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ABSTRACT

Multiplicity Results of Periodic Solutions

for Two Classes of Nonlinear Problems

by

Kazuya Hata, Doctor of Philosophy

Utah State University, 2014

Major Professor: Dr. Zhi-Qiang Wang
Department: Mathematics and Statistics

In this dissertation, we study the existence, multiplicity, and some qualitative prop-

erties of periodic solutions for the following two classes of nonlinear differential equations:

I) (Special) Relativistic Pendulum Equations (RPEs):

(φ(u′))′ = ∇uF (x, u) + h(x),

where φ : (−a, a) → R is an increasing homeomorphism satisfying φ(0) = 0, and

φ(s)s > 0 for all s ∈ (−a, a)\{0}. This type of equation also arises from geometric

problems such as the minimum surfaces with various choices of φ.

II) (2-coupled) Gross-Pitaevskii Equations (GPEs):{
−u′′ + λ1u = µ1u

3 + βv2u,

−v′′ + λ2v = µ2v
3 + βu2v,

where λi, µi, and β are parameters.

For I), under some conditions, we establish a multiplicity result depending on the

periodic condition of F by applying the Generalized Saddle Point Theorem. Our result

partially answers the open problems raised by H. Brezis and J. Mawhin in 2010.

For II), we establish a multiplicity result by Variational Methods and we investigate

local and global bifurcations by Bifurcation Analysis.
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For the multiple existence part, we treat the case of full symmetry: λ1 = λ2 = λ > 0

and µ1 = µ2 = µ > 0. By applying Z2-Index Theory, we show that there are infinitely

many solutions for β ≤ −µ, and, for any integer k, there exist at least k pairs of solutions

(u, v) and (v, u) depending on β for β > −µ.

For the bifurcation part, we take advantage of the system where it has some con-

stant solutions curves. In the general case, there are constant semi-trivial solutions:

(u, v) = (ω1, θ), (u, v) = (θ, ω2), ωi :=
√

λi
µi

.

In the case λ1 = λ2 = 1, (u, v) = (Aβ, Bβ), Aβ :=
√

µ2−β
µ1µ2−β2 , Bβ :=

√
µ1−β

µ1µ2−β2 .

We study the bifurcation structures which bifurcate from the solution curves:

T β1 := {(ω1, θ) ∈ H1
T ×H1

T : β ∈ R}, T λ11 := {(ω1, θ) ∈ H1
T ×H1

T : λ1 > 0},

T := {(Aβ, Bβ) ∈ H1
T ×H1

T : β ∈ (−√µ1µ2, µ1) ∪ (µ2,∞)},

where H1
T is the Sobolev space W 1,2 with the inner product and the T -periodic condi-

tions on [−T/2, T/2]. To show the existence of bifurcation points, we apply the Crandall-

Rabinowitz Local Bifurcation Theorem which is proved by the Lyapunov-Schmidt Re-

duction. This allows us to convert the problem in the infinite-dimensional space of

functions into a problem in a finite dimensional space due to the linearized equations

which are of Fredholm operators. We also use critical groups for showing there are in-

finitely many bifurcation points. The nontrivial solutions in these connected bifurcation

branches are not given by solving the Dirichlet problems. In addition, we show there

are some global bifurcations by restricting the functional’s domain into the space of

even functions with the Symmetric Criticality Principle. We also show some connected

branches are disjoint by the Strong Maximum Principle. For bifurcations from T , we

also show that the bifurcation branches extend to −∞ for β if µ1 6= µ2.

(95 pages)
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PUBLIC ABSTRACT

Multiplicity Results of Periodic Solutions

for Two Classes of Nonlinear Problems

by

Kazuya Hata, Doctor of Philosophy

Utah State University, 2014

Major Professor: Dr. Zhi-Qiang Wang
Department: Mathematics and Statistics

We investigate the existences and qualitative properties of periodic solutions of the

following two classes of nonlinear differential equations:

I) (Special) Relativistic Pendulum Equations (RPEs);

II) (2-coupled) Gross-Pitaevskii Equations (GPEs).

The pendulum equation describes the motion of a pendulum. According to Special

Relativity, which was published by A. Einstein in 1905, causality is more fundamental

than constant time-space, thus time will flow slower and space will distort to keep causal-

ity if the speed of motion is near the speed of light. In such high speed situations, the

pendulum equation needs to be revised due to Special Relativity. The revised equation

is called RPE. Our result answers some open questions about the existence of multiple

periodic solutions for RPEs.

GPEs are sometimes called coupled nonlinear Schrödinger equations. The Schrödinger

equation is the fundamental equation of Quantum Mechanics which is the “exotic”

probabilistic fundamental physics law of the “micro” world – the world of atoms and

molecules. A well-known physicist and Nobel laureate, R. Feynman, said “I think I can

safely say that nobody understands quantum mechanics.” which indicates the phys-

ical/philosophical difficulty of interpretations. It raises paradoxical problems such as
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the well-known Schrödinger’s Cat. Setting aside these difficulties, if we combine Special

Relativity and Quantum Mechanics as a many-body system, then we have Quantum

Field Theory (QFT) which is more deterministic, and governs even elementary parti-

cle physics. GPEs are also related to QFT. For example, superconductivity and Bose

Einstein Condensates (BEC). These phenomena in condensed matter physics can be

thought of as the emergence of the mysterious micro world physics at “macro” level.

We study these equations from the viewpoint of mathematical interest. It is gen-

erally difficult to solve nonlinear differential equations. It is also generally difficult even

to prove the existence of solutions. Although we show there exist solutions, we still do

not know how to solve the differential equations analytically.

Variational Methods (or Calculus of Variations) are useful tools to show there

exist solutions of differential equations. The idea is to convert the problem of solving

equations into the problem of finding critical points (i.e. minimum/maximum points or

saddle points) of a functional, and each critical point can generally correspond to a weak

solution. However, it is also generally difficult to find out such critical points because we

look for critical points in an infinite-dimensional functions space. Thus many advanced

mathematical theories or tools have been developed and used for decades in nonlinear

analysis. We use some topological theories. From information of the functional’s shape,

these theories deduce if there exists a critical point, or how many critical points exist.

The key of these theories is to use the symmetry of the equations.

We also investigate bifurcation structures for II), i.e. the connection structures

between the solutions. By linearizations which look at the equations “locally,” we reduce

the problem in the infinite dimension to one in a finite dimension. Furthermore, it

allows us to apply Morse Theory, which connects between local and global aspects of

the functional’s information. In several cases, we show that there are infinitely many

bifurcation points that give rise to global bifurcation branches.

(95 pages)
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CHAPTER 1

INTRODUCTION

In this dissertation, by applying Variational Methods and Topological Methods, in

particular, Critical Point Theory and Bifurcation Theory, we study the existence and

properties of periodic solutions for the following two classes of systems:

I) (Special) Relativistic pendulum systems;

II) (2-coupled) Gross-Pitaevskii systems.

In this chapter, we first explain the backgrounds of these equations, and some prelim-

inaries on the methods used. Finally, a short summary of our main results is given in

the last section.

1.1 Background

1.1.1 Relativistic Pendulum Equations (RPEs)

First we explain and review the (relativistic) pendulum systems. The Classical

(forced) Pendulum Equation (CPE), which represents the behavior of a pendulum, is

given by

d2θ

dt2
+
g

l
sin θ = h(t), (1.1)

where h(t) is an external force, g is the gravitational constant, l is the length of the

pendulum (see Figure 1.1).

If
∫ T

0 h(t) = 0, then the Mountain Pass Theorem (Theorem 1.3) assures that the

CPE has a weak solution geometrically distinct from the one which minimizes the action

functional ([30] [31]).

In 1905 Einstein published ([18]) Special Relativity which shows that the speed

of any physical object cannot exceed the speed of light because of causality, and the

time-space will change to avoid exceeding of the speed of light. According to Special

Relativity, if the speed of the pendulum is sufficiently near the speed of light, then
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Figure 1.1: Pendulum system

the classical pendulum equation must be changed into the special relativistic pendulum

equation given by

d

dt

(
u′(t)√

1− |u′(t)|2

)
+A sinu(t) = h(t), (1.2)

where we set the speed of light c = 1, a quasilinear equation.

As the generalized form of (1.2), the (special) Relativistic Pendulum Equation

(RPE) with the periodic boundary condition is written as:

 (φ(u′))′ − g(x, u) = h(x),

u(0) = u(T ), u′(0) = u′(T ),
(1.3)

where, for some a > 0, φ : (−a, a) → R is an increasing homeomorphism satisfying

φ(0) = 0 and

φ(s)s > 0,

for all s ∈ (−a, a) \ {0}. Equations like (1.3) also arise from geometric problems (e.g.

the minimum surface) with various choices of φ.

In 2010, under specified conditions, Brezis and Mawhin ([8]) showed that there
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exists a classical periodic solution of RPE by using Variational Methods, and by taking

advantage of convex properties, and by using the Topological Index Theory (the Leray-

Schauder degree), and Fixed-Point Theory of compact operators. They proved their

results including the existence of one solution, and also suggested some open problems.

Some research work has been done on the open problems.

More generally, we think of the case where the range of u is Rn. If g is a potential

force in (1.3), then the RPE with the periodic condition is rewritten in the following

form:  (φ(u′))′ = ∇uF (x, u) + h(x),

u(0) = u(T ), u′(0) = u′(T ),
(1.4)

which is the system we will study.

Let denote the Lploc(R) spaces with the T -periodic condition as LpT (R). We make

the following assumptions:

(R1) φ : Ba ⊂ Rn is onto Rn such that ψ := φ−1 : Rn → Ba and there is a C1 function

Ψ : Rn → R such that ∇Ψ = ψ and Ψ is bounded below.

(R2) F ∈ C1(S × Rn,R). For an integer 0 ≤ k ≤ n, F is T -periodic in x, 2π-

periodic in u1, · · · , uk and ∇uF is bounded. h ∈ (L2
T (R))n is 2π-periodic in x and∫ T

0 hi(x)dx = 0 for i = 1, · · · , k. Writing u = (v, w) with v ∈ Rk and w ∈ Rn−k.

Assume
∫ T

0 (F (x, u) + h(x)u)dx→ −∞ as |w| → ∞ uniformly in v ∈ R.

We showed ([23]) that at least k+ 1 solutions of (1.4) exist depending on the periodicity

of F by a new approach with the abstract Generalized Saddle Point Theorem which is

related to the cuplength of cohomology rings in algebraic topology. Hence we have par-

tially answered some of the open problems concerning multiplicity of periodic solutions.

Our main theorem will be stated in the last section of this chapter. The proof is given

in Chapter 2.

1.1.2 Gross-Pitaevskii Equations (GPEs)

One of the important problems in physics is to study quantum (field) systems which

describes physical behaviors in the ’micro’ world. After setting theoretical assumptions

and Hamiltonians, the problem becomes a mathematical problem.

The Gross-Pitaevskii Equations, which are induced by the Hartree-Fock approxi-

mation and the pseudo-potential interaction model, describe the ground state of bosons
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in a quantum (field) physical system, e.g. the Bose-Einstein condensate (BEC) system.

The equation is sometimes referred to as the nonlinear Schrödinger equation, too. The

Schrödinger equation is the fundamental equation of quantum mechanics.

For a domain Ω ⊂ Rn, the two-component system of nonlinear Schrödinger equa-

tion (which is also called Gross-Pitaevskii equations) without the trapping potential for

hyperfine states is given by



−i ∂∂tΦ1 = ~2
2m∆Φ1 + µ1|Φ1|2Φ1 + β|Φ2|2Φ1, for y ∈ Ω, t > 0,

−i ∂∂tΦ2 = ~2
2m∆Φ2 + µ2|Φ2|2Φ2 + β|Φ1|2Φ2, for y ∈ Ω, t > 0,

Φj = Φ(y, t) ∈ C, j = 1, 2,

Φj(y, t) = 0 for y ∈ ∂Ω, t > 0, j = 1, 2,

(1.5)

where m is atom mass, ~ = h
2π , and h is the Planck constant, µi and β are real constants.

Each Φi corresponds to the quantum field of condensed matters.

If Φi is the solitary wave solution of the form

Φ1(x, t) = eiλ1tu(x), Φ2(x, t) = eiλ2tv(x),

then the system is reduced to the following elliptic system: − ~2
2m∆u = −λ1u+ µ1u

3 + βuv2,

− ~2
2m∆v = −λ2v + µ2v

3 + βvu2.

By setting ~2
2m = 1, we have

 −∆u+ λ1u = µ1u
3 + βv2u,

−∆v + λ2v = µ2v
3 + βu2v.

When N = 1, the following 2-coupled Gross-Pitaevskii system with the periodic

condition is the system that we will study:



−u′′ + λ1u = µ1u
3 + βv2u,

−v′′ + λ2v = µ2v
3 + βu2v,

u, u′ are T -periodic,

v, v′ are T -periodic.

(1.6)

Although these constants λi, µi, and β can be any real numbers, to show multiple
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existence of solutions, we restrict λi > 0 and µi > 0, and β < 0 for some technical

reasons of the variational structure to establish multiple existence. Note that β is called

attractive (repulsive) when β > 0 (β < 0 respectively) because of physical reasons. To

investigate bifurcations, we treat β ∈ R.

In the case where the domain is a smooth bounded domain Ω ⊂ Rm for m ≤ 3

under the condition u = v = 0 on ∂Ω and u, v > 0 on Ω, in the case λ1 = λ2 = 1 and

µ1 = µ2 = 1, Dancer, Wei, and Weth showed ([16])

i) the 2-coupled Gross-Pitaevskii system admits an infinite sequence of solutions of

the system for β ≤ −1, and

ii) there exists βk > −1 such that k pairs of solutions exist for β < βk.

This was done by using Variational Methods with the symmetric advantage, i.e., Z2-

Index Theory with the Krasnosel’skii genus ([26]). Sato and Wang applied Z2-Index

Theory too ([42]). Zp-Index Theory has also been applied to the N -coupled system

(see [45]). Nguyen proved ([34]) there exist infinitely smooth periodic traveling wave

solutions for (1.5) by using the Topological Degree Theory for positive operators.

In the periodic condition case of the fully symmetric equations:



−u′′ + λu = µu3 + βv2u

−v′′ + λv = µv3 + βu2v

u, u′ are T -periodic,

v, v′ are T -periodic,

(1.7)

we obtained a similar result for [16] by using the same technique and Z2-Index Theory

for the periodic condition case too. The proofs are given in Chapter 3.

We also investigate the bifurcation structures from some semi-trivial solutions and

a synchronized solution curve for GPEs. More precisely, we study bifurcations from the

following solution curves:

T β1 := {(ω1, θ) ∈ H1
T ×H1

T : β ∈ R},

T λ11 := {(ω1, θ) ∈ H1
T ×H1

T : λ1 > 0},

T := {(Aβ, Bβ) ∈ H1
T ×H1

T : β ∈ (−√µ1µ2, µ1) ∪ (µ2,∞)},
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whereH1
T is the Sobolev spaceW 1,2 with the inner product and the T -periodic conditions

on [−T/2, T/2], and

ωi :=

√
λi
µi
, Aβ :=

√
µ2 − β

µ1µ2 − β2
, Bβ :=

√
µ1 − β

µ1µ2 − β2
.

We will apply the Crandall-Rabinowitz Local Bifurcation Theorem which is proved by

the Lyapunov-Schmidt Reduction. This allows us to change the problem in the infinite

dimensional space of functions into a problem in a finite dimensional space due to the fact

that the linearized equations are of Fredholm operators. By using the Morse Theory, we

show there are countably infinitely many bifurcation points. We also show the nontrivial

solutions in these connected bifurcation branches are not given by solving the Dirichlet

problems. In addition, we show that there are some global bifurcations by restricting the

domain of the functional into the space of even functions with the Symmetric Criticality

Principle. By using the Strong Maximum Principle, we also show that some of the

connected branches do not connect with each other. For bifurcations from T , we also

show that these bifurcation branches extend to −∞ for β if µ1 6= µ2. The existence of

uncountable possible bifurcations is also shown.

Our main theorems will be listed in the last section in this chapter. The proofs of

theorems for bifurcations are given in Chapter 4.

1.2 Some methods in nonlinear analysis

1.2.1 Variational Methods

We give a short review of Variational Methods here. Variational Methods (or Cal-

culus of Variations) in functional analysis ([7]) or nonlinear analysis ([17]) are frequently

used to show the existence of (weak) solutions of differential equations. The strategy of

Variational Methods is the following: For a given differential equation (system), define

the corresponding functional E (which is called energy functional if E =
∫
Hdt for the

Hamiltonian H) whose critical points are (weak) solutions of the original system, then

show there exists a critical point(s) of E. Since we look for critical points in an infinite

dimensional functions space (e.g. Banach space or Sobolev space), it is generally difficult

to find critical points. The simplest direct way is to show that a bounded minimizing

sequence {uk} of E (i.e. E(uk)→ inf E) converges strongly, thus compactness is impor-

tant naturally. However, compactness is not generally assured in an infinite dimensional

space. Coarser topology has more compact sets. For example, the unit ball in a dual
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space is always compact in the weak∗ topology by the Banach-Alaoglu-Bourbaki Theo-

rem (for example, see [20]). Therefore not only weak topology but also weak∗ topology

is sometimes used.

