THE

Tutorial Series

The Chevalley Basis for a Split Semisimple Lie Algebra

Synopsis

Let \mathfrak{g} be a split, semi-simple real Lie algebra. This implies, in particular, that there exists a Cartan subalgebra for \mathfrak{g} for which the associated root space decomposition of \mathfrak{g} is real. For such Lie algebras there is a very special basis called the
Chevalley basis. In this worksheet we calculate the Chevalley basis for the Lie algebra $\mathrm{sp}(6, R)$ and illustrate the various properties of this basis.

Defining Properties of the Chevalley Basis

Let $n=\operatorname{dim}(\mathfrak{g}), r=\operatorname{rank}(\mathfrak{g})$ and $m=(n-r) / 2$. Let \mathfrak{h} be the Cartan subalgebra of \mathfrak{g}. Let Δ be the associated set of roots, let $\Delta^{+}=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right\}$ be the positive roots and let $\Delta_{0}=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}\right\}$ be the simple roots. As usual, write the root spact decomposition as

$$
\mathfrak{g}=\mathfrak{h}+\sum_{\alpha \in \Delta_{+}} R_{\alpha}+\sum_{\alpha \in \Delta^{+}} R_{-\alpha} .
$$

The root spaces R_{α} are 1-dimensional subalgebras of g . Write $h_{1}, h_{2}, \ldots, h_{r}, \mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{m}}, \mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{m}}$ for the Chevalley basis. The following are the defining properties of a Chevalley basis.

Property 1. The vectors $h_{1}, h_{2}, \ldots, h_{r}$ are a basis for \mathfrak{h}, x_{i} spans $R_{\alpha_{i}}$ and y_{i} spans $R_{-\alpha_{i}}$. If α, β, and $\alpha+\beta$ are roots, write $\left[x_{\alpha}, x_{\beta}\right]=N_{\alpha, \beta} x_{\alpha+\beta}$, for some numbers $N_{\alpha, \beta}$.

Property 2. The $s l(2)$ structure equations hold: $\left[x_{i}, y_{i}\right]=-h_{i},\left[h_{i}, x_{i}\right]=2 x_{i},\left[h_{i,}, y_{i}\right]=-2 y_{i}$, for $i=1,2, \ldots, r$.

Property 3. The structure equations $\left[h_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right]=\mathrm{a}_{\mathrm{ji}} \mathrm{x}_{\mathrm{i}}$ hold, where a_{ij} is the Cartan matrix and $\mathrm{i}, \mathrm{j}=1,2, \ldots, \mathrm{r}$.
Property 4. The mapping which sends $\mathrm{h}_{\mathrm{i}} \rightarrow-\mathrm{h}_{\mathrm{i}}, \mathrm{x}_{\ell} \rightarrow \mathrm{y}_{\ell}$ and $y_{\ell} \rightarrow x_{\ell}$ is a Lie algebra automorphism. This means that $N_{\alpha, \beta}=N_{-\alpha,-\beta}$.
Error, invalid operator parameter name

Property 5. If the β string through α is $\alpha-q \beta, \ldots, \alpha+p \beta$, then $N_{\alpha, \beta}= \pm(q+1)$.
We remark that different authors choose different normalizations for the definition of the Chevalley basis. We have followed the normalizations in reference [1]. In [2], one finds that the Chevally basis satisfies $N_{\alpha, \beta}=-N_{-\alpha,-\beta}$.

1. The Chevalley basis for $s p(6, R)$

We begin by using the command SimpleLieAlgebraData to retrieve the structure equations for the 21-dimensional Lie algebra $s p(6, R)$. This is the Lie algebra of 6×6 matrices which are skew symmetric with respect to a given symplectic form. The basis used to generate the structure equations of $s p(6, R)$ comes from the standard representation.
[> with(DifferentialGeometry) : with (LieAlgebras) :
[> LD := SimpleLieAlgebraData("sp(6, R)", sp6R):
Initialize this Lie algebra.
[alg > DGsetup (LD);

