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ABSTRACT 

Returns to Public Agricultural Expenditure 

Under Uncertai nt y 

by 

Sanjeev Misra, Master of Science 

Utah State Un ivers it y, 2000 

Major Professor: Dr. Christopher Fawson 
Depanmenl: Economics 

Ill 

A vast literature has investi gated the ret urns to in vestment in agriculture research and 

generall y found extremely hi gh rates of return. These resu lts suggest pol icymakers wou ld 

do well to maintain or increase resource allocat ion to public agri cult ural research. 

Remarkabl y littl e attention has been paid, however, to the issue of how best to allocate 

public agric ul tural research fu nd ing between compet ing research areas and organizat ions. 

This paper cons iders the relative returns to alternative uses of public agricultural research 

fund s committed to the agri cultura l experiment stations of 10 western states of the Uni ted 

States over the years 1967-91. A model of expected utility maximi zation subject to risk is 

presented with comparati ve ana lysis. After estab li shi ng empirically that the mean variance 

analysis would be an inappropriate method to solvi ng the problem , a stochast ic dominance 

testing method is employed to identify dominated and undominated research categori es and 

state agri cu ltural experiment stations. The mean va riance analysis also is used to evaluate 



IV 

whether research producti vity has been increas ing or decreasing over time, and to establi sh 

which among the westem states hold absolute advantage in particul ar research areas. 

(101 pages) 
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CHAPTER I 

INTRODUCTION 

The literature on public agricultural research for the last two decades has been 

dominated by the funding structure of the same. Among the issues that have filtered out 

of such discussions, an important one is that of the productivity implications of public 

agricultural research. It has been well documented over the years that the benefits 

accrued from public agricultural research, due to improved variety of crops, improved 

production technology, etc., are much more than the cost associated with the research 

process. The issues that still remain are the methods of funding, namely, fom1ula 

funding vs. competitive grants, where both have their pros and cons (for a detail ed paper 

see Norton et a!. 1995). The other issue that is being quite extensive ly debated is the 

decline of total real state agricultural experiment station (SAES) funds over time. 

However, remarkab ly little attention has been paid to the issue of how best to allocate 

public agricultural experiment research fundin g between competing research areas and 

organizations. This paper considers the relative relllms to altemati ve uses of public 

agricultural funds committed to the agricultural experiment stations of the I 0 western 

states in the United States over the years 1967-91. 

Arguments for and against fonnu la and competitive grant distribution of federal funds 

for SAES have been made for many years. Even though most economists associated 

with the SAES give convincing arguments in favor of fonnula funding as being more 

producti ve, the federa l disbursement of funds to the states has been tending more 

towards the competi ti ve grant system. Some people have argued that formula funded 



2 
research has weak ti es to sc ience and produces too many duplicati ve projects. But , as 

the outcome of any research project is uncertain, it is generall y in society's interest to 

hold a port folio of active projects on any scientific or technological problem worth 

pursuing. That is, paralleli sm need not imply waste unless, of course, increasing retums 

to sca le outweigh the benefit s from di versification , in which case it would be desirab le to 

pursue only one project. 

On the other hand, competitive grants are believed to foster both enhanced quality and 

quantity of research production due to competition for receiving funds. However, there 

has been a growing body of literature that cautions about the low productivity of 

competitive grant funding relative to formula funding of public agricultural research. 

The arguments it places are that a lot of productive scientist hours are utilized, without 

any product tve offshoot, on proposal preparation, which could be used for o ther 

productive activities, and , moreover, transaction costs are much hi gher in the case of 

competiti ve funding. A recent study by orton et a!. (1995) states that two and a half 

scientist months were spent in 1994 on proposal preparation per successful competiti ve 

grant proposal. Huffman and Just ( 1994) empirically evaluated the productivity from 

different sources of funds for agricultural research and conc luded that " the current trend 

towards compet iti ve grants and eannarked funding, as opposed to fonnula funding from 

federal sources, apparently reduces productivity of research expenditures" (p. 145). 

Unfortunately, the questions about the trend towards competitive grants funding have 

attracted littl e attention. The U.S. Office of Management and Budget, the U.S. Congress, 

and other decision makers have detennined that competiti ve grants funding, rather than 
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being a supplement to foster priority agri cultural research, w ill be a substitute for the 

formula funding. This imposes an unwelcome restriction on the historically productive 

national agricu ltu ra l research effort. 

Due to th e controversy between competi ti ve grants funding and formula funding of 

public agricultural research and imm inen t budget cuts, U.S. public agricu ltural research 

in the 1990s has been struggling to fullillth e ever-growing need for innovation ll'ith very 

scarce resources. Such cond itions have led to more stringen t controls over research 

projects. Moreover, as th e ex tension and research problems of agriculture and rural areas 

have expanded beyond traditional agricultural interests , the administrative st ruc ture of 

many SAESs is chang ing. Hence, the stati ons are geared mo re 10wards increasi ng the 

ret ums to public agricultural research ex pend iture by increas ing th e quality and quantity 

of output, that is, production of new technology or knowledge th at is in conco rdance 

wi th the station's broad resea rch objectives. 

To look at th e retu rn s to public agricultural resea rch expenditures, that is, the 

producti vity of the research-producing ins titution , one needs to comprehend the 

maximizing behavior of the research-producing agent. The benelits from public 

agricultural research do not accrue to the research scienti st per se, but to research output 

users, that is, 10 the fanners as producers ' surplus, consumers as consum ers' surplus, and 

to resource owners as rent s. The conseq uence of thi s peculiar characteristic of public 

agricultural resea rch surfaces in the maximizing behavior of the research-producing 

agent. This paper focuses on this very problem. 
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Chapter 6 empirically specifi es the problem at hand using stochasti c dominance. 

Chapter 7 describes the data and application of stochastic dominance to it, and discusses 

the results, and chapter 8 presents the conclusions. 



CHAPTER2 

ECONOI\IICS OF RESEARCH 

The obj ective o f an ex perim ent station is to ensure the greatest expected return for the 

research money spent at th e ex periment stat ion. The primary function of the station is to 

prod uce new, agri culturall y ori ented knowledge through scientifi c inquiry. The need to 

add to th e ex ist ing stock of this kind of know ledge is almost unlimited. But, w ith limited 

reso urces , choices amo ng research activities have to be made. !fall research expenditures 

are not of eq ual value, then careful se lection, based on a systematic analys is of 

alternatives and th eir like ly conseq uences, should a llow the station to develop a mo re 

valuab le research program . 

One o f the pri mary goals o f the research produced by a SAES is to re lax constraints on 

prod ucti o n through use o f new inputs o r practi ces that substitut e rel ative ly abundant 

reso urces fo r re lati vely scarce ones . Research, therefore, is a forn1 of agri cultural 

investm ent. Research has dynamic effects ; costs incurred today can produce innovation 

that a llows increased agricultura l o utput at lower average cost in th e future . The benefit s 

last fo r man y years, unti I mo re e fficie nt ones replace the innovat io ns. If new know ledge 

is , ·iewed as an instrum ent, it fo llows that the soc ial benefits of research consist of th e 

contribu tions to soc ial goal a tt ainment. For example, social goal s concerned with public 

agri cultura l research co uld be pushi ng the frontie r of food productio n, keeping in mind 

parti cu larl y the issues of environment a l pollution, food safety, nutrition, etc. The benefit s 

ti·om research are represen ted by th e stream o f increments to soci a l goal levels that are 

att ributab le to the outp ut o r new know ledge. 
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Knowl edge can be perceived as a fom1 of soc ial capital, and resea rch ex penditure is a 

fonn of soc ial investment that increases the stock of knowledge capita l. New knowledge 

can produce a sustained increase in goal levels over time in much the same way that 

conventional investment produces a sustained increase in income. Thus the bene fit s 

from resea rch over time constitute a sustained stream or flow of va lues that are subj ec t to 

the usual discounting process. 

The SAES, which rece ives a fi xed research budget every fin anc ial year to produce a 

sustained stream of knowledge, must allocate that budget among different departments 

and, consequently, among different research projects within the department. The 

primary sources of fund s ava ilable to SAES have been federal funds appropriated on a 

fonnula basis and funds appropriated for agricultura l research by stat e govenm1ents. 

The app ropriation of fund s fo r agricultural research by SAES is a very interesting 

process. As market forces do not set the price of the research directly, the amount of 

money that th e SAES rece ives is more due to the political-economic influence at the 

stat e leg is lature and the congress. The use of the vo ting mechani sm to dec ide the amount 

of fund s to be allocated to research can be regarded as a highl y imperfect allocative 

process, for it is subject to the vagari es o f polit ics and judgments o f inadequately 

informed voters. 

Once the SAES gets the funds for research ex penditure for a fi sca l year, and g iven the 

forces influencing the environmelll in w hich admini strators and research workers in the 

agricultural experiment stati ons make decisions regarding the use o f resea rch fund s, the 

existing research planning and dec ision-making structu re in most of the experiment 
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stations is orga ni zed as fo llows. The stat ion director is responsible for the allocation of 

funds or the di stribution of fu nds among the research depm1ments of the insti tu tion and 

research personnel for competing areas of work. The project leader is responsible for the 

allocat ion of fu nds among the competing prob lem areas. 

Given the funds for research, the research output depends on the prices of research 

inputs and on the state of the research art. The prices of the research inputs are 

detennined 111 competitive markets and they are for all practical purposes readi ly 

availab le. Substitution and complementary considerations in combining different 

sc ienti sts and facilities and the opt imum scale of the research enterprise depend on the 

research art . The state of the art is the essence of the problem of tryi ng to specify the 

research possibilities and, hence, the supply of new infom1ation ava ilab le from research. 

So it boi ls down to a matter o f rating the research possib ilities of al ternate projec ts. 

Research is not a homogeneous activity. Jt involves many scientific disciplines and 

many subj ect areas. Since these combined or so lo contri but ions may va ry wide ly among 

alternati ve research acti vi ti es, some kind of research may be more va luab le than others. 

Therefore, a reo rgm1i zation of the mix of research ac ti vities may inn ucncc the soc ial 

return from public research investment. Even though a large number of pure research or 

inventi ve activity has been uneconomic, the rates of return on the successful ones arc 

suffic ientl y large to cover the costs of unsuccess ful operations. Hence, the skewed 

distribution towards unsuccessful research should not be regarded as a waste, as the ex 

ante seed ing of successfu l projects from the unsuccess ful ones cannot be done. Hence, it 

is in socie ty's interest to hold a portfolio ofrcscarch. 
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The question o f consequence is what portfolio of research to hold or what are the 

problem areas to concentrate research on. If we think of the SAES sc ientist as one who 

max imizes hi s/her own utility by maximizing the research output, then by doing thi s 

he/she consequently maximizes the stat ion's utility. [ assume that the researchers and 

the SAES utility are monotonically increasing in research publication, which implies 

maxi mizing expected publications. In order to do this and receive grants for projects, 

he/she should be responsive to the demand for any specific research output. Even 

though there is a missing market for public agricultural research , where the demander of 

research does not pay the suppli er of the same (SAES) directl y, the demand for public 

agricultural research can be fathomed to some ex tent if not in a precise mathematica l 

sense. 

Although pub li c agri cultural research products are a public good, region-specific 

demanders cannot expect to bon·ow all their research products from other sta tes. 

R esearch output as a fonn of infom1ation is a nonexc ludabl e publi c good and use of it by 

one agent does not reduce the quantity ava ilable to others. However, the benefit s to 

users may vary, but for social effici ency such infonn at ion should be made avai lab le to 

all potenti al users at the marginal cost of di stribution. Even though the knowledge 

produced by one experiment station can be borrowed by another, the potential for 

extensive interstate borrowing o f applied research product is usuall y restricted due to the 

regional specificity of the infom1at ion produced. Under these conditions a state demand 

function for indigenously produced appli ed research ex ists. Th is demand is 

hypothes ized to be a function of the size and other characteristics of the agricultu ral 



10 
output , input prices, farmers ' education , ex tension, the price of indigenous applied 

research. and agricultural research in other competing states. Huffman and Evenson 

( 1993) hypothesized that as applied research is location specific, any increment in 

knowled ge that increases the agricultural output puts farm ers in other states at a 

comparative disadvantage unl ess new research products are developed for them. Hence, 

nonbo rrowable research output in competing states can be expected to shift rightwa rd the 

demand for indigenous app li ed research. 

To sati sfy this demand , or at least in an endeavor to do the same, the research product 

111 thi s paper is suppli ed by th e state experiment s tati ons. The production of research 

requires, as inputs, the service of admin istrators, research scienti sts, research assis tant s, 

as well as the infrastructure necessary for resea rch production. We assume that th e 

experiment station produces research at a minimum average cost where marginal cost 

equals average cost. The supply or the cost functi on of indigeno us agricultural research 

is hypothes ized to be a functi on of prices of th e inp ut s, of qu an tit y of research output , 

and factors exogenous to reso urces all ocat ion decisions like th e entrepreneuri a l 

capabi liti es of the stati on director. Resea rch is a creative activity where id eas must be 

combined so that someth ing "new" is produced. As research requires sustained effort , 

the productivity of research time is likely to be low if individua ls a re continua lly being 

di srupted by nonrescarch ac ti, ·ities or if th ei r wo rking hours are primarily al located to 

nonresea rch acti vities, such as teac hing, because thi s leaves less time for research. It 

also may be so that researchers may not have good enough ideas and hence th e 

productivity is low, even when most of their time is devo ted to research. 
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As evident from the above discussion , the detem1ini stic economic calculus of 

conventional fim1 theory is difficult to apply ex an te, especia lly to producti on of 

research. The production functi on relating research input to research output is stochastic 

in nature and unknown before the output is rea li zed, and inputs such as creat ive minds 

necessary for the production process cannot be identified or produced in a very 

predictable manner. Since the conventional producti on function approach is not 

applicable, it is necessa ry to incorporate the probabi li stic characteristi cs of research 

projects into the production function in analyzing the relationships between researc h 

inputs and outputs (Schultz 197 1 ). 