In the case that the functional E on a reflexive Banach space is weakly lower semi-

continuous (w.l.s.c) (i.e. if uk converges to u weakly, then lim infk→∞E(uk) ≥ E(u))

and has a bounded minimizing sequence, E achieves a minimum. Since the Sobolev space

W 1,p for 1 < p < ∞ (i.e. the space of functions u ∈ Lp(Ω) having a weak derivative

u′ ∈ Lp(Ω), where a weak derivative of u is a function v satisfying
∫

Ω u ·f
′ = −

∫
Ω v ·f for

every f ∈ C∞c (Ω)) is a reflexive Banach space and E is frequently lower semi-continuous

(l.s.c) (i.e. if uk converges to u strongly, then lim infk→∞E(uk) ≥ E(u)), to guarantee

that E is w.l.s.c. and E has a bounded minimizing sequence are frequently difficult parts.

Although if E on a normed space is l.s.c. and a convex function, then E is w.l.s.c., but

E is not convex generally. On the other part, if E on a reflexive Banach space is coercive

(i.e. E(u) → ∞ if ‖u‖ → ∞), then the existence of a bounded minimizing convergent

sequence is guaranteed. However, the corresponding functional may not be coercive

generally too. For example, a physical system can be represented as the Hamiltonian

system:

−J · du
dt

= ∇H(t, u), J =

 0n In

−In 0n

 , (1.8)

where J is the symplectic matrix.

Let us think of the system with the periodic boundary condition. Then the cor-

responding functional is not generally coercive. To overcome these difficulties, some

varieties of advanced Variational Methods have been developed with functional/nonlin-

ear analysis and topological theories. Especially, the following two developed theories

are known:

a) Morse Theory (see [12] [31] [33] for the details): The theory gives the relation

between the topological information of a manifold and the critical points of a

smooth Morse function (i.e. all critical points of the function are nondegenerate)

by using the Morse index of a critical point p, which is defined as the number

of negative eigenvalues of the Hessian matrix at p, representing the number of

independent directions around p in which the functional decreases.
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b) Minimax Theory (see [31] [39] [43] [51] for the details): The theory gives the

information of critical points having the critical value

c := inf
A∈S

max
u∈A

E(u)

with a suitable class of sets S. The Mountain Pass Theorems, the Saddle Point

Theorems, and G-Index Theories (which are explained later) are well known results

in this direction.

These theories use frequently level sets:

Sublevel set: For a functional E : X → R, the following set is called the sublevel

set of E:

Ma := {u ∈ X : E(u) ≤ a}

which is sometimes denoted as Ea.

Applications of topological theories for Variational Methods focus on topological

information ofMa generally. Thus we introduce a deformation of sublevel sets. A theo-

rem which assures such deformations exist, is called the Deformation Theorem/Lemma.

To construct such deformation in Banach spaces, pseudo-gradient is used (see [17] [31]

[51]).

Palais-Smale condition

Palais-Smale condition: For a functional E : X → R, if every sequence {uj} in

X such that {E(uj)} is bounded and E′(uj) → 0 has a convergent subsequence, then

we say E satisfies the Palais-Smale condition, denoted as (PS)-condition. If there is a

sequence {uj} in X such that

E(uj)→ c, E′(uj)→ 0,

then we say E satisfies the Palais-Smale condition on the level c, denoted as (PS)c

condition. This implies that c is a critical value of E.

Remark 1.1. The (PS)-condition assures the compactness of the set of critical points

on the level c. The (PS)-condition implies the (PS)c-condition but the opposite is not

generally true. If a functional E on X is bounded below and satisfies the (PS)c condition
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with c = infX E, then every minimizing sequence has a convergent subsequence. This is

proved by Ekland’s Variational Principle (see [17] [31] [51]).

To look for critical points on a restricted domain is sometimes useful. Especially

the following manifold is frequently used (We also use it in Chapter 3).

Nehari manifold: The following set is a manifold (if all its points are regular and

E ∈ C2. See [17] Remark 4.3.40), which is called Nehari manifold:

N := {u ∈ X \ {θ} : 〈E′(u), u〉 = 0}.

Remark 1.2. Various modified versions of Nehari manifold are also frequently used.

〈E′(u), u〉 is frequently written as just E′(u)u.

Minimax Theorems

Now we introduce some Minimax Theorems. The following Mountain Pass Theorem

by Ambrosetti and Rabinowitz is probably the most famous one.

Theorem 1.3 (Mountain Pass Theorem). ([51] p.42) Let X be a Banach space,

ϕ ∈ C1(X,R), e ∈ X and r > 0 be such that ‖e‖ > r and

b := inf
‖u‖=r

ϕ(u) > ϕ(0) ≥ ϕ(e).

If ϕ satisfies the (PS)c condition with

c := inf
γ∈Γ

max
t∈[0,1]

ϕ(γ(t)),

Γ := {γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) = e},

then c is a critical value of ϕ.

The following Saddle Point Theorem by Rabinowitz is a generalized version of the

Mountain Pass Theorem.

Theorem 1.4 (Saddle Point Theorem). ([51] p.42) Let X = Y ⊕ Z be a Banach

space with dimY <∞. Define, for ρ > 0,

M := {u ∈ Y : ‖u‖ ≤ ρ},

M0 := {u ∈ Y : ‖u‖ = ρ}.
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Let ϕ ∈ C1(X,R) be such that

b := inf
Z
ϕ > a := max

M0

ϕ.

If ϕ satisfies the (PS)c condition with

c := inf
γ∈Γ

max
u∈M

ϕ(γ(u)),

Γ := {γ ∈ C(M,X) : γ|M0 = Id},

then c is a critical value of ϕ.

For the proof of the main theorem in Chapter 2, we use the Generalized Saddle Point

Theorem (Theorem 2.5) which is a generalized version of the Saddle Point Theorem.

1.2.2 G-Index Theories

Let G be a finite abelian group. For a differential equation having a variational

structure which is G-invariant, G-Index Theory shows the existence and multiplicity of

solutions by using the (Krasnosel’skii’s) genus index and Borsuk-Ulam Type Theorems.

The genus is defined as the least dimension of the range in which a special continuous

function from the invariant set can exist. The concept of the genus is related to the

Lusternik-Schnirelman category which can measure the ’size’ of symmetric sets ([39]).

Lusternik-Schnirelman category

Lusternik-Schnirelman category: For a closed set A in a topological space X,

the Lusternik-Schnirelman category is the least integer n such that there exists a covering

of A by n closed sets which is contractible in X, denoted as catX(A).

The key idea of the Lusternik-Schnirelman Theory is the following: if a contractible

local neighborhood of each critical point exists, then the number of critical points of E

on A is greater than equal to catX(A). The case where X is a compact manifold is

typically treated. The corresponding critical values are given by

ck := inf
A∈Ak

sup
u∈A

E(u), Ak := {A ⊂ X : A closed, catX(A) ≥ k}.

Remark 1.5. The Krasnosel’skii’s genus is a ’simpler’ version of the Lusternik-Schnirelman

category. The genus can be thought of as equivalent to the category in a symmetric space
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which is invariant under the symmetry group. The Lusternik-Schnirelman category is

related to the cuplength of cohomology rings.

We apply Z2-Index Theory for the fully symmetric case (hence λ1 = λ2 and µ1 =

µ2) of the 2-coupled GPEs. Let σ be a Z2-group action given by σ(u, v) = (v, u) in M,

whereM is our ’nice’ manifold having critical points. For any closed σ-invariant subset

A ofM, the Z2-genus γ(A) is defined as the smallest k ∈ N∪ {0} such that there exists

a continuous function h : A→ Rk \ {0} with h(σ(u, v)) = −h(u, v) for all (u, v) ∈ A.

Let S be the boundary of a bounded symmetric neighborhood of zero in a k-

dimensional normed vector space. We can also construct a continuous function ψ : S →

M satisfying ψ(−u) = σ(ψ(u)). Then h◦ψ makes a contradiction with the Borsuk-Ulam

Theorem which says every continuous odd map f : ∂U → Rn−1 has a zero, where U is

an open bounded symmetric neighborhood of 0 in Rn. This argument with properties

of genus (Lemma 3.6) allows us to conclude the existence of at least k critical points.

To see this, suppose there exists a continuous function

∃h : ψ(S)→ Rk−1 \ {0},

then we get the following diagram.

Sk−1 ∼= S 3 u
ψ //

−1

��

ψ(u) h //

σ

��

h(ψ(u))

−1

��

⊆ Rk−1 \ {0}

Sk−1 ∼= S 3−u ψ // ψ(−u) h // h(ψ(−u))⊆ Rk−1 \ {0}

Figure 1.2: Z2-Index Theory and the Borsuk-Ulam Theorem

The diagram contradicts the Borsuk-Ulam Theorem.

Remark 1.6. For a finite abelian group G, generalized (or pseudo) Borsuk-Ulam Type

Theorems are needed to obtain the dimensional property (Lemma (3.6) (vi)) necessary

for establishing the G-Index Theory (for example, see [14] [40] [45] [50] ). Generalizations

of the Borsuk-Ulam Theorem are still studied nowadays (for example, see [48]). For a

nonabelian group G, the construction of G-Index Theory seems to be an open problem

although some research has already been done (for example, [15]).
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1.2.3 Bifurcation Methods

Recall the definition of a bifurcation point.

Bifurcation point: Suppose X and Y are Banach spaces, F : X → Y , and the

preimage F−1(θ) contains a curve Z. If every neighborhood U of z contains zeros of F

in U \Z, then the interior point z ∈ Z is called a bifurcation point for F with respect to

Z.

Bifurcation Methods are methods used to investigate the existence of bifurcation

points and their properties. In the case we already know there exists a solution curve

Z, the existence of a bifurcation point on Z implies that another solution curve Y

may exist locally. We call the other solution curve a local bifurcation or a bifurcation

branch. To show the existence of a bifurcation point, we look at the original problem

F = θ locally; hence we linearize the original problem. If the linearized problem has a

nontrivial kernel, then there is the possibility that a bifurcation point exists. However,

it is a necessary condition. Thus we need to show that the possible bifurcation point

is actually a bifurcation point. To show the existence of bifurcation points, we use the

Morse index which is defined as the number of negative eigenvalues of the Hessian matrix

of a functional. Note that the Morse index implies the number of dimensional directions

to decrease the functional, and the definition in the infinite dimensional space makes

sense if it is finite.

To show that possible bifurcation points are bifurcation points, we also use the

Crandall-Rabinowitz Local Bifurcation Theorem (Theorem 4.14). The Crandall-Rabinowitz

Local Bifurcation Theorem is proved by the Lyapunov-Schmidt Reduction.

Lyapunov-Schmidt Reduction

Lyapunov-Schmidt Reduction is a method for changing the problem in an infinite

dimensional space into a problem in a finite dimensional space by using the advantage

of Fredholm operators. Let X, Y be Banach spaces, and T be a topological space. Let

U(θ) be a neighborhood of θ in X. Suppose F : U × T → Y is a continuous map

satisfying F (θ, λ0) = θ. Suppose Fx(θ, λ0) is a Fredholm operator, i.e.,

a) im Fx(θ, λ0) is closed in Y ,

b) d := dim kerFx(θ, λ0) <∞.

c) d∗ := codim imFx(θ, λ0) <∞.
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Let us think of solving the following equation:

F (x, λ) = θ. (1.9)

There are direct sum decompositions of X and Y by the properties of b) and c).

Thus the problem (1.9) can be changed into:

 PF (x̃+ u(x̃, λ), λ) = θ,

(Id− P )F (x̃+ u(x̃, λ), λ) = θ,
(1.10)

where P : Y → imFx(θ, λ0) is the projection operator, and x̃ ∈ kerFx(θ, λ0). u(x̃, λ) is

a solution satisfying the first equation of (1.10) due to the Implicit Function Theorem.

Thus the problem (1.9) is reduced to the second equation of (1.10) which is a system of

d∗ equations of d variables. This procedure is called the Lyapunov-Schmidt Reduction

(for the details, see [13] [17] [31]).

We also investigate to see if bifurcations are global. Begin by Recalling the defini-

tion of global bifurcation.

Global bifurcation: Let Z be a solution curve and z0 ∈ Z a bifurcation point.

Let Y be the connected component of bifurcation solutions emanating from z0. Y is

called global if Y is unbounded or Y meets Z at a different bifurcation point (see Figure

1.3).

The Rabinowitz Global Bifurcation Theorem (Theorem 4.9), which can be proved

by using the Leray-Schauder degree, is a well-known theorem to see if a bifurcation is

global.
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Figure 1.3: Example of global bifurcation
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1.3 A brief summary of main results

Here we list our main theorems:

1.3.1 Multiple existence theorem for RPEs

Let set S := R/{2πZ}, and let denote the Lp spaces with the T -periodic conditions

as LpT .

(R1) φ : Ba ⊂ Rn is onto Rn such that ψ := φ−1 : Rn → Ba and there is a C1 function

Ψ : Rn → R such that ∇Ψ = ψ and Ψ is bounded below.

(R2) F ∈ C1(S × Rn,R). For an integer 0 ≤ k ≤ n, F is T -periodic in x, 2π-

periodic in u1, · · · , uk and ∇uF is bounded. h ∈ (L2
T (R))n is 2π-periodic in x and∫ T

0 hi(x)dx = 0 for i = 1, · · · , k. Writing u = (v, w) with v ∈ Rk and w ∈ Rn−k.

Assume
∫ T

0 (F (x, u) + h(x)u)dx→ −∞ as |w| → ∞ uniformly in v ∈ R.

Theorem 1.7 (Theorem A). ([23]) Assume (R1) and (R2). Then the system (1.4)

has at least k + 1 classical T -periodic solutions.

1.3.2 Multiple existence theorem for 2-coupled GPEs

Theorem 1.8 (Theorem B). a) If β ≤ −µ, then (1.6) with the fully symmetric

condition µ1 = µ2 = µ > 0 and λ1 = λ2 = λ > 0 admits a sequence (uk, vk)k of

solutions with

‖uk‖L∞T + ‖vk‖L∞T →∞.

b) For any positive integer k there exists a number β̃k > −µ such that, for β < β̃k,

(1.6) with the fully symmetric condition µ1 = µ2 = µ > 0 and λ1 = λ2 = λ > 0

has at least k pairs (u, v), (v, u) of solutions.

1.3.3 Bifurcation theorems for 2-coupled GPEs

Set

βk := (Λk + λ2)
µ1

λ1
, Λk := (k

2π

T
)2,

where k = 0, 1, · · · .

Set

Sβk := The connected bifurcation component through ((ω1, θ), βk),
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Xeven := {u ∈ H1[−T/2, T/2] : u is an even function }.

Theorem 1.9 (Theorem C). Along T β1 , there are infinitely many bifurcation points

of (1.6): β0 < β1 < · · · in β, having the following properties:

a) The nontrivial solutions in the bifurcation branches are not given by solving Dirich-

let problems.

b) These bifurcation branches are global.

c) In Xeven ×Xeven, Sβk ∩ S
β
l = ∅, for k 6= l.

d) Each Sβk is unbounded.

Set

λ̃k :=
1

2
Λk,

˜̃
λk :=

µ1

β
(λ2 + Λk),

where k = 0, 1, · · · .

With fixed β, set

Sλ1k := The connected bifurcation component through ((ω1, θ), λ̃k), k = 1, 2, · · · .

Rλ1k := The connected bifurcation component through ((ω1, θ),
˜̃
λk), k = 0, 1, · · · .

Theorem 1.10 (Theorem D). Along T λ11 , there are infinitely many bifurcation points

of (1.6): For fixed β, λ̃1 < λ̃2 < · · · , and
˜̃
λ0 <

˜̃
λ1 < · · · , in λ1, having the following

properties:

a) The nontrivial solutions in the bifurcation branches are not given by solving Dirich-

let problems.

b) These bifurcation branches are global if Λk 6= 2λ2µ1
β−2µ1

.

c) In Xeven ×Xeven, Sλ1k ∩ S
λ1
l = ∅ and Rλ1k ∩R

λ1
k = ∅ for k 6= l.

d) Each Sλ1k and Rλ1k is unbounded.

Set

Sk := The connected bifurcation component though ((Aβk , Bβk), βk).
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Theorem 1.11 (Theorem E). Suppose

T 6=
√

2πk, k = 1, 2, 3, · · · .

Then along T , there are infinitely many bifurcation points of (1.6) with the condition

λ1 = λ2 = 1: β1 > β2 > β3 > · · ·βk0 > 0 > βk0+1 > βk0+2 > · · · > βk, βk → −
√
µ1µ2 as

k →∞, having the following properties:

a) The nontrivial solutions in the bifurcation branches are not given by solving Dirich-

let problems, and are positive solutions.

b) These bifurcation branches are global.

c) Each Sk extends to −∞ for β if µ1 6= µ2.

d) In Xeven ×Xeven, Sk ∩ Sl for k 6= l.