> Lie algebra: sp6R

For a basis of the Cartan subalgebra we take
[sp6R > CSA := [e1, e5, e9];

$$
C S A:=[e 1, e 5, e 9]
$$

The root space decomposition, the positive roots and the simple roots are:

```
sp6R > RSD := RootSpaceDecomposition(CSA);
RSD := table([[1,0,-1]=e3,[-1,0,-1]=e18,[0,-2,0]=e19,[1,1,0]=el1,[0,0,-2]=e21,[0,0,2]=e15,[0,2,0]
    =el3,[-1,0,1]=e7,[-1,1,0]=e4,[2,0,0]=el0,[0,-1,1]=e8,[0,1,-1]=e6,[0,1,1]=el4,[-1,-1,0]=el7,
    [0, -1, -1]=e20,[-2,0,0]=e16,[1,-1,0]=e2,[1,0,1]=e12])
sp6R > PosRts := PositiveRoots(RSD);
```

$$
\text { PosRts }:=\left[\left[\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
2
\end{array}\right],\left[\begin{array}{l}
0 \\
2 \\
0
\end{array}\right],\left[\begin{array}{l}
2 \\
0 \\
0
\end{array}\right],\left[\begin{array}{r}
0 \\
1 \\
-1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right],\left[\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]\right]
$$

Chev $>$ SimRts := SimpleRoots (PosRts);

$$
\text { SimRts }:=\left[\left[\begin{array}{l}
0 \\
0 \\
2
\end{array}\right],\left[\begin{array}{r}
0 \\
1 \\
-1
\end{array}\right],\left[\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right]\right]
$$

The algebra $s p(6, R)$ has rank 3 and is of root type C. With this data we can now compute the Chevalley basis.

$$
\left[\begin{array}{rl}
\mathrm{sp} 6 \mathrm{R}>\mathrm{B}:=\text { ChevalleyBasis(CSA, RSD, PosRts, algebratype }=[" \mathrm{C} ", ~ 3]) ; \\
B:= & {[e 1-e 5, e 5-e 9, e 9, e 2, e 6, e 15, e 3, e 14, e 12, e 13, e 11, e 10,-e 4,-e 8,-e 21,-e 7,-e 20,-e 18,-e 19,-e 17,} \\
& \quad-e 16]
\end{array}\right.
$$

The new structure equations for $s p(6, R)$ are now calculated.
[sp6R > newLD := LieAlgebraData(B, chev):
We label the basis elements in accordance with our description of the Chevalley basis given in the Synposis.

2. Property 1. The Cartan Subalgebra and the Root Space Decomposition in the Chevalley Basis.

The Chevalley basis was computed in the last section. We see immediately from the the first 3 rows of the following multiplication table that the vectors h_{1}, h_{2}, h_{3} define a Cartan subalgebra (the adjoint matrices are all diagonal).

chev	h1 h2 h3	h3	x1	x2	x3	x4	x5	x6	x7 $\times 8$	x9	y1	$y 2$	$y 3$	y 4	$y 5$	$y 6$
h1	00	0	$2 x 1$	$-x 2$	0	x4	$-x 5$	x6	$-2 x 70$	2×9	$-2 y l$	y^{2}	0	$-y 4$	y5	$-y 6$
h2	$0 \quad 0$	0	$-x 1$	2×2	-2×3	x4	0	$-x 6$	$2 \times 7 \times 8$	0	yl	$-2 y 2$	$2 y 3$	$-y^{4}$	0	y6
h3	00	0	0	$-x 2$	2×3	$-x 4$	x5	$x 6$	00	0	0	$y 2$	$-2 y 3$	y4	$-y 5$	$-y 6$

We can also verify that h_{1}, h_{2}, h_{3} defines a Cartan subalgebra with the Query command.

```
[chev > CSA1 := [h1, h2, h3]:
chev > Query(CSA1, "CartanSubalgebra");
```

true

The root space decomposition is
Chev > RSD1 := RootSpaceDecomposition(CSA1);

$$
\begin{align*}
& \operatorname{RSD} 1:=\operatorname{table}([[1,0,-1]=y 5,[2,-2,0]=y 7,[-2,1,0]=y 1,[0,1,0]=x 8,[-1,0,1]=x 5,[2,0,0]=x 9,[-1,2,-1]=x 2, \\
& \quad[-1,1,-1]=y 6,[-2,2,0]=x 7,[1,-1,1]=x 6,[0,-2,2]=x 3,[1,-2,1]=y 2,[-1,-1,1]=y 4,[0,-1,0]=y 8,[0,2, \\
& \quad-2]=y 3,[-2,0,0]=y 9,[1,1,-1]=x 4,[2,-1,0]=x 1])
\end{align*}
$$