Due to the stochast ic nature of the production process of knowledge or new 

technology, the problem needs to be cast in a probabilistic sense and can be addressed in 

an expected utility framework. In thi s paper the dec ision maker(s) (i.e., station direc tor, 

department heads, and research sc ientists or project leader) can be thought of as a 

scien ti st who utilizes all hi s/her in fo m1 at ion to maxim ize the benefit s that personal ly 

accrue to him/her. With success ful completion of a project, the research sc ienti sts or the 

research director gains both pecuniary as we ll as nonpecuniary rewards. Examp les 

wou ld be monetary perquisites for successful completion of a project, academic 

recogniti on, professional achievement , etc. Hence it can be thought of as hi s/her 

personal utility level has a linear dependence on the number of successful projects during 

the financial year. Thus, the benefits that accrue personally to the research producers are 

a function of the research ou tput. In an effort to maximize hi s/her personal utility, he/she 

tries to max imize the research (knowledge) output , which is in the form of published 
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papers and reports. Therefo re to maximize th e rctums to pub lic agri cu ltural research 

expend itu re, th at is, to maxi mi ze the research output , the behaviora l princ iple of thi s 

agent can be represented in an expected utility framework, where utility is defined over 

the rea l line and is a function of published papers and report s funded by th e SAES . 
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CHAPTER 3 

EXPECTED UTILITY: A DIGRESSION 

Jn numerous situations, the SAES director/sc ientist(s) (cal led the decision maker 

hereafter), is fully aware of the fact that he/she is operating under conditions of 

incomplete infom1ation. Moreover, in many such si tuations, he/she may be able to 

characterize the state of uncertainty in quantitative tem1s by making probability 

statements about the outcomes of alternative research effort. What is essen tial in this 

kind of situat ion is that, while each action taken by the decision maker wi ll eventually 

yield one particular level of outcome, he/she does not know in advance exactly what the 

level of rea li zed research output will be. 1 do assume, however, that the decision maker 

can attach subjec tive probabilities to all possible leve ls of output. Each action is. 

therefore, associated with various leve ls of output and their respec ti ve probabilit ies, and 

so, when a dec ision maker dec ides on a particular act ion, he/she is real ly choosing a 

particular probability di stribution. 

Given a fixed budget for research, the decision maker, that is, the department head has 

to choose among the di fferent altemati ve competing research projects and must allocate 

the budget among the ones he/she chooses to undertake. He/she must allocate the funds 

in such a way that he/she maximizes hi s/her object ive function. Now, if the decision 

maker's objec ti ve is to maximi ze the expected utilit y, then we can think of a genera l 

bundle of outcomes as hav ing research output levels of >',. Y .. >', ... >',. th at is. di ffcrcrll 

possible levels of output of each research venture funded by SAES, with associated 
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probabiliti es a1, a,, a, . .. ,a,, then the expected utili ty from publi shed papers can be 

written as 

Ia,u(Y;) = E[u(t;,Y2 ,Y3 , ..... Y,,; a 1,a 2 ,a 3 , ..... a,)], (I) 
i=l 

where u(Y;) is an ordinary utilit y function and £[ 11 ( .. )] is the expected utility. 

Al though expected utility has been in existence fo r the last two and half centuries , as 

first form ulated by Bernou ll i (1954), it came to be widely used since its axiomatic 

found ation by Von Neum an n and Morgenstern (1944). Even though it has found 

extensive use in economics of uncertainty, as a theoreti ca l construct, its applicability as 

such has been limited in empirica l analys is due to the subjecti ve nature of the utility 

funct ion. In most real-life experi ences it becomes extremely difficult for economists to 

find a functional fonn of the indi vidual's (or group 's) utilit y fun ctions to eva luate the 

maximizing conditions. This subjective nature of expected uti lity has been the prime 

force fo r development of a criterion, which should be analogous to the expected utilit y 

index and positive in nature, so it could be empirically applicable. Moreover, the 

expected utility derives the decision maker' s atti tude towards risk , but does not stri ve to 

measure the ri skiness of a given si tuat ion per se. Among the vari ed approaches to 

represent expec ted utility, the most common method is the one where expected utility is 

expressed in terms of moments of the distribution of the uncerta in outcome. 

I. Expected Utility and the Moments 
of a Distribution 

As ass umed earli er, the dec ision maker can attach subject ive probabilities to al l 
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possibl e leve ls of research output. So whi le deciding on a particul ar course of acti on , 

he/she really is choosing a parti cular probability distribut ion. Probabi li ty di stribut ions 

are often characteri zed by a set of statistics that embody a great deal of descripti ve 

content; these are the moments of the distribution. The expected utility of any uncerta in 

outcome can be expressed in tem1s of the moments of the outcome, th us giving us an 

altemative fonn ul at ion of the expected utilit y function. 

If we ex pand the uti lity fu nction u(Y) around mean of Y (i.e., p ,), using Taylor 's seri es 

expansion, the expansion takes the fonn , 3 

u"( p)h 2 u"(p)h 3 

u(p(Y)) = u( ~t)+ u'( p)h +-2-,-+--3-!- + .... .... +R
11

, (2) 

where p is the mean of Y and R, is the remainder term. App lying the expectat ion 

operato r to both sides of equati on (2) yields 

(3) 

where m' denotes the ith central moment, so 111
1 wo uld be the mean, 111

2 the variance and 

111
1 the measure of skewness of the distribution . From equation (3) we can see th at 

ex pected utility is the weighted sum of all the moments of the probab ility distribut ion, 

the weights being the deri vati ves of the utility fun ction. Ash is less than one, the above 

series is convergent. Due to thi s convergence, the remainder term R, can be ignored. 

More often than not the expected utility is ex pressed as a functi on of the first few 

3 A mac Iaurin series can also be used for the expansion, where we can expand around the point Y=O. 
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moments of the distribution, unless the utilit y function is a /..1h degree polynomial. ' The 

first moment is the mean, which intuitively represents profitability level. The second 

moment, the variance, measures the dispersion and serves as a proxy for the level of ri sk. 

The third moment represents asymmetry, that is, skewness, where positive skewness is 

desirab le in this context. The intuitive economic appea l of the first few moments has Jed 

many researchers to focus more on parametric representation of expected utility. Among 

the class of parametric representation of expected utility, the one that has ga ined 

tmmense momentum as an economic tool for portfolio analysis is the mean/variance 

approach. The mean/variance, or alternatively called the f.l and CJ criterion, where f.l is 

the mean and CJ is the standard deviation, has been widely used in the literature. As in 

this paper, we wi ll be dealing with portfoli os of research, it would be prudent to review 

the circumstances in which the mean variance approach makes sense and the non-

applicability of this approach. 

II. Mea n/Va riance Expected Utility Function 

Since it s inception in 1906, economic probability distribution has been evaluated by 

means of mean (,11) and variance (d). This approach has been used and discussed 

extensively by Hicks (1934) , whose wo rk was reviewed and refined by Marschak (1938), 

Steind l ( 1941), and Tintner (1941). But after its appl ication to the portfolio problem by 

Markowitz (1952) and later extended by Tobin (1958), the (,11, a) criterion became the 

most frequently used two-parameter approach. In thi s approach it is assumed that a large 

~ I f the utiliry function is a polynomial of degree two, i.e., a quadratic utility function then the EU(Y) is 
determined by the firs t rwo tem1s of equation (3) on ly, as the rest of the terms goes to zero. So only mean 
p and cr" charac terize the probability distribution associilted with a quadratic utility function . 
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mean o r expected value of an uncertain outcome is prefeiTed to a smaller one, and a 

small er va riance is prefeiTed to a larger vari ance. The most common ri sk measure is the 

vari ance a-' o r the standard deviation a- of a distribution with mean p. A rational 

deci sion maker is expected to maximize p and to minimize ci in selecting the most 

des irable ri sky altemative. 

ln a Markowitzian sense the assumptions important for the validity of a mean-

variance approach are that the utility of a probab ility distribution can be expressed as a 

function of mean and standard deviation (or variance) if (a) th e utility function is 

quadrati c, and/or (b) the probability distributio n is no m1al. If in fact the expected utility 

is quadrati c, then in equation (3), the moments higher than two become zero, and hence 

expected utility can be expressed as a function of p and a-', where p and ci are th e mean 

and variance of Y, respecti ve ly. Formally the utility function can be ex pressed as 

u(Y) = Y -wY2 (4) 

Taking th e ex pectation of both s ides of eq uation (4), we get 

E[u(Y)]= E(Y)-wE(Y 2
). (5) 

Since, 

(G) 

substituting th e value of d(Y) in eq uation (5), we get 

(7) 

Thi s can be altematively written as 

' cr'(Y) = E{[Y- E(Y)]'}. 
= E[Y' -2YE(Y)- E' (Y)] = E(Y')- 2E(Y)E(Y) + E'( Y) = E(Y' )- E'(Y). 



E[u(V)] = p -wp 2 - um' 

= u(p ,cr} 

IS 

(8) 

Hence, any quadratic utility function can be expressed as a functi on of it s mean ;111d 

va ri ance. But the problem arises when we look at the shape of the indifference curves in 

(p , a) space. The shape of the indifference curves follows direct ly from equation (8}] , 

thus we get concentric circles that are centered at (0.1 l hu.) 6 

Figure I visually illustrates the concept, showing the utility and the indifference 

curves in (p, a) space. It not onl y illustrates the concentric ind ifference curves, but also 

gives evidence about the nonexistence of a maximum for the utilit y function. 

FiG. I.-Indifference curve properti es of a quadratic utility function represented in 
mean, standard deviation space. 

°For the proof that the indiffe rence cun ·es are concentric c ircles. see append ix A. 
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The conditions just deri ved weaken the arguments of a (p. a') c1·ite ri on, since a 

negati ve margi nal utility is unreali sti c. So, the only plausible range on the ind ifference 

curve is the range where dp!dCT is greater than zero, that is, the pos it ive sloping pan of 

the indifference curve, which represents positive marginal utility. So gi ven the 

assumpti on of a quadratic utility function , the mean-variance approach holds only if 

dp(Y) I 
dcr(Y) E(u)=coust . 

> 0. (8) 

Even if the restriction presented by equat ion (9) is accepted, which limits the 

indifference curve to have a positive locus, there are other problems associated with 1he 

quad rati c utility functions. A quadrati c utility, as argued by Hicks ( 1933), A1Tow ( 195 i ), 

and others, is inappropriate because it exhibits an increas ing absolute ri sk aversion. That 

is, with an increase in wealth , hi s/her aversion to a small gamble also increases, which 

seems very impl ausible' This basicall y suggests that its marginal rate of substitut ion 

between expected value (,Li) of the outcome and risk, as measured by o; increases with p 

for a given level of risk ( oj , as shown in figure 2. So not only does equati on (9) have to 

hold (i.e., dpld CT > 0), but it has to be supplemented by the fact that 

d\·(Y)I - -,-- > 0, 
da- Y 

( ) E( u)=const. 

(10) 

which imposes a further restriction on the quadrati c utility function by restricti ng the 

indi ffe rence curves to have an increasing slope. 

7The more Jppropriate wou ld be t h~ DARA (decreas ing absolute risk ave rsion) or CA RA (constant 
absolute risk a\'ersion) class of ut il ity fu nction. In th is class a small gamble becomes more anract iw as 
wealth increases. 



20 

0 (J 

FIG. 2.--Quadratic utility and its implied increasing marginal rate of substitution for 
constant ri sk. 

In addition to quadratic utility the assumption of nom1ality in the distribution of 

outcomes also poses a problem. As in almost al l empirical studies it was found that the 

di stributions of the outcome hardl y ever fol low nonnality. Funhennore, Chipman 

( 1973) shows that a nonnal distribution would imply that u(a; p) sati sfi es the differential 

equation 

_!_ 8u(a,!l) = 82u(a,!l) 

(J aa 8~t 2 
( II ) 

So to summarize the mean/vari ance analys is, it is clear that it is applicable only with 

certain restrictions. Additionally, Borch ( 1969) showed that if preferences satisfy a 

monotonicity condition, all indi fference curves in the mean/ vari ance plane reduce to a 

single point. Moreover, the motivation for developing an efficient criterion, which is 

consistent with expected utility ranking, is precisely the nonavailability of the util ity 

function ; hence, the assumption of a quadratic utility could only be a special case where 
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in fact the uti lity function is quadratic in nature. So for the purpose of th is paper we 

need to look at parametric criteria that are consistent with expected utility rankings , 

without any assumptions about the functional fonn of the utility funct ions or the 

distribution of the outcome. 

It should be evident from the arguments presented above that the assumpt ion o f a 

quadrati c utility is generall y very restricti ve for expected utility representation. 