Theorem 1.12 (Theorem F). Suppose

T =
√

2πj

for some j = 1, 2, · · · . Then any point in (−√µ1µ2, µ1) ∪ (µ2,∞) in β is a possible

bifurcation point of (1.6) with the condition λ1 = λ2 = 1.

The proofs are given in later chapters. In Chapter 2, we study RPEs. In Chapter

3, we see the similar multiple existence results for 2-coupled GPEs in [16] also holds for

the periodic condition. In Chapter 4, we study about bifurcations for 2-coupled GPEs.

In Chapter 5, we discuss summaries and mention some possible future research topics.
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CHAPTER 2

MULTIPLE EXISTENCE RESULTS FOR RELATIVISTIC PENDULUM

EQUATIONS 1

2.1 Introduction

2.1.1 The main theorem (Theorem A)

Here we consider the following system of RPEs for u ∈ (H1([0, T ]))n:

 (φ(u′))′ = ∇uF (x, u) + h(x),

u(0) = u(T ), u′(0) = u′(T ).
(2.1)

Let set S := R/{2πZ}, and let denote the Lp spaces with the T -periodic conditions

as LpT . Suppose the following condition:

(R1) φ : Ba ⊂ Rn is onto Rn such that ψ := φ−1 : Rn → Ba and there is a C1 function

Ψ : Rn → R such that ∇Ψ = ψ and Ψ is bounded below.

(R2) F ∈ C1(S × Rn,R). For an integer 0 ≤ k ≤ n, F is T -periodic in x, 2π-

periodic in u1, · · · , uk and ∇uF is bounded. h ∈ (L2
T (R))n is 2π-periodic in x and∫ T

0 hi(x)dx = 0 for i = 1, · · · , k. Writing u = (v, w) with v ∈ Rk and w ∈ Rn−k.

Assume
∫ T

0 (F (x, u) + h(x)u)dx→ −∞ as |w| → ∞ uniformly in v ∈ R.

Remark 2.1. As an example of (R1),

φ(x) =
x√

1− |x|2
, ψ(x) =

x√
1 + |x|2

, and Ψ(x) =
√

1 + |x|2.

We give the proof of the following theorem in this chapter.

Theorem 2.2 (Theorem A). ([23]) Assume (R1) and (R2). Then the system (2.1)

has at least k + 1 classical T -periodic solutions.

1Coauthored by Kazuya Hata, Jiaquan Liu, and Zhi-Qiang Wang [23].
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Note that these solutions are actually geometrically distinct solutions, i.e. solutions

whose i-th component does not differ by a multiple of Ti, i = 1, · · · , n.

2.1.2 Historical background

For CPEs, the historical original paper [22] was in 1922. From the late 1980’s,

many studies about the existence and multiplicity of periodic solutions were done (see

references in [10] [11] [27] [29] [35] [39]).

For RPEs, this class of equations has received much attention in recent years start-

ing from papers by Torres ([46] [47]). Then in a series of interesting papers ([3] [4] [6] [8]

[9] [28]) the problem of the existence and multiplicity of periodic solutions for RPEs has

been studied. Fixed Point Theorem Method was mainly used in these works. Brezis and

Mawhin ([8] [9]) have explored by using Minimization Methods in convex sets of Banach

spaces, and raised some open questions concerning multiplicity of periodic solutions for

RPEs.

The original form of RPEs is given by the following form:

(
u′√

1− (u′)2
)′ +A sinu = h(x),

where A is a constant, h ∈ L1
T (R) and

∫ 2π
0 h(x)dx = 0.

RPEs are generalized into the following form:

(φ(u′))′ − g(x, u) = h(x),

where φ(−a, a) → R is an increasing homeomorphism, g is T -periodic in x and 2π-

periodic in u, and h is T -periodic and has mean value zero, with some smoothness

conditions. For the following RPEs with continuous periodic forcing h and arbitrary

dissipation f

(φ(u′)′ + f(u)u′ +A sinu = h(x),

Torres proved ([46] [47]) the existence of at least two T -periodic solutions when

aT < 2
√

3 and |h̄| < A(1− aT

2
√

3
), (2.2)
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and of at least one T -periodic solution when

aT = 2
√

3 and h̄ = 0, (2.3)

by using a Schauder Fixed-Point Theorem. The assumption has been improved in [6]

by using a Leray-Schauder degree argument, and yielded another multiplicity result by

using an Upper and Lower Solution Method.

Under the conditions that A ∈ R and h̄ = 0, Brezis and Mawhin established the

existence of a periodic solution of (2.2) and its corollary with the existence of a T -

periodic solution for (2.2). Thus the conditions (2.2) and (2.3) are removed, and this

was done by a Minimization Argument in closed convex subsets of a Banach space.

More precisely under the following conditions:

(R3) Φ is continuous on [−a, a], of class C1 on (−a, a), strictly convex, and φ := Φ′ :

(−a, a)→ R is a homeomorphism such that φ(0) = 0.

(R4) g is a Carathéodory function, bounded on R2, g(·, u) is T -periodic for any u ∈ R

and some T > 0, g(x, ·) is 2π-periodic for a.e. x ∈ R, G(x, u) :=
∫ u

0 g(x, s)ds is

bounded on R2, and G(x, ·) is 2π-periodic for a.e. x ∈ R.

Brezis and Mawhin proved the following theorem:

Theorem 2.3 (Brezis-Mawhin). ([8]) Under conditions (R3) and (R4), (2.2) has a

classical periodic solution.

In [9], under the following assumptions:

(R5) φ is a homeomorphism from Ba ⊂ Rn onto Rn such that φ(0) = 0, φ = ∇Φ with

Φ : Ba → (−∞, 0] of class C1 on Ba, continuous and strictly convex on Ba.

(R6) F (·, u) is measurable on [0, T ] for every u ∈ Rn, F (x, ·) is continually differentiable

on Rn for a.e. x ∈ [0, T ], and ∇uF satisfies the L1-Carathéodory conditions.

It was proved:

Theorem 2.4 (Brezis-Mawhin). ([9]) Under (R5) and (R6) and if F is also periodic

in each component of u and h̄ = 0, the system (2.1) has at least one periodic solution.
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Open problems are answered by Theorem A

In [9], some open problems were formulated with the following CPE:

 u′′ = ∇uF (x, u) + h(x),

u(0) = u(T ), u′(0) = u′(T ).
(2.4)

(Q1) ([9] Remark 9.3) Under (R6), the periodicity of F in u, h ∈ (L1(0, T ))n and h = 0

holds, then the CPE (2.4) has at least n+ 1 geometrically distinct solutions. Does

it hold for RPEs?

(Q2) ([9] Remark 7.4) The CPE (2.4) has at least one solution when the assumption

|∇uF (x, u)| ≤ g(x)|u|α + k(x)

for g, k ∈ L1 nonnegative with α = 0 holds and

F (u) + 〈h, u〉 → −∞ as |u| to ∞.

Does it hold for RPEs?

Theorem 2.2 answers the question (Q1) when k = n, and answers the question (Q2)

when k = 0.

2.2 Generalized Saddle Point Theorem

In this section, for the proof of our main theorem, we introduce Liu’s Generalized

Saddle Point Theorem which is a generalized version of Chang’s Saddle Point Theorem

which is related to cuplength. The cuplength is the invariant number of a cohomology

ring whose operator is the cup product on the direct sum of cohomology groups of a

space X. For the details, see [24] [32] etc.

Theorem 2.5 (Generalized Saddle Point Theorem). ([27]) Let X be a Banach

space having a decomposition: X = Y ⊕Z where Y , Z ⊂ X with dim Z <∞. Let V be

a finite-dimensional compact C2-manifold without boundary. Let f : X × V → R be a

C1-function that satisfies the Palais-Smale condition.

Suppose that f satisfies

(i) infx∈Y×V f(x) ≥ β ,

(ii) supx∈S×V f(x) ≤ α < β ,



22

where S = ∂D, D = {y ∈ Z : |y| ≤ r} and r, α, β are constants.

Then the function f has at least cuplength(V ) + 1 critical points.

The Generalized Saddle Point Theorem is proved by the following theorem which

is related to the Lusternik-Schnirelman category. We do not give the proofs of these

theorems here. See [27] for the proofs.

Theorem 2.6. ([27]) Let X be a real Banach space such that X = Y ⊕Z, where Y and

Z are closed subspaces of X and dimZ < ∞. Let V be a finite-dimensional compact

C2-manifold without boundary.

Set D = {z ∈ Z : |z| ≤ R}, S = ∂D = {z ∈ Z : |z| = R}. To add, set

Q = S × V ⊂ X × V , L = Y × V ⊂ X × V . Then

cat∗(D × V ) ≥ cuplength(V ) + 1.

Here

cat∗(A) := inf
h∈H

cat(h(A) ∩ L),

where H is the family of all homeomorphisms of X × V which are homotopic to the

identity mapping while keeping the subset Q fixed.

According to the Theorem 2.5, the following two corollaries (see [11], [27] for the

proofs) hold:

Theorem 2.7 (Chang’s Critical Point Theorem). ([11]) Suppose that A satisfies

the following assumptions

(H1) A± := A|± has a bounded inverse on H±,

(H2) γ := dim(H− ⊕H+) <∞.

Let V n be a C2 compact n-manifold without boundary, and let g ∈ C1(H × V n,R) be a

function having a bounded and compact differential dg(x). Assume that

g(P0x, v)→ −∞ as |P0x| → ∞, if dimH0 6= 0,

where P0 is the orthogonal projection onto H0. Then the function

f(x, v) =
1

2
(Ax, x) + g(x, v)
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possesses at least cuplength(V n) + 1 distinct critical points.

If further, we assume that g ∈ C2(H × V,R1), and that f is nondegenerate, then f

has at least
∑n

i=1 βi(V
n) critical points, where βi(V

n) is the i-th Betti number of V n.

Theorem 2.8 (Liu’s Critical Point Theorem). ([27] Theorem 1.8) Let H be a

Hilbert space and A be a bounded self-adjoint operator on H which splits the space H

into H0 ⊕ H+ ⊕ H− according to its spectral decomposition. Denote by P± and P0

the orthogonal projections onto positive, negative spectral space H± and ker(A), H0,

respectively.

Assume that

(A1) The restriction A|H± is invertible, i.e., A|H± has a bounded inverse on H±.

(A2) The spaces H− and H0 are finite-dimensional.

(A3) G : H × V → R is a C1-function, where V is a finite-dimensional compact C2-

manifold. Suppose that G has a bounded compact gradient dG and

G(P0u, v)→ −∞ (or +∞), uniformly in v as |P0u| → +∞.

Then the function f : H × V → R defined by

f(x) =
1

2
(Au, u) +G(u, v) for x = (u, v)

has at least cuplength(V ) + 1 critical points.

Remark 2.9. Because the sum of the Betti numbers is the lower bound of cuplength,

Theorem 2.8 improves the result of Theorem 2.7. To add, note that the condition of the

finite dimension of H− on Theorem 2.8 can be dropped ([27] Theorem 3.3).

We apply the Theorem 2.8 for the proof of our main theorem.

2.3 Proof of Theorem A

In this section, we give the proof of Theorem A.

Proof. Let us introduce relativistic kinetic momentum v = φ(u′). Due to the condition

(R3), we have u′ = ψ(v). Then the original system is equivalent to the following first
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order Hamiltonian system: u′ = ψ(v), v′ = ∇uF (x, u) + h(x),

u(0) = u(T ), u′(0) = u′(T ).
(2.5)

Under the conditions (R1) and (R2), that weak solutions of the original system are

classical solutions is known. By the known fact (for example, see [8]), we only need to

consider the weak solutions. Without loss of generality, we assume T = 2π.

Claim 1: The Euler-Lagrange functional associated with the above system (2.5):

I(u, v) =

∫ T

0
u′ · vdx−

∫ T

0
Ψ(v)dx+

∫ T

0
F (x, u)dx+

∫ T

0
h(x) · udx

which is defined on the product space H1/2(S,Rn)×H1/2(S,Rn) with S := R/{2πZ} ∼=

Tk.

Remark 2.10. The functional I corresponds to the action of the Lagrangian, and the

integrand L is the Lagrangian. The Hamiltonian of the system (2.5)

H(x, (u, v)) := (u′, v)− L(u, v),

which is given by the Legendre transform of the Lagrangian, is

H(x, (u, v)) = −Ψ(v) + F (x, u) + h(x) · u.

On the system (2.1), multiply any vector a into u′ = ψ(v), and multiply any vector

b into v′ = ∇uF (x, u) + h(x). Then add these equations, integrate from 0 to T , to get

the functional. By taking the functional derivatives, we know Claim 1 holds.

Let w = (u, v). Because of

∫ T

0
u′ · vdx =

1

2
(Jw′, w),

the quadratic part
∫ T

0 u′ ·vdx defines a linear operator A and its domain is W 1,2(S,R2n)

whose elements are w, hence

Aw = Jw′,

where wi is the i-th component of w.
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Claim 2: The spectrum of the operator A is σ(A) = Z with eigenvalue being of

multiplicity 2n, and the eigenspace of A corresponding to the eigenvalue k ∈ Z is

Ek = exp(ktJ)R2n = ((cos kt)I + (sin kt)J)R2n,

J :=

 0n In

−In 0n

 .

The eigenvalue problem

Jw′ = λw

with the periodic condition is a well-known ordinary differential equation’s problem. For

example, p.43 in [31] shows that Claim 2 holds.

Note that

kerA = E0 = R2n.

Define

E = {u ∈ H1/2(S,R2) :

∫ T

0
u(x)dx = 0}.

Then we have H1/2(S,Rn) = E ⊕ Rn. By the conditions, we have I is a translation

invariant in u1, · · · , un with an integer multiple of 2π. Then I can be regarded as

defined on X = (E ⊕ E ⊕ Rn ⊕ Rn−k)× Rk/{2πZ} = (E ⊕ E ⊕ R2n−k)× Tk.

Claim 3: The conditions on the Theorem 2.8 are satisfied, i.e., the Theorem 2.8

can be applied to our problem.

Let V = Tk, H0 = E0 and H+ = E = H− in the theorem.

(A1) The restriction A|H± is invertible.

We remind that w = (u, v). We show that the quadratic part

b(u, v) :=

∫ T

0
u′vdx =

1

2
(Aw,w)
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is a non-degenerate (or nonsingular) bilinear form on E ⊕ E that means A is

invertible. Suppose b(u, v) = 0 for any v. Then

0 =

∫ T

0
u′vdx = −

∫ T

0
uv′dx.

Thus we know u = θ. Next, suppose b(u, v) = 0 for any u. Then, from the same

discussion, we know v = θ.

(A2) The spaces H− and H0 are finite-dimensional.

We showed that A has kernel Rn ⊕ Rn having finite-dimension in Claim 2.

(A3) G : H × V → R is a C1-function, where V is a finite-dimensional compact C2-

manifold. Suppose that G has a bounded compact gradient dG and

G(P0u, v)→ −∞ (or +∞), uniformly in v as |P0u| → +∞.

Note that V = Tk is a compact, and C∞-manifold (with the standard metric g0).

Set

G(x, u) = −
∫ T

0
Ψ(u)dx+

∫ T

0
F (x, u)dx+

∫ T

0
h(t)udx.

Then G has the bounded compact gradient because of (R1) and (R2).

Finally, we need to verify the Landersman-Lazer type condition, which is,

G(P0u, v)→ −∞ (or +∞) uniformly in v as |P0u| → +∞.

The condition assures the Palais-Smale condition. Note that P0u ∈ R2n. Recall

that part of the condition on (R2): for u = (v, w),

∫ 1

0
(F (x, u) + h(x)u)dx→ −∞ as |w| → ∞ uniformly in v ∈ R.

Thus we just need to show Ψ(v)→∞ as |v| → ∞.

Claim Ψ: Ψ(v)→∞ as |v| → ∞.
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Assume ψ(0) = 0. Consider the flow generated by the negative pseudo-gradient

vector field V (η) of Ψ

dη

dt
= −V (η), η(0) = x,

where V is a pseudo-gradient vector field of Ψ such that

〈V (x),∇Ψ(x)〉 ≥ ‖∇Ψ‖2, ‖V (x)‖ ≤ 2.

Since ∇Ψ = ψ is a homeomorphism from Rn onto Ba, there exists δ > 0 such that

for all v ∈ Rn with |v| ≥ 1,

|∇Ψ(v)| = |ψ(v)| ≥ δ. (2.6)

First for each v with |v| = 1 consider the flow line η(t, v). Then as Ψ is non-

increasing for t and Ψ is bounded from below there exists t0 ≤ 0 such that η(t, v)

is outside B1 for t ≤ t0 and to integrate (2.6) gives

Ψ(η(t)) ≥ −δt+ Ψ(η(t0, v))→∞

and |η(t)| → ∞ as t→ −∞.

