent the standard error of the mean; n = 16 
in each dose level . Asterisk indi ca tes a signi ficant difference {p < 0.05) from 
control values. 
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the 300 mg/kg-treated animals had values very close to those of 

control animals (Table 6). Serotonin levels were unchanged 

throughout the doses studied and 5-HIAA levels were slightly {6%) 

lower in the two higher dose groups. Serotonin turnover rates showed 

a non-s ign ificant, dose-dependent increase to a maximum of 10% 

over contra 1 va 1 ues. 

In rats gavaged with Leptophos, 1 evel s of tryptophan and 5-HT 

remained unchanged. Serotonin turnover rates were similar to those 

seen in TOTP - treated animals with values slightly, but 

non-significantly, higher than co ntrol values (Ta ble 7). A bimodal 

trend was seen i n the 5- HIAA levels with an initial increase in 

animals dosed with 4.5 mg and 15 mg Leptophos/kg followed by 

concentrations less than control values at 45 mg/kg. 

Levels of indole compounds in Me-Hg treated rats (Table 8) 

showed no significant differences from co ntrol values; however, the 

turnover rates and levels of 5-HT were lower in the 1.0 and 3.3 

mg/k g dose groups, while the highest mercury dose level had no 

effect on turnover rates or concentration. 



TABLE 6 

l~HOLE BRAIN LEVELS OF ENDOGENOUS INDOLE COMPOUNDS AND 5-HT TURNOVER RATES 
TRI-0-TOLYL PHOSPHATE TREATMENT in vivoa 

Tri-0-tolyl phosphate (mg/kg) 

Control 30 100 300 

Tryptophanb 22 .62 ± 0.81 24.01 ± 0. 72 24.12 ± 0.87 22.98 ± 0 .93 

5-HTb 2.67 ± 0.05 2.61 ± 0.05 2.73 ± 0.08 2.63 ± 0.07 

5-HIAAb 1 . 72 ± 0.08 1. 78 ± 0.12 1 .67 ± 0.07 1 .61 ± 0.08 

5-HT turnover ratec l. 95 ± 0. 11 1. 99 ± 0.06 2.05 ± 0.09 2.15 ± 0.12 

al4 anima l s in each treatment group . 

bConcentrations are expressed as nmol/g. Data are shown as mean s ± S.E. 

cRates are expressed as nmol /g/hr. Data are shown as mean ± S.E. 



TABLE 7 

WHOL E BRAIN LEVELS OF ENDOGENOUS INDOLE COMPOUNDS AND 5- HT TURNOVER RATES 
P.FTER lEPTOPHOS TREATMENT ·in v·ivoa 

Leptophos (mg/kg) 

Contro l 4. 5 15 

Tryptopha nb 23.07 ± 0.97 24.87 ± 0.82 22 .92 ± 1.04 

5-HTb 2. 72 ± 0.07 2.63 ± 0.09 2. 69 ± 0,05 

5-HIAAb l. 52 ± 0.08 1. 67 ± 0.15 l. 59 ± 0.07 

5-HT t urnover ratec 1. 88 ± 0. 09 1. 96 ± 0.05 l. 58 ± 0.05 

al4 animals in each treatment group. 

bConcentrations are expressed as nmol/g. Data are shown as mea ns ± S .E. 

cRates are expressed as nniDl/g/hr . Data are shown as mean ± S.E. 
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23.23 ± 0 .86 

2. 78 ± 0.11 

1.43 ± 0 .1 0 

2.07 ± 0.10 



TABLE 8 

WHOL E BRAIN LEV ELS OF ENDOGE NOUS INDOLE COMPOUNDS AND 5-HT TURNOVER RATES 
AFTER ~1e-Hg TREATMENT i n vivoa 

Me-Hg (mg/kg ) 

Contro l 1.0 3.3 

Tryptophan b 22.63 ± 0. 77 23.05 ± 0.65 22.87 ± 0.92 

5- HTb 2.65 ± 0.07 2. 77 ± 0.09 2.56 ± 0.07 

5- HIAAb 1. 70 ± 0.06 1.62 ± 0.08 1.77 ± 0. 14 

5-HT turnover ratec 1. 90 ± 0.15 1. 78 ± 0. 11 1. 75 ± 0.08 

al4 animals in each treatment group . 

bConcentrations are expressed as nmo l /g. Data are shown as mea ns ± S. E. 

cRates are expressed as nmol/g/hr . Data are shown as mean ± S.E. 

