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How To Create A Lie Algebra

Synopsis
We show how to create a Lie algebra in Maple using three of the most common approaches: matrices, 
vector fields and structure equations.

Examples

Load in the required packages.

with(DifferentialGeometry): with(LieAlgebras):

Example 1.
The well-known Pauli matrices (upon multiplication by I) are a set of 3 anti-Hermitian matrics which 
define a real 3-dimensional matrix algebra.  Here are the Pauli matrices:

A := [Matrix([[0,I], [I,0]]),  Matrix([[0, 1], [-1, 0]]), Matrix([
[I, 0], [0, -I]])];

A d
0 I

I 0
,

0 1

K1 0
,

I 0

0 KI

The Lie algebra bracket is the matrix commutator. The output of the command LieAlgebraData is a list of 
the non-zero brackets, where by default e1, e2, e3  denote the 1st, 2nd and 3rd Pauli matrices.

LD1 := LieAlgebraData(A, Alg1);
LD1 d e1, e2 = K2 e3, e1, e3 = 2 e2, e2, e3 = K2 e1

We use the command DGsetup to store these structure equations in memory.

DGsetup(LD1);
Lie algebra: Alg1

At this point one can now invoke many of the commands in the LieAlgebras package. For example, here is
the Killing matrix for this Lie algebra:

Killing(Alg1);
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Example 2.
The infinitesimal generators for translations and rotations in the xy plane are vector fields which define a 3-
dimensional Lie algebra. The bracket operation is the Lie bracket of vector fields.  We create a coordinate 
system for the xy plane, define the vector fields and compute their brackets.

DGsetup([x, y], R2);
frame name: R2

EuclideanGenerators  := [D_x,  D_y, x*D_y - y*D_x];
EuclideanGenerators := D_x, D_y, x D_yK y D_x

LD2 := LieAlgebraData(EuclideanGenerators, Alg2);
LD2 := e1, e3 = e2, e2, e3 = Ke1

The labels of the basis of the Lie algebra can be specified when the Lie algebra is initialized with DGsetup.
  Here we use X, Y, R as labels for the 1st, 2nd and 3rd vectors in the Lie algebra and a,  b, q as the labels 
for the dual 1-forms.

DGsetup(LD2, [X, Y, R], [alpha, beta, theta]);
Lie algebra: Alg2

Here is the multiplication table - the table of brackets - for the Lie algebra.

MultiplicationTable("LieTable");
| X Y R

---- ---- ---- ----

X | 0 0 Y

Y | 0 0 KX

R | KY X 0

We can use the Query command to check that this Lie algebra is solvable.

Query("Solvable");
true

Example 3.
An abstract Lie algebra can always be created by specifying the non-zero Lie brackets. In the following 
x1, x2, x3, x4, x5  are unassigned names which denote the basis elements for the Lie algebra, which is 

defined by the following brackets.
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StrEq := [[x2, x3] = x1, [x2, x5] = x3, [x4, x5] = x4];
StrEq d x2, x3 = x1, x2, x5 = x3, x4, x5 = x4

We eonvert the brackets to a Maple Lie algebra data struture with LieAlgebraData and initialize with
DGsetup.

LD3 := LieAlgebraData(StrEq, [x1, x2, x3, x4, x5], Alg3);
LD3 d e2, e3 = e1, e2, e5 = e3, e4, e5 = e4

DGsetup(LD3);
Lie algebra: Alg3

The command Derivations calculates the Lie algebra of infinitesimal automorphism of a Lie algebra. It is 
just one of many ways to create a new Lie algebra from a given one.

Derivations(Alg3, "Full");
1 0 0 0 0

0
1
2

0 0 0

0 0
1
2

0 0

0 0 0 0 0

0 0 0 0 0

,

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

,

0 0 0 0 0

0 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

,

0 0 1 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

,

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

,

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

,

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

Commands Illustrated
 LieAlgebras, Derivations, DGsetup, LieAlgebraData,  Killing,  MultiplicationTable,  Query

Related Commands
 The following commands provide additional ways to create Lie algebras: Derivations, 
InfinitesimalHolonomy, InfinitesimalSymmetriesOfGeometricObjectFields, KillingVectors,  LieGroup, 
SimpleLieAlgebraData, StandardRepresentation, SymbolAlgebra
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Release Notes

The illustrated commands are available in Maple 11 and subsequent releases.
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