

Tutorial Series

digitalcommons.usu.edu/dg

The Chevalley Basis for a Split Semisimple Lie Algebra

Synopsis

Let g be a split, semi-simple real Lie algebra. This implies, in particular, that there exists a Cartan subalgebra for g for which the associated root space decomposition of g is real. For such Lie algebras there is a very special basis called the <u>Chevalley basis</u>. In this worksheet we calculate the Chevalley basis for the Lie algebra p(6, R) and illustrate the various properties of this basis.

Defining Properties of the Chevalley Basis

Let $n = \dim(g)$, $r = \operatorname{rank}(g)$ and m = (n - r)/2. Let \mathfrak{h} be the Cartan subalgebra of g. Let Δ be the associated set of roots, let $\Delta^+ = \{\alpha_1, \alpha_2, \dots, \alpha_m\}$ be the positive roots and let $\Delta_0 = \{\alpha_1, \alpha_2, \dots, \alpha_r\}$ be the simple roots. As usual, write the root space decomposition as

$$\mathfrak{g} = \mathfrak{h} + \sum_{\alpha \in \Delta^+} \mathsf{R}_{\alpha} + \sum_{\alpha \in \Delta^+} \mathsf{R}_{-\alpha}.$$

The root spaces R_{α} are 1-dimensional subalgebras of g. Write $h_1, h_2, ..., h_r, x_1, x_2, ..., x_m, y_1, y_2, ..., y_m$ for the Chevalley basis. The following are the defining properties of a Chevalley basis.

Property 1. The vectors $h_1, h_2, ..., h_r$ are a basis for \mathfrak{h} , x_i spans R_{α_i} and y_i spans $R_{-\alpha_i}$. If α, β , and $\alpha + \beta$ are roots, write $[x_{\alpha}, x_{\beta}] = N_{\alpha, \beta} x_{\alpha + \beta}$, for some numbers $N_{\alpha, \beta}$.

Property 2. The s/(2) structure equations hold: $[x_i, y_i] = -h_i$, $[h_i, x_i] = 2x_i$, $[h_i, y_i] = -2y_i$, for i = 1, 2, ..., r.

Property 3. The structure equations $[h_i, x_i] = a_{ii} x_i$ hold, where a_{ii} is the Cartan matrix and i, j = 1, 2, ..., r.

Property 4. The mapping which sends $h_i \rightarrow -h_i$, $x_{\ell} \rightarrow y_{\ell}$ and $y_{\ell} \rightarrow x_{\ell}$ is a Lie algebra automorphism. This means that $N_{\alpha,\beta} = N_{-\alpha,-\beta}$.

Error, invalid operator parameter name

Property 5. If the β string through α is $\alpha - q\beta$, ..., $\alpha + p\beta$, then $N_{\alpha, \beta} = \pm (q + 1)$.

We remark that different authors choose different normalizations for the definition of the Chevalley basis. We have followed the normalizations in reference [1]. In [2], one finds that the Chevally basis satisfies $N_{\alpha, \beta} = -N_{-\alpha, -\beta}$.

 $y_0 \rightarrow x_0$

1. The Chevalley basis for sp(6, R)

We begin by using the command <u>SimpleLieAlgebraData</u> to retrieve the structure equations for the 21-dimensional Lie algebra sp(6, R). This is the Lie algebra of 6 x 6 matrices which are skew symmetric with respect to a given symplectic form. The basis used to generate the structure equations of sp(6, R) comes from the <u>standard representation</u>.

```
> with(DifferentialGeometry): with(LieAlgebras):
> LD := SimpleLieAlgebraData("sp(6, R)", sp6R):
```

Initialize this Lie algebra.

alg > DGsetup(LD);

Lie algebra: sp6R

(2.1

For a basis of the Cartan subalgebra we take

```
sp6R > CSA := [e1, e5, e9];
```

$$CSA := [e1, e5, e9]$$
 (2.2)

The root space decomposition, the positive roots and the simple roots are:

sp6R > RSD := RootSpaceDecomposition (CSA); RSD := table([[1, 0, -1] = e3, [-1, 0, -1] = e18, [0, -2, 0] = e19, [1, 1, 0] = e11, [0, 0, -2] = e21, [0, 0, 2] = e15, [0, 2, 0] = e13, [-1, 0, 1] = e7, [-1, 1, 0] = e4, [2, 0, 0] = e10, [0, -1, 1] = e8, [0, 1, -1] = e6, [0, 1, 1] = e14, [-1, -1, 0] = e17, [0, -1, -1] = e20, [-2, 0, 0] = e16, [1, -1, 0] = e2, [1, 0, 1] = e12]) sp6R > PosRts := PositiveRoots (RSD); PosRts := Constructed (RSD); PosRts := SimpleRoots (PosRts); SimRts := SimpleRoots (PosRts); SimRts := Constructed (PosRts); C.4 C.4 C.4 C.5 C.5 C.5