10.0 

22.79 ± 0.75 

2.69 ± 0.05 

1.60 ± 0.09 

1. 95 ± 0.11 
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DISCUSSION 

Rotorod Studies 

The initial training period of 7 to 10 days was accomplished 

with little difficulty in most rats. Occasionally, a rat in a 

group could not walk on the rotorod for the prescribed period of 

time, but because the animals were selected randomly, all animals 

were used in the analysis which accounts for many of the failures 

reported in control and low dose groups . 
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In the 2,5-HD study, 80% of the rats in the 3.0 g/kg/day 

treatment group died by the third day. The l .0 g/kg/day group lost 

all coordination in walking the rotorod by the third day. By day 

five they were showing slight signs of tremor and one animal died . 

The 0.3 g/kg dose group exhibited a gradual decline in their ability 

to walk the rotorod and on the fifth day none of the animals in this 

group could remain on the rotorod for the prescribed time period. A 

level of 300 mg/kg/day to be administered seven consecutive days was 

designated as the high dose group with 100 mg/kg and 30 mg/kg 

doses given concurrently. 

Cumulative doses of 380 mg/kg acrylamide (Gipon et al., 1977) 

and 420 mg/kg acrylamide (Kaplan and Murphy, 1972) have been reported 

to produce deficits on the rotorod with accompanying muscular 

tremors . These experiments used dosing regimes similar to the 

present study, which showed consistent rotorod failures at a 

cumulative dose of 300 mg/kg. 



The acrylamide - induced muscular weakness observed in these 

experiments could be secondary to decreases i n body weigh t . 

Schotman et al . (1977a ) fou nd that pair-fed controls had higher 

weight gains than acrylamide treated rats. Although food intake 

is reduced during acrylamide intoxication (Gipon et al ., 1977), 

tryptophan levels in the present study were consistent with contro l 

values at all dosages of test chemicals . 

Acrylamide-treated animals (SO mg/kg/day ) showed tremors on 
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the fourth consecutive day of treatment and could not satisfactorily 

complete the rotorod testing by the fifth day. These results 

indicated an acrylamide regime, lasting five days with the same dose 

levels used in the rotorod testing, wou l d be satisfactory for 

biochemical studies. 

All TOTP-treated ani mals in the high dose group (1 .0 g/kg) 

died after the first gavage. At 0.33 g/kg, given every three days, 

the animals showed a gradual dec l ine in rotorod performance with 

complete failure at day 16 while the 0.10 g/kg group had no problems 

with rotorod performance. The 300 mg/kg level was se l ected as the 

highest dosage for the biochemical studies with 100 mg/kg and 30 

mg/kg given as the medium and low doses to be given in six doses 

every third day . 

Leptophos animals did not do we ll phys iol ogica ll y at the 

90 mg/kg level . Tremors wer e seen in all animals before the second 

dose, whi le two animals of that group di ed after atropine injections 

on the seventh day . The anima l s in the 30 mg/kg group were stil l 

doing rather well in the rotorod testing by the sixteenth day. A 

sli ghtly higher dose of 45 mg/kg , to be given in five doses every 
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third day , was chosen as the highest level for the brain chemica l 

studies with leve l s of 15 mg/ kg and 4.5 mg / kg also given through the 

same time period. 

Methylmercury-treated anima l s exhibited a dose-related response 

in rotorod performance. At a dose of 10 mg methylmercury/kg, 

given every 3 days, the animal s reached 100% failure on the rotorod 

before the fifth dose on the thirteenth day, while the 5 mg/kg and 

2.5 mg/kg animals had failure rates of 60% and 40%, respectively, 

after f i ve doses . These same dose levels were chosen for the brain 

chemica l assays and were administered in five doses every third day. 

The rotorod seemed to be a reliable indicator of neuromuscular 

deficiency. As a too l for assessment of clinical neuropathy, it 

requires very little familiarity by the operator or training such 

as is required by more indepth psychological studies. Other tests 

such as hindlimb extensor tests and forelimb grasp tests seem to be 

somewhat more sensitive and specific (Tilso n and Cabe, 1979; 

Tilson et al. , 1980), but also requ ire specialized expens i ve 

equipment. The purpose of the rotorod testing was to establish 

doses for the subsequent biochemical studies and the rotorod has 

provided sufficient information to answer those questions. 