Now if there is a C > 0 and

wn ∈ Rn

such that |wn| → ∞ and Ψ(wn) ≤ C, then there are tn > 0 such that vn =

η(tn, wn) ∈ ∂B1 (in fact η(t, w)→ 0 as t→ +∞ due to Ψ being bounded below).

Then wn = η(−tn, vn).

Assume vn → v0. There is t0 < 0 such that Ψ(η(−t0, vn))→ Ψ(η(−t0, v0)) ≥ C+1

and Ψ(η(−tn, vn)) ≥ Ψ(η(−t0, vn)) a contradiction for large n with the statement

that Ψ is non-increasing for t. Thus Claim Ψ holds.

The following fact:

cuplength(Tk) = k,
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is known. Therefore, applying Theorem 2.8 with this fact proves the main theorem,

establishing the existence of at least k + 1 critical points of I.

When n = 1 and k = 1, (R1) can be weakened as the following (Hφ) which does

not need Ψ to be defined at x = ±a and the convexity of Φ in (R3).

(Hφ) φ : (−a, a)→ R is a homeomorphism.

To see this, let ψ = φ−1 then ψ : R → (−a, a) and ψ(t) → ±a (if φ is increasing) as

t → ±∞. Let Ψ(t) =
∫ t

0 ψ(s)ds. Then Ψ(t) → +∞ as t → ∞, hence (R1) is satisfied.

Thus we have the following corollary:

Corollary 2.11. Assume (Hφ). For any T > 0, A ∈ R and h ∈ L2
T (R) such that h = 0,

(2.1) has at least two classical T -periodic solutions.

Remark 2.12. Under the condition (R5), the Legendre-Frenchel transform of Φ (denoted

as Φ∗) is well-defined and is also strictly convex and of class C2 (see [9]). Furthermore,

φ−1 = ∇Φ∗. As Φ is bounded from above and Φ∗ is bounded from below. Thus (R5)

implies (R1). We do not need Φ to be defined on the close ball Ba.

2.4 Further results

In [8] [9], the convexity of Φ (and thus Ψ) was assumed as the condition (R3).

Without requirement of a bounded derivative of F , our first order systems approach

gives rise to some further results immediately from some classical works as in [31]. We

mention a couple of examples here.

(R7) There is a l ∈ L4 such that for all x, u, F (x, u) ≥ (l, u).

(R8) There is α ∈ (0, 2π/T ) and γ ∈ L2 such that F (x, u) ≤ α
2 |u|

2 + γ(x).

(R9)
∫ T

0 F (x, u)dx→ +∞ as |u| → ∞ for u ∈ Rn.

(R10) Uniformly in x, F (x, u)/u2 → 0 and F (x, u)→ −∞ as |u| → ∞.

a) Under (R1) and (R7)-(R9) with Ψ being convex, assume −F (x, u) ∈ C1 is convex

in u. Then (2.1) has at least one T -periodic solution by Theorem 3.5 in [31] because

Ψ(v)− F (x, u) is convex in (u, v) now.

b) Under (R1) and (R10) with Ψ being convex, assume −F (x, u) ∈ C1 is convex in

u. Then for each integer k ≥ 1, (2.1) has a kT -periodic solution uk with minimal

period Tk such that Tk → ∞ as k → ∞. When F = F (u) for each large k the

minimal period of uk is kT . This follows from Theorem 3.2 in [31].
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2.5 Summary

We established ([23]) multiplicity results of periodic solutions for RPEs which an-

swers some open problems raised in [8] [9]. Our approach is to convert the problem into

the first order Hamiltonian system and apply the Generalized Saddle Point Theorem

(Theorem 2.5). Our first order systems approach allows us to apply some theorems in

[31], and follow some further results immediately.
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CHAPTER 3

MULTIPLE EXISTENCE RESULTS FOR 2-COUPLED

GROSS-PITAEVSKII EQUATIONS

3.1 Introduction

In 2010, Dancer, Wei, and Weth ([16]) established multiple existence results of

positive solutions for 2-coupled GPEs with the Dirichlet boundary condition by using

Z2-Index Theory. We prove that the similar multiple existence results in [16] hold for

2-coupled GPEs with a periodic condition.

In this chapter, we think of 2-coupled GPEs in the fully symmetric case: λ1 = λ2 =

λ and µ1 = µ2 = µ. First, we set up the variational structure. Then we apply Z2-Index

Theory which takes advantage of the symmetry.

Recall the problem to be studied, GPEs:



−u′′ + λu = µu3 + βv2u,

−v′′ + λv = µv3 + βu2v,

u, u′ are T -periodic,

v, v′ are T -periodic.

(3.1)

Let denote the Sobolev space W 1,2 with a T -periodic condition as H1
T .

Set H := H1
T ×H1

T .

For (u, v) ∈ H, the corresponding functional of (3.1) is given by

E(u, v) =

∫
T

[
1

2
(|u′|2 + λ|u|2 + |v′|2 + λ|v|2)− 1

4
(µ|u|4 + µ|v|4)

−1

2
βu2v2]dt, (3.2)

where we denoted the integral over the T -period interval as
∫
T .

Lemma 3.1. The corresponding energy functional E of (3.1) is of class C2, and E

satisfies the Palais-Smale condition.
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Proof. By the Sobolev Embedding Theorem and Proposition B.34 in [39], E is of class

C2.

E is compactly embedded into L4
T , where L4

T is the L4 space with the T -periodic

condition. E′ is a compact perturbation of IdH and E satisfies the Palais-Smale condi-

tion.

3.2 Application of Z2-Index Theory

3.2.1 The variational structure

For the setting up of Variational Methods, we follow the way in [16]. We assume

that µ > 0, λ > 0, and β < 0.

First, we refer the following lemma which is proved by the Standard Elliptic Reg-

ularity (for example, see [19] [21]):

Lemma 3.2. Every nontrivial critical point (u, v) ∈ H of E is a classical solution of

(3.1).

Let define the norm for u ∈ H1
T :

‖u‖2 :=

∫
T

(|u′|2 + |u|2)dt

Note that with any constant λ > 0,

‖u‖2λ :=

∫
T
|u′|2 + λ|u|2dt

defines an equivalent norm of ‖ · ‖.

Define

M := {(u, v) ∈ H, u, v 6= 0 : ∂uE(u, v)u = 0, ∂vE(u, v)v = 0}

=
{(u, v) ∈ H, u, v 6= 0 ‖u‖2λ − β

∫
T u

2v2 = µ
∫
T u

4,

‖v‖2λ − β
∫
T u

2v2 = µ
∫
T v

4}.

Note that all nontrivial critical points (u, v) of E are contained in M because for

a critical point (u, v) of E with any (x, y) ∈ H,

0 = E′(u, v)(x, y) = ∂uE(u, v)x+ ∂vE(u, v)y.
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Thus if we choose (x, y) = (u, θ) or (x, y) = (θ, v), then we get ∂uE(u, v)u = 0 and

∂vE(u, v)v = 0, respectively.

Lemma 3.3. (i) M is a C2-submanifold of H of codimension two.

(ii) If (u, v) is a critical point of the restriction E|M of E to M, then (u, v) is a

nontrivial critical point of E.

(iii) E(u, v) = 1
4 [‖u‖2λ + ‖v‖2λ] for (u, v) ∈M.

(iv) E|M :M→ R satisfies the Palais-Smale condition (PS)c.

Proof. (i) By the Sobolev Embedding H1
T ↪→ L4

T , we have for (u, v) ∈M,

C1‖u‖4 ≥ |u|44 ≥ ‖u‖2 ⇒ ‖u‖ ≥ 1√
C1
,

C1‖v‖4 ≥ |v|44 ≥ ‖v‖2 ⇒ ‖v‖ ≥ 1√
C1
,

where C1 > 0 is the constant of the Sobolev Embedding. Define F (u, v) given by

F (u, v) =

 F1(u, v)

F2(u, v)

 =

 ‖u‖2λ − β ∫T u2v2 − µ
∫
T u

4

‖v‖2λ − β
∫
T u

2v2 − µ
∫
T v

4

 .

Then

Tu,v :=

 ∂uF1(u, v)u ∂uF2(u, v)u

∂vF1(u, v)v ∂vF2(u, v)v

 =

 −2µ
∫
T u

4 −2β
∫
T u

2v2

−2β
∫
T u

2v2 −2µ
∫
T v

4

 ,

by the following:

∂uF1(u, v)u = 2‖u‖2λ − 2β

∫
T
u2v2 − 4µ

∫
T
u4 = −2µ

∫
T
u4 6= 0,

∂vF1(u, v)v = −2β

∫
T
u2v2 = ∂uF2(u, v)u,

∂vF2(u, v)v = 2‖v‖2λ − 2β

∫
T
u2v2 − 4µ

∫
T
v4 = −2µ

∫
T
v4 6= 0.

Note that for (u, v) ∈M, because of β < 0,

µ

∫
T
u4 > −β

∫
T
u2v2 ≥ 0,

µ

∫
T
v4 > −β

∫
T
u2v2 ≥ 0,
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which implies that Tu,v, which is a Hermitian matrix, is negative definite. Thus all

non-zero eigenvalues of Tu,v are negative, so the number of non-zero eigenvalues,

which is equal to the rank of Tu,v, is two. Hence the vectors

F ′(u, v)(u, θ) =

 ∂uF1(u, v)u+ ∂vF1(u, v)θ

∂uF2(u, v)u+ ∂vF2(u, v)θ

 =

 −2µ
∫
T u

4

−2β
∫
T u

2v2

 ,

F ′(u, v)(θ, v) =

 ∂uF1(u, v)θ + ∂vF1(u, v)v

∂uF2(u, v)θ + ∂vF2(u, v)v

 =

 −2β
∫
T u

2v2

−2µ
∫
T v

4

 ,

are linearly independent in R2 by

Tu,v =
(
F ′(u, v)(u, θ) F ′(u, v)(θ, v)

)
.

Thus F ′(u, v) : H → R2 is surjective. In conclusion, M is a C2-submanifold of

codimension two.

(ii) Suppose (u, v) ∈ M is a critical point of E|M. Then there are Lagrangian multi-

pliers l1, l2 ∈ R such that

l1F
′
1(u, v) + l2F

′
2(u, v) = E′(u, v)

in H∗.

Applying this to (u, θ) and (θ, v) gives us

E′(u, v)(u, θ) = 0 = l1F
′
1(u, v)(u, θ) + l2F

′
2(u, v)(u, θ)

= l1∂uF1(u, v)u+ l2∂uF2(u, v)u,

E′(u, v)(θ, v) = 0 = l1F
′
1(u, v)(θ, v) + l2F

′
2(u, v)(θ, v)

= l1∂vF1(u, v)v + l2∂vF2(u, v)v,

respectively. Thus we get

Tu,v ·

 l1

l2

 =

 ∂uF1(u, v)u ∂uF2(u, v)u

∂vF1(u, v)v ∂vF2(u, v)v

 ·
 l1

l2

 =

 0

0

 .

Then we get l1 = 0 = l2 because Tu,v is negative definite, therefore E′(u, v)(x, y) =

0 for any (x, y) ∈ H (which is sometimes written as E′(u, v) = 0) by the above
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Lagrangian multipliers equation.

(iii) For any (u, v) ∈M, we have

E(u, v) =
1

2
[‖u‖2λ + ‖v‖2λ]− 1

4

∫
T

(µu4 + µv4)dt− β

2

∫
T
u2v2dt

=
1

2
[‖u‖2λ + ‖v‖2λ]

−1

4
[‖u‖2λ + ‖v‖2λ − 2β

∫
T
u2v2dt]

−β
2

∫
T
u2v2dt

=
1

4
[‖u‖2λ + ‖v‖2λ].

(iv) Suppose (uk, vk)k ⊂M is a Palais-Smale sequence for E|M (hence, E(uk, vk)→ c

and E′(uk, vk)→ 0). Note that for any positive number λ, there exists a constant

C2 such that

0 ≤ ‖u‖2λ + ‖v‖2λ ≤ C2(‖u‖2 + ‖v‖2)

for any (u, v) ∈ H. Thus (uk, vk)k is bounded in H by (iii).

Therefore there exists a weekly convergent subsequence of (uk, vk)k. Passing to

the subsequence, then by the Sobolev Embedding that we used before, we may

assume that the subsequence converges weekly in H and converges strongly in L4
T ,

hence (uk, vk) ⇀ (u, v) ∈ H and uk → u, vk → v in L4
T . We think of only the case

of u 6= 0 and v 6= 0.

We have to show that (uk, vk)→ (u, v) ∈ H. Note that

o(1) = E′|M(uk, vk) = E′(uk, vk)− lk1F ′1(uk, vk)− lk2F ′2(uk, vk)

as k →∞ for appropriate Lagrangian multiplier’s sequences (lk1)k, (l
k
2)k ⊂ R.
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Thus since (uk, vk)k is bounded in H,

o(1) =

 E′(uk, vk)(uk, 0)− [lk1F
′
1(uk, vk) + lk2F

′
2(uk, vk)](uk, 0)

E′(uk, vk)(0, vk)− [lk1F
′
1(uk, vk) + lk2F

′
2(uk, vk)](0, vk)


= −

 [lk1F
′
1(uk, vk) + lk2F

′
2(uk, vk)](uk, 0)

[lk1F
′
1(uk, vk) + lk2F

′
2(uk, vk)](0, vk)


= −Tuk,vk ·

 lk1

lk2


= [−Tu,v + o(1)] ·

 lk1

lk2

 .

Because of (uk, vk) ∈M for every k and lim supk→∞ β
∫
T u

2
kv

2
k ≤ 0, where we used

lim sup since the limit might not converge, the weak convergence implies that

‖u‖2λ − β
∫
T
u2v2 ≤ µ

∫
T
u4,

‖v‖2λ − β
∫
T
u2v2 ≤ µ

∫
T
v4.

Thus, the same as the proof in (i), Tu,v is negative definite, and thus lk1 , l
k
2 → 0

by the above o(1) equation. Therefore E′(uk, vk)→ 0 strongly because F ′1(uk, vk)

and F ′2(uk, vk) are still bounded in H∗ as k →∞.

Therefore (u, v) is the weak solution of (3.1). Because of (u, v) ∈ M, multiplying

the first equation of (3.1) by u and integrating by parts, we get

‖u‖2λ = µ|u|44 + β

∫
T
v2u2 = lim

k→∞
[µ|uk|44 + β

∫
T
v2
ku

2
k] = lim

k→∞
[‖uk‖2λ]

where the strong convergence in L4
T made the strong convergence for β

∫
T v

2u2.

Since ‖·‖2λ defines an equivalent norm of ‖·‖2, ‖u‖2λ = limk→∞[‖uk‖2λ] implies that

‖u‖2 = limk→∞ ‖uk‖2, hence uk → u strongly in H1
T . Likewise, we get vk → v

strongly in H1
T .
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3.2.2 Z2-Index Theory

Now we apply Z2-Index Theory for the problem (3.1).

Define

Kc := {(u, v) ∈M : E(u, v) = c, E′(u, v) = 0}

= {(u, v) ∈M : E|M(u, v) = c, (E|M)′(u, v) = 0}.

Let us also define a group action of Z2 on H:

σ : H → H, (u, v) 7→ σ(u, v) = (v, u),

and define the least level of E having a fixed point of σ as

c(β) := inf{E(u, v) : (u, v) ∈M is a fixed point of σ}.

Lemma 3.4. limβ↘−µ c(β) =∞.

Proof. The proof is derived from [16]. M does not have fixed points of σ for β ≤ −µ

because of ‖u‖2λ = (µ+ β)
∫
T u

4, thus c(β) =∞.

When −µ < β < 0 and (u, u) ∈M for some u ∈ H1
T , then

‖u‖2λ = (µ+ β)|u|44 ≤ (µ+ β)Cλ‖u‖4λ

where Cλ is the constant of the Sobolev Embedding H1,λ
T ↪→ L4

T as we used on Lemma

3.3 (i) where H1,λ
T is H1

T with the norm ‖ ·‖2λ. Thus we get ‖u‖2λ ≥
1

Cλ(µ+β) , so E(u, u) ≥
1

2Cλ(µ+β) by Lemma 3.3 (iii). Therefore limβ↘−µ c(β) ≥ limβ↘−µ
1

2Cλ(µ+β) =∞.

Proposition 3.5. Let c ∈ R, and let N ⊂M be a relatively open σ-invariant neighbor-

hood of K. Then there exists ε > 0 and a C1-deformation η : [0, 1]×Mc+ε \N →Mc+ε

such that, for all (u, v) ∈Mc+ε \N and s ∈ [0, 1],

η(0, (u, v)) = (u, v),

η(s, (u, v)) ∈M c−ε,

σ[η(s(u, v))] = η(s, σ(u, v)).
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Proof. The proof is done in the standard way by using the Palais-Smale condition and

the fact that M is C1-manifold.

Recall the following lemma:

Lemma 3.6. Let A,B ⊂M be closed and σ-invariant.