 $\begin{array}{l} \textbf{sp6R > B := ChevalleyBasis(CSA, RSD, PosRts, algebratype = ["C", 3]);} \\ B := [el - e5, e5 - e9, e9, e2, e6, el5, e3, el4, el2, el3, el1, el0, -e4, -e8, -e21, -e7, -e20, -el8, -e19, -e17, -e16] \end{array}$

The new structure equations for sp(6, R) are now calculated.

sp6R > newLD := LieAlgebraData(B, chev):

We label the basis elements in accordance with our description of the Chevalley basis given in the Synposis.

```
sp6R > DGsetup(newLD, '[h1, h2, h3, x1, x2, x3, x4, x5, x6, x7, x8, x9, y1, y2, y3, y4,
y5, y6, y7, y8, y9]', [theta]);
Lie algebra: chev
(2.7
```

2. Property 1. The Cartan Subalgebra and the Root Space Decomposition in the Chevalley Basis.

The Chevalley basis was computed in the last section. We see immediately from the the first 3 rows of the following multiplication table that the vectors h_1 , h_2 , h_3 define a Cartan subalgebra (the adjoint matrices are all diagonal).

chev	>	Mul	tip	licat	ionTa	ble(che	e v , "]	LieTal	ole",	rows =	= [3	\$13	3], col	Lumns =	: [\$1	21]);			
chev	<u>h1</u>	h2	h3	x1	<i>x2</i>	<i>x3</i>	<i>x4</i>	<i>x5</i>	<i>x6</i>	<i>x</i> 7	<i>x8</i>	<i>x9</i>	yl	<i>y2</i>	y3	<i>y4</i>	<i>y5</i>	<i>y</i> 6	
h1	0	0	0	2 <i>x1</i>	$-x^2$	0	<i>x4</i>	-x5	хб	-2x7	0	2 <i>x</i> 9	-2 yl	y2	0	- <i>y</i> 4	y5	— уб	
h2	0	0	0	-xl	2 <i>x2</i>	-2 x3	<i>x4</i>	0	— <i>хб</i>	2 <i>x</i> 7	<i>x8</i>	0	yl	$-2y^{2}$	2 <i>y</i> 3	- <i>y</i> 4	0	уб	_
h3	0	0	0	0	$-x^2$	2 <i>x3</i>	-x4	<i>x5</i>	<i>x6</i>	0	0	0	0	<i>y2</i>	-2 y3	<i>y</i> 4	- y5	- <i>y</i> 6	
:hev :hev	> >	CSA Que	1 :: ry(= [h1 CSA1,	, h2, "Car	h3]: tanSuba	algeb	ra");	ti	rue									(3.
ne ro	ots	pac	e de	compc	sition	is	argeo	La),	ti	rue									
	010	pao	0 40	compe	010011	.0													

 $\begin{aligned} \text{chev} > \text{RSD1} &:= \text{RootSpaceDecomposition (CSA1)}; \\ \text{RSD1} &:= table([[1, 0, -1] = y5, [2, -2, 0] = y7, [-2, 1, 0] = y1, [0, 1, 0] = x8, [-1, 0, 1] = x5, [2, 0, 0] = x9, [-1, 2, -1] = x2, \\ &[-1, 1, -1] = y6, [-2, 2, 0] = x7, [1, -1, 1] = x6, [0, -2, 2] = x3, [1, -2, 1] = y2, [-1, -1, 1] = y4, [0, -1, 0] = y8, [0, 2, -2] = y3, [-2, 0, 0] = y9, [1, 1, -1] = x4, [2, -1, 0] = x1]) \end{aligned}$

and so we see that the root spaces are spanned precisely by the vectors x_i and y_j . The simple roots are, by construction of the Chevalley basis, the roots for the vectors x_1 , x_2 , x_3 . These are

```
\begin{bmatrix} sp6R > SimRts1 := [LieAlgebraRoots(x1, CSA1), LieAlgebraRoots(x2, CSA1), LieAlgebraRoots(x3, CSA1)]; \\ SimRts1 := \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 2 \\ -1 \end{bmatrix}, \begin{bmatrix} 0 \\ -2 \\ 2 \end{bmatrix} \end{bmatrix} (3.4)
```

and the corresponding set of positive roots is

$$chev > PosRts1 := PositiveRoots (RSD1, SimRts1); PosRts1 := \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 2 \\ -1 \end{bmatrix}, \begin{bmatrix} -2 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ -2 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix} \end{bmatrix}$$
(3.5)