Biochemical Studies 

Whole brain levels of endogenous indole compounds as well as 

5-HT t urnover rates compared very closel y with reported literature 

va lues . The average values in this laboratory for Trp were 

23. 14 ± 0.56 nmol/g, while 5-HT averaged 2.67 ± 0.08 nmol / g and 

5-HIAA levels were 1.64 ± 0.06 nmol/g. Smith et al. (1975) have 



reported values for Trp, 5-HT and 5-HIAA of 15.6 nmol / g, 2.5 nmol/g 

and 1.7 nmol / g, respe ctive ly, while Marini et al . (1979 ) reported 

average values of 22.5 nmol / g for Trp, 2.4 nmol / g for 5-HT and 

1.95 nmol / g for 5- HIAA. Rates of 5-HT turnover have been reported 

as 1.5 nmol /g/ hr in whole rat brai n by Neff et al. (1971) and as 

2.32 nmol /g/ hr (Tozer et al. , 1966 ). 
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A conside ration in establishing the dosing regime fo r the 

biochemical stud ies was t hat they not have a prolonged ti me period 

because of the difficulty involved in tail vein injections of rats 

exceeding 350 g. However, the dosing durations used were sufficient 

to produce clinical neuropathy, in at least one dose level . 

While Gilles et al. (198la, 198lb ) demo nstrated an inhibition of 

lipid metabolism and stero logenesis in rats after a 6 week exposure 

to 1% 2, 5-HD in drinking water, 5-HT and 5-HIAA levels in ra ts and 

hamsters i ncreased afte r s i ngle exposure to die ldr in followed by 

sacrifice either a day or a week later (Kohli et al. , 1977; 

Willhite and Sharma, 1978) and within 2-6 hrs after a single 

carbaryl do se (Hassan and Santolucito, 1971 ). These studies indicate 

t he ability of the 5-HT pathway to respond rapidl y after toxic 

chemical exposure. Nevertheles s , lack of biochemical activity at 

the dose levels used in these studies doesn't ruleout the possibility 

that an effect may be seen at lower dose levels over a l onger period 

of time. 

Normally, brain 5-HT is almost qua ntitati ve ly co nverted to 

5-HIAA (Tozer et al ., 1966 ). The pial 1 ining of the adult brain 

offers li ttle resistance to the passage of acid metabol ites to the 

cerebrosp i na 1 fluid ( CSF) compartments ( Cserr, 1974 and Fenstermacher 



et aZ ., 1974). The CSF system has low concentrations of acid 

metabolites relative to hi gh levels in brain interstitial fluid. 

This rela tionship was proposed to serve as a "diffusional sink" or 

"quasi-lymphatic system" for the elimination of 5-HIAA from brain 

(Meek and Neff, 1973; Oldendorf and Oavson, 1967) . In the 30 day 

old rat, the rate of 5- HIAA formation is about 4.2 ng/brain /m in 

and CSF concentrations of 5-H IAA are 126 ng/ml. Complete clearance 

of the acid metabo lite would require a bulk flow rate of 33 ~ 1 / min, 

whereas the circulatory rate for CSF can account for no more than 

6% of the 5- HIAA elimination (Bass and Lundberg, 1976 ). These 

researchers showed that the transfer of the organic acid to 

ventricular CSF and their subsequent active tra ns port to blood via 

the choroid plexus i s not the major route for removal of 5-HIAA 

from the whole brain, although those areas situated proximal to the 

ve ntricle may depend on this route. They found the efflux rate 
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from the CSF was too slow to ac count for the entire 5- HIAA clearance 

and demonstrated an active transport system at the glia-capillary 

interphase which accounted for the efflux of 75% of the 5-HI AA 

formed in the brain. 

Since the leve ls of Trp and 5-HT as well as the 5-HT turnover 

rates were not significantly changed with any of the dosa ges of 

acrylamide and 2,5-HD used in this study, and while the 5-H IAA levels 

increased in a dose-dependent manner, it is possible the energy­

dependent carr ier-mediated acid transport efflux system from the 

bra in to the cerebral spinal fluid or the blood stream via glia l 

cells may have been affected. Aldous et aZ . (1981) found a similar 

significant increase in 3,5-dihydroxyphenylacetic acid (DO PAC ), a 
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major DA metabolite, with the same regime of acrylamide administration 

used in this study, while no apparent changes in levels or turnover 

rates of DA were seen. Based on the resul ts of several studies of 

glycolytic enzymes, Spencer and co-workers (1979) have hypothesized 

neurotoxic compounds (acrylamide and neurotoxic hexacarbons), that 

cause central-peripheral distal axonopathy, deplete energy supplies 

in the nerve fiber by inhibiting enzymes required for energy synthesis 

leading to a blockage of energy-dependent axonal transport . 

The organophosphorus-dosed animals showed no significant changes 

in Trp, 5-HT and 5-HIAA levels when compared to control animals 

although there were dose-related increases in 5-HT turnover rates 

and endogenous 5-HT with a decrease of similar magnitude in 5-H IAA 

levels, indicating a possible MAO inhibition. Chickens or cats are 

much more sensitive to neurotoxic organophosphate compounds than 

rats (Davis and Richardson, 1980) and perhaps the methods employed 

in this study should be adapted to one of these species for further 

clarification. 