and so we see that the root spaces are spanned precisely by the vectors x_{i} and y_{i}. The simple roots are, by construction of the Chevalley basis, the roots for the vectors x_{1}, x_{2}, x_{3}. These are

```
sp6R > SimRts1 := [LieAlgebraRoots(x1, CSA1), LieAlgebraRoots(x2, CSA1),
    LieAlgebraRoots(x3, CSA1)];
```

$$
\text { SimRts } 1:=\left[\left[\begin{array}{r}
2 \\
-1 \\
0
\end{array}\right],\left[\begin{array}{r}
-1 \\
2 \\
-1
\end{array}\right],\left[\begin{array}{r}
0 \\
-2 \\
2
\end{array}\right]\right]
$$

and the corresponding set of positive roots is
[chev > PosRts1 := PositiveRoots (RSD1, SimRts1);

$$
\text { PosRts1 }:=\left[\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
2 \\
0 \\
0
\end{array}\right],\left[\begin{array}{r}
-1 \\
2 \\
-1
\end{array}\right],\left[\begin{array}{r}
-2 \\
2 \\
0
\end{array}\right],\left[\begin{array}{r}
1 \\
-1 \\
1
\end{array}\right],\left[\begin{array}{r}
0 \\
-2 \\
2
\end{array}\right],\left[\begin{array}{r}
1 \\
1 \\
-1
\end{array}\right],\left[\begin{array}{r}
2 \\
-1 \\
0
\end{array}\right]\right]
$$

3. Property 2. The Structure Equations for $\left[h_{i}, x_{j}\right]$

The Cartan matrix for $s p(6, R)$ is
[chev > a := CartanMatrix("C", 3);

$$
a:=\left[\begin{array}{rrr}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -2 & 2
\end{array}\right]
$$

and this gives the structure constants $\left[h_{i}, x_{j}\right]=a_{j i} x_{i}$:
[chev > MultiplicationTable(chev, "LieTable", rows = [1, 2, 3], columns = [4, 5, 6]);

chev	$x 1$	$x 2$	$x 3$
$h 1$	$2 x 1$	$-x 2$	0
$h 2$	$-x 1$	$2 x 2$	$-2 x 3$
$h 3$	0	$-x 2$	$2 x 3$

The structure equations for subalgebra defined by $\left\{h_{i}, x_{i}, y_{i}\right\}$ are
[chev > LieAlgebraData ([h1, x1, y1]);

$$
[e 1, e 2]=2 e 2,[e 1, e 3]=-2 e 3,[e 2, e 3]=-e 1
$$

```
chev > LieAlgebraData([h2, x2, y2]);
    \([e 1, e 2]=2 e 2,[e 1, e 3]=-2 e 3,[e 2, e 3]=-e 1\)
\(\overline{\text { Chev }}>\) LieAlgebraData ([h3, x3, y3]);
    \([e 1, e 2]=2 e 2,[e 1, e 3]=-2 e 3,[e 2, e 3]=-e 1\)
```

These are the standard structure equations for $s l(2)$, as required.
4. Property 3. The Automorphism Property

We define the linear transformation θ which maps $h_{i} \rightarrow-h_{i}, x_{\ell} \rightarrow y_{\ell}$ and $y_{\ell} \rightarrow x_{\ell}$ and check that it is an automorphism.

```
[chev > A := evalDG([[h1, -h1], [h2, -h2], [h3, -h3], [x1, y1], [x2, y2], [x3, y3], [x4,
                y4],[x5, y5], [x6, y6], [x7, y7], [x8, y8], [x9, y9], [y1, x1], [y2, x2], [y3,
    x3], [y4, x4],[y5, x5], [y6, x6], [y7, x7], [y8, x8], [y9, x9]]):
[sp6R > Theta := LinearTransformation(A);
\Theta:=h1 -> - h1,h2 -> - h2,h3 -> - h3,x1 -> y1, x2 ->y2, x3 ->y3,x4 -> y4, x5 -> y5,x6 ->y6, x7
    ->y7,x8->y8,x9->y9,y1 ->x1,y2->x2,y3 ->x3,y4 ->x4,y5 ->x5,y6 ->x6,y7 ->x7,y8->x8,y9
    x9
=chev > Query(Theta, "Homomorphism");
    true
```