According to some arguments presented in the literature, one could relax the ass umption 

of a quad ratic utility function, and hence could incorporate hi gher moments of the 

di stribution . Including the third moment , the skewness , the fourth moment, the kurtos is, 

w hich measures the parti cul ar aspects o f curvature of the di stribution function, could 

ex tend the mean/ variance approach . Although thi s would describe the distribution more 

accurately, the mathematical aspect of the model becomes very cumbersome and 

intractable. Moreover, with a finit e nu mber of moments, one cannot accurate ly desc ribe 

the di stribution. The so luti on to th e problem fo rtun ately ex ists in the literature. Meyer 

( 1987) di scussed a location and scal e condition, which, under certain less restri cti ve 

assumptions, deri ves a consistent two-moment (p. a} model of expected utility, which is 

bo th ex pected utility and mean-standard deviation (MS) efficient. 
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CHAPTER4 

CONSISTENT TWO-MOMENT i\IODELS 

OF EXPECTED UTILI TY 

As is evident from the restrictions above, a quadratic utility function has theoret ical 

defects, and the assumption of nonnality seems unrealistic in li ght of the empirical 

proofs against it. Consequently, the applicabili ty and verifiability of the quadratic utility 

function are constrained to a small set of feasible problems. With a growing consensus 

about the lack of congruence between the results of expected utility and mean/standard 

deviation analysis, there seems to ex ist a widely accepted condition under which almost 

any expected utility ranking of outcomes in a choice set can be represented by 

mean/standard deviation ranking. This condition seems to be sufficien t to ensure 

consistency between the expected utility and mean/standard deviation approaches. 

Fo llowi ng Meyer (1987), the dec ision maker's expected utility ranking of a se t of 

random variables is represented by a ranking based only on their mean and standard 

deviation, the mean being the location and the standard deviation being the scale 

parameter. Then expected utility can be represented by two parametric criteria, and 

wou ld be consistent with the mean/standard deviation ranking. The location and scale 

parameter condition states that two cumulat ive di stribution fu nctions Fl) and F,() are 

said to differ only by location and scale parameters a and )Y if F;(t) = F,( a+ j]x) with P' 

> 08 Simply stated, the consistency condition of interest here is that the choice set be 

8ln our model, a and fJ can be interpreted as mean and standard deviation, respectively. It becomes 
clear as we proceed with our analys is. 
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composed o f random variables, whi ch differ from one another on ly by location and scale 

parameters. The basic idea is if Y,, Y, ... Y, only differ from each other by location and 

sca le parameters, th en th e s tandardized variabl e x 's obtained from the Y have the same 

density funct ion. And w ithin this class merely a shift and a proportional ex tension can 

tra nsfom1 all di stributions into one another. 9 As p(Y) acts as a measure of shift , i. e., as 

the location parameter, and o(Y) as a meas ure of ex tension , i.e ., as a sca le parameter, 

around th e mean, th ese two parameters are suffi cient to characterize the whole 

di s tribution, given the shape of the s tandardized distribution of the variab le x. Thus th ey 

can be used for ranking uncel1ain prospects, which would be consistent with the 

expec ted uti li ty effici ent set. '" The connotation of th e linear c lass ex pected utility 

ex pressed as a function of mean and standard deviation , f( a;p), is that it is more flexible 

as nei ther any assumption has been made about the utility function nor any about the 

distribut ion of the random outcome. Moreover, th e vario us restri ctions that th e location 

and scale parameter (LS) conditions impose on it se lf reinforce the arguments for its use 

for representation of th e ex pected utility confom1ing to the LS condit ions. Even thou gh 

one co uld obtain a great dea l of comparative static insights using Meyer's ( 1987) model, 

empiricall y the question remains whether the di s tributions available to the SAES diffe r 

onl y by p and a. If th ey do not , one could use stochastic dominance based on th e 

"The class. whic h adheres to the location and scale cond itions, is also sometimes called as the '"linear 
class. '' 

10No claims have been made by Meyer ( 19 87) rega rding the expected utility and mean/standard 
deviation efficient sets. Levy ( 1989) extended Meyer's work and illustrates the conditions under which 
both expec ted utility and mean/standard deviation effic ient sets are identicaL under the assumption of risk­
averse and/or all nondecreasing concave utility functions . 
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ex pec ted utility hypothes is to rank ra ndom outcomes, which maxi mizes the expec ted 

utility. 

To crysta lli ze the idea presented above and to de ri ve the expected utility. let us 

assume that the random output Y can be characten·ized by the LS condition. Let .r be the 

standard ized nonnal vari able obtained fro m one of the Y, i E I = i l ... n l l\o maucr 

which Y was selected to ob tain .r, it s de nsit y func tion is the same, thi s imp li es that the 

Y's conform to the LS cond it ions,'' where .r is defined as 

(J j - p;) 
x= - - -- (12) 

a i 

and p 1 and a; are the mean and standard deviat ion of Y,. That is, !'1 and )~ , t?k and; E i , 

differ from one another only by location and scale parameter, and arc equal in 

distribution to /1; + a;'·· with£(,) - 0 and a(x) = /. So the expected ut ili tv from l', can 

be writt en as 

E[U(> ')] = £[ U (ft +ar)] 

= V(ft,a) 
( 13) 

As indicated, equation ( 13) defines the MS prefe rence fun ction associated with any 

utilit y fun cti on in an ex pec ted utility model. To contem plate the appropriateness of the 

criteria, we look at the indifference curves in (p. 0} space. By implicit differentiation of 

equation ( 13). and selling V(o; p) constant , we get the s lope of the indifference curve. 

E[xU'(p + O'x)] 

E[U'(p + O'r)] 
using U'(.) = dU' 

d(.) 
(14) 

11 An explicit KolmogorOY·Smi rnov statistical test is doni.' later to test if the LS cond it ion holds or not. 
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E[U'(p + crx)] 
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(15) 

where cov[j is the covariance between x and U~ The assumption of risk averse, U" < 0, 

implies cov(r, U} < 0 if cr >O. Hence, 

d~t l 
dcr V(cr.~)=const . 

>0 forcr >O. (16) 

Now, when cr-}() implies Ufp + ox)--;>Uf!J , this gives 

lim d~t ~ = 0 
cr~odcr V(a.~l )=consl. 

(1 7) 

These aspects of the indifference curves in the (p, a} space are perfectly compatible with 

th e Von Neumann and Mo rgenstern util ity index. Due to the concavity ass umption of 

the Vo n Neumann-Morgenstren funct ion, and convex ity of the indifference curves in th e 

(p. a} space, it fol lows that 

d\tl --, >0. 
dcr-

V(cr,~t)=consr . 

( IS) 

Thi s resu lt exc ludes the poss ibi lity of increasing abso lute ri sk aversion found with the 

11Using 
co•·(x.v) = £(,\)') - E(x)E(y) , 

thus. 
E[x. U tp + o:r)] = cov[x. U (p + m)] + E[x]E[U (p + o:r)], 

since by definition E[x] = 0. only the first tenn in the R.l-IS remain. 

13 For an altemate proof of posi tivity of the expression, see appendix A. This proof was used by Meyer 
(1987) . 

1 ~ For a proof of this, see appendix A. 
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quadratic utility function. So ex pected utility could be represented un ambig uously as a 

function o f p and o; as th ese two parameters characterize the whole probab ility 

di stribution . Moreover, as we have neither the restriction of a quadrati c utility func tion , 

u(\), nor nom1ality of the distribution of F(r), substantial flex ibility remains regarding 

the fonn that the function V( o; p) can take, certainly more fl ex ibility than if quadrati c 

utility or a nom1aily di stributed random variab le had been assumed. 

Having done away with the assumptions of a quadratic utility function and n01mality 

of di s tributi ons, and conformably deriving the conditions under which expected utility 

ranki ng is consistent with mean-standard dev iation ranking, we turn our attention to the 

problem at hand. In thi s study th e SAES, which is assumed to produce research at a 

minimum cost, holds a portfolio of research that maximizes its expected utility, given a 

production feasibility constraint. " Thereupon we can go ahead and represent the 

ex pected utility of th e SAES in th e pand a space and derive conditions under which the 

opt imum po11fol io emerges. 

15Production feasi bi lity is '·given the resources the feas ibi lity of producing nny particu lar research.'' It 
is a convex funct ion, increasing in the output, and decreasing in the inputs. It is discussed in more detali 
later. 
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Given the structure of SAES in most stat es, I assume that th e so le product that it 

produces is new know ledge and/or new techno logica l advances, that is, it onl y produces 

research. It is further assumed that th e experiment station scienti st(s) knows the cost of 

each research production decision ex an te, but not the o utput. As a result the experiment 

s tation sc ienti st 's investm ent decis ion y ie lds a random vari able denoti ng the o utput, Y. 

In this mode l the optimizing agent, that is, the SAES director/scienti st(s), is assumed to 

be a ut ility max imizer, whose utilit y is a fu ncti on of the benefit s that personall y accrue to 

him/her due to s uccessful completion o f a projec t. The benefi ts that he/she ge ts arc 

d irectly re lated to th e research ou tput , the relationship being that , more 

know ledge/technologica l advances prod uce more benefi ts that persona ll y accrue to the 

research-producing agent. Therefore, we can think of th e benefit that the maxi mi zing 

agent personally gamers as a monotoni c tra nsfonnati on of th e rea li zed resea rch output , 

Y. Benefi ts that the maxi mi zing agent receives, as I have discussed earli er, cou ld be 

both pec uniary as well nonpec uniary rewards. These co uld be monetary rewards, sense 

of achieve ment, prestige, profess iona l recognit io n, etc . ln order to max imi ze hi s/her 

own benefi ts, he/she has to max imize th e research output; consequently, th e agent tri es 

to max imize the ex pected utility of the output given a productio n feas ibility const raint. 

The producti on feas ibi lity, which is sometimes ca ll ed the prod ucti o n possib il ity set, is 
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the set of all teclmolog ically feas ible production plans, that is, the technologica l and 

financial suffic iency to indulge in a feasible set of a ri sky research project. The 

production plan is a ne1pu1 vector wi th inputs being implicitl y negative quantities and 

output being positive. The research output, Y, in thi s model is taken to be the published 

research reports or papers funded by SAES. It is also assumed that at the beginning of 

every fiscal year, the SAES gets a budget, B, which it allocates between sa fe in vestments 

and ri sky research proj ects as it deems fitting.' • Safe investments could be ex panding 

the ad ministrative infrastructure, buying new equipment, computers, augmenting the 

ex tension personnel , etc., and the risk-bearing investments are the research projects 

undertaken. 

Following the general portfolio literature and for a furth er specification of the 

approach, it is assumed that there is one safe category and 11 ri sk-bearing research 

projects to in vest in. A unit of money invested in the sa fe category con tributes Y' to the 

research output at the end of the financial year, and a unit of money in vested in the jth 

risk-bearing research project contributes Y;, j = 1 ... 11 to the research output at the end of 

the fi scal year. Let the proportion of budget, B, invested in the safe asset bey' and in all 

the ri sk-bearing research projects be y'. Let the proportion invested in the j th ri sk-

bearing research proj ect come out of the amo unt that is invested in all of the research 

projects , yj, i.e., I yj = 1. 17 Since the producti on choice has to be made from all 
'lj 

10'fhe concept of a finan cia l year does not have any implications for the length of the time period. The 
time period could take on any economica lly relevant time interval. 

17The budget is divided into safe and risky investments ; likewise risky investments are divided among 

11 risky research projects. The gammas are in proport ions, so y5 + yr = I, funhermore , as y~. arc the 
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feasible y's to maximize the expected utility, we can therefo re define an envelope 

function to represent the maximized va lue of the expected utility as 

{ .. I .. } Q:{y',y ',y ; J= n~a,x [U(B(y ' Y' +y' L y} Y; ))] g[(Y) ,(y'+ Ly'y j )]=O ,t;TJ=I. .. /1. 
yy j j= l j=! 

(19) 

In the Expected Envelope Uti lity Function, <D[.J, the production feasibility is 

expressed as the constraint g[}, a convex function increasing in Y and decreasing in the 

y's . 18 The output is defined as Y = B[ y5 Y5 + y' i y'j YJ'], where B, is the tota l budget for 
J=l 

a fiscal year. As per our discussion about consistent two moment models of expected 

utility in chapter 4, it is assu med that Y's differ from each other only by p + a:r, where 

{ Y - >•) d b · d " .. r · f x = --cr--, an o ta111e •TOm a normaliZing trans.ormatton o any Y This implies that 

Y complies with the " location and scale conditions," or, as it is somet imes ca ll ed, it 

belongs to a "linear class." Therefore, without making any assumptions about the 

functional fom1 of the utility function or about the distribution of the research output, 

one can represent the expected utility as a function of only two parameters p and a; 

where p is the mean and u is the standard deviation of the random research output. 

These two parameters, one being the locat ion , which is the shift parameter, and one 

proportions from the total risky investments, that is, y r, hence I y ~ = I . This kind of representation is to 

separate the optimal structure of the risk-bearing research projec t from division of funds between risky 
and safe investments. Thi s is Tobin' s (1958) well-known Separation Theorem, which will be briefly 
discussed later in the model. 

18The idea of an envelope function to define a utility function was first introduced by Meade ( 1951 ). 1t 
has the name ''Meade Utility Function,'' in recognition of his geometric treatment of indifference curves 
defined on net trades. 
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being the scale, which is the extension parameter, are enough to characterize the who le 

distribution of the random research output. So the ex pected utility of Y can be expressed 

as 

E[U(Y)] = E[U(p + crx)] 

= V(cr,p) 
(20) 

Since the agent maximizes the expected utility of the output, the maximizing problem of 

the SAES can be represented as 

(21) 

where V( a-, p) describes a system of positively sloping convex indifference curves in the 

(p. oj space. For the needed distribution parameters, a-and p , we calculate 

and 

~~ = E(Y) = B[ y 5 Y5 + y' I y'jE(Yj)] 
}= I 

= B[y 5 Y5 + y'E(Y')] 

II II 

cr= a\Y) =By' I I y; y'j Pua\J;')a{Yj ) 
i=l;= l ' 

=By' a\Y'') 

(22) 

(23) 

cov(Y;', YJ ) 
where p - __ .:.._-"--

ij - a\Y;')a\Y; ) 
is the coefficient of correlation between research project i 

and}. " 

' '~ Jn the above equation. the expec tation of}'~ is not taken as it is not rando m, and its vnlue is known ex 
ante. 
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To maxi mize the objecti ve, first the optimal structure yr ,y2, .. . y~ of the ri sk-bearing 

research p011folio is dete1111ined, and then the division of funds between y' and y' is 

dete1111ined. This is a well-known result of Tobin (1958) that is generall y refeiTed to as 

the Separation Theorem. To gain some insight about the optimal structure, the 

maximi zation problem is represented as a Lagrangean 

L = V(a,cL)- A.g[(cr,p) ,(y ' +I y' y; )] 
i= ! 