Methylmercury-treated rats were not significantly different from 

control an imal s with respect to leve ls of indole compounds, although 

turnover rates were slightly lower in animals fed either 1. 0 or 3.3 

mg/kg . Other studies have shown methylmercury causes damage in the 

rat blood-brain barrier (Ware et al., 1974) with a resultant 

reduction of amino acid uptake in the brain (Steinwa ll and Klatzo, 

1966), as well as reduced brain levels of 5-HT in neonatal rats . 

The results indicate that at the dose levels and period of 

administration used in the present study, methylmercuric chloride 

has no effect on Trp uptake or synthesis and meta bolism of 5-HT. 
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Dietary availability of Trp and inter ference with the Trp 

tra nsport processes at the blood-brai n barrier both alter brain 5- HT 

synthesis (Fernstrom, 1979 ), Acrylamide (2D mg/kg) has been shown 

to reduce brain membrane protein levels (Ag rawal et aZ. , 1981). 

Since whole bra in Trp levels were not significantly changed with 

any of the test compounds in this study, the availability of amino 

acid precursors was not a factor, even in those animals with weight 

gains much less than controls. Anima ls with musc le tremo rs apparentl y 

consumed enough food to mai ntain a proper amino acid balance. No 

demonstrated loss of functional integr ity was observed in the 

blood-brain barrier with regard to Trp transport. 

Discrete brain areas show varied concentrations of 5-HT with 

representative values (~g/g) for various brain areas being 2,03 in 

the hypotha lamus, 1.1 1 in the pons-medulla , l .10 in the midbrain, the 

ca udate-putamen area is 1,05, the hippocampus values average 0. 57 

while the cortex and cerebellum values are 0.49 and 0.33, respectively 

(Jacobowitz and Richardson, 1978). Gothoni and Ahtee (1 980) found a 

significant decrease in 5-HT concentrations in the section of the 

brain contai ni ng the pons and medulla oblongata with an increase in 

5-HIAA levels in these areas . The values in the cortex remained 

unchainged . Nickel also decreases 5-HT levels in the basal ganglia 

(Ali et aZ ., 1980) with similar changes in the cerebral cortex . The 

present study invo lving whole brain showed no significant changes in 

5-HT co ncentrat ions or 5-HT turnover ra te. A study involving 

5-HT- rich brain areas may show some changes which were possibl y 

masked by •t~hole brain va lues. 



SUMMARY AND CONCLUSIONS 

This investigation was initiated to determine if in vivo 

exposure to several industrial and/or environmental chemicals 

affects endogenous whole brain levels of Trp, 5-HT and 5-HIAA as 

well as 5-HT tu rno ver rates in rats. Preliminary experiments using 

a rotorod apparatus, fitted with an electrode floor, were performed 

to establish dosage levels and duration of exposure . The rotorod 

procedure used in this study, provided an adequate clinical 

indication of neuropathy although discrimi nation between fore - and 

hind- l imb deficits were not possible. 

Levels of endogenous indole compounds were determined 
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spectrofluorometrically and specific activit i es of Trp and 5-HT 

were determined at both one and two hours after 3H-Trp IV injection . 

The data show a dose -dependent increase in 5-HIAA levels while 

5-HT and Trp values as well as 5-HT turnover rates showed no 

significant differences from control levels in animals treated 

with either acrylamide or 2,5-hexanedio ne . These results suggest 

an inhibition of the energy-dependent acid efflux system from the 

brain to the cerebral spinal fluid or to the blood stream. 

None of the chemicals used in this study altered the whole 

brain levels of Trp, indicating no effect on dietary status or 

subsequent Trp transport across the blood brain barrier, although 

some animals did show weight ga ins much less than controls. 

Animals dosed with either TOTP, Leptophos or Me-Hg had no 

significant changes in the parameters studied although TOTP and 
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Leptophos treated animals showed slight, dose-dependent, increases 

in 5-HT turnover rates with insignificant decreases seen in 5-HIAA 

levels. Since chickens or cats are more sensitive to organophosphorus 

neuropathy than rats , investigation in these species may provide 

evidence for influence of indole metabolism. 

No significant changes in 5-HT synthesis in metabolism were 

seen in animals treated with Me-Hg . Since Trp levels in t hese rats 

were similar in control and treated rats, there is no evidence of 

commonly observed Me-Hg-induced blood-brain barrier damage at the 

dose levels used in this study. 

Further studies involving longer dose periods or examination 

of discrete brain areas may further clarify the effects of these 

chemicals on brain biochemistry , 
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