3. Property 2. The Structure Equations for $[h_i, x_j]$

The <u>Cartan matrix</u> for sp(6, R) is

```
chev > a := CartanMatrix("C", 3);
```

$$a := \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -2 & 2 \end{bmatrix}$$
(4.1)

and this gives the structure constants $[h_i, x_j] = a_{ji} x_j$:

 $\begin{bmatrix} chev > MultiplicationTable(chev, "LieTable", rows = [1, 2, 3], columns = [4, 5, 6]); \\ \frac{chev}{h1} \frac{xl}{2xl} - x2 \frac{x3}{0} \\ \frac{h2}{h2} - xl \frac{2x2}{2x3} - 2x3 \\ \frac{h3}{0} \frac{0}{2x2} - 2x3 \end{bmatrix}$ (4.2)

The structure equations for subalgebra defined by $\{h_i, x_i, y_i\}$ are

$$\begin{bmatrix} chev > LieAlgebraData([h1, x1, y1]); \\ [el, e2] = 2 e2, [el, e3] = -2 e3, [e2, e3] = -el \end{bmatrix}$$
(4.3)

$$\begin{array}{|} chev > LieAlgebraData([h2, x2, y2]); \\ [e1, e2] = 2 \ e2, \ [e1, e3] = -2 \ e3, \ [e2, e3] = -el \end{array}$$
(4.4

chev > LieAlgebraData([h3, x3, y3]); [el, e2] = 2 e2, [el, e3] = -2 e3, [e2, e3] = -el

These are the standard structure equations for sl(2), as required.

4. Property 3. The Automorphism Property

We define the linear transformation θ which maps $h_i \rightarrow -h_i$, $x_{\ell} \rightarrow y_{\ell}$ and $y_{\ell} \rightarrow x_{\ell}$ and check that it is an automorphism.

5. Property 4. The Structure Equations for $[x_i, x_j]$

To verify that the structure equations for $[x_i, x_j]$ satisfy the defining properties **4** and **5** of the Chevalley basis, we first recall that the simple roots are

chev > SimRts1;

$$\begin{bmatrix} 2\\-1\\0 \end{bmatrix}, \begin{bmatrix} -1\\2\\-1 \end{bmatrix}, \begin{bmatrix} 0\\-2\\2 \end{bmatrix} \end{bmatrix}$$
(6.1)

(4.5

```
The root pattern for sp(6, R) is given by

\begin{bmatrix} chev > AbstractRoots := PositiveRoots("C", 3); \\ AbstractRoots := \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} (6.2) \\ (6.2) \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} chev > alpha := DGzip(AbstractRoots, SimRts1, "plus"); \\ \alpha := \begin{bmatrix} 2 \\ -1 \\ 0 \\ -1 \end{bmatrix}, \begin{bmatrix} -1 \\ 2 \\ -1 \\ 2 \\ -1 \end{bmatrix}, \begin{bmatrix} 0 \\ -2 \\ 2 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ -2 \\ 2 \\ -1 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \\ -1 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 0 \\ -2 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} (6.3) \\ This ordering of the positive roots coincides with the ordering of the vectors: \\ \begin{bmatrix} chev > seq(RootSpace(t, RSD1), t = alpha); \end{bmatrix}
```

```
x1, x2, x3, x4, x5, x6, x7, x8, x9
```

(6.4

Thus, for example, since AbstractRoots[1] + AbstractRoots[2] = AbstractRoot[4], we have $\alpha_1 + \alpha_2 = \alpha_4$ and hence $[x_1, x_2] = N_{12}x_4$. Likewise, $[x_2, x_5] = N_{25}x_7$ and so on. This accounts for all the zero entries in the multiplication table for the $\{x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9\}$. (If the sum of roots is not a root, then bracket of the corresponding root spaces is 0.)

Moreover, the structure constants for the $\{y_1, y_2, y_3, y_4, y_5, y_6, y_7, y_8, y_9\}$ are identical to those for $\{x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9\}$.

```
chev > MultiplicationTable(chev, "LieTable", rows = [$4 .. 12],columns =[$4 .. 12]),
MultiplicationTable(chev, "LieTable", rows = [$13 .. 21],columns =[$13 .. 21]);
```

chev	x1	<i>x2</i>	<i>x3</i>	<i>x4</i>	<i>x5</i>	<i>x6</i>	<i>x7</i>	<i>x8</i>	<i>x</i> 9
<i>x1</i>	0	<i>x4</i>	0	0	<i>x6</i>	0	<i>x8</i>	2 <i>x</i> 9	0
<i>x2</i>	-x4	0	<i>x5</i>	0	2 <i>x</i> 7	<i>x8</i>	0	0	0
х3	0	- x5	0	- <i>x6</i>	0	0	0	0	0
<i>x4</i>	0	0	<i>x6</i>	0	<i>x8</i>	2 <i>x</i> 9	0	0	0
x5	- x6	-2x7	0	- <i>x</i> 8	0	0	0	0	0
<i>x6</i>	0	- <i>x</i> 8	0	-2 x9	0	0	0	0	0
<i>x</i> 7	- x8	0	0	0	0	0	0	0	0
x8	-2 x9	0	0	0	0	0	0	0	0
x9	0	0	0	0	0	0	0	0	0