(i) If A ⊂ B, then γ(A) ≤ γ(B),

(ii) γ(A ∪B) ≤ γ(A) + γ(B),

(iii) If h : A→M is continuous and σ-equivalent, then γ(A) ≤ γ(h(A)).

If A does not contain fixed points of σ, then

(iv) if γ(A) > 1, then A is an infinite set;

(v) if A is compact, then γ(A) < ∞, and there exists a relatively open σ-invariant

neighborhood N of A in M such that γ(A) = γ(N).

Finally,

(vi) if S is the boundary of a bounded symmetric neighborhood of zero in a k-dimensional

normed vector space and ψ : S → M is a continuous map satisfying ψ(−u) =

σ(ψ(u)), then γ(ψ(S)) ≥ k.

Proof. The proofs are done in the standard way of Index Theory. Here we give the

proof of (vi) only to see the relation with the Borsuk-Ulam Theorem. For other proof,

for example, see [16] [39].

(vi) Suppose the contrary, γ(ψ(S)) < k, hence there exists a continuous map h :

ψ(S) → Rk−1 \ {0} satisfying the property h(σ(u, v)) = −h(u, v). Then h ◦ ψ :

S → Rk−1 \ {0} is an odd continuous map which contradicts the Borsuk-Ulam

Theorem (see Figure 1.2). Therefore γ(ψ(S)) ≥ k.

Proposition 3.7. For every c < c(β) we have γ(Kc) <∞, and there exists ε > 0 such

that

γ(Mc+ε) ≤ γ(Mc−ε) + γ(Kc).

Proof. For example see [16] [39].
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Define

ck := inf{c ∈ R : γ(Mc) ≥ k, k ∈ N}.

Proposition 3.8. (i) For every k, ck <∞ is bounded independently of β < 0.

(ii) ck → c̄ as k →∞, where c(β) ≤ c̄ ≤ ∞.

(iii) If c := ck = ck+1 = · · · = cl < c(β) for some l ≥ k, then γ(Kc) ≥ l − k + 1.

(iv) If ck < c(β) then Kck 6= ∅, and Mck contains at least k pairs (u, v), (v, u) of

critical points of E.

Proof. (i) The proof is derived from [16]. Let W k ⊂ H1
T be a k-dimensional subspace

consisting of functions u ∈ H1
T , satisfying the condition

∫
T u = 0.

Define

Sk−1 := {u ∈W k : ‖u‖ = 1},

then for any u ∈ Sk−1,

u+ := max{u, 0}, u− := −min{u, 0}

are not θ because of the condition of W k,
∫
T u = 0.

Define

ψ : Sk−1 →M, ψ(u) = (

√
‖u+‖2λ
µ|u+|44

u+,

√
‖u−‖2λ
µ|u−|44

u−),

which is continuous, and satisfies

ψ(−u) = σ(ψ(u))

for every u ∈ Sk−1 because of (−u)+ = u− and (−u)− = u+. Thus γ(ψ(Sk−1)) ≥ k

by Lemma 3.6. Therefore we have

ck ≤ sup
u∈Sk−1

E(ψ(u)) <∞.
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By the definition of ψ and Lemma 3.3 (iii), supu∈Sk−1 E(ψ(u)) is independent of

β.

(ii)-(iv) The proofs are done by the standard method of Index Theory. For example, see

[16] [39].

3.2.3 Proof of Theorem B

Theorem 3.9 (Theorem B). a) If β ≤ −µ, then (3.1) with the fully symmetric

condition µ1 = µ2 = µ > 0 and λ1 = λ2 = λ > 0 admits a sequence (uk, vk)k of

solutions with

‖uk‖L∞T + ‖vk‖L∞T →∞.

b) For any positive integer k there exists a number β̃k > −µ such that, for β < β̃k,

(3.1) with the fully symmetric condition µ1 = µ2 = µ > 0 and λ1 = λ2 = λ > 0

has at least k pairs (u, v), (v, u) of solutions.

Proof. a) By Lemma 3.4, we can choose a sequence (uk, vk)k ⊂ Kck for every k which

is a sequence of nontrivial critical points of E such that E(uk, vk) → ∞. Thus

‖uk‖2λ + ‖vk‖2λ →∞ by Lemma 3.3 (iii). Note that

Tµ(|uk|4∞ + |vk|4∞) ≥ µ(|uk|44 + |vk|44) ≥ ‖uk‖2λ + ‖vk‖2λ.

Therefore |uk|∞ + |vk|∞ →∞ as k →∞.

b) By the Lemma 3.4 and Proposition 3.8 (i), for any positive integer k there exists

β̃k > −µ such that for β < β̃k, ck < c(β) holds. Thus E has at least k pairs of

nontrivial critical points by Proposition 3.8 (iv).

3.3 Summary

In this chapter, we applied Z2-Index Theory for 2-coupled GPEs (in the case λ1 =

λ2 = λ and µ1 = µ2 = µ) with the periodic condition. We followed the way of [16] which

uses the decomposition of u into u+ and u− to show that ck is bounded independent

of β, and uses the well-constructed function ψ. Finally, we concluded that the similar

multiple existence results in [16] hold for the periodic condition case too.
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CHAPTER 4

LOCAL AND GLOBAL BIFURCATIONS FOR 2-COUPLED

GROSS-PITAEVSKII EQUATIONS

4.1 Introduction

In this chapter, we study the bifurcation structures of 2-coupled GPEs with the

periodic boundary condition, and prove some theorems (Theorem 4.20, 4.31, 4.42, 4.44)

of existences and qualitative properties of local and global bifurcations. For making the

proof simpler, we think of the radial domain, hence we focus on the following system:



−u′′ + λ1u = µ1u
3 + βv2u,

−v′′ + λ2v = µ2v
3 + βu2v,

u(−T/2) = u(T/2), u′(−T/2) = u′(T/2),

v(−T/2) = v(T/2), v′(−T/2) = v′(T/2),

(4.1)

where λ1, λ2 > 0, µ1, µ2 > 0, and β ∈ R.

Let denote the Sobolev space W 1,2 with the inner product and the T -periodic

conditions on [−T/2, T/2] asH1
T . The corresponding energy functional E : H1

T×H1
T → R

is given by

E(u, v) =

∫
T

[
1

2
(|u′|2 + λ1|u|2 + |v′|2 + λ2|v|2)− 1

4
(µ1|u|4 + µ2|v|4)

−1

2
βu2v2]dt. (4.2)

Remark 4.1. Just as with the Lemma 3.1, we know the functional E of (4.2) is of C2,

and satisfies the Palais-Smale condition.
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The system (4.1) has the following constant solutions:

In the general case, (u, v) = (ω1, θ), (u, v) = (θ, ω2), ωi :=

√
λi
µi
.

In the case λ1 = λ2 = 1, (u, v) = (Aβ, Bβ), Aβ :=

√
µ2 − β

µ1µ2 − β2
, Bβ :=

√
µ1 − β

µ1µ2 − β2
.

We study the bifurcation structures bifurcating from the following solution curves:

T β1 := {(ω1, θ) ∈ H1
T ×H1

T : β ∈ R},

T λ11 := {(ω1, θ) ∈ H1
T ×H1

T : λ1 > 0},

T := {(Aβ, Bβ) ∈ H1
T ×H1

T : β ∈ (−√µ1µ2, µ1) ∪ (µ2,∞)},

Remark 4.2. Obviously, the bifurcation structures from T β1 and T λ11 are similar to the

bifurcation structures from

T β2 := {(θ, ω2) ∈ H1
T ×H1

T : β ∈ R},

T λ12 := {(θ, ω2) ∈ H1
T ×H1

T : λ1 > 0},

respectively.

For the bifurcating from T , we set λ1 = λ2 = 1, hence the following is the system

to be studied: 

−u′′ + u = µ1u
3 + βv2u,

−v′′ + v = µ2v
3 + βu2v,

u(−T/2) = u(T/2), u′(−T/2) = u′(T/2),

v(−T/2) = v(T/2), v′(−T/2) = v′(T/2).

(4.3)

In [2] [44], for the following system:

 −u′′ + u = µ1u
3 + βv2u, in Ω,

−v′′ + v = µ2v
3 + βu2v, in Ω,

(4.4)
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where Ω ⊂ Rm, m ≤ 3, the bifurcation structures of positive solutions from

Tω = {(β, uβ, vβ ∈ R×H1
0 (Ω)×H1

0 (Ω)) : β ∈ (−√µ1µ2, µ1) ∪ (µ2∞)},

uβ :=

√
µ2 − β

µ1µ2 − β2
ω, vβ :=

√
µ1 − β

µ1µ2 − β2
ω,

have been studied, where ω ∈ H1
0 (Ω) is a solution of

 −ω′′ + ω = ω3,

ω > 0 in Ω.

To show the theorem of bifurcations from T (Theorem 4.42), we use some techniques

of [2] [44]. In our case, to show there are some local or global bifurcations, we need to

restrict the functions space into the space of even functions, thus we study the bifurcation

structures of the following auxiliary problem too:



−u′′ + λ1u = µ1u
3 + βv2u,

−v′′ + λ2v = µ2v
3 + βu2v,

u(−T/2) = u(T/2), u′(−T/2) = u′(T/2),

v(−T/2) = v(T/2), v′(−T/2) = v′(T/2),

u(−t) = u(t), v(−t) = v(t) for ∀t ∈ [−T/2, T/2].

(4.5)

4.2 Bifurcations in β from the semi-trivial solution curve T β1 (Theorem C)

Set

Λk := (k
2π

T
)2, k = 1, 2, · · ·

and we fix λ1 > 0 such that

λ1 6=
Λk
2
, ∀k.

We also fix λ2, µi > 0 in the following. Set

ωi :=

√
λi
µi
,

T β1 := {(ω1, θ) ∈ H : β ∈ R}.
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Then T β1 is a solution curve for β ∈ R containing semi-trivial solutions of the form

(ω1, θ).

Lemma 4.3. Along T β1 , all possible bifurcation points of (4.1) are: β0 < β1 < β2 < · · ·

in β, where

βk := (Λk + λ2)
µ1

λ1
.

Proof. The linearization of (4.1) at (ω1, θ) is given by



−φ′′ = 2λ1φ,

−ψ′′ = (β λ1µ1 − λ2)ψ,

φ(−T/2) = φ(T/2), ψ(−T/2) = ψ(T/2),

φ′(−T/2) = φ′(T/2), ψ′(−T/2) = ψ′(T/2).

Recall the following eigenvalue problem −φ′′ = Λkφ,

φ(−T/2) = φ(T/2), φ′(−T/2) = φ′(T/2).

has eigenvalues

Λk := (k
2π

T
)2, k = 0, 1, · · ·

and its eigenfunctions

{1} (k = 0),

{sin(k
2π

T
t), cos(k

2π

T
t)} (k 6= 0).

Therefore when

βk = (Λk + λ2)
µ1

λ1
,

the linearized problem has a non-trivial kernel. On the other hand, when βk 6= (Λk +

λ2)µ1λ1 , θ is nondegenerate for the second equation of (4.1), hence the linearized problem

has only zero solutions. Therefore we have the possibility that a bifurcation happens at

only β0 < β1 < β2 < · · · in β.
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Remark 4.4. We can choose µ1 ∈ (0,∞) as the bifurcation parameter instead of λ1.

Recall the definition of the critical groups of an isolated critical point u:

Cn(ϕ, u) := Hn(ϕϕ(u) ∩ U,ϕϕ(u) ∩ U \ {u}), n = 0, 1, 2, · · ·

where Hn(A,B) are the relative homology groups.

We also recall some properties here:

If ϕ′(u) = 0 and ϕ′′(u) is invertible (hence, u is a non-degenerate critical point)

then

dim Cn(ϕ, u) = δn,i,

where i is the Morse index of ϕ′′(u).

Theorem 4.5. ([31] Theorem 8.9 p.198) Let U be an open neighborhood of 0 in a Hilbert

space V , let Λ be an open interval and let f(λ, u) be the gradient with respect to u of

ϕ ∈ C2(Λ× U,R). Assume that the following conditions are satisfied:

a) 0 is a critical point of ϕλ = ϕ(λ, ·) for every λ ∈ Λ and 0 is an isolated critical

point of ϕa and ϕb for some reals a < b in Λ.

b) ϕλ satisfies the Palais-Simale condition over a closed ball B[0, r] ⊂ U for every

λ ∈ [a, b].

c) There exists n ∈ N such that

dim Cn(ϕa, 0) 6= dim Cn(ϕb, 0).

Then there exists a bifurcation point (λ0, 0) ∈ [a, b]× {0} for f(λ, u) = 0.

Lemma 4.6. Along T β1 , there are bifurcation points β0 < β1 < β2 < · · · in β.

Proof. We need to verify that the bifurcations actually happen.

Recall

E′′(ω1, θ)|(φ,ψ)2 =

∫
T
|φ′|2 + λ1φ

2 − 3µ1ω
2
1φ

2 + |ψ′|2 + λ2ψ
2 − βω2

1ψ
2dt.

Define Vk:
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Vk = a subspace of H1[−T/2, T/2] spanned by eigenfunctions associated to Λk of

the linearized problem.

The product space {θ}×Vk is a subspace of ker[E′′(ω1, θ)], and has a finite dimension

1 when k = 0, and 2 when k 6= 0. We show that the Morse index changes at the

bifurcation point on the subspace {θ}× Vk which is in the kernel space of the linearized

problem.

Claim 1: For βk−1 < β < βk (set as β−1 = 0) E′′(ω1, θ)|(φ,ψ)2 is negative definite

on {θ} × (V0 ⊕ · · · ⊕ Vk−1), and positive definite on {θ} × (Vk ⊕ Vk+1 ⊕ · · · ).

Claim 2: For βk+1 > β > βk E
′′(ω1, θ)|(φ,ψ)2 is negative definite on {θ} × (V0 ⊕

· · · ⊕ Vk), and positive definite on {θ} × (Vk+1 ⊕ Vk+2 ⊕ · · · ).

Note that

E′′(ω1, θ)|(φ,ψ)2 =

∫
T

[−φ′′ − 2λ1φ]φ

+[−ψ′′ − (βl
λ1

µ1
− λ2)ψ]ψ − (β − βl)

λ1

µ1
ψ2dt.

Thus in {θ} × Vl

E′′(ω1, θ)|(θ,ψl)2 =

∫
T
−(β − βl)

λ1

µ1
ψ2
l dt.

Under the assumption of Claim 1, if l < k, then because of βl < β, we get

E′′(ω1, θ)|(θ,ψl)2 < 0. If l ≥ k then because of βl > β, we get E′′(ω1, θ)|(θ,ψl)2 > 0.

Thus Claim 1 holds.

Under the assumption of Claim 2, if l ≤ k, then because of βl < β, we get

E′′(ω1, θ)|(θ,ψl)2 < 0. If l > k, then because of βl > β, we get E′′(ω1, θ)|(θ,ψl)2 > 0.

Thus Claim 2 holds.

Therefore by Claim 1 and Claim 2, the Morse index of E changes at βk. By

Theorem 4.5, the statement holds.

Lemma 4.7. The bifurcation solutions from T β1 include solutions which are not given

by solving Dirichlet problems.
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Proof. Let (u, v) ∈ H be a solution in the bifurcation from T β1 , which is sufficiently close

to the bifurcation point but not in the bifurcation point.

By using sufficiently small ε > 0, u and v can be represented by u = ω1 + h1 with

‖h1‖ < ε and v = h2 with ‖h2‖ < ε, then by taking a limit ε→ 0, we get

 −h′′1 + λ1h1 = 3µ1ω
2
1h1,

−h′′2 + λ2h2 = βω2
1h2.

(4.6)

Suppose (u, v) is given by solving Dirichlet problems, hence u(−T/2) = u(T/2) = 0

and v(−T/2) = v(T/2) = 0. Thus h1(−T/2) = h1(T/2) = −ω1 and h2(−T/2) =

h2(T/2) = 0. However because ω1 is nondegenerate for −u′′ + λ1u = µ1u
3 with the

periodic condition on [−T/2, T/2], the first equation of (4.6) has only the zero solution

because it is not in the bifurcation point. Therefore we get a contradiction.

We show a stronger conclusion as in the following:

Lemma 4.8. The bifurcation nontrivial solutions from T β1 are not given by solving

Dirichlet problems.

Proof. Suppose (u, v), which is in the bifurcation branch from T β1 , are given by solving

Dirichlet problems, hence u(−T/2) = u(T/2) = 0 and v(−T/2) = v(T/2) = 0. Note

that u′(−T/2) = u′(T/2) by the periodic condition. Because the solution is in the

bifurcation from T1, the solution can be earned to change continuously from (ω1, θ). In

such continuous change, there is a part satisfying u ≥ 0 connected to T β1 , so assume

u ≥ 0. Note that a non-simple zero cannot be earned inside the domain at the first

time due to the Strong Maximum Principle. Thus the first zero of the solutions on the

branch part is realized on the boundary. If u′(−T/2) is positive (or negative), then u < 0

around t = T/2 (or t = −T/2, respectively) because of

u = u′(T/2)(t− T/2) + o(t− T/2),

thus we get a contradiction. Therefore u′(−T/2) = u′(T/2) = 0. Since θ is a solution

of the first equation of (4.1) satisfying the condition, then we get u = θ because of the

uniqueness of solutions for differential equations.
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With fixed λ1, set

Sβk := The connected bifurcation component through ((ω1, θ), βk).