(24) 

Since Y is a function of y's, the mean and standard deviat ion of Y will also be dependent 

on the y's, formally p = ct(y5 ,y,.,y;·) and cr =cr(y'·,y;), and define W = y' + Iy '·y;· . 
1=1 

The definition of W does not compromi se the problem in any way; rather it makes the 

mathematica l maneuvers much more tractable. Assuming an interior so lution to the 

maximizing problem, the first -order cond it ions are 

(25) 

and 

To compare the effect of a marginal increase in the research ou tpu t, due to an increase in 

the A1h ri sk-bearing research project wi th its additional cost, equations (25) and (26) are 

set equal to each other, and by canceling out the), 's, the following is obtained 
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00 

(27) 

where 

av ___!!f_Q_ 

dfl l aa 
and dy' I - d(y 'y~ ) 

dcr V(.l 
=a-v 

d(y ' y~) g (.) 
- dg(.) 

acr dy' 

(28) 

Equation (27) is very similar to Sinn 's ( 1989) optimality rul e, but with an additional 

tem1 , wh ich is the marginal rate of technical subst ituti on between sa fe and risky 

in vestments. Thi s rul e compares the additional increase in the research output with its 

addi ti onal cost. An increase in the research output is an increase in the ex pected va lue of 

the random research output due to changes in the investment s tructure between the safe 

category and ri sk-bearing research projects. Correspondingly, cost can be inteqJreted as 

changes in the standard deviation , a; due to changes in investments in the kth risk-

bearing research proj ec t, and also a total change in the expected va lue of the random 

research output can be due to change in the ri sk iness as embodied in the standard 

devia ti on, a. More precise ly, if the proportion of the sa fe investment is reduced by one 

percentage due to one percentage increase in the proportion the kth ri sky research 

project, then the total research ou tput increases by ~ ___!}]_'_I ~ 
a(y' Yk ) - d(y' Yk ) g(. ) ay ' . 

The 

cost of restructuring the research ponfo li o depends on acr/8(y'y/.), that is, how the 

standard deviation is affected by an increase in the proportion in vested in the kth risk-

2°For the derivation of the rule, see appendix A. 
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bearing research project. In addit ion to that, there is the price of risk or price of an 

addit ional unit of standard dev iation , which is represented by the term dpjd~v· 

In the port folio literature, thi s price, dp/d~ v· has been interpreted as the amou nt by 

which th e ex pected va lue of the outcome has to increase du e to a unit increase in th e 

standard dev iation. This interpretation, a lthough correct, has led to an erroneous 

conclusion, as pointed out by Sinn ( 1989), that the size of d~t/d~ v depends on the 

agents' preferences. Consider an opportun ity locus in the (p. a) plane, consisting of a 

continuum of points, each of which represents one of the attai nab le research output 

di stributions. By use of the indifference curves and tangency so lution, one poin t at least 

on this boundary is fo und to be opt imal. Hence, dp/d~v· in fact , is equal to the slope of 

the efficiency fronti er, that is, the max imum va lue of[£(Y' ) - !'5 ]/ a(Y' ). to which it is 

adapted by a variation of y', as shown in fi gure 3. 21 

direction 
of 

preference 

FIG. 3.--Dptimal research portfol io choice g iven the decision maker' s preference 
structure. 

:
1[£(Yr) - y s J/ a(Yr ) ). Th is term attJins a maximum when E(Yr) is at its maximum, and when y~ 

and cr(YJ are Jt their minimum. 
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The variation in y' basically implies the substitutability between the safe and risky 

investments. Even though Sinn identified the concept, his portfolio framework did not 

allow him to explicitly identify the degree of variation required by y'. 

PROPOSITION I. Given a production feasibility constraint and positive and finite fl 

and cr, the increase in the expected value of research output due to a decrease in the 

proportion invested in the safe category has to be sca led by the marginal rate of techn ical 

substitution between the safe and risky holdings for rlrt/d~vto be eq ual to th e s lope of 

the efficiency frontier. 

This proposition is clearly defined in equation (27) and becomes clear once we take a 

look at thi s particular equation. It gives an ex pression, which g ives the optimal increase 

in the total ex pected va lue" of the research output to compensate for an unit increase in 

the riskiness as measured by th e standard deviation. Consequen tl y, th e condition that 

equates th e slope of the indifference curve with the efficiency frontier. According to rul e 

an additional increase in the resea rch output to be eq uat ed with th e cost, that is, the RHS 

of equation (27) , th e change in p due to a change in the proportion invested in the safe 

category has to be scaled by rly' j d(y" yk)j . That is, the margina l rate of technical 
g(.) 

substitution (M RTS) between proportion invested in the safe category and risk-bearing 

research project as demonstrat ed by equation (28). That is, the slope of the indifference 

curve becomes eq ual to the efficiency frontier ; hence we can find at least one di stribut ion 

that gives the maxi mum ex pected utility. 

:~ Increase in total expected value is due to investments in kth risky resea rch project as well as in the 
safe category. 
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To determine what eq uation (27) impli es for the size of the proporti on invested in the 

h1h risk bearing research project, yl;, every tem1 of the above equations is calculated 

separmely fro m equations (22) and (23) , and then subst ituted back into equation (27) and 

solved to get an express ion for Yk ." 

E(Y/)+Y'~/ 
d(y Yd g(.) 

cr(Y{) cr(Y') 

d~t ~ cr(Y/) 
da V(cr,~) 

I Y;P ;k cr(Y/)cr(>j' ) 
i=l 
i'#k 

(29) 

Even if we do not get an ex pli ci t so lution for yl;, since d~t/d~ 11 and cr(Y') depend on 

Yk, we can still meaningfull y interpret th e result. If we set all of the coeffi cient of 

co rrelat ion with i "' k equal to zero, then the second term on the RHS disappears. The 

first term relates the price of ri sk spec ifi c to the l.th research project , 

E(Y/)- ys_d_~ ·-' ,-/ 
d(y Yk) g (.) 

---------"-'-"- , to the average price of ri sk d~tjd~ 11 of the tota l portfolio. 
cr(Y/) 

Since the average price of ri sk of the tota l portfolio is posit ive (dJ.l/d~ 1 , >0), and by 

£(>'::·)- y s_ d_y_s -1 
k r r 

d(y y k) g(.) 
defin ition cr(Y') / cr(Y/;) > 0, we find ---------"-'CC.> 0 to be a necessary and 

a(Y/) 

suffic ient cond ition for Yk > 0. This result is very similar to the most important resul t of 

~: I n c rease in total expec ted \·alue is due to investments in kth risky research proje<: t as \\e ll as in the 
s:~fc c:~ tcgory . 

:JTo see the derivation of equa tion (29), see <:~ppc n cilx A. 
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Ma rkowitzian port fo li o theory. But note that it does not imply that a ll ri sky resea rch 

projects that promise a higher expected outcome than the safe in vestm ent are included in 

the portfolio. 

PROPOSITION 2. Given a prod ucti on feas ibili ty constra int , and a posi ti ve and finite p 

and cr, all risky research p rojects that promise a higher expected o utcome than the safe 

in vestm ent sca led by the marginal rate of technica l substitu tion between safe and risky 

research in vestments w ill enter the optimal port fo li o. 

Proposition 2 is se lf-explanatory and fo llows fro m eq uation (29). Thi s eq uati on 

implies th at given th e positi vity o f dpjd~v>O and cr(Y'' )/cr(Y/) > 0, Yk wi ll be pos iti ve 

if and only if the expected value of the h1h research prospect is g reater than the return 

from the safe category sca led by the marginal rate oftec\m ica \ subs tituti on between risky 

research in vestm ents and safe in vestm ents. So if yJ: > 0, th en the kth research prospect 

wi ll enter the portfoli o. Hence it is not on ly th e proj ect wi th the hi ghest expected 

o utco me th at enters the portfo li o, but rath er all ri sky research proj ects that promise a 

hi gher expected return than the safe in vestment scaled by the margina l rate of techni cal 

subst itution are inc luded." 

The use o f locati on and scal e prov ides a much mo re powerful tool th an the traditi onal 

mean variance ap proach for comparative stati c ana lys is. However, whether the random 

di st ributions d iffer from each other only by p and o- is an empiri ca l qu estion . To test thi s 

hypothesis, a test introd uced by Meyer and Rasc he ( \ 992) was used. This test is based 

:Jar course, the results drastically change if the coefficient of correlation is not set to zero. So, as long 
as independence of research projects is assumed, thJt is, project k and project j are not correlated, then we 
can se t the correlation coefficie nt to zero. 
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on the multi sample Kolmogorov-Smirnov (KS) statistic , D, that is, the max 1mum 

difference between any pai r ofF(.) empirica l di st ribution fu nctions. Fonnally, if the 

di stribution of the random research publication per research dol lar, Y,, sati s fi es the 

location and scale conditions, that is, if the data are likely results from observing Y,, 

which will sati sfy Y, = /1 + ox,, where /1 is the mean and cris the standard deviation of 

Y,. Since x, is a normali zed vari able with zero mean and constant unit variance, it is a 

white noise process. And since x, belongs to the same di stribution function no matter 

which Y, was se lected to obtain it, then all .r, from respecti ve Y, should be a white noise 

process. 

To test the hypothesis that the EDFs (empirica l di stribution functi ons) of Y, do in fac t 

differ from each other only by location and sca le, all the x,s were es timated using the 

observed Y,s. The multisample Kolmogorov-Smirnov test was used to find the test 

stati sti cs D = sup[F(r) - C(white noise)], where F(r) is the distribution functi on for x, 

and C() is a white noise process. The decision rule being, if the supremum, D, is larger 

than the criti ca l value, then reject the hypothes is that the Y,s differ from each other onl y 

by I' and cr or, in other words, locati on and scale. KS test stati stics run on the 

norma li zed x,s yielded many rejections of the null hypothes is that the empirica l 

di stri butions are identi ca ll y di stri buted up to location and sca le parameters. Since the 

KS test suggests that traditional mean variance analys is would be inappropriate, the more 

general method of stochastic dominance is employed. 
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CHAPTE R 6 

STOCHASTIC DOMINANCE AND ITS APPLICABILITY 

Since, in most empirical investigations, we fai l to accurately assess the decision 

maker's utility function and/or struggle with the problems associated wi th the 

mean/variance approach, empirical al!ention has shifted more towards comparisons of 

the probability distributions of the research outcome that are based only on the limited 

informat ion abo ut the decision maker's utility function. The rationale behind ca lculating 

the efficient or nondominated set is precise ly the nonavailability of the util ity function. 

If such a function could be measured and fom1ulated, then it should be applied direct ly 

to the set of available altemat ive outcomes. l t is then reasonable to ass ume that the 

uti lity function is unknown, barring a few general propert ies such as being 

nondecreasing, monotonic, ri sk averse, etc. 

The criterion for comparison of different probability distrib utions is known as 

stochasti c dominance. This allows the ranking of di stributions for different classes of 

risk atti tudes. Suppose that all that is known about the deci sion maker's utilit y fu nction 

can be described by a set U of rea l va lued func tions such that u EU. If / udF > / udG 17 

u EU, and F and G are distribution funct ions, then F is sa id to "stochastical ly domi nate" 

G with respect to U. This dominance of one probability distributi on over the other 

implies F >, G iff E(u, F) > E(u, G), i = 1.2,3 ... , where i = 1,2.3 .. denotes the different 

degrees of stochasti c dominance. I being first degree stochastic dominance , l bei ng 

second degree, and so on. That is, for a distribution F to dominate distribution G, it is 
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necessary and suffi c ient that the expected utility associated wi th th e distr ibuti on F be 

higher than that associated wi th G. A parti cul arly good synthesis of s tochast ic 

dom inance can be found in Bawa (1975). It is assumed that the agent is rati onal and 

obeys the axiomatic behavior prescri bed by Yon Neumann and Morgenstem (1953). 

These are basically the ordering postul ates and monotone continuity. Under these 

assumptions, the SAES director/scienti st(s) chooses the altem ative, whi ch maximizes the 

expected utility of the random research o utput , where the utility func ti on is determined 

uniquely, up to a positi ve linear transformation. Because complete infom1at ion abo ut 

indi vi dual preferences (i .e., hi s/her utility functi o n) is se ldom ava il ab le, we use 

stochastic dominance (SD) rules that prov ide a one-to-one co iTespondence between the 

maximum ex pected utility rul e fo r certain classes of utility functions and th e rul es for 

pair-wise comparisons between the probabi li ty di stributions. 

Three types of domi nance seem to be useful for th e ana lys is of a va ri ety of dec ision 

prob lems under uncertainty. The strongest of these condit ions is referred to as fi rst-

degree stochasti c dom inance (FSD). Quirk and Saposnik ( 1962) , Hadar and Russe ll 

(1969, 1971 ), Hanoch and Levy ( 1969) and Fishburn and Y ickson ( 1978) obtained a 

select ion ru le for the ent ire class u1c U of increasi ng rea l value uti li ty functi ons. Thi s 

ru le ho lds th at whenever o ne cum ul ati ve di stribution li es, at least partl y, under the other 

cumulati ve distribut ion and th e distribut ions never cross, th en the dominant di st ribution 

is sa id to be larger th an the other dis tributi on in the sense ofFSD. lfthe two cumulative 

di stributions are F(r) and G(x}, and defin ed over any interval I , we say: 
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if F(x) S G(x) 17x E !, !he sf riel ineqtwiill' holding for a/leas/ one .r, 1/:en F is larger 

!han Gin !he sense of FSD. 

