THE
DIFFERENTIALGEOMETRY
SOFTWARE PROJECT

How To Create A Lie Algebra

Synopsis

- We show how to create a Lie algebra in Maple using three of the most common approaches: matrices, vector fields and structure equations.

Examples

Load in the required packages.
[> with(DifferentialGeometry): with(LieAlgebras):

Example 1.

The well-known Pauli matrices (upon multiplication by I) are a set of 3 anti-Hermitian matrics which define a real 3-dimensional matrix algebra. Here are the Pauli matrices:

$$
\left[\begin{array}{c}
>\underset{[I, ~}{A}:=[\operatorname{Matrix}([[0, I],[0,-I]])] ; \\
A:=\left[\left[\begin{array}{cc}
0 & \mathrm{I} \\
\mathrm{I} & 0
\end{array}\right],\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right],\left[\begin{array}{cc}
\mathrm{I} & 0 \\
0 & -\mathrm{I}
\end{array}\right]\right]
\end{array}\right.
$$

The Lie algebra bracket is the matrix commutator. The output of the command LieAlgebraData is a list of the non-zero brackets, where by default $e 1, e 2, e 3$ denote the 1st, 2nd and 3rd Pauli matrices.

$$
\left[\begin{array}{c}
>\text { LD1 }:=\text { LieAlgebraData }(A, \text { Alg1); } \\
L D 1:=[[e 1, e 2]=-2 e 3,[e 1, e 3]=2 e 2,[e 2, e 3]=-2 e 1] \tag{2}
\end{array}\right.
$$

We use the command DGsetup to store these structure equations in memory.

```
>> DGsetup(LD1);
```

Lie algebra: Alg1

At this point one can now invoke many of the commands in the LieAlgebras package. For example, here is the Killing matrix for this Lie algebra:

```
[Alg1 > Killing(Alg1);
```

$$
\left[\begin{array}{ccc}
-8 & 0 & 0 \tag{4}\\
0 & -8 & 0 \\
0 & 0 & -8
\end{array}\right]
$$

Example 2.

The infinitesimal generators for translations and rotations in the $x y$ plane are vector fields which define a 3dimensional Lie algebra. The bracket operation is the Lie bracket of vector fields. We create a coordinate system for the $x y$ plane, define the vector fields and compute their brackets.

```
\([>\) DGsetup([x, y], R2); frame name: R2
| R 2 P EuclideanGenerators \(:=\left[\mathrm{D} \_\mathrm{x}, \mathrm{D} \_\mathrm{y}, \mathrm{x} * \mathrm{D} \_\mathrm{y}-\mathrm{Y} * \mathrm{D} \_\mathrm{x}\right]\);
    EuclideanGenerators \(:=\left[D_{-} x, \overline{D_{-}} y, x D_{-} y-y D_{-} x\right]\)
= R2 > LD2 : = LieAlgebraData(EuclideanGenerators, Alg2);
    \(L D 2:=[[e l, e 3]=e 2,[e 2, e 3]=-e l]\)
R2 > EuclideanGenerators \(:=\left[\mathrm{D} \_\mathrm{x}, \mathrm{D} \_\mathrm{y}, \mathrm{x} * \mathrm{D} \_\mathrm{y}-\mathrm{y}\right.\) *D_x];
R2 \(>\) LD2 \(:=\) LieAlgebraData(EuclideanGenerators, Alg2);
\(L D 2:=[[e 1, e 3]=e 2,[e 2, e 3]=-e l]\)
```

The labels of the basis of the Lie algebra can be specified when the Lie algebra is initialized with DGsetup.
Here we use X, Y, R as labels for the 1 st, 2 nd and 3 rd vectors in the Lie algebra and α, β, θ as the labels for the dual 1-forms.

```
[R2 > DGsetup(LD2, [X, Y, R], [alpha, beta, theta]);
    Lie algebra: Alg2
```

Here is the multiplication table - the table of brackets - for the Lie algebra.
$\left[\begin{array}{c}\text { Alg2 }>\text { MultiplicationTable ("LieTable"); } \\ {\left[\begin{array}{cccccc} & \mid & X & Y & R \\ & ----------------~ & -- \\ X & \mid & 0 & 0 & Y \\ Y & \mid & 0 & 0 & -X \\ R & \mid & -Y & X & 0\end{array}\right]}\end{array}\right.$

We can use the Query command to check that this Lie algebra is solvable.

```
[Alg2 > Query("Solvable");
```

true

Example 3.

An abstract Lie algebra can always be created by specifying the non-zero Lie brackets. In the following $[x 1, x 2, x 3, x 4, x 5]$ are unassigned names which denote the basis elements for the Lie algebra, which is defined by the following brackets.

$$
\left[\begin{array}{c}
\text { Alg2 > StrEq }:=[[\mathbf{x 2 , x}, \mathbf{x} 3]=\mathbf{x} 1,[\mathbf{x} 2, \mathbf{x} 5]=\mathbf{x} 3,[\mathbf{x} 4, \mathbf{x} 5]=\mathbf{x} 4] ; \\
\operatorname{Str} E q:=[[x 2, x 3]=x 1,[x 2, x 5]=x 3,[x 4, x 5]=x 4] \tag{11}
\end{array}\right.
$$

We eonvert the brackets to a Maple Lie algebra data struture with LieAlgebraData and initialize with DGsetup.

$$
\begin{align*}
& \text { [> LD3 : = LieAlgebraData(StrEq, [x1, x2, x3, x4, x5], Alg3); } \\
& L D 3:=[[e 2, e 3]=e 1,[e 2, e 5]=e 3,[e 4, e 5]=e 4] \tag{12}\\
& \text { =Alg2 > DGsetup(LD3); } \\
& \text { Lie algebra: Alg3 } \tag{13}
\end{align*}
$$

The command Derivations calculates the Lie algebra of infinitesimal automorphism of a Lie algebra. It is just one of many ways to create a new Lie algebra from a given one.

$$
\left[\begin{array}{l}
{\left[\left[\begin{array}{lllll}
\text { Alg3 } & >\text { Derivations (Alg3, "Full"); } \\
0 & 0 & 0 & 0 & 0 \\
0 & \frac{1}{2} & 0 & 0 & 0 \\
0 & 0 & \frac{1}{2} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right],\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right],\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right],\left[\begin{array}{lllll}
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right],\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right],\right.} \\
{\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right],\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]} \tag{14}
\end{array}\right]
$$

Commands Illustrated

- LieAlgebras, Derivations, DGsetup, LieAlgebraData, Killing, MultiplicationTable, Query

Related Commands

- The following commands provide additional ways to create Lie algebras: Derivations, InfinitesimalHolonomy, InfinitesimalSymmetriesOfGeometricObjectFields, KillingVectors, LieGroup, SimpleLieAlgebraData, StandardRepresentation, SymbolAlgebra

References

- M. L. Curtis, Matrix Algebras
- W. Fulton, J. Harris, Representation Theory - A First Course
- P. J. Olver, Applications of Lie Groups to Differential Equations
- D. H. Sattinger, O. L. Weaver, Lie Groups and Algebras with Applications to Physics, Geometry, and Mechanics.
- http://en.wikipedia.org/wiki/Lie algebra

Release Notes

- The illustrated commands are available in Maple 11 and subsequent releases.

Author

Ian M. Anderson,
Department of Mathematics and Statistics, Utah State University
July 4, 2012