Recall the Rabinowitz Global Bifurcation Theorem which can be proved by using

the Leray-Schauder Degree Theory:

Theorem 4.9 (Rabinowitz Global Bifurcation Theorem). ([38]) Let X be a real

Banach space and F (x, λ) = x−λLx−N(x, λ), where L ∈ L(X,X) and N : X×R→ X

are compact. Let S be the solution set of F (x, λ) = θ, S+ = S \ ({θ} × R), and let ζ be

the component of S+, containing (θ, λ1). Assume that N(x, λ) = o(‖x‖) uniformly on

any finite interval in λ and that λ−1
1 ∈ σ(L) is an eigenvalue of odd multiplicity. Then

the following alternatives hold: Either

a) ζ is unbounded; or

b) there are only a finite number of points {(θ, λi) : i = 1, · · · , l} lying on ζ where

λ−1
i ∈ σ(L), i = 1, 2, · · · , l. Furthermore, if βi is the algebraic multiplicity of λ−1

i ,

then
∑l

i=1 βi is even.

Remark 4.10. Note that the branch that satisfies the conditions of the Rabinowitz Global

Bifurcation Theorem is called a global bifurcation. The part b) on Theorem 4.9 implies

that each connected component:

Sλi := The connected bifurcation component through (θ, λi),

meets Sλj , i 6= j.

Lemma 4.11. The bifurcation branch from β0, Sβ0 , is global.

Proof. Note that for β0, the multiplicity of the corresponding eigenvalue 0 of the lin-

earized problem is 1. Thus Theorem 4.9 is applied, and the bifurcation branch is

global.

Define

Xeven := {u ∈ H1[−T/2, T/2] : u is an even function }.

Then the following lemma holds:
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Lemma 4.12. If (u, v) is a critical point of a functional corresponding to the problem

(4.5) in Xeven ×Xeven, then the (u, v) is a critical point in H.

Proof. We use the Symmetric Criticality Principle ([37]). Define a group representation

T (g) of g ∈ Z2 on H given by

(u(t), v(t)) 7→ (u(−t), v(−t)).

Then {T (g)}g∈G is an isometric representation of the topological group G over a Hilbert

space H. The functional (3.2) is in C2, and is invariant under G. In addition, a critical

point (u, v) ∈ Xeven ×Xeven is in Fix(G) which is the set of fixed points for all elements

in G. Therefore by the Symmetric Criticality Principle, (u, v) is a critical point in H.

Remark 4.13. Lemma 4.12 can be proved in a direct way:

Proof. Suppose (u, v) is a critical point in Xeven ×Xeven, then for any φ, ψ ∈ Xeven,

0 = E′(u, v)(φ, ψ)

=

∫ T/2

−T/2
(−u′′ + λ1u− µ1u

3 − βuv2)φ+

∫ T/2

−T/2
(−v′′ + λ2v − µ2v

3 − βvu2)ψdt.

Note that −u′′ + λ1u− µ1u
3 − βuv2 and −v′′ + λ2v − µ2v

3 − βvu2 are even functions if

(u, v) ∈ Xeven ×Xeven. Let define

Xodd := {u ∈ H1[−T/2, T/2] : u is an odd function }.

Then because of Xeven ⊥ Xodd, for any φ, ψ ∈ Xodd, we get E′(u, v)(φ, ψ) = 0 in

H.

Recall the Candall-Rabinowitz Local Bifurcation Theorem:

Theorem 4.14 (Crandall-Rabinowitz Local Bifurcation Theorem). ([26] [39])

Suppose that U ⊂ X is an open neighborhood of θ, and that F ∈ C2(U ×R1, Y ) satisfies

F (θ, λ) = θ. If F ′x(θ, λ0) is a Fredholm operator with

dim kerF ′x(θ, λ0) = codim imF ′x(θ, λ0) = 1,

and if

F ′′xλ(θ, λ0)u0 /∈ imFx(θ, λ0)



49

for all u0 ∈ kerFx(θ, λ0) \ {θ}, then (θ, λ0) is a bifurcation point, and there exists a

unique C1 curve (λ, ψ) : (−δ, δ)→ R× Z satisfying

 F (su0 + ψ(s), λ(s)) = θ,

λ(0) = λ0, ψ(0) = ψ′(0) = θ,

where δ > 0, and Z is the complement space of span{u0} in X. Furthermore, there is a

neighborhood of (θ, λ0), in which

F−1(θ) = {(θ, λ) : λ ∈ R} ∪ {(su0 + ψ(s), λ(s)) : |s| < δ}.

Lemma 4.15. Along T β1 , there are infinitely many bifurcation points of (4.5): β1 <

β2 < · · · in β, where

βk := (Λk + λ2)
µ2

λ1
.

Moreover the bifurcation branch in Xeven×Xeven is represented by a unique C1 curve in

the neighborhood of the bifurcation point.

Proof. To show there are bifurcations for (4.5), we could use almost the same discussion

on the above lemma by applying Theorem 4.5. Here we get a stronger conclusion that

we do not need later, hence the unique C1 curve which is stated on Theorem 4.14 exists.

We need to reset the problem in a subspace Xeven × Xeven for applying Theorem

4.14.

Define

F : Xeven × R1 → C([−T/2, T/2])

(u, β) 7→ u′′ + Λ(β)u

then F is a Fredholm operator. We will show that Theorem 4.14 can be applied into

the linearized equation at (ω1, θ):

F (θ, βk) = θ,

where k = 1, 2, · · · .
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Note that for the operator ( d
2

dt2
) + ΛkId with the domain Xeven ⊂ H1([−T/2, T/2]),

ker[(
d2

dt2
) + ΛkId] = {s cos(

√
Λkt) : s ∈ R}.

Because the operator ( d
2

dt2
) under the free end point condition is self-adjoint, and the

cokernel of a self-adjoint linear operator is isomorphic to its kernel, thus

coker F ′u(θ, βk) = {s cos(
√

Λkt) : s ∈ R}.

Moreover, we have

F ′′uβ(θ, βk) cos(
√

Λkt) = cos(
√

Λkt) /∈ imFu(θ, βk),

because of

F ′′uβ(θ, βk) = cosu|u=θ = Id.

Now we can apply Theorem 4.14, and it gives the conclusion.

Lemma 4.16. The bifurcation branches from βk, Sβk (k ≥ 1) are global in Xeven×Xeven.

Proof. By applying Theorem 4.9 with Lemma 4.15, we know that the bifurcation branches

from βk, Sβk (k ≥ 1) of (4.5) are global in Xeven ×Xeven.

Remark 4.17. Lemma 4.16 implies that the bifurcation branches Sβk (k ≥ 1) are global

in H.

Lemma 4.18. In Xeven × Xeven, for any solution (u, v) in Sβk , v has 2k zeros on

[−T/2, T/2).

Proof. In Xeven ×Xeven, for β which is sufficiently close to βk,

v = (β − βk)ψk + o(β − βk),

where ψk, which is the eigenfunction of the linearized problem, has 2k zeros on [−T/2, T/2),

hence v satisfies the statement around βk.

Next, note that v satisfies

−v′′ + λ2v = (µ2v
2 + βu2)v.
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Therefore v must have only simple zeros because if a zero which is not simple is realized

inside the domain, then we get v = θ due to the Strong Maximum Principle. Next,

suppose a zero is realized on the boundary of the domain the first time in the branch

connected to T β1 , then if v′ is not zero on the boundary, then we find a negative point

around the boundary. Thus v′ on the boundary must be zero, so we get v = θ again by

the uniqueness of solutions for the differential equations. Therefore v cannot make the

number of zeros change continuously.

Lemma 4.19. In Xeven ×Xeven,

Sβk ∩ S
β
l = ∅, k 6= l

and each Sβk is unbounded.

Proof. The previous lemma implies Sβk ∩ S
β
l = ∅ for k 6= l, which implies that each Sβk

is unbounded by Theorem 4.9.

Now, our main theorem in Section 4.2 (Theorem C).

Theorem 4.20 (Theorem C). Along T β1 , there are infinitely many bifurcation points

of (4.1): β0 < β1 < · · · in β, having the following properties:

a) The nontrivial solutions in the bifurcation branches are not given by solving Dirich-

let problems.

b) These bifurcation branches are global.

c) In Xeven ×Xeven, Sβk ∩ S
β
l = ∅, for k 6= l.

d) Each Sβk is unbounded.

Proof. Collecting lemmas in the above, we know the theorem holds.

4.3 Bifurcations in λ1 from the semi-trivial solution curve T λ1

1 (Theorem D)

We use the same notation in the previous section. We fix λ2, µi, β > 0 in the

following. Recall

ωi :=

√
λi
µi
.
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Set

T λ11 = {(ω1, θ) ∈ H : λ1 > 0}.

Then T λ11 is a solution curve for λ1 > 0 containing semi-trivial solutions of the form

(ω1, θ).

Lemma 4.21. Along T λ11 , all possible bifurcation points of (4.1) are: λ̃1 < λ̃2 < · · ·

and
˜̃
λ0 <

˜̃
λ1 < · · · in λ1, where

λ̃k :=
1

2
Λk,

˜̃
λk :=

µ1

β
(λ2 + Λk).

Proof. The linearization of (4.1) at (ω1, θ) is given by



−φ′′ = 2λ1φ,

−ψ′′ = (β λ1µ1 − λ2)ψ,

φ(−T/2) = φ(T/2), ψ(−T/2) = ψ(T/2),

φ′(−T/2) = φ′(T/2), ψ′(−T/2) = ψ′(T/2).

(4.7)

Note that the following eigenvalue problem −φ′′ = Λkφ,

φ(−T/2) = φ(T/2), φ′(−T/2) = φ′(T/2),
(4.8)

has eigenvalues

Λk := (k
2π

T
)2, k = 0, 1, · · ·

and its eigenfunctions

{1} (k = 0),

{sin(k
2π

T
t), cos(k

2π

T
t)} (k 6= 0).

Therefore when

2λ1 = Λk, k = 1, 2, · · · .



53

the first equation of the linearized problem has non-trivial kernel, and when 2λ1 6= Λk,

it has only zero solutions. On the other hand, when

(β
λ1

µ1
− λ2) = Λk, k = 0, 1, 2, · · · .

the second equation of the linearized problem has non-trivial kernel, and when (β λ1µ1 −

λ2) = Λk, it has only zero solutions.

Therefore we have the possibility that a bifurcation happens at only λ̃1 < λ̃2 < · · ·

and
˜̃
λ0 <

˜̃
λ1 < · · · in λ1.

Remark 4.22. There is also a possible bifurcation point λ̃0 which will bifurcate from

{(ω1, θ) ∈ H : λ1 ≥ 0}.

We rearrange the order of λ̃1 < λ̃2 < · · · and
˜̃
λ0 <

˜̃
λ1 < · · · in λ1 by using the

natural order of real numbers, as

λ′1 < λ′2 < · · · ,

where we do not distinguish between λ̃k and
˜̃
λl when λ̃k =

˜̃
λl.

Lemma 4.23. Along T λ11 , λ′0 < λ′1 < · · · in λ1 are bifurcations parameters.

Proof. We need to verify if the bifurcations actually happen.

Note that

E′′(ω1, θ)|(φ,ψ)2 =

∫
T
|φ′|2 + λ1φ

2 − 3µ1ω
2
1φ

2 + |ψ′|2 + λ2ψ
2 − βω2

1ψ
2dt

=

∫
T
|φ′|2 − 2λ1φ

2 + |ψ′|2 + (λ2 −
βλ1

µ1
)ψ2dt.

Recall

Vk = a subspace of H1[−T/2, T/2] spanned by eigenfunctions associated to Λk of

the linearized problem.

Note that Vk has a finite dimension 1 when k = 0, and 2 when k 6= 0, and the

product space Vk × Vl is a subspace of ker[E′′(ω1, θ)].

We show that the Morse index changes at the bifurcation point on the subspace

Vk × Vl which is in the kernel space of the linearized problem.
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Define the subspaces of the kernel space of the linearized problem:

Wi :=


Vk × {θ} if λ′i = λ̃k 6= ˜̃

λl for all l,

{θ} × Vk if λ′i =
˜̃
λk 6= λ̃l for all l,

Vk × Vl if λ′i = λ̃k =
˜̃
λl.

In the kernel space of the linearized problem, we show that E′′(ω1, θ)|(φk,ψl)2 changes

the sign by going though λ′i.

Claim 1: For λ′i−1 < λ1 < λ′i (set as λ′−1 = 0) E′′(ω1, θ)|(φ,ψ)2 is negative definite

on W0 ⊕ · · · ⊕Wi−1, and positive definite on Wi ⊕Wi+1 ⊕ · · · .

Claim 2: For λ′i+1 > λ1 > λ′i E
′′(ω1, θ)|(φ,ψ)2 is negative definite on W0⊕ · · · ⊕Wi,

and positive definite on Wi+1 ⊕Wi+2 ⊕ · · · .

Suppose Wj = Vk × Vl. Note that

E′′(ω1, θ)|(φ,ψ)2 =

∫
T

[−φ′′ − 2λ̃kφ]φ− 2(λ1 − λ̃k)φ2

+[−ψ′′ − (
β

˜̃
λl
µ1
− λ2)ψ]ψ − βλ1 − ˜̃

λl
µ1

ψ2dt.

Thus in Wj

E′′(ω1, θ)|(φk,ψl)2 =

∫
T
−2(λ1 − λ̃k)φ2

k − β
λ1 − ˜̃

λl
µ1

ψ2
l dt. (4.9)

Under the assumption of Claim 1, if j < i, then because of λ̃k < λ1 and
˜̃
λl < λ1,

we get E′′(ω1, θ)|(φk,ψl)2 < 0. If j ≥ i, then because of λ̃k > λ1 and
˜̃
λl > λ1, we

get E′′(ω1, θ)|(φk,ψl)2 > 0. Next, suppose Wj = Vk × {θ} or Wj = {θ} × Vk instead of

Wj = Vk×Vl, then because one of the terms on (4.9) disappears, we still get E′′(ω1, θ) < 0

in Wj for j < i, and E′′(ω1, θ) > 0 in Wj for j ≥ i. Thus Claim 1 holds.

Under the assumption of Claim 2, if j ≤ i, then because λ̃k < λ1 and
˜̃
λl < λ1,

we get E′′(ω1, θ)|(φk,ψl)2 < 0. If j > i, then because λ̃k > λ1 and
˜̃
λl > λ1, we get

E′′(ω1, θ)|(φk,ψl)2 > 0. Next, suppose Wj = Vk × {θ} or Wj = {θ} × Vk instead of

Wj = Vk×Vl, then because one of the terms on (4.9) disappears, we still get E′′(ω1, θ) < 0

in Wj for j ≤ i, and E′′(ω1, θ) > 0 in Wj for j > i. Thus Claim 2 holds.
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Therefore by Claim 1 and Claim 2, the Morse index of E changes at λ′i. By Theorem

4.5, the statement holds.

Lemma 4.24. The bifurcation solutions from T λ11 include solutions which are not given

by solving Dirichlet problems.

Proof. Let (u, v) ∈ H be a solution in the bifurcation from T λ11 , which is sufficiently

close to the bifurcation point but not in the bifurcation point.

By using sufficiently small ε > 0, u and v can be represented by u = ω1 + h1 with

‖h1‖ < ε and v = h2 with ‖h2‖ < ε, then by taking a limit ε→ 0, we get

 −h′′1 + λ1h1 = 3µ1ω
2
1h1,

−h′′2 + λ2h2 = βω2
1h2.

(4.10)

Suppose (u, v) is given by solving Dirichlet problems, hence u(−T/2) = u(T/2) = 0

and v(−T/2) = v(T/2) = 0. Thus h1(−T/2) = h1(T/2) = −ω1 and h2(−T/2) =

h2(T/2) = 0. However because ω1 is nondegenerate for −u′′ + λ1u = µ1u
3 with the

periodic condition on [−T/2, T/2], the first equation of (4.10) has only the zero solution

because it is not in the bifurcation point. Therefore we get a contradiction.

We show a stronger conclusion with the following:

Lemma 4.25. The bifurcation nontrivial solutions from T λ11 are not given by solving

Dirichlet problems.