A weaker dominance condition is called second-degree stochastic dominance (SS D). 

Since the decision maker, the station director/scientist(s), is assumed to be ri sk averse, 

such behavior generates a class of utility functions u, c u1, with negative second 

derivatives. SSD captures the downs ide ri sk aversion, that is, peop le are averse to 

adverse shocks. Hadar and Russell (1969, 1971) and Hanoch and Levy (1969) derived 

the SSD rule, and this holds whenever the area under one cumulative distribution is 

everywhere not greater than that under the other distribution. Again , considering the 

distributions defined over any interval!, we say: 

if fF(x)dx S fG(x)dx '\fx E f (30) 

!he Sf riel inequa/ily holding for a/leas/ one x, !hen F is larger 1han G i11 1he sense of 

SSD. 

For the class u3 c u,, characterized by a positive third derivat ive and a finite range, 

Whi tmore ( 1970) obtai ned the optimal se lection ru le and cal led it third-degree stochastic 

dominance (TSD), and this holds for the second integra l of SSD. Fom1ally, we can write 

it as 

IfF(x)dxd! S IfG(x)dxdt 'ix E 1 (3 1) 

the Sli'iCI inequali1y holding for a/leas/ one x, !hen F is larger !hanG inlhe sense 

ofTSD 

and where {u1 c u,: U"'(x) 2 0 r:S:). The requirement that U"'be positive is moti vated 

by noting that this a necessary condition for decreasing absolute risk aversion (DARA). 
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Bawa (1975) showed that for distributions with the same mean , thi rd-degree stochastic 

dominance is preci sely eq ui valent to preference by all utility func tions d isp laying 

DARA. 

Given the rules of stochastic dominance it can be effectively used to detennine the 

non-dominated set, that is, to isolate the set of altern ati ves with the max imum ex pected 

utility deri vable from research output. By using these rules the ava ilabl e possibilities are 

divided into effic ient and ineffici ent sets. The effici ent and ineffic ient sets are de fin ed as 

follows, a research possibility B belongs to the inefficient set if there is at least one 

possibility A among a ll th e feasi ble possibilities such that a decision maker having a 

utility function from the restri cted class would prefer A to B. Therefore, only the core of 

the prospects not rul ed out by the SD remains in the efficient set. 
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THE DATA, APPLICATION OF STOCHASTIC DOMINANCE, 

AND TEST RESULTS 
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The publication data were compiled from the AGRICOLA database and the USDA's 

(various years [a]) Bibliography of Agriculfllre. From these two sources, all the 

published papers and reports were identified, which were funded by each of the I 0 

westem SAESs-Arizona, Califomia, Colorado, Idaho, Kansas, Montana, Nevada, New 

Mexico, Oregon, Utah-- over the period 1967-91. The titl e and descriptors of each 

paper were reviewed and each paper assigned to one of the 19 research categories: 

!-feed grai ns (incl. corn, forage); 2-food grains (e.g., ri ce, wheat); 3-oil crops (e.g., 

cotton seeds, peanuts); 4--fruits and nuts; 5-vegetables (incl. potatoes); 6-cotton; 

7-tobacco; 8-meat animals (incl. fish , game, bee); 9--dairy product (incl. dairy 

cattle) ; I 0---poultry; !!-other crops (e.g., omamental); 12-forest and forest products; 

13-soil, water, air, and climate; 14--recreation; 15-technology of production; 

16-agriculture in society; 17-agriculture enterprise; 18-weeds, seeds, and bugs; and 

19--basic research. Annual research expenditures on each of these categories for all the 

states were collected from USDA's (various years (b]) Jnvenloly of Agricultural 

Research. From the time of allocation of funds to a particular research project until the 

time a publication is cataloged, it is assumed that there is a three-year lag. Recognizing 

that publication often lags funding out lays, a three-year-lagged moving average of 

published-paper-or-report-per-research-dollar was used. I compare the altemative uses 
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of research funds within several different sets, the I 0 experiment stations, the 19 

research categories, the 23 years, research categories withi n each state, and states within 

each research category. 

I. Application of Stochastic Dominance 

Given the data and the stochastic dominance rul es, we need to refonmilate the SD 

rul es such that they can be directl y applied to the data. The ex penditure on any specific 

research category is referred to as investment and the number of publi sheu papers or 

reports in a category within a specific year is refe!Ted to as the retu m to the investment. 

Since I am working with a discrete random vari able, that is, research output , the SD 

rul es have to be redefined. Therefore, before conducting any SD test, we need to 

di scretize the definition for the continuous case. To approximate the underl ying 

distribut ion function of the research output , the analog principle is used that shows that 

the sample frequency di stribut ion corresponds to the probability distribution function in 

the population. 

In accordance to the arguments presented above, the SD rules can be fonnul ated as 

fol lows: if the station 's utility is increasing in papers and/or reports published, then the 

station director wou ld unambiguously prefer category A to catego ry B, 

iff Dl (y) = I B(y;) - L: A(y;) 2!0 'tfyj 
)", $ )') )', $)', 

(32) 

j = 1, ... , n and yj E .'ll 

where Yi is the research publications per research doll ar. Also, if the difference between 

the cumulati ve probability function for the di screte distribution B(y) and A(y) is greater 
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than or equal to zero and strictly greater for at least one j, then the discrete cumulative 

distribution A{y) lies everywhere below the discrete cumulat ive distribution B(y). 

Hence, category A dominates category B in the first-degree stochasti c dominance sense 

(FSD). Therefore, any utility-maximizing stat ion director will choose to invest more in 

category B. 

The second-degree stochastic dominance uses the results from the FSD. The station 

director will prefer category A to category B, 

iff Dz(YJ) = L DI(Y,-r ) 2:0 
)',SyJ 

(33) 

j =I, ..... 11 and y1 E .'lt 

that is, if the discrete cumulative probab ility function crossover and the tota l area 

between the curve (FSD curve) are greater than zero, then the area under the di screte 

distribution of category A, which is less than the area under the di screte distribution of 

category B, implies A second-degree stochasticall y dom inates B. 

Third-degree stochastic dominance, which is a necessary condition for DARA, uses 

the SSD results. Category A is said to dominate category B in the third-degree 

stochastic dominance sense, 

iff (34) 

j = I, .... , 11 and; j E .W 

Gi ven the rul es of stochastic dominance for the discrete case, the tests were run and the 

results tabulated. 
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II. The Results 

First, consider the U.S . Secretary of Agri culture's (USSA) choices of allocat ion of 

aggregate national funds across different SAESs and among the 19 research areas. Tab le 

I presents the results of FSD and SSD tests for styli zed choice. I pooled time-series 

observations on research publication per thousands of research dollar expenditure across 

states in the case of the set, SR, of the 19 research categories and ac ross research 

categories for the set, Sw, of I 0 states. Under FSD, the results show a fi rst- level 

efficiency set comprised of research on forestry; production techno logy; weeds, seeds, 

and bugs; and basic research (categories 12, 15 , 18, and 19) and research conducted in 

TABLE I 

UNCON DITIONAL STOCHASTIC DOMINANCE T ESTING RESULTS 

RANKING AMONG SAES RANKING AMONG RESEARCH AREAS 

EFFICIENCY SET FSD SSD FSD SSD 

Most efficient CO,NM,NV,UT NM,UT I2, I5, 18,19 12 , I5, I 8, I9 

ID,OR co 4, t 0, I 4, 16, I 7 I6 

AZ,MT ID,NV I, II 4, I 7 

KS OR 2,8, t 3 I, IO, I4 

CA MT 5,6 11, I3 

AZ 

KS 3,7 

CA 

9 

Least effic ient 3,7 
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lew Mex ico and Utah. Imposing the assum pti on of risk-averse preferences, the fi rst-

level efficiency set of SAES reduces to ew Mexico and Utah. 

Repeating the exercise at the state level, trying to ident ify for each state which 

research areas offer the most attract ive research publication per thousands of research 

dol lar distributions generates similar result s (tab le 2). In ni ne out of 10 stat es. the li rst-

best efficiency sets include at least one of the top fo ur categories nati ona lly ( 12, 15, 18. 

and 19); and in seven of the I 0 states, the first-Je,·eJ efficiency set is compri sed enti rely 

of those research areas. 

TABLE 2 

R ESEA RCH AREA EFFICIENCY SETS BY STATE 

fi RST- B EST EFFICIENCY SET S ECOND-B EST EFFICIENCY SET 

STATES FSD SSD FSD SS D 

Arizona 6, 12, 15, 17. t 8 15, 18 19 12 , 17 

Californ ia 12, 18 12 10, 17 17. 18 

Colorado 4.12 , 15, 18, t9 4, 12 , 18. 19 1, 10, 16 15 

Idaho 14, 15, 18 15, 18 12,1 6, 17, 19 12, 14 , I 6, 17 

KJ nsus 15 15 18, 19 19 

rvlontanJ 19 19 12 12 

Nevada 16, 17 16 1, 15 , 19 I, 15, 17,19 

New Mex ico 15 15 14 , 16,17.18, 19 14, 16. 17. 18, t9 

Oregon 12 12 15, 17 15, 17 

Utah 10, 18, 19 19 12 , 15,16 12.16,18 
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To test the hypothes is that the productivity di stribution of publicati on per research 

dollar improves over time, the observations were poo led across research categories and 

SAES for each year and FSD and SSD tests were done among the years 1969-91. The 

exercise was repeated for each state, poo ling observations only across 19 research 

catego ries (see append ices B and C). The results suggest that the mid-1970s were years 

of peak research publications output per SAES dollar outlay, with 1975 and 1976 

representing the first-l eve l efficiency set under SSD. 

The most recent years, 1988-9 1, are dominated by all the others in a SSD sense, 

implying that SAES research productivity has fallen. That pattern is largely mirrored at 

state levels, with the notable exceptions of Idaho, where 1990 and 1991 are in the first­

level effic iency set under FSD, and Nevada and Utah, where the most recent years are in 

the middle of the rank ordering of year di stributions. 

Out of concern for the effi cient use of public research funds , there is cons iderable 

cun·ent discuss ion about merits and means of introducing regional centers of research 

exce ll ence in specific fi elds. Stochastic dominance analys is of data pooled across years 

can provide crucial infom1 ation on the relati ve strengths of different SAESs within each 

of the 19 research categories. It is apparent that the low ranking of the big agricultura l 

states--Cali fornia, Kansas-minors similarl y poor rankings conditional on research 

area. Likewise, some SAESs are clearl y superior wi thin the region in particular fi e lds 

(e.g. , Arizona in cotton, Oregon in forestry, see table 3) despite mediocre rankings 

overall. The leading states in the uncondi tional rankings (table I ) clearl y achieve this by 
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broad-based excellence. The SAESs in New Mexico and Utah, for example, are each 

undominated in both FSD and SSD senses in at least 10 of the 19 categories. Hence they 

are in the top regional ranking in research productivity per dollar expenditure. 

TABLE 3 

SAES ABSOLUTE ADVANTAGE RA NKINGS 

FIRST-B EST EFFICIENCY SET SECOND-BEST EFFICI ENCY SET 

RES EARCH AREA FSD SSD FSD SSD 

1: Feed grams NM,UT UT co CO,NM 

2: Food grains CO, NM , UT UT MT CO,NM 

3: Oil crops co co NM 'M 

4: Fruits/nms No ordering No ordering No ordering No ordering 

5: Vegetables NM NM co co 
6: Cotton AZ, NM AZ, NM All the rest All the rest 

7: Tobacco No ordering No ordering No ordering No ordering 

8: Meat animals CO, NM , NV CO, NM,NV OR OR 

9: Dairy UT UT ID ID 

10: Poultry NM,UT NM,UT CO, MT CO, MT 

II: Other crops NV, UT UT CO,NM CO,NM 

12: Forest OR OR co co 
13: Soil, water, etc. NM NM ID,NV ID, NV 

14: Recreation ID, NM NM UT ID, UT 

15: Prod. & techn. NM NM CO, ID, UT CO, ID, UT 

16: A g. in society NM,NV, UT NM,NV, UT CO, ID CO, ID 

17: Ag. business ID, NM,NV NM, NV OR, UT ID, OR, UT 

18: Weeds/seeds UT UT co co 
19: I3asic UT UT CO, MT, NM, NV CO, NV 
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CONCLUSIONS 

49 

Wh ile cons iderable attention has been given to estimation of rates of retum to public 

agricultural research expenditure in aggregate, surpri si ngly litt le work has been done on 

the optimal allocation of public research budgets. This paper demonstrates one useful 

method of analysis, presenting stochastic dominance testing results on the research 

publication retums per dollar expended in each of I 0 western U.S. state agricultural 

experiment stations over the peri od 1967-91 . The results suggest there are marked 

differences-across states and research categories-in the scholarl y productivity of 

public agricultural research expenditures. lt also appears that productivity has generally 

been dec lining over time. Finally, we demonstrate how SD analys is can be used to 

reveal absolute advantage between the SAES in particular research areas, as wel l as 

between the research areas within each SAES. These findings and the methods that 

generate them may be useful at both national and state leve ls if serious efforts are to be 

made toward emphasizing regional centers of research excellence in particular fie lds. 
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APPEND ICES 



5-l 
Ap pendix A: Mathematical Deriva tion s 

Proofi. J. Equat io n (8) can be w ritt en as 

(8.1) 

(8.2) 

, p , E[u(Y)] 
f.l - - -+cr- =---- (83) 

w (J) 

(8 4 ) 

I I 12 
, I E[u(Y)] 

lp--J +cr- =-, ---
2w 4w - w 

(8.5) 

Equation (8.5 ) is the eq uat ion of a ci rc le, cent ered a t (0 , 1/2w) , w it h rad ius 

E[u(Y)] 

4w 2 w 
(8.6) 

QE D 

Proof1.2. If the outcome is a continuous random variable, w ith s uppon fro m a to b, 

we can w rite E[xU fp + ax)] as 

b 

E[xU'(p + cr.r)] = f xU'(p + cr.r)rhji(.r) (15.1) 

w here U(.) is the uti lity function and 111(x) is the di stribut ion function. So ( 15.1) 

b 

f u•(p + crx)xd~1(x) (15 .2) 

lmegratin g th e above equat ion by parts, 
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(153) 

(15.4) 

b 

since f_wiiJi(x) = 0, as it is the mean of a standard nom1al variab le 'x ' , then equation 

(15.4) collapses to 

b{ X } E [xU'( p +ax)]=-af U"(p + ax)!{(/~1(1) dr (15.5) 

Thus 

b{ ,. } 
cov[x,U' (.)] = E[xU' ] = -af U"(.)J1dt11(1) dx 

" a 

( 15 .6) 

Due to the assumption of a risk averse agent, i. e. , a concave utility function hence U' > 0 

and U" < 0. As x is a standard nom1al variable it has a expected va lue of zero i.e., E(x) = 

X 

0, which implies that ftdt J1(1) :S 0, and a is assumed to be greater than zero i. e., a > 0. 