(6.5

• 6. Property 5. The Formula for $N_{\alpha, \beta}$

Our positive roots are:

chev > alpha;

$$\begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 2 \\ -1 \end{bmatrix}, \begin{bmatrix} 0 \\ -2 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}, \begin{bmatrix} -2 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} \end{bmatrix}$$
(7.1)

Since the $\boldsymbol{\alpha}_2$ string through $\boldsymbol{\alpha}_5$ is

```
chev > RootString(alpha[2], alpha[5], alpha);
```

$$\begin{bmatrix} 0\\-2\\2 \end{bmatrix}, \begin{bmatrix} -1\\0\\1 \end{bmatrix}, \begin{bmatrix} -2\\2\\0 \end{bmatrix}$$
(7.2)

we have that q = 1 and therefore we must have that $[x_2, x_5] = \pm 2 x_7$ and indeed

```
chev > LieBracket(x2, x5);
```

(7.3

7. A Remark on the Algorithm Used To Calculate the ChevalleyBasis

The help page ChevalleyBasisDetails provides full details on how the Chevalley basis is computed. A key step is to calculate a basis where Properties 1--3 in the Synopsis hold. This is done by the command SL2Basis which is an export of the ChevalleyBasis. For example:

2 *x*7

$$\begin{bmatrix} \mathbf{sp6R} > \mathbf{CSA2}, \ \mathbf{RSD2}, \ \mathbf{SR}, \ \mathbf{P} := \mathbf{ChevalleyBasis:} -\mathbf{SL2Basis}(\mathbf{RSD}, \ \mathbf{PosRts}, \ \mathbf{SimRts}); \\ CSA2, RSD2, SR, P := [el - e5, e5 - e9, e9], table \left(\begin{bmatrix} [1, 0, -1] = \sqrt{t1} \ e3, [-1, 0, -1] = -\frac{1}{\sqrt{t6}} \ el8, [0, -2, 0] = \frac{1}{\sqrt{t6}} \ el8, [0, -2, 0] = \frac{1}{\sqrt{t6}} \ el9, [1, 1, 0] = \sqrt{t2} \ el1, [0, 0, -2] = -e2l, [0, 0, 2] = el5, [0, 2, 0] = \sqrt{t3} \ el3, [-1, 0, 1] = -\frac{1}{\sqrt{t1}} \ e7, [-1, 1, 0] = -e4, [2, 0, 0] = \sqrt{t4} \ el0, [0, -1, 1] = -e8, [0, 1, -1] = e6, [0, 1, 1] = \sqrt{t5} \ el4, [-1, -1, 0] = -\frac{1}{\sqrt{t2}} \ el7, [0, -1, -1] = -\frac{1}{\sqrt{t5}} \ e20, [-2, 0, 0] = -\frac{1}{\sqrt{t4}} \ el6, [1, -1, 0] = e2, [1, 0, 1] = \sqrt{t6} \ el2 \end{bmatrix} , \begin{bmatrix} 1\\ -1\\ 0\\ 1\\ -1 \end{bmatrix}, \begin{bmatrix} 0\\ 0\\ 2\\ 2 \end{bmatrix}, \{tl, t2, t3, t4, t5, t6\} \end{bmatrix}$$

The output consists of:

- 1. A new basis for the Cartan subalgebra.
- The root space decomposition for the new basis. Basis for the roots spaces for the simple roots are chosen so that Properties 2 and 3 hold. The remaining basis elements contain the scalar factors which are to be fixed by Properties 4 and 5.
- 3. The simple roots for the new basis. The Cartan matrix calculated from these simple roots will be in standard form.

4. A set defining the scalar factors.

Highlighted Commands

• <u>CartanSubalgebra</u>, <u>ChevalleyBasis</u>, <u>LieAlgebraRoots</u>, <u>LinearTransformation</u>, <u>Query</u>, <u>RootSpace</u>, <u>RootString</u>, <u>SimpleLieAlgebraData</u>,

References

1. N. Bourbaki, *Elements of Mathematics, Lie Groups and Lie Algebras Chapters* 7 -- 9, Springer 2. J. E. Humphreys, *Introduction to Lie Algebras and Representation Theory*, Springer

Release Notes

• This worksheet was compiled with Maple 17 and DG release USU1, available by request from ian.anderson@usu.edu

Author

lan M. Anderson Department of Mathematics Utah State University October 10, 2014