5. Property 4. The Structure Equations for $\left[x_{i}, x_{j}\right]$

To verify that the structure equations for $\left[x_{i}, x_{j}\right]$ satisfy the defining properties 4 and 5 of the Chevalley basis, we first recall that the simple roots are
[chev > SimRts1;

$$
\left[\left[\begin{array}{r}
2 \\
-1 \\
0
\end{array}\right],\left[\begin{array}{r}
-1 \\
2 \\
-1
\end{array}\right],\left[\begin{array}{r}
0 \\
-2 \\
2
\end{array}\right]\right]
$$

The root pattern for $s p(6, R)$ is given by
[chev > AbstractRoots := PositiveRoots("C", 3);

$$
\text { AbstractRoots }:=\left[\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
2 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right],\left[\begin{array}{l}
2 \\
2 \\
1
\end{array}\right]\right]
$$

from which we get the positive roots:
[chev > alpha := DGzip (AbstractRoots, SimRts1, "plus");

$$
\alpha:=\left[\left[\begin{array}{r}
2 \\
-1 \\
0
\end{array}\right],\left[\begin{array}{r}
-1 \\
2 \\
-1
\end{array}\right],\left[\begin{array}{r}
0 \\
-2 \\
2
\end{array}\right],\left[\begin{array}{r}
1 \\
1 \\
-1
\end{array}\right],\left[\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{r}
1 \\
-1 \\
1
\end{array}\right],\left[\begin{array}{r}
-2 \\
2 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
2 \\
0 \\
0
\end{array}\right]\right]
$$

This ordering of the positive roots coincides with the ordering of the vectors:

$$
\left[\begin{array}{rl}
\text { chev }>\operatorname{seq}(\text { RootSpace }(\mathrm{t}, \mathrm{RSD} 1), \mathrm{t}= & \text { alpha); ; } \\
& x 1, x 2, x 3, x 4, x 5, x 6, x 7, x 8, x 9
\end{array}\right.
$$

Thus, for example, since AbstractRoots[1] + AbstractRoots[2] = AbstractRoot[4], we have $\alpha_{1}+\alpha_{2}=\alpha_{4}$ and hence $\left[x_{1}, x_{2}\right]=N_{12} x_{4}$. Likewise , $\left[x_{2}, x_{5}\right]=N_{25} x_{7}$ and so on. This accounts for all the zero entries in the multiplication table for the $\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5} x_{6}, x_{7}, x_{8}, x_{9}\right\}$. (If the sum of roots is not a root, then bracket of the corresponding root spaces is 0 .)

Moreover, the structure constants for the $\left\{y_{1}, y_{2}, y_{3}, y_{4}, y_{5} y_{6}, y_{7}, y_{8}, y_{9}\right\}$ are identical to those for $\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5} x_{6}, x_{7}, x_{8}, x_{9}\right\}$.
[chev > MultiplicationTable(chev, "LieTable", rows = [\$4.. 12],columns =[\$4.. 12]), MultiplicationTable(chev, "LieTable", rows = [\$13 .. 21], columns =[\$13 .. 21]);

chev	$x 1$	$x 2$	$x 3$	$x 4$	$x 5$	$x 6$	$x 7$	$x 8$	$x 9$
$x 1$	0	$x 4$	0	0	$x 6$	0	$x 8$	$2 x 9$	0
$x 2$	$-x 4$	0	$x 5$	0	$2 x 7$	$x 8$	0	0	0
$x 3$	0	$-x 5$	0	$-x 6$	0	0	0	0	0
$x 4$	0	0	$x 6$	0	$x 8$	$2 x 9$	0	0	0
$x 5$	$-x 6$	$-2 x 7$	0	$-x 8$	0	0	0	0	0
$x 6$	0	$-x 8$	0	$-2 x 9$	0	0	0	0	0
$x 7$	$-x 8$	0	0	0	0	0	0	0	0
$x 8$	$-2 x 9$	0	0	0	0	0	0	0	0
$x 9$	0	0	0	0	0	0	0	0	0