Then it follows that cov[x, U'] < 0. 

l f the covariance between x and U' is negati ve, it impli es that the slope of the 

indifference curve is positi ve, fom1all y 



> 0 

Equation ( 15.7) is nothing but equation (15) in the main body of the text, i.e. , 

cov[x, U'(fl + crx)] 

£[U'(f1+crx)] 
>0 

Proof 1.3. To prove that equation (18) is positive, that is 

QED 
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(15.7) 

(18. 1) 

Thi s property follows from a strictly concave Yon Neumann-Morgenstren funct ion, that 

is, from U"< 0. Tobin (1958) first pointed thi s out. To dri ve home the point, consider 

two indifferent points (f1 1,cr 1) and (~t , , cr,) , which are both situated on the same 

ind ifference curve. This indifference curve is strictly convex if and only if, fo r any pai r 

of such poin ts 

(18.2) 

The assumpt ion of a stri ct concave utility function in tum implies 

(18.3) 

where the inequality sign holds strictly for all x, except for the case where 

p , + cr,x = p, + 0:·'· Applying the expectation operator, we get 
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E[U( ~I ~+ cr 1 x)]+ E[U( ~t 22 + cr 2 x) ] ( E[u( fl 1 ; fl 2 + cr, ;cr2 x)] ( ! 8.4) 

By assumpti on, (p,, o;) and (p,, a-) are chosen such that E[U(p, ~ o;.1)} = E[U(p_. _ a-_,1)} , 

hence, 

(IS 5) 

This expression has the sam e meani ng as equation ( 18.2), and since it holds for any pair 

o f d ifferent po ints on an indifference curve, it proves equ ati o n ( 18) in the paper. 

Q ED 

Proof ! .4. Eq uat ion (25) and (26) can be w ritten as 

(25') 

and 

(26') 

So equation (25') and (26') => 

( )

-1 
og o~1 og av o~1 
--+- --
Of.L C7y s oW 8~1 C7y s 

cross mu lti pl yi ng the inverted tenns, 
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(27 .2) 

-
dg dg 

Since the first tem1s of both LHS and RHS are and respecti vely, so 
d(y 'y/,) dy5 

with a little bit of manipulation, the above equation can be written as 

av 
dg a"1 rig ap 00 dg oo 

rty ' a(y'r'kl- d(y 'y'k J err'=- av dy' a(y'r'k l 
ap 

=>~-~r ~ = d"t l aa 
8(y'y;; ) d(y'y'k) g(.) {)y 5 dcr V ( cr.~) 8(y'yk) 

(27.3) 

(27.4) 

Equation (27.4) derived above is nothing but equati on (27) form the main body of the 

text. 

QED 

Proof 1.5. To get an ex plicit expression for Yk, each elemen t is ca lculated from 

equation (22) and (23) from the main body of the paper. 

(29 .1 ) 

~=BE( V ~ ) 
8(y'y'; ) k 

(29 2 ) 
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_a_a __ ::': +yj:a(Y/) 

acr'r'kl a(Y') 
(29.3) 

" cov(Y' Y') 
where::': = LY~ P;ka(Y/)a(Y;'), and where Pu = , ' ' ~ . . Also from equation (27), 

i= t a(lj )a(Y1 ) 
i*k 

we know 

O"l op dy s I 
_a_a _ _ ~+ -;;;;~ g(.) 

dpl 
da vo 

o(y'y'k) 
(29.4) 

Equating (29.4) and (29.3) and substituting the va lues from (29.1) and (29.2) into (29.4), 

we get the expression 

dy s I BE(Y' )+ BYS __ _ k ,. ,. 
d( y y k) g(.) 

d"tl 
da V(.) 

canceling out the Bs and with some elementary manipulati ons, we get 

r'ka2(Y{) 

a(Y') 

E(Y{)+Y5~ d s I 
d(y y d g(.) 

dpl 
da V( .) 

a(Y') 

ex panding the tenn ::::, and wi th some further manipulation we get, 

(29.5) 

(29.6) 



E(Y~· ) + Ys~~ k r r 
d(y y kl g(.) 

Yk = 
cr(Y.{ ) cr(Y') 

dfl' cr(Y/) 
dcr V(cr,~ ) 

f. Y~ P;k cr(Y/ )cr( Y;') 
1=1 
i~k 

Equation (29.7) is the fi nal expression as given in the paper. 
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(29.7) 

QED 



Appendix B. Detailed Results 

The program categories are numbered as fo llows: 

!- Feed grains 
2- Food grains 
3- 0 il crops 
4- Fruits and nuts 
5- Vegetables 
6- Cotton 
7- Tobacco 
8- Meat animal, misc. livestock and fish 
9- Dairy product 
10- Poultry 

The years are numbered as follows: 

1- 1969 6- 1974 11 - 1979 
2- 1970 7- 1975 12- 1980 
3- 197 1 8- 1976 13- 198 1 
4- 1972 9- 1977 14--1982 
5- 1973 10-1978 15- 1983 

The K-S Test 

I !- Other crops 
12- Forest and forest products 
13- Soil , water, ai r, and climate 
14--Recreation 
15- Technology of production 
16- Agriculture in society 
17- Agriculture enterprise 
IS- Weeds, seeds, and bugs 
19- Basic research 

16- 1984 21-·1989 
17- 1985 22- 1990 
18- 1986 23- 199 1 
19- 1987 
20- 1988 
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The empirical question of concern is whether or not r, satisfies the location and scale 

condition. That is, are the data a likely result from observing r, which satisfy r, = fl + crx,, 

with fl being the mean and cr the standard deviation of r, . Since x, is a nom1ali zed variable 

with zero mean and constant unit vari ance, it is a Gaussian white noise process. And since 

x, belongs to the same distribution fu nction no matter which r; was selected to obtain it, then 

al l x, from respective r, should be a Gaussian white noise process. 

To test the hypothesis that the EDFs (empirical distribution functions) of r, do in fact 

differ from each other only by location and scale, all the x;s where estimated using the 

observed r,s. The Kolmogorov-Smimov test , which is particularly useful for our purpose, 
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was used to find the test statistics D ~ sup[F(x,) - G(w)), where F(x;) is the distribution 

function for x, and G(w) is a white noi se process . The decision rul e being, if the supremum, 

D, is larger than the critical value, then reject the hypothesis that the r,s differ from each other 

only by >I and cr or in other words location and sca le. 

The test, which was conducted on several subsamples , is given below. From the test we 

see that al l those tests for which we had taken program categories into consideration we 

reject the hypothesis that the r,s differ only by LS, i.e., they do not differ by LS. However, 

when production years were considered, either years within a state or for all the states 

together, we fail to reject the hypothesis that the r,s di ffers only by location and scale, i.e., 

the distribution for the production years considered different only by location and sca le. 

Test/ 

Six program categori es were selected nationally (all western states) and the KS test was 

conducted . The maximum gap gives the supremum and the critical va lues are given below 

it. The rejection rule is if the maximum gap (D ~ sup[F(x;) - G(w)]) is greater than the 

critical, then we reject the hypothesis that r,s differ onl y by location and scale. 

KS Test for Program Categor)' ! - Feed Grains 

Maximum gap~ 0.6 166 at frequency 0.4172 

Approximate rej ection limits: I %~ 0.144 1, 5% ~ 0.1202, I 0% ~ 0. 1078. 

KS Test for Program Careg01y 2-Food Grains 

Maximum gap ~ 0.6289 at frequency 0.6627 



Approximate rejection limits: I% = 0. 1441 , 5% = 0. 1202, I 0% = 0.1078, 

KS Test for Program Categ01y 5- Vegetables 

Maximum gap = 0.4697 at frequency 1.2763 

Approximate rejection limits: 1% = 0.1441 , 5% = 0.1202, 10% = 0.1078. 

KS Test for Program Catego1y 15- Technology of Production 

Maximum gap = 0.6727 at frequency 0.5400 

Approximate rejection limits: I%= 0.1441 , 5% = 0.1202, 10% = 0.1078. 

KS Test for Program Categ01y 16- Agricu/ture in Society 

Maximum gap = 0.6540 at frequency 0. 7609 

Approximate rejection limits: l% = 0.1441 , 5% = 0.1202, l 0% = 0. 1078. 

KS Test for Program Catego1y 18- Weeds, Seeds, and Bugs 

Max imum gap = 0.5547 at frequency 0.95 72 

Approximate rejection limits: l% = 0.1441 , 5% = 0.1202, l 0% = 0.1078. 

Test2 
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A parti cul ar year was used aggregated for all states and KS test was conducted, the year 

chosen was 1973. The results are as follows. 

KS Test for the State of UT 

Maximum gap = 0.1248 at frequency 0.5890 

Approximate rejection limits: l% = 0.4075 , 5% = 0.3400, l 0% = 0.3050. 
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KS Tesr for rhe Stare of CO 

Maximum gap = 0. 1205 at frequency 0. 7854 

Approximate rejection limits: I%= 0.4075, 5% = 0.3400, I 0% = 0.3050. 

KS Tesr for rhe State of NV 

Maximum gap= 0.1631 at frequency 2.3562 

Approx imate rejection limits: I%= 0.4075, 5% = 0.3400, I 0% = 0.3050. 

KS Tesr for !he Sraze of AZ 

Maximum gap = 0.1583 at frequency 2.3562 

Approximate rejection limits: I%= 0.4075, 5% = 0.3400, 10% = 0.3050. 

KS Tesrfor rhe Srare ofMT 

Maximum gap = 0.1 732 at frequency 0. 7854 

Approximate rejection limits: 1% = 0.4075, 5% = 0.3400, I 0% = 0.3050. 

KS Tesr for rh e Srare of KS 

Maximum gap = 0.2039 at frequency 1.9635 

Approx imate rejection limits : I% = 0.4075 , 5% = 0.3400, I 0% = 0.3050. 

KS Tesrfor rhe Srate of OR 

Maximum gap= 0. 1239 at frequency I 178 1 

Approximate rejection limits: I%= 0.4075 , 5% = 0.3400, 10% = 0.3050. 
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KS Tes1 for 1he SIGle of NM 

Maximum gap = 0.0625 at frequency 0.1963 

Approximate rejection limits: I%= 0.4075, 5% = 0.3400, I 0% = 0.3050. 

KS Tes1 for the Stale ofCA 

Maximum gap= 0.1393 at frequency 0.9817 

Approximate rejection limits: I%= 0.4075, 5% = 0.3400, 10% = 0.3050. 

KS Tes1 for 1he SIGle of ID 

Maximum gap = 0.1881 at frequency 2.1598 

Approximate rejection limits: 1% = 0.4075, 5% = 0.3400, 10% = 0.3050. 

Test] 

Program category 1 "Feed Crops" was used for all the states. 

KS Tes1 for UT 

Maximum gap = 0.5937 at frequency 0.9817 

Approximate rejection limits: I%= 0.4075, 5% = 0.3400, 10% = 0.3050. 

KS Tesl fo r CO 

Maximum gap = 0.5830 at frequency 0. 7854 

Approximate rejection limits: I%= 0.4075 , 5% = 0.3400, 10% = 0.3050. 

KS Teslfor NV 

Maximum gap = 0.5355 at frequency 1.3 744 
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Approximate rejection limits: I%= 0.4075, 5% = 0.3400, I 0% = 0.3050. 

KS Test f or AZ 

Maximum gap= 0.57 18 at frequency 0.9817 

Approximate rejection limits: I% = 0.4075, 5% = 0.3400, I 0% = 0.3050. 

KS Test for MT 

Maximum gap = 0.6202 at frequency 0. 7854 

Approximate rejection limits: I% = 0.4075, 5% = 0.3400, I 0% = 0.3050. 

KS Test for KS 

Maximum gap = 0.4450 at frequency I .3 744 

Approximate rejecti on limits: I% = 0.4075 , 5% = 0.3400, I 0% = 0.3050. 

KS Test f or OR 

Maximum gap = 0.5593 at frequency 0.9817 

Approximate rejection limits: I% = 0.4075 , 5% = 0.3400, I 0% = 0.3050. 