Proof. Suppose (u, v), which is in the bifurcation branch from T λ11 , are given by solving

Dirichlet problems, hence u(−T/2) = u(T/2) = 0 and v(−T/2) = v(T/2) = 0. Note

that u′(−T/2) = u′(T/2) by the periodic condition. Because the solution is in the

bifurcation from T1, the solution can be earned to change continuously from (ω1, θ). In

such continuous change, there is a part satisfying u ≥ 0 connected to T λ11 , so assume

u ≥ 0. If u′(−T/2) is positive (or negative), then u < 0 around t = T/2 (or t = −T/2,

respectively) because of

u = u′(T/2)(t− T/2) + o(t− T/2),

thus we get a contradiction. Therefore u′(−T/2) = u′(T/2) = 0. Since θ is a solution

of the first equation of (4.1) satisfying the condition, then we get u = θ because of the

uniqueness of solutions for differential equations.
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With fixed β, define

Sλ1k := The connected bifurcation component through ((ω1, θ), λ̃k), k = 1, 2, · · · .

Rλ1k := The connected bifurcation component through ((ω1, θ),
˜̃
λk), k = 0, 1, · · · .

Lemma 4.26. Suppose

Λk 6=
2λ2µ1

β − 2µ1
.

The bifurcation branch from
˜̃
λ0, Rλ10 , is global.

Proof. Note that for
˜̃
λ0, the multiplicity of the corresponding eigenvalue 0 of the lin-

earized problem is 1. Thus Theorem 4.9 is applied, the bifurcation branch is global.

Define an ordered set in real numbers given by:

{λ′′i }i := ({λ̃i}i ∪ {˜̃λi}i) \ ({λ̃k : λ̃k =
˜̃
λl for an l}k ∪ {˜̃λk :

˜̃
λk = λ̃l for an l}k).

Lemma 4.27. Along T λ11 , there are infinitely many bifurcation points of (4.5): λ′′0 <

λ′′1 < · · · in λ1. Moreover the bifurcation branch is represented by a unique C1 curve in

the neighborhood of the bifurcation point.

Proof. To show there are bifurcations for (4.5), we could use almost the same discussion

on the above lemma by applying Theorem 4.5. Here we get a stronger conclusion that

we do not need later, hence the unique C1 curve which is stated in Theorem 4.14 exists.

Recall

Xeven := {u ∈ H1[−T/2, T/2] : u is an even function }.

We need to reset the problem in a subspace Xeven × Xeven for applying Theorem

4.14. Define

F : Xeven × R1 → C([−T/2, T/2])

(u, λ) 7→ u′′ + Λ(λ)u
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then F is a Fredholm operator. We will show that Theorem 4.14 can be applied into

the linearized equation at (ω1, θ):

F (θ, βk) = θ,

where k = 1, 2, · · · .

Note that for the operator ( d
2

dt2
) + ΛkId with the domain Xeven ⊂ H1([−T/2, T/2]),

ker[(
d2

dt2
) + ΛkId] = {s cos(

√
Λkt) : s ∈ R}.

Because the operator ( d
2

dt2
) under the free end point condition is self-adjoint, and the

cokernel of a self-adjoint linear operator is isomorphic to its kernel, thus

coker F ′u(θ, βk) = {s cos(
√

Λkt) : s ∈ R}.

Moreover we have

F ′′uβ(θ, βk) cos(
√

Λkt) = cos(
√

Λkt) /∈ imFu(θ, βk),

because

F ′′uβ(θ, βk) = cosu|u=θ = Id.

Now we can apply Theorem 4.14 and, then it gives the conclusion.

Lemma 4.28. Suppose

Λk 6=
2λ2µ1

β − 2µ1
.

The bifurcation branches from λ̃k, Sλ1k (k ≥ 1) and the branches from
˜̃
λk, Rλ1k (k ≥ 1)

are global.

Proof. By applying Theorem 4.9 with the previous lemma, we know that the bifurcation

branches from λ̃k, Sλ1k (k ≥ 1) of (4.5) are global. Since the bifurcation branches must

be a subset of the bifurcation branches from λ̃λ1k , Sλ1k (k ≥ 1) of (4.1), the bifurcation

branches of (4.1) must also be global.
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By applying the above discussion with replacing λ̃k and Sλ1k with
˜̃
λk and Rλ1k , we

know that the branches from
˜̃
λk, Rλ1k (k ≥ 1), are also global.

Lemma 4.29. In Xeven × Xeven, for any solution (u, v) in Sλ1k , v has 2k zeros on

[−T/2, T/2).

Proof. For λ1 which is sufficiently close to λ̃k,

v = (λ1 − λ̃k)ψk + o(λ1 − λ̃k),

where ψk, which is the eigenfunction of the linearized problem, has 2k zeros on [−T/2, T/2),

hence v satisfies the statement around λ̃k.

Next, note that v satisfies

−v′′ + λ1v = (µ1v
2 + βu2)v.

Therefore v must have only simple zeros because if a zero which is not simple is realized

inside the domain, then we get v = θ due to the Strong Maximum Principle. Next,

suppose a zero is realized on the boundary of the domain the first time in the branch

connected to T λ1 , then if v′ is not zero on the boundary, we find a negative point

around the boundary. Thus v′ on the boundary must be zero, so we get v = θ again by

the uniqueness of solutions for the differential equations. Therefore v cannot make the

number of zeros change continuously.

Lemma 4.30. In Xeven ×Xeven,

Sλ1k ∩ S
λ1
l = ∅, k 6= l

and each Sλ1k is unbounded.

Proof. The previous lemma implies Sλ1k ∩S
λ1
l = ∅ for k 6= l, which implies that each Sλ1k

is unbounded by Theorem 4.9.

Now, our main theorem in Section 4.3 (Theorem D).

Theorem 4.31 (Theorem D). Along T λ11 , there are infinitely many bifurcation points

of (4.1): For fixed β, λ̃0 < λ̃1 < · · · , and
˜̃
λ1 <

˜̃
λ2 < · · · , in λ1, having the following

properties:
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a) The nontrivial solutions in the bifurcation branches are not given by solving Dirich-

let problems.

b) These bifurcation branches are global if Λk 6= 2λ2µ1
β−2µ1

.

c) In Xeven ×Xeven, Sλ1k ∩ S
λ1
l = ∅ and Rλ1k ∩R

λ1
k = ∅ for k 6= l.

d) Each Sλ1k and Rλ1k is unbounded.

Proof. Collecting lemmas in the above, we know the theorem holds.

4.4 Bifurcations from the synchronized solution curve T (Theorem E and

F)

Set λ1 = λ2 = 1. Without loss of generality, we assume 0 < µ1 ≤ µ2, and fix µ1

and µ2. We also set

Aβ :=

√
µ2 − β

µ1µ2 − β2
, Bβ :=

√
µ1 − β

µ1µ2 − β2
,

T := {(Aβ, Bβ) : β ∈ (−√µ1µ2, µ1) ∪ (µ2,∞)}.

Then T is a solution curve of (4.3) for β ∈ (−√µ1µ2, µ1) ∪ (µ2,∞) containing solutions

of the form (Aβ, Bβ).

Define

a(β) :=
3µ1µ2 − 2µ1β − β2

µ1µ2 − β2
,

b(β) :=
2β
√

(µ1 − β)(µ2 − β)

µ1µ2 − β2
,

c(β) :=
3µ1µ2 − 2µ2β − β2

µ1µ2 − β2
,

γ± :=
a− c±

√
(a− c)2 + 4b2

2b
,

which are naturally defined in the proofs of bifurcation theorems later. First, we give

the following two lemmas to show there are possible bifurcation points:

Lemma 4.32. When β 6= 0, γ+ 6= γ−, hence (a− c)2 + 4b2 6= 0.
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Proof. Note that

a− c =
3µ1µ2 − 2µ1β − β2

µ1µ2 − β2
− 3µ1µ2 − 2µ2β − β2

µ1µ2 − β2
=

2(µ2 − µ1)β

µ1µ2 − β2
,

b =
2β
√

(µ1 − β)(µ2 − β)

µ1µ2 − β2
.

Because of β ∈ (−√µ1µ2, µ1) ∪ (µ2,∞), the lemma holds.

Lemma 4.33. Suppose

T 6=
√

2πl, l = 1, 2, · · · .

Then all possible parameters of the bifurcation from T are given by

βk := f−1(Λk), k = 0, 1, · · ·

where f : (−√µ1µ2, µ1)→ (0,∞) is defined by

f(β) := 2
µ1µ2 − β(µ1 + µ2) + β2

µ1µ2 − β2
,

which is a strictly decreasing diffeomorphism (−√µ1µ2, µ1) → (0,∞). In particular,

there exists no bifurcation point for β > µ2.

Figure 4.1: The function f and bifurcation points



61

Proof. The linearized problem of (4.3) at (Aβ, Bβ) is



−φ′′ + φ = 3µ1A
2
βφ+ βB2

βφ+ 2βBβAβψ,

−ψ′′ + ψ = 3µ2B
2
βψ + βA2

βψ + 2βAβBβφ,

φ(−T/2) = φ(T/2), ψ(−T/2) = φ(T/2),

φ′(−T/2) = φ′(T/2), ψ′(−T/2) = φ′(T/2),

Hence 

−φ′′ + φ = a(β)φ+ b(β)ψ,

−ψ′′ + ψ = c(β)ψ + b(β)φ,

φ(−T/2) = φ(T/2), ψ(−T/2) = φ(T/2),

φ′(−T/2) = φ′(T/2), ψ′(−T/2) = φ′(T/2),

where

a(β) =
3µ1µ2 − 2µ1β − β2

µ1µ2 − β2
,

b(β) =
2β
√

(µ1 − β)(µ2 − β)

µ1µ2 − β2
,

c(β) =
3µ1µ2 − 2µ2β − β2

µ1µ2 − β2
.

Claim: φ and ψ in the solution (φ, ψ) of the linearized problem are dependent.

Moreover the nontrivial kernel form of the linearized problem is given by

(φ, ψ) =

 (γ+ψ,ψ) if β ≤ 0,

(γ−ψ,ψ) if β > 0.

Recall

γ± =
a− c±

√
(a− c)2 + 4b2

2b
.

φ− γ±ψ solves

−(φ− γ±ψ)′′ + (φ− γ±ψ) = (a− bγ±)(φ− γ±ψ).
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Simple calculation shows that

a− bγ+ = 3, if β ≤ 0,

a− bγ− = 3, if β > 0.

Thus we study the case of β ≤ 0 and the case of β > 0 separately.

The Case β ≤ 0

Suppose β ≤ 0. Then φ− γ+ψ solves

−(φ− γ+ψ)′′ = 2(φ− γ+ψ),

then because of T 6=
√

2πk, k = 1, 2, · · · , 1√
µ1

is nondegenerate for −u′′ + u = µ1u
3

on [−T/2, T/2] with the periodic condition, thus the above equation has only the zero

solution in φ− γ+ψ. Therefore we get φ = γ+ψ.

On the other hand, since γ+ 6= γ− by Lemma 4.32, we need to check for γ− too.

φ− γ−ψ solves

−(φ− γ−ψ)′′ = (a− bγ− − 1)(φ− γ−ψ).

Suppose that a− bγ− − 1 6= Λj for some j, then the above equation must have only the

zero solution in φ − γ−ψ. Then by substituting φ = γ−ψ into the linearized problem,

we get

−ψ′′ = (bγ− + c− 1)ψ

= 2ψ,

for β ≤ 0. However because of T 6=
√

2πk, k = 1, 2, · · · , this equation has only the zero

solution, so we get the trivial kernel. Thus the Claim holds for β ≤ 0.

The Case β > 0

Suppose β > 0. Then φ− γ−ψ solves

−(φ− γ−ψ)′′ = 2(φ− γ−ψ),

then because of T 6=
√

2πk, k = 1, 2, · · · , 1√
µ1

is nondegenerate for −u′′ + u = µ1u
3

on [−T/2, T/2] with the periodic condition, thus the above equation has only the zero
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solution in φ− γ−ψ. Therefore we get φ = γ−ψ.

On the other hand, since γ+ 6= γ− by Lemma 4.32, we need to check for γ+ too.

φ− γ+ψ solves

−(φ− γ+ψ)′′ = (a− bγ+ − 1)(φ− γ+ψ).

Suppose that a− bγ+ − 1 6= Λj for some j, then the above equation must have only the

zero solution in φ − γ+ψ. Then by substituting φ = γ+ψ into the linearized problem,

we get

−ψ′′ = (bγ+ + c− 1)ψ

= 2ψ

for β > 0. Because of T 6=
√

2πk, k = 1, 2, · · · , this equation has only the zero solution,

so we get the trivial kernel. Thus the Claim holds for β > 0.

Finally, by substituting φ = γ+ψ for β ≤ 0, and φ = γ−ψ for β > 0 into the

linearized problem, we know that ψ solves

−ψ′′ = f(β)ψ,

where

f(β) = bγ+ + c− 1 =
3µ1µ2 − 2β(µ1 + µ2) + β2

µ1µ2 − β2
− 1 = 2

µ1µ2 − β(µ1 + µ2) + β2

µ1µ2 − β2
.

It is not difficult to see that f is a strictly decreasing diffeomorphism (−√µ1µ2, µ1) to

(0,∞). Note that there is a nontrivial kernel if f(β) = Λk for k = 1, 2, · · · .

Therefore the linearized problem has a nontrivial kernel if f(β) = Λk, for k =

1, 2, · · · .

Lemma 4.34. Suppose

T 6=
√

2πl, l = 1, 2, · · · .

Then along T , there are infinitely many bifurcation points: β1 > β2 > β3 > · · ·βk0 >

0 > βk0+1 > βk0+2 > · · · > βk, βk → −
√
µ1µ2 as k → ∞, where k0 is the maximum
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positive integer satisfying

Λk0 < 2.

Proof. We show that the Morse index changes at the bifurcation point.

E′′(Aβ, Bβ)|(φ,ψ)2 =

∫
T
|φ′|2 + (1− 3µ1A

2
β − βB2

β)φ2 + |φ′|2 + (1− 3µ2B
2
β − βA2

β)ψ2

−4βAβBβφψdt.

Define V β
k :

V β
k = {(γ±ψ,ψ) ∈ H: ψ is an eigenfunction associated to Λk of the linearized

problem, where γ± = γ+ if β ≤ 0, and γ± = γ− if β > 0. } .

V β
k has a finite dimension 1 when k = 0, and 2 when k 6= 0, and is a subspace of

ker[E′′(ω1, θ)] as we saw on the proof on the previous lemma. We show that the Morse

index changes at the bifurcation point on the subspace V β
k which is in the kernel space

of the linearized problem.

Let denote E′′(Aβ, Bβ)|(φ,ψ)2 as Hβ. Then around βk,

Hβ = Hβk + (β − βk)H ′βk + o(β − βk).

Due to the Claim on the proof of Lemma 4.33, we study the case of−√µ1µ2 < β < 0

and the case of 0 < β < µ1 separately.

The Case −√µ1µ2 < β < 0:

Under the assumptions of the statement, we show the following two claims:

Claim 1: For β > βk and close to βk, Hβ is positive definite on V β
0 ⊕ · · · ⊕ V

β
k and

negative definite on V β
k+1 ⊕ V

β
k+2 ⊕ · · · .

Claim 2: For βk > β and close to βk, Hβ is positive definite on V β
0 ⊕ · · · ⊕ V

β
k−1

and negative definite on V β
k ⊕ V

β
k+1 ⊕ · · · .
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To prove these claims, we show that H ′β is positive definite on V β
k . Note that

H ′β[(φ, ψ)2] =
∂

∂β
Hβ|β=βk = −

∫
T
a′(β)φ2 + 2b′(β)φψ + c′(β)ψ2dt.

Direct calculations show

a′(β) = −2µ1(µ1µ2 − 2βµ2 + β2)

(µ1µ2 − β2)2
,

b′(β) =
2µ2

1µ
2
2 − 4(µ1 + µ2)µ1µ2β + 4µ1µ2β

2 − 2(µ1 + µ2)β3 + β4

(µ1µ2 − β2)2
√
µ1 − β

√
µ2 − β

,

c′(β) = −2µ2(µ1µ2 − 2βµ1 + β2)

(µ1µ2 − β2)2
.

Substitute (γ+(β)ψ,ψ) into (φ, ψ). Then

H ′β[(γ+(β)ψ,ψ)2] = −[a′(β)γ2
+ + 2b′(β)γ+(β) + c′(β)]

∫
T
ψ2dt.

For −√µ1µ2 < β < 0, we get

γ+ < 0, a′(β) < 0, b′(β) > 0, c′(β) < 0.

Thus Claim 1 and Claim 2 hold.

The Case 0 < β < µ1:

Let mω be the Morse index of the solution of (4.5). Then

mω = n1 + · · ·+ nk0 ,

where k0 is the maximum integer satisfying Λk0 < 2.

Let m(β) be the Morse index of (Aβ, Bβ). Under the assumptions of the statement,

we show the following two claims:

Claim 3: m(β) = mω for β < µ1 and close to µ1.

Claim 4: m(0) = 2mω.
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Denote E′′(Aβ, Bβ)|(φ,ψ)2 as Hβ again. Note that

Hβ =

∫
T
|φ′|2 + |ψ′|2dt−

∫
T

(a− 1)φ2 + 2bφψ + (c− 1)ψ2dt.