6. Property 5. The Formula for N
α, β
Our positive roots are:
[Chev > alpha;

$$
\left[\left[\begin{array}{r}
2 \\
-1 \\
0
\end{array}\right],\left[\begin{array}{r}
-1 \\
2 \\
-1
\end{array}\right],\left[\begin{array}{r}
0 \\
-2 \\
2
\end{array}\right],\left[\begin{array}{r}
1 \\
1 \\
-1
\end{array}\right],\left[\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{r}
1 \\
-1 \\
1
\end{array}\right],\left[\begin{array}{r}
-2 \\
2 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
2 \\
0 \\
0
\end{array}\right]\right]
$$

Since the α_{2} string through α_{5} is
[chev > RootString(alpha[2], alpha[5], alpha);

$$
\left[\left[\begin{array}{r}
0 \\
-2 \\
2
\end{array}\right],\left[\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{r}
-2 \\
2 \\
0
\end{array}\right]\right]
$$

we have that $\mathrm{q}=1$ and therefore we must have that $\left[x_{2}, x_{5}\right]= \pm 2 x_{7}$ and indeed
[Chev > LieBracket(x2, x5);

7. A Remark on the Algorithm Used To Calculate the ChevalleyBasis

The help page ChevalleyBasisDetails provides full details on how the Chevalley basis is computed. A key step is to calculate a basis where Properties 1--3 in the Synopsis hold. This is done by the command SL2Basis which is an export o of the ChevalleyBasis.
For example:

$$
\left[\begin{array}{l}
\text { sp6R }>\text { CSA2, RSD2, SR, } \mathrm{P}:=\text { ChevalleyBasis:-SL2Basis (RSD, PosRts, SimRts); } \\
C S A 2, R S D 2, S R, P:=[e 1-e 5, e 5-e 9, e 9], \text { table }\left(\left[[1,0,-1]=\sqrt{t 1} e 3,[-1,0,-1]=-\frac{1}{\sqrt{t 6}} e 18,[0,-2,0]=\right.\right. \\
\quad-\frac{1}{\sqrt{t 3}} e 19,[1,1,0]=\sqrt{t 2} e 11,[0,0,-2]=-e 21,[0,0,2]=e 15,[0,2,0]=\sqrt{t 3} e 13,[-1,0,1]=-\frac{1}{\sqrt{t 1}} e 7,[-1, \\
1,0]=-e 4,[2,0,0]=\sqrt{t 4} e 10,[0,-1,1]=-e 8,[0,1,-1]=e 6,[0,1,1]=\sqrt{t 5} e 14,[-1,-1,0]=-\frac{1}{\sqrt{t 2}} e 17,[0, \\
\left.\left.\left.-1,-1]=-\frac{1}{\sqrt{t 5}} e 20,[-2,0,0]=-\frac{1}{\sqrt{t 4}} e 16,[1,-1,0]=e 2,[1,0,1]=\sqrt{t 6} e 12\right]\right),\left[\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right],\left[\begin{array}{r}
0 \\
1 \\
-1
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
2
\end{array}\right]\right],\{t 1,
\end{array}\right.
$$

The output consists of:

1. A new basis for the Cartan subalgebra.
2. The root space decomposition for the new basis. Basis for the roots spaces for the simple roots are chosen so that Properties 2 and 3 hold. The remaining basis elements contain the scalar factors which are to be fixed by Properties 4 and 5.
3. The simple roots for the new basis. The Cartan matrix calculated from these simple roots will be in standard form.
4. A set defining the scalar factors.

Highlighted Commands

- CartanSubalgebra, ChevalleyBasis, LieAlgebraRoots, LinearTransformation, Query, RootSpace, RootString, SimpleLieAlgebraData,

References

1. N. Bourbaki, Elements of Mathematics, Lie Groups and Lie Algebras Chapters 7 -- 9, Springer
2. J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer

Release Notes

- This worksheet was compiled with Maple 17 and DG release USU1, available by request from ian.anderson@usu.edu

Author

Ian M. Anderson
Department of Mathematics
Utah State University
October 10, 2014