KS Test for NM 

Maximum gap = 0.5560 at frequency 0.3927 

Approxi mate rejection limits: I% = 0.4075 , 5% = 0.3400, I 0% = 0.3050. 

KS Test for CA 

Maximum gap = 0.64 78 at frequency 0.9817 

Approximate rejection limits: I%= 0.4075 , 5% = 0.3400, I 0% = 0.3050. 
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KS Test for ID 

Maximum gap = 0.4314 at frequency 1.3 744 

Approximate rejection limits: I%= 0.4075 5% = 0.3400 10% = 0.3050. 

Test4 

For the state of Colorado years 1969, 1973, 1976, 1979, 1982, 1985, 1989, 1991 were 

chosen and the results were as follows. 

KS Test for Series C0- 1969 

Maximum gap= 0.1067 at frequency 2.5525 

Approximate rejection li mits: I% = 0.4075, 5% = 0.3400, I 0% = 0.3050. 

KS Test f or Series C0-1973 

Maximum gap = 0.1205 at frequency 0. 7854 

Approximate rejection limits: I%= 0.4075, 5% = 0.3400, I 0% = 0.3050. 

KS Test for Series C0- 1976 

Maxim um gap= 0.085 1 at frequency I. 767 1 

Approximate rejection li mits: I% = 0.4075 , 5% = 0.3400, I 0% = 0.3050. 

KS Test for Series C0- 1979 

Maximum gap = 0.1104 at frequency 2.5525 

Approximate rejection li mits: I%= 0.4075, 5% = 0.3400, I 0% = 0.3050. 
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KS Test for Series C0- 1982 

Maximum gap = 0.0909 at frequency 2.3562 

Approximate rejection limits: I%= 0.4075, 5% = 0.3400, I 0% = 0.3050. 

KS Test for Series C0-1985 

Maximum gap = 0. 1529 at frequency I. 767 1 

Approximate rejection limits : I% = 0.4075, 5% = 0.3400, I 0% = 0.3050. 

KS Test for Series C0 - 1989 

Maximum gap = 0.2997 at frequency 2.5525 

Approximate rejection limits: 1% = 0.4075, 5% = 0.3400, I 0% = 0.3050. 

KS Test for Series C0 - 1991 

Maximum gap = 0. 109 1 at freq uency 0.9817 

Approximate rejection limits: I% = 0.4075, 5% = 0.3400, I 0% = 0.3050. 

Results ji·o1n the Stochastic Dominance Tests 

Since the KS test indicated many regions of rej ection that the distributions are in fact 

different from each other by on ly the location and scale parameter. We employ SD tests to 

rank the alternatives from most efficient set to least efficient one. 

The data were aggregated and analyzed using stochastic dominance in six different ways 

to detem1ine the absolute and relative advantage in research product ivity per research dollar 

spent. The li stings under the FSD are the prospects not dominated by FSD in success ive 

rounds. Under SSD are those nei ther dominated by FSD or SSD in the successive rounds. 
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Under TSD are those not dominated by any of the three (FSD, SSD, TSD) in successive 

rounds. The results have been tabu lated by each analys is. 

Analysis 1: All the states were compared against each other, and the data were pooled 

across 19 program categories and 23 years (table B.l ). 

Analysis 2: Each year for all 10 states was aggregated (table B.2). 

TABLE B.1 

ALL-STATE COMPARISON OF 19 PROGRAM CATEGORIES AND 23 YEARS 

By FSD By SSD ByTSD 

Most efficient A UT, CO, NY, NM UT,NM UT, NM 
B OR, ID co co 
c AZ, MT NY, ID NY, lD 
D KS OR OR 
E CA MT MT 
F AZ AZ 
G KS KS 

Least efficient H CA CA 

TABLE 8.2 

AGGREGATION OF THE 10 STATES (YEARS NATIONAL) 

By FSD By SSD ByTSD 

Most producti ve A I, 2, 3, 5, 6, 7, 8, 9 7, 8 7 
B 4, 10 6, 9 8, 9 
c 11 , 13 , 17, 18 5, 10 5, 6, 10 
D 12, 14, 16. 19, 20, 21 , I, 2, II I, 2, II 

22 , 23 
E 15 4 
F 3 3 
G 12, 13, 17, 18 12 , 13 , 17, 18 
H 14, 16,22 14, 16, 22 
I 15 15 
J 23 23 
K 21 21 
L 19, 20 20 

Least productive M 19 
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Ana(J'Sis 3: All the categories were aggregated across all states (table 8 .3). 

TABLE 8.3 

CATEGORIES AGGREGATED ACROSS ALL STATES (PROGRAM CATEGORIES- NATIONAL) 

By FSD BySSD By TSD 

Most efficient A 12, 15, 18, 19 12, 15. 18, 19 12, 15 , 18, 19 
B 4, 10. 14, 16, 17 16 16 
c I , II 4, 17 4 , 17 
D 2, 8, 13 I , 10, 14 I, 10, 14 
E 5. 6 II , 13 II , 13 
F 9 2 2 
G 3, 7 8 8 
H 5 5 

6 6 
9 9 

Least efficient K 3, 7 3, 7 

Analysis 4: Program categories wi thin states. Each of the I 0 states was considered to 

find the effic ient research program categories within the state (tab les 84-8. 13). 

Most efficient 

Least efficient 

TA8LEB4 

PROGRAM CATEGORIES- ARIZONA 

By FSD 

A 
8 
c 
D 
E 
F 
G 
H 

6, 12 . 15. 17. 18 
19 
14, 16 

2 
13 
3, 4, 7, 8, 9, 10. II 

BySSD 

15, 18 
12, 17 
6, 19 
14, 16 
I 

13 
3, 4, 7, 8, 9, I 0, II 

ByTSD 

15, 18 
12, 17 
6, 19 
14 , 16 
I 
5 
2 
13 
3, 4, 7, 8, 9, I 0, II 
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TABLEB.5 

PROGRAM CATEGOR IES- CALIFORN IA 

By FSD By SSD ByTSD 

Most efficient A 12, 18 12 12 
B 10, 17 17, 18 17, 18 
c 15 15 15 
D 10 10 
E 1, 3, 4,5 , 6, 7,9 , II , 2 2 

13, 14 , 16, 19 
Least efficient F 1,3, 4,5,6, 7, 9, II , 1. 3, 4, 5,6, 7,9, 11 , 

13, 14 , 16, 19 13, 14 , 16, 19 

TABLEB.6 

PROGRAM CATEGORIES- COLO RADO 

By FSD By SSD ByTSD 

Most efficient A 4, 12 , 15, 18, 19 4, 12 , 18, 19 4, 12, 18, 19 
B I, 10, 16 I, 10, 16 I, 10, 16 
c 2 I, 16 I, 16 
D 8 2 2 
E 17 8, 10 8, 10 
F 11 17 17 
G 5, 14 II II 
H 13 5, 14 5, 14 

3, 6, 7, 9 13 13 
Least efficient 3, 6, 7, 9 3, 6, 7, 9 



TABLE B.7 

PROGRAM CATEGOR IES- IDAHO 

By FSD By SSD 

Most effi ciem A 14 , 15, 18 15, 18 
c 12. 16, 17, 19 12, 14, 16, 17 
D I, 4 19 
E 8, 13 I 
F 5, 10 4, 8, 13 
G 9 5, 10 
H 2. 3, 6, 7, II 9 

Least efficient 2. 3, 6, 7. II 

TABLE B.S 

PROGRAM CATEGORI ES- KA NSAS 

By FSD By SS D 

Most efficient A 15 15 
B 18, 19 19 
c 16 16, 18 
D 17 17 
E 13, I I 13, I I 
F 8 8 

Least efficiem G I, 2, 3, 4, 5, 6, 7, 9, 10, 1. 2,3, 4,5, 6, 7,9, 10, 
I I , 12, 14 II , 12, 14 

By TSD 

15, 18 
12, 14, 16, 17 
19 

4, 8, 13 
5, 10 
9 
2, 3, 6. 7, II 

ByTSD 

15 
19 
16, 18 
17 
13, II 
8 
I , 2, 3, 4, 5, 6, 7, 9, 10. 

II , 12, 14 

72 
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TABLE 8 .9 

PROGRAM CATEGOR IES- MONTANA 

By FSD By SSD ByTSD 

Most effic ient A 19 19 19 
B 12 12 12 
c 10, 15, 18 15 IS 
D 16 18 18 
E 13, 17 10, 16 10, 16 
F 2, 4, 8 13, 17 13, 17 
G II 4, 8 4 , 8 
H I , 3, 5, 6, 7, 9, 14 II II 
I 2 2 

Least efficient I, 3, 5, 6 , 7, 9 , 14 I , 3, 5, 6, 7, 9, 14 

TABLE B.IO 

PROGRAM CATEGORIES- NEW MEXICO 

By FSD By SSD ByTSD 

Most effic ient A 15 15 15 
B 14 , 16, 17, 18, 19 14 , 16, 17, 18, 19 14 , 16, 17, 18, 19 
c I, 10, 12, 13 10, 12 , 13 10, 12 , 13 
D 4, 5, 8 I I 
E 2, II 5. 8 5, 8 
F 6 2, 4, II 2, 4, I I 
G 3, 7, 9 6 6 

Least efficient H 3, 7, 9 3, 7, 9 
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TABLE 8. 11 

PROGRAM CATEGOR IES- NEVADA 

ByFSD By SSD ByTSD 

Most efficient A 16, 17 16 16 
B I , 15, 19 I , 15, 17, 19 I , 15, 17, 19 
c 8, 12 . 13. 14 , 18 13, 14 , 18 13, 14, 18 
D II 8, II , 12 8, II , 12 

Least efficient E 2, 3.4, 5, 6. 7, 9.10 2, 3, 4, 5, 6, 7, 9, 10 2, 3, 4,5 , 6, 7,9 , 10 

TABLE 8.12 

PROGRAM CATEGORIES-OREGON 

By FSD By SSD ByTSD 

Most efficiem A 12 12 12 
B 15, 17 15, 17 15, 17 
c 16 16 16 
D 18. 19 18 18 
E 8 8 8 
F 13 19 19 
G 2, I 0 13 13 
H 4 2, 10 2, 10 

14 4 4 
II 14 14 

K II II 
l 3, 5, 6, 7, 9 I 

Least efficient M 3, 5, 6, 7, 9 3, 5, 6, 7. 9 
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TABLEB.I 3 

PROGR AM CATEGORI ES-UTA H 

By FSD BySSD ByTSD 

Most effi cient A 10, 18, 19 19 19 
B 12, 15, 16 12, 16, 18 12, 16, 18 
c I, 2, II , 14 10, 15 10, 15 
D 17 I , 2, II , 14 I , 2, II , 14 
E 5, 13 17 17 
F 9 13 13 
G 3, 4, 6, 7,8 5 5 
H 9 9 

Least efficient 3, 4, 6. 7, 8 3, 4, 6, 7, 8 

Analysis 5: Most producti ve years within a state. Each of the I 0 states was considered, 

to find the years, which were more productive per research dollar spent within the states 

(tables 8 .14-8 .23). 

TABLE 8.14 

MOST PRODUCT IVE Y EARS PER R ESEARCH D OLLA R SPE NT- ARIZONA 

By FSD BySSD ByTSD 

Most effici ent A I, 5. 6, 7, 8 I, 6, 8 I , 8 
B 2. 4 2, 7 6 
c 9 4, 5 2, 7 
D 10 9 4, 5 
E II 10 9 
F 3 3 10 
G 15 II 13 
H 12. 13 , 14 , 16 15 II 

17, 18. 19. 20. 2 1. 22, 23 12. 13. 14, 16 15 
17,18, 19,20, 21 , 22 .23 12. 13. 14, 16 

Least efficient K 17, 18, 19, 20, 2 1, 22,23 
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TABLE 8 .15 

M OST PROD UCTI VE Y EA RS PER RESEARCH DOLLA R SPENT-CALI FORN IA 

By FSD By SSD ByTSD 

Most effic ient A I I I 
B 2, 7, 8 2, 7, 8 2, 8 
c 3, 5, 9, I9 3, 9 3, 7 
D 4, 6 5, 6 9 
E IO 4 5, 6 
F I I, I2, I3, I4 , I5, I6, I7 IO, I9 4 , I O, I9 
G I8, 20, 2I , 22 , 23 I I , I2 , I3, I4 , IS , I6, I7 I I , I2, I3, I4 , I5, I6, I7 

Least efficient H I8, 20, 2 I, 22 , 23 I8, 20, 2I, 22,23 

TABLE 8.16 

M OST PROD UCTIV E Y EA RS PER RESEARCH D OLLA R SPENT- COLORA DO 

By FSD By SSD ByTSD 

Most effic ient A 5, 6, 7, 8 7, 8 7, 8 
B 2, 3, 4 , 9, I I , I 2, I 3 5, 6 5, 6 
c I, IO, I4 2, 3, 4 , 9 2, 3, 4 
D I5, I6 , I8,22,23 I, I I, I 2 I , 9, I I 
E I7, 20, 2I I3 I2 
F I9 IO, I4, 22 13 
G I5, 23 I O. 22 
H I6, 2I I4 

I 8, 20 I 5. 23 
J I7 I6, 2I 
K I9 I8, 20 
L I 7 

Least efficient M I9 
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TABLEB. l 7 

