

How To Create A Lie Algebra

Synopsis

• We show how to create a Lie algebra in Maple using three of the most common approaches: matrices, vector fields and structure equations.

Examples

Load in the required packages.

```
> with(DifferentialGeometry): with(LieAlgebras):
```

Example 1.

The well-known Pauli matrices (upon multiplication by I) are a set of 3 anti-Hermitian matrics which define a real 3-dimensional matrix algebra. Here are the Pauli matrices:

```
> A := [Matrix([[0,I], [I,0]]), Matrix([[0, 1], [-1, 0]]), Matrix([
[I, 0], [0, -I]])];
A := \begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} I & 0 \\ 0 & -I \end{bmatrix} \end{bmatrix} (1)
```

The Lie algebra bracket is the matrix commutator. The output of the command LieAlgebraData is a list of the non-zero brackets, where by default *e1*, *e2*, *e3* denote the 1st, 2nd and 3rd Pauli matrices.

> LD1 := LieAlgebraData(A, Alg1);

$$LD1 := [[e1, e2] = -2 e3, [e1, e3] = 2 e2, [e2, e3] = -2 e1]$$
(2)

We use the command <u>DGsetup</u> to store these structure equations in memory.

```
> DGsetup(LD1);
Lie algebra: Alg1 (3)
```

At this point one can now invoke many of the commands in the <u>LieAlgebras</u> package. For example, here is the <u>Killing</u> matrix for this Lie algebra:

Alg1 > Killing(Alg1);

(4)

-8	0	0	
0	-8	0	(4)
0	0	0 0 8	

Example 2.

The infinitesimal generators for translations and rotations in the *xy* plane are vector fields which define a 3dimensional Lie algebra. The bracket operation is the Lie bracket of vector fields. We create a coordinate system for the *xy* plane, define the vector fields and compute their brackets.

```
> DGsetup([x, y], R2);

frame name: R2 (5)

R2 > EuclideanGenerators := [D_x, D_y, x*D_y - y*D_x];

EuclideanGenerators := [D_x, D_y, xD_y - yD_x] (6)

R2 > LD2 := LieAlgebraData(EuclideanGenerators, Alg2);

LD2 := [[el, e3] = e2, [e2, e3] = -el] (7)
```

The labels of the basis of the Lie algebra can be specified when the Lie algebra is initialized with DGsetup.

Here we use X, Y, R as labels for the 1st, 2nd and 3rd vectors in the Lie algebra and α , β , θ as the labels for the dual 1-forms.

```
R2 > DGsetup(LD2, [X, Y, R], [alpha, beta, theta]);
Lie algebra: Alg2 (8)
```

Here is the multiplication table - the table of brackets - for the Lie algebra.

Alg2	> :	Multipl	.icatio	nTabl	le("		-	
						X	Y	R
					X	0	0	Y
					Y	0	0	-X
					R	- Y	Х	0

We can use the <u>Query</u> command to check that this Lie algebra is solvable.

```
Alg2 > Query("Solvable");true(10)
```

Example 3.

An abstract Lie algebra can always be created by specifying the non-zero Lie brackets. In the following [x1, x2, x3, x4, x5] are unassigned names which denote the basis elements for the Lie algebra, which is defined by the following brackets.

$$Alg2 > StrEq := [[x2, x3] = x1, [x2, x5] = x3, [x4, x5] = x4];$$

$$StrEq := [[x2, x3] = x1, [x2, x5] = x3, [x4, x5] = x4]$$
(11)

We eonvert the brackets to a Maple Lie algebra data struture with *LieAlgebraData* and initialize with *DGsetup*.

> LD3 := LieAlgebraData(StrEq, [x1, x2, x3, x4, x5], Alg3);

$$LD3 := [[e2, e3] = e1, [e2, e5] = e3, [e4, e5] = e4]$$
 (12)
Alg2 > DGsetup(LD3);
 $Lie algebra: Alg3$ (13)

The command <u>Derivations</u> calculates the Lie algebra of infinitesimal automorphism of a Lie algebra. It is just one of many ways to create a new Lie algebra from a given one.

Alg3 > Derivations(Alg3,							Full"); 0																										
	1	0		0	0	0]																										
	0	1		0	0	0		0	1	0	0	0]	0	0	0	0	0]	0	0	1	0	0		0	0	0	0	0]		
	0	2	_	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0	0	0	0			
	0	0		1	0	0	,	0	0	0	0	0	,	0	1	0	0	0	,	0	0	0	0	1	,	0	0	0	0	0	,	(14)
				2				0	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0	0	1	0			
	0	0		0	0	0		0	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0	0	0	0			
	0	0		0	0	0		L					1	L					-	L						L					1		
]																				
	[0	0	0	0	1 0 0		0	0	0	0	0																					
		0	0	0	0	0		0	0	0	0	0																					
		0	0	0	0	0	,	0	0	0	0	0																					
		0	0	0	0	0		0	0	0	0	1																					
					0				0																								
						-						-	.]																				

Commands Illustrated

• LieAlgebras, Derivations, DGsetup, LieAlgebraData, Killing, MultiplicationTable, Query

Related Commands

• The following commands provide additional ways to create Lie algebras: <u>Derivations</u>, <u>InfinitesimalHolonomy</u>, <u>InfinitesimalSymmetriesOfGeometricObjectFields</u>, <u>KillingVectors</u>, <u>LieGroup</u>, <u>SimpleLieAlgebraData</u>, <u>StandardRepresentation</u>, <u>SymbolAlgebra</u>

References

- M. L. Curtis, *Matrix Algebras*
- W. Fulton, J. Harris, *Representation Theory A First Course*
- P. J. Olver, Applications of Lie Groups to Differential Equations

- D. H. Sattinger, O. L. Weaver, *Lie Groups and Algebras with Applications to Physics, Geometry, and Mechanics.*
- <u>http://en.wikipedia.org/wiki/Lie_algebra</u>

Release Notes

• The illustrated commands are available in Maple 11 and subsequent releases.

Author

Ian M. Anderson, Department of Mathematics and Statistics , Utah State University July 4, 2012