Let W− be the eigenspace of (4.8) associated to the eigenvalues 0 < Λ1 < Λ2 <

· · · < Λk0 < 2 and let W+ be the eigenspace of (4.8) associated to the eigenvalues

2 < Λk0+1 < Λk0+2 < · · · .

For φ ∈W− \ {0}, we get

∫
T
|φ′|2dt ≤ Λk0

∫
T
φ2dt < 2

∫
T
φ2dt,

and for φ ∈W+ \ {0}, we get

∫
T
|φ′|2dt ≥ Λk0+1

∫
T
φ2dt > 2

∫
T
φ2dt.

By the above inequalities with a(β) → 3, b(β) → 0, and c(β) → 1 as β → µ1, we

know that Hβ is negative definite on W− × Rω ⊂ H, and positive definite on W+ ×

(Rω)⊥ ⊂ H. Therefore Claim 3 holds.

Next, note that H0 is negative definite on W− × W−, and positive definite on

W+ ×W+. In the same as the above with a(0) = 3, b(0) = 0, and c(0) = 3, Claim 4

holds.

Let nk be the multiplicity of Λk of eigenvalues of (4.8). Define ik as

ik := lim
ε↘0

[m(βk − ε)−m(βk + ε)].

Note that |ik| ≤ nk by Lemma 4.33. By Claim 3 and Claim 4, we have

mω = m(0)−m(β) = i1 + · · ·+ ik0 ≤ n1 + · · ·+ nk0 = mω.

Thus we know that ik = nk for 1 ≤ k ≤ k0.

Therefore the Morse index of E changes at each bifurcation point. By Theorem

4.5, the statement holds.

Lemma 4.35. The nontrivial solutions bifurcating from T are not given by solving the

Dirichlet problems, and are positive solutions.
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Proof. Suppose (u, v), which is in the bifurcation branch from T , is given by solving

Dirichlet problems, hence u(−T/2) = u(T/2) = 0 and v(−T/2) = v(T/2) = 0. Note

that u′(−T/2) = u′(T/2) by the periodic condition. Because the solution is in the

bifurcation from T , the solution can be earned to change continuously from (Aβk , Bβk).

In such continuous change, there is a part satisfying u ≥ 0 connected to T , so we assume

u ≥ 0. According to the Strong Maximum Principle, a zero cannot be earned inside the

domain at the first time of the branch part, Thus the first zero of the solutions on the

branch part is realized on the boundary. If u′(−T/2) is positive (or negative), then u < 0

around t = T/2 (or t = −T/2, respectively) because of

u = u′(T/2)(t− T/2) + o(t− T/2),

thus we get a contradiction. Therefore u′(−T/2) = u′(T/2) = 0. Since θ is a solution

of the first equation of (4.1) satisfying the condition, then we get u = θ because of the

uniqueness of solutions for differential equations. The same thing holds for v.

The above discussion implies that the solutions cannot have a zero. Therefore the

solutions must be positive.

Set

Sk := The connected bifurcation component though ((Aβk , Bβk), βk).

Lemma 4.36. In Xeven ×Xeven, the branch Sk from βk is global for all k. Hence, the

branch Sk from βk is global for all k in H.

Proof. As the same as the proofs of Lemma 4.11, 4.15, and 4.16.

Lemma 4.37. For µ1 < β < µ2, there is no positive/negative solution of (4.3).

Proof. Multiplying v (or u) with the first (second, respectively) equation of (4.3) then

integrating with the interval T we have

∫
T
u′v′ +

∫
T
uv = µ1

∫
T
u3v + β

∫
T
v3u,∫

T
v′u′ +

∫
T
uv = µ2

∫
T
v3u+ β

∫
T
u3v.

Subtracting the second equation from the first equation, we get

0 =

∫
T

[(µ1 − β)u2 + (β − µ2)v2]uv.
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Note that the inside bracket on the right hand side must be negative because of µ1−β < 0

and β − µ2 < 0, so we get that uv = θ or uv must change sign which contradicts with

either u > 0 and v > 0, or u < 0 and v < 0.

Lemma 4.38. In Xeven ×Xeven, for any solution (u, v) ∈ Xeven ×Xeven in Sk,

√
µ1 − βu−

√
µ2 − βv

has precisely 2k zeros on [−T/2, T/2).

Proof. In Xeven ×Xeven, for β which is sufficiently close to βk,

u = Aβk + (β − βk)γ±ψk + o(β − βk),

v = Bβk + (β − βk)ψk + o(β − βk),

where γ± = γ+ if β ≤ 0 and γ± = γ− if β > 0, and ψk, which is the eigenfunction of the

linearized problem, has 2k zeros on [−T/2, T/2).

Then for β which is sufficiently close to βk, we know

√
µ1 − βu−

√
µ2 − βv = [

√
µ1 − βγ+ −

√
µ2 − β](β − βk)ψk + o(β − βk).

Thus around βk, the statement holds.

Next, set

α :=

√
µ1 − β
µ2 − β

,

w := αu− v,

then in the radial coordinate, w satisfies

−w′′ = (µ1u
2 +

√
µ1 − β

√
µ2 − βuv + µ2v

2)w,

w(−T/2) = w(T/2), w′(−T/2) = w′(T/2).

Therefore w must have only simple zeros because if a zero which is not simple is

realized inside the domain, then we get w = θ due to the Strong Maximum Principle.

Suppose that a zero is realized on the boundary of the domain the first time in the

branch connected to T , then if w′ is not zero on the boundary, we find a negative point
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around the boundary. Thus w′ on the boundary must be zero, so we get w = θ again

by the uniqueness of solutions for the differential equations. Therefore w cannot make

the number of zeros change continuously.

We refer to the following theorem as a consequence of a Liouville Type Theorem

by a Standard Blow-up Argument:

Theorem 4.39 (Bartsch-Dancer-Wang). ([2] Theorem 2.5) For Ω ⊂ Rm, m ≤ 3,

suppose m = 1 otherwise Ω is radial. Then given a compact set B ⊂ R and k ∈ N, the set

{ (β, u, v) ∈ R×H1
0 (Ω)×H1

0 (Ω) : (β, u, v) solves the problem (4.11):


−u′′ + u = µ1u

3 + βv2u,

−v′′ + v = µ2v
3 + βu2v,

u, v > 0.

(4.11)

in Ω, β ∈ B, and
√
µ1 − βu−

√
µ2 − βv has at most k zeros. }

is bounded.

Remark 4.40. Theorem 4.39 holds for (u, v) ∈ H1
T × H1

T too since the proof does not

depend on H1
0 (Ω). See the proof of [2] Theorem 2.5.

Lemma 4.41. Sk extends to −∞ for β if µ1 6= µ2.

Proof. The branches are unbounded due to Theorem 4.9 with Lemma 4.38, and cannot

pass through the region (µ1, µ2)×H because of no solutions by Lemma 4.37. Recall that

the solutions on the branches are positive by Lemma 4.35, so we can apply Theorem

4.39 with Lemma 4.38. Thus each Sk in Xeven ×Xeven must be bounded above in the

compact set in Theorem 4.39. It implies that the statement holds.

Now, our main theorem in Section 4.4 (Theorem E).

Theorem 4.42 (Theorem E). Suppose

T 6=
√

2πk, k = 1, 2, · · · .
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Then along T , there are infinitely many bifurcation points of (4.3): β1 > β2 > β3 >

· · ·βk0 > 0 > βk0+1 > βk0+2 > · · · > βk, βk → −
√
µ1µ2 as k →∞, having the following

properties:

a) The nontrivial solutions in the bifurcation branches are not given by solving Dirich-

let problems, and are positive solutions.

b) These bifurcation branches are global.

c) Each Sk extends to −∞ for β if µ1 6= µ2.

d) In Xeven ×Xeven, Sk ∩ Sl for k 6= l.

Proof. Collecting lemmas in the above, we know the theorem holds.

Figure 4.2: Aspects of bifurcation branches from T

Finally, we study the case T =
√

2πj for some j = 1, 2, · · · .

Lemma 4.43. Suppose T =
√

2πj for some j = 1, 2, · · · . Then for a fixed β, the

problem

−ψ′′ = Λψ + b(β)ΘA,B, Λj 6= Λ,

ψ(−T/2) = ψ(T/2), ψ′(−T/2) = ψ′(T/2),



71

where

ΘA,B := A cos
2π

T
jt+B sin

2π

T
jt,

with constants A and B has a nontrivial solution which is given by

ψ̃ := Ã cos
2π

T
jt+ B̃ sin

2π

T
jt,

where

Ã :=
b(β)A

Λj − Λ
, B̃ :=

b(β)B

Λj − Λ
.

Proof. Substitute ψ̃ into the problem, then we get

Λjψ̃ = Λψ̃ + b(β)ΘA,B,

thus  ΛjÃ = ΛÃ+ b(β)A,

ΛjB̃ = ΛB̃ + b(β)B.

So if we set

Ã :=
b(β)A

Λk − Λ
, B̃ :=

b(β)B

Λk − Λ
,

then ψ̃ solves the problem.

Our result for the case T =
√

2πj (Theorem F).

Theorem 4.44 (Theorem F). Suppose

T =
√

2πj

for some j = 1, 2, · · · . Then any point in (−√µ1µ2, µ1) ∪ (µ2,∞) in β is a possible

bifurcation point of (4.1) with the condition λ1 = λ2 = 1.

Proof. Lemma 4.43, setting ΘA,B = φ− γ±ψ implies that there is a nontrivial kernel at

any point in the interval in β.
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Remark 4.45. As a different way, we could show that there are the possible bifurcation

points of the above lemma by

−ψ′′ = (bγ− + c− 1)ψ = 2ψ

for β ≤ 0, and

−ψ′′ = (bγ+ + c− 1)ψ = 2ψ

for β > 0, in the proof of Lemma 4.33.

4.5 Summary

In this chapter, the bifurcation structures of GPEs were studied. We showed there

are countably infinitely many bifurcation points which bifurcates from semi-trivial solu-

tions exists in β and in λ1 (thus in λ2), by the Crandall-Rabinowitz Local Bifurcation

Theorem (Theorem 4.14). We also showed that some qualitative properties including

global bifurcations by the restrictions of the functional’s domain into the space of even

functions. Similarly, we also showed that there are countably infinitely many bifurca-

tion points which bifurcates from a synchronized solution by using the Morse index with

some techniques of [2]. In the case T =
√

2πj for some j, any point in β is a possible

bifurcation point along T , hence there are uncountable possible bifurcation points.
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CHAPTER 5

CONCLUSIONS AND FUTURE RESEARCHES

5.1 Summary of results

In this dissertation, we showed the existence, multiplicity, and some qualitative

properties of periodic solutions for the following two classes of nonlinear differential

equations:

I) (Special) Relativistic Pendulum Equations (RPEs):

(φ(u′))′ = ∇uF (x, u) + h(x),

where φ : (−a, a) → R is an increasing homeomorphism satisfying φ(0) = 0, and

φ(s)s > 0 for all s ∈ (−a, a)\{0}. This type of equation also arises from geometric

problems such as the minimum surfaces with various choices of φ.

II) (2-coupled) Gross-Pitaevskii Equations (GPEs):

 −u′′ + λ1u = µ1u
3 + βv2u,

−v′′ + λ2v = µ2v
3 + βu2v,

where λi, µi, and β are parameters.

For RPEs, more generally, we treated the case where the range of u is Rn. Under

some conditions, we established a multiplicity result depending on the periodic condition

of F by applying the Generalized Saddle Point Theorem (Theorem 2.5). Our result

partially answered open problems which were raised by Brezis and Mawhin in 2010

([8]).

For 2-coupled GPEs, in the symmetric case of λ1 = λ2 = λ > 0 and µ1 = µ2 = µ >

0, by applying Z2-Index Theory, we showed that there are infinitely many solutions for

β ≤ −µ, and, for any integer, there exist at least k pairs of solutions (u, v) and (v, u)

depending on β for β > −µ.
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In addition, the system has the following constant solutions:

In the general case, (u, v) = (ω1, θ), (u, v) = (θ, ω2), ωi :=

√
λi
µi
.

In the case λ1 = λ2 = 1, (u, v) = (Aβ, Bβ),

Aβ :=

√
µ2 − β

µ1µ2 − β2
, Bβ :=

√
µ1 − β

µ1µ2 − β2
.

The bifurcation structures bifurcating from the following solution curves:

T β1 := {(ω1, θ) ∈ H1
T ×H1

T : β ∈ R},

T λ11 := {(ω1, θ) ∈ H1
T ×H1

T : λ1 > 0},

T := {(Aβ, Bβ) ∈ H1
T ×H1

T : β ∈ (−√µ1µ2, µ1) ∪ (µ2,∞)},

were also studied. To show the existence of bifurcation points, we applied the Crandall-

Rabinowitz Local Bifurcation Theorem (Theorem 4.14) which is proved by the Lyapunov-

Schmidt Reduction which changes the problem in the infinite dimensional space of func-

tions into a problem in a finite dimensional space due to that the linearized equations

are of Fredholm operators.

In the case of the bifurcations from T , we used the Morse Theory to show there are

countably infinitely many bifurcation points with some techniques of [2]. In addition,

we showed that there are global bifurcations, and also showed their some properties

by restricting the domain of the functional into the space of even functions with the

Symmetric Criticality Principle.

5.2 Future researches

Finally, we mention some possible future research themes for RPEs and GPEs.

5.2.1 Further research theme for RPEs

Minimal period

To ask if there exists a solution with the minimal period will be an interesting

question. In [49] Wang, Wang, and Shi showed that there exists a solution having

minimal period pT , where p is an integer such that p 6= 1, was proved in the CPE

x′′ +A sinx = h(t), (5.1)

under the following conditions:



75

(Hh) : The function h is T -periodic with minimal period T and odd in t.

(Hp) : For an integer p > 1,

0 <
ω2

A
< p2 <

ω2s2
p

A
,

where sp is the least prime factor of p.

The proof relies on Variational Methods and Fourier Analysis. Yu also studied for

the minimal period ([52] [53]). It would be natural to ask if the similar results hold for

RPEs.

Maximum number of solutions

In [36] Ortega showed at most how many solutions exist in the classical pendulum

equation by using the idea in [25] to change the problem into counting the zeros of

a corresponding holomorphic function via the Jensen Inequality in complex analysis

(which is not the Jensen Inequality known in real analysis or statistics. See [1] [41]). It

would be natural to ask if it can be applied for RPEs.

Bifurcation structures from CPEs

To study bifurcation structures of RPEs bifurcating from solutions of CPEs (e.g.

(1.1), (5.1)) will be naturally interesting. It is even unclear that what kind of parameters

can be a bifurcation parameter. Parameters relating to Lorentz transformations would

be natural candidates of bifurcation parameters.

5.2.2 Further research theme for GPEs

How to distinguish the multiple solutions

In Chapter 3, we saw that the multiple existence results of the Dirichlet condition

in [16] hold for the periodic condition too. In addition, we got the bifurcation branches

that might include these solutions. However, we are not sure how these solutions are

identified together.

T -dependency of the number of solutions

On the Dirichlet boundary condition, a positive solution cannot be extended as

an even function, due to the Strong Maximum Principle. Thus it is natural to guess

that the number of solutions will depend on period T . To show such dependency of
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the number of solutions, Fourier Analysis will naturally be one of the tools to use.

However if we apply the similar discussion with the Fourier Analysis for T instead of β,

it will be a question if the infimum level of fixed points bounded independently from T

(Lemma 3.8 (i)). In addition, it will be a problem to discuss the limits of T because the

coefficients of a Fourier expansion depend on T . Thus, how to get multiple existence

results depending on T will be an interesting question. In [34], the existence of solutions

with T -dependency were proved by using the Topological Degree Theory of (nonlinear)

compact operators.

Bifurcations of uncountable possible bifurcation points

We showed there are uncountable infinitely many possible bifurcation points as

in Theorem 4.44. In this case, we cannot apply Theorem 4.5 to show these points are

actually bifurcation points because each critical point is not isolated, hence we cannot use

the Morse Theory directly. To show bifurcations actually happen for such uncountable

possible bifurcation points is an open problem.

Mixed couplings

In 3-coupled Gross-Pitaevskii system:


−u′′1 + λ1u1 = µ1u

3
1 + β12u1u

2
2 + β13u1u

2
3,

−u′′2 + λ2u2 = µ2u
3
2 + β21u2u

2
1 + β23u2u

2
3,

−u′′3 + λ3u3 = µ3u
3
3 + β31u3u

2
1 + β32u3u

2
2,

(5.2)

where λi, µi, and βij are constants, and βij = βji (i 6= j) since otherwise the variational

structure does not exist. Each βij can be either positive or negative. In Variational Meth-

ods, the positive/negative beta case is generally treated in differently defined manifolds.

The mixed couplings case, which is the case in which the system has both negative beta

and positive beta, will be an interesting problem. If we combine these different manifolds

together, then we would expect to be able to treat the mixed couplings case.
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