M OST P ROD UCT IVE YEARS PER R ESEA RCH D OLLAR SP ENT - LDAHO 

By FSD BySSD By TSD 

Most efficient A I, 2, 7, 9, 22 , 23 I, 9 I 
B 3, 6, 10, II 2, 7 2, 7, 9 
c 5, 8, 2 1 10, 22, 23 10 
D 4, 12, 15 6 6, 22, 23 
E 14 , 20 3, 5, II 3, 5, II 
F 13, 16, 17, 18, 19 8, 21 8, 21 
G 4, 12 4, 12 
H 15 15 
I 20 20 
1 14 14 
K 16, 17 16, 17 
L 13 13 

Least efficient M 18, 19 18, 19 

TABLE B. IS 

M OST PROD UCT IVE YEARS PER R ESEARCH D OLLAR SPENT - KANSAS 

By FSD By SSD ByTSD 

Most effi cient A I, 2, 12 I , 12 I , 12 
B 8, 13 2, 8, 13 2. 8, 13 
c 7. II , 14 7, II , 14 7, II , 14 
D 3, 5, 6, 9 3, 5, 6, 9 3, 5, 6, 9 
E 4, 10, 17 4, 10 4, 10 
F 18, 19.20 17, 18, 19 17, 18, 19 
G 15, 16, 21 , 22 , 23 20 20 

Least efficient H 15, 16, 21. 22,23 15, 16, 21. 22, 23 
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TABLE 8.19 

MOST PRODUCTIVE YEARS PER RESEARCH DOLLAR SPENT-MONTANA 

By FSD By SSD ByTSD 

Most efficient A 5, 7, 8, 9, 14 
B I , 6, II 7 
c 2. 4, 10, 12 6, 9 6, 9 
D 3, 13 I , 5, 10 I, 5, 10 
E 15. 16 2. II 2, II 
F 17, 18, 19, 20, 21 , 22 , 23 4, 12 4, 12 
G 3, 13, 14 3, 13, 14 
H I 5, 16 15, 16 

Least effic ient I 17, 18, 19, 20,2 1, 22, 23 17, 18, 19, 20, 21 , 22 , 23 

TABLE 8.20 

MOST PROD UCT IVE Y EARS PER RES EA RCH DOLLAR SPENT - NEW MEXICO 

By FSD BySSD ByTSD 

Most effic ient A I , 5, 6, 7, 9 I , 5, 6, 7, 9 I , 6 , 7, 9 
B 2, 3, 4, 8, II 2, 4 , 8, II 4, 5, II 
c 10 3. 10 2, 8 
D 12 . 16. 17. 18 12, 16, 17, 18 3, 10 
E 13, 14, 15 , 22 13, 14, 22 12, 16, 17, 18 
F 19.20, 21 , 23 15, 23 13, 14, 22 
G 21 15, 22 
H 20 21 

19 20 
Least effic ient 19 
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TABLE 8.2 1 

M OST PROD UCT IV E YEARS PER R ESEARCH DOLLAR SPENT-N EVADA 

By FSD By SSD ByTSD 

Most efficient A I, 7, 8. 9, II 7, 8 8 
B 6. 10 6. 9 7, 9 
c 2. 5, 22 ,23 I , 10, II I , 6 
D 3, 12 2 10, II 
E 13, 14, 15 3, 5 
F 20, 2 1 22, 23 3, 5 
G 18 12 22, 23 
H 4, 16, 17, 19 13, 14, 15 12 

20 13, 14. 15 
21 20 

K 18 2 1 
L 4, 16, 17, 19 18 

Least efficient M 4, 16, 17, 19 

TABLE 8 .22 

M OST PROD UCT IVE YEARS PER RESEARCH D OLLA R SPENT-OR EGON 

By FS D BySSD By TSD 

Most efficient A I, 7, 8, 13 , 18 7, 8, 18 7, 8 
B 5. 6, 9. 17 6. 9, 17 6, 9, 18 
c 10. 11.1 5. 19, 20 10. 13 10. 13, 17 
D 2, 12. 14. 16 I , 5, II , 15. 19 I , 5, II , 15, 19 
E 4 2,14 , 16,20 2, 14, 16,20 
F 3 12 12 
G 21. 22 4 
H 23 

21 , 22 2 1' 22 
Least efficient 23 23 
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TABLEB.23 

MOST PRODUCTIVE Y EARS PER R ESEA RCH DOLLAR SPENT- UTAH 

By FSD By SSD By TSD 

Most effic ient A 5, 6, 7,8, 18 6, 7, 8 7, 8 
B 4, 9, 10, II , 12, 16, 5 

19 . 20 
c I, 2, 17, 21 , 22, 23 9, 10, II , 12 9, II , 12 
D 3. 13, 15 2, 4 , 18 , 19 2, 4. 10 
E 14 I, 16, 17, 20 I, 18, 20 
F 2 1, 22 , 23 16, 17. 19 
G 3, 13, 15 22 , 23 
H 14 21 

3, 13, 15 
Least e fficiem 14 

A11alvsis 6: Most producti ve state(s) across all years and research program categories. 

In th is analysis, the states are numbered as fo llows: !-Utah, 2- Colorado, 3- Nevada, 

4- Ari zona, 5- Montana, 6- Kansas, 7- 0regon, 8-New Mex ico, 9- California, and 

I 0- ldaho (see tab les 8 .24-8-41 ). 

TABLE 8 .24 

M OST PROD UCTIVE STATES ACROSS ALL Y EA RS AND R ESEA RCH PROGRAM 

CATEGORY I- F EED GRAINS 

By FSD By SS D ByTSD 

Most efficient A I, 8 I I 
B 2 2, 8 2, 8 
c 3 
D 10 10 10 
E 4 4 
F 7 

Least efficient G 5. 6, 9 5, 6, 9 5, 6. 9 
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TABLE B.2 5 

M OST P ROD UCT IVE STATES ACROSS ALL Y EARS AN D R ESEA RCH P ROG RAM 

CATEGORY 2- FOOD GRA INS 

By FSD By SSD By TSD 

\!lost efllc ient A I. 2, 8 
B 5 2, 8 2, 8 
c 4, 7 5 5 
D 9 4, 7 4, 7 
E 3, 6, 10 9 9 

Least effi cient F 3, 6, 10 3, 6, 10 

TABLEB.26 

M OST PRODUCTIVE S TATES A CROSS ALL Y EA RS AN D R ESEA RCH P ROG RA M 

CATEGORY 3- 0 IL C ROPS 

Most effi cient 

Least effi cient 

A 
B 
c 
D 
E 

By FSD 

5, 10 
7 
I , 4, 6. 9 

By SSD 

5, 10 
7 
1, 4, 6, 9 

TABLE B.27 

By TSD 

5, 10 
7 
I, 4. 6, 9 

M OST PRODUCTI VE STATES A CROSS ALL Y EARS AN D R ESEA RCH P ROGRAM 

CATEGORY 4 - F RUITS & N UTS* 

By FS D By SSD By TSD 

Most and least efficient I. 2. 3. 4. 5, 6. 7, 8. 9, 10 I, 2, 3. 4, 5. 6, 7, 8, 9, 10 1, 2, 3, 4, 5. 6, 7, 8, 9, 10 

*For fruits and nuts. there is no comparative advantage of any SAES. The most effic ient and the least efficiem 
sets are the same. 



TABLE B.28 

MOST PRODUCTIVE STATES ACROSS ALL YEARS AND RESEARCH PROGRAM 

CATEGORY 5- VEGETABLES 

By FSD 

Most effic iem A 
B 
c 
D 4 

E 10 
Least efficient F J , 5, 6, 7, 9 

By SSD 

4 
10 
3, 5. 6. 7, 9 

TABLE B.29 

ByTSD 

10 
3, 5, 6, 7, 9 

MOST PROD UCT IVE STAT ES ACROSS ALL YEARS AND R ESEA RCH PROGRAM 

CATEGORY7- TOBACCO* 

By FSD By SS D ByTSD 
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Most and least efficient I, 2, 3, 4, 5, 6, 7, 8, 9, 10 I, 2, 3, 4, 5, 6, 7, 8, 9, 10 I, 2, 3, 4, 5, 6, 7, 8, 9, 10 

*For tobacco. there is no comparat ive advantage of any SAES. The most efficient and the least effi cient sets 
are the sa me. 

TABLE B.30 

M OST PROD UCT IVE STATES ACROSS ALL Y EA RS AND RESEARCH PROGRAM 

CATEGORY 8-MEAT ANIMAL, MI SCELLANEOUS LiVESTOCK, AND FISH 

By FSD By SSD ByTSD 

Most efficient A 2. 3. 8 2. 3, 8 2, 3, 8 
B 7 7 7 
c 5. 10 5. 10 5, 10 
D 6 6 6 

Least effic ient E I. 4. 9 I, 4. 9 I , 4, 9 



TABLE 8.31 

MOST PRODUCT IVE STATES ACROSS ALL YEARS AND R ESEARCH P ROGRAM 

CATEGORY 9- D AIRY PRODUCTS 

By FSD By SSD ByTSD 

Most efficient A I 
B 10 10 10 

Least effic ient c 2, 3, 4, 5, 6, 7. 8, 9 2, 3, 4, 5, 6, 7, 8, 9 2, 3, 4, 5, 6, 7, 8, 9 

TABLE 8.32 

MOST P RODUCTIVE STATES ACROSS ALL YEARS AND R ESEARCH P ROGRAM 

CATEGORY 10- POULTRY 

By FSD By SSD ByTSD 

Most effic ient A 1. 8 I , 8 I , 8 
B 2, 5 2. 5 2, 5 
c 7, 9 7, 9 7, 9 
D 10 10 10 

Least efficient E 3, 4, 6 3, 4, 6 3, 4 , 6 

TABLE B.33 

MOST PRODUCTIVE STATES ACROSS ALL YEARS AND R ESEARCH P ROGRAM 

CATEGORY II - OTHER CROPS 

By FSD BySSD By TSD 

Most efficient A 1.3 I I 
B 2, 8 3, 8 3, 8 
c 5, 6 2 2 
D 7 5, 6 5, 6 
E 4. 9, 10 7 7 

Least efficient F 4, 9. 10 4, 9. 10 
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TABLE 8.34 

MOST PRODUCTIVE STATES A CROSS ALL YEARS AN D RESEARCH P ROGRAM 

CATEGORY 12- F OREST & FOREST PRODUCTS 

By FSD 

Most effic ient A 7 
B 2 
c 1.8 
D 9. IO 
E 4. 5 
F 
G 6 
H 

Least efficient 

By SSD 

I 
8, 9 
IO 
4, 5 

TABLE 8.35 

ByTSD 

I 
8, 9 
IO 
5 
4 
3 
6 

M OST PRODUCT IVE STATES ACROSS ALL Y EA RS AND RESEARCH PROGRAM 

C ATEGO RY 13 - SOIL, WATER, A IR,&CLIMATE 

Most efficie nt A 
B 
c 
D 
E 
r 
G 
I-I 
I 

Least effic ient 

By FSD 

8 
3, IO 
5 
1.7 
6 

4 

9 

By SSD 

IO 
6 
2 
4 
9 

ByTSD 

IO 
6 
2 
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TABLE B.36 

MOST PRODUCTIVE STATES A CROSS ALL Y EA RS AND R ESEA RCH PROGRAM 

C ATEGORY 14- RECREATION 

By FSD By SSD ByTSD 

Most efficient A 8, IO 
B I I , IO I , IO 
c 3 3 3 
D 2, 4 4 
E 7 
F 5, 6, 9 7 

Least efficient G 5, 6, 9 5, 6, 9 

TABLE B.37 

MOST PRODUCTIVE STATES A CROSS ALL YEARS AND R ESEA RCH PROGRAM 

CATEGORY 15- T ECHNOLOGY OF PRODUCT ION 

By FSD By SS D By TSD 

Most effic ient A 
B I , 2, IO I , 2, IO I , 2, IO 
c 3, 6 6 6 
D 4 3, 4 3, 4 
E 5, 7 7 7 
F 9 5 

Least effi cient G 9 
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TABLE 8.38 

MOST PRODUCTIVE STATES A CROSS ALL Y EA RS AND R ESEA RCH PROGRAM 

CATEGORY 16- AGRICULTURE IN SOCIETY 

ByFSD By SSD ByTSD 

Most efficient A I , 3, 8 I , 3, 8 I , 3, 8 
B 2, 10 2, 10 2, 10 
c 6, 7 6, 7 6, 7 
D 5 5 5 
E 4 4 4 

Least effi cient F 9 9 9 

TABLE 8.39 

MOST PRODUCTIVE STATES A CROSS ALL YEARS AND R ESEAR CH PROGRAM 

CATEGORY 17- AGR ICULTURE ENTERPR ISE 

By FSD By SSD ByTSD 

Most effic ient A 3, 8, 10 3, 8 3, 8 
B I , 7 I, 7, 10 I , 7, 10 
c 4 4 4 
D 2 2 
E 5. 6 5, 6 5, 6 

Least effi cient F 9 9 9 
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TABLE B40 

M OST PRODUCTI VE STATES ACROSS ALL YEARS AND RESEARCH PROGRAM 

C ATEGORY 18- W EEDS, SEEDS, & B UGS 

By FSD BySSD ByTSD 

Most efficient A I I I 
B 2 2 2 
c 3. 8. 10 8. 10 8, 10 
D 4. 5. 6 3, 4 3, 4 
E 7, 9 5 5 
F 6, 7 6, 7 

Least effic ient G 9 9 

TABLE 8.41 

M OST PRODUCTIVE STATES ACROSS ALL Y EA RS AND R ESEA RCH PROGRAM 

CATEGORY 19- B ASIC R ESEARCH 

By FSD BySSD By TSD 

Most effi cient A I I 
B 2, 3, 5, 8 2, 3 2, 3 
c 6, 10 5, 8 5, 8 
D 4, 7 6, 10 6, 10 
E 9 4, 7 4, 7 

Least efficient F 9 9 
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