Utah State University

DigitalCommons@USU

All Graduate Theses and Dissertations

Graduate Studies

5-1948

The Effect of DDT Residue on the Composition and Digestibility of Alfalfa Hay

Than Myint

Follow this and additional works at: https://digitalcommons.usu.edu/etd

Part of the Animal Sciences Commons

Recommended Citation

Myint, Than, "The Effect of DDT Residue on the Composition and Digestibility of Alfalfa Hay" (1948). All Graduate Theses and Dissertations. 4005.

https://digitalcommons.usu.edu/etd/4005

This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.

THE EFFECT OF DAT RESIDUE ON THE COMPOSITION AND

DIGESTIBILITY OF ALPALPA HAY

by

Than Myint D.So., University of Rangoon Burss, 1961

A thesis submitted in partial fulfillment of the requirements for the degree

02

MASTER OF SCIENCE

\$m

Animal Mutrition

1948

UTAH STATE AGRICULTURAL COLLEGE Logen. Utah

ACKNOWLEDGENERY

I wish to express my deep heartfelt gratitude to Dr. Louis L. Madeen for his valuable advice, suggestions and his villingness to help me in every way possible; and to Dr. Lorin E. Earris for his instructive directions with calm patient and close supervision which brought about a timely successful completion of the research.

I wish to thank Mr. David O. Williamson for doing some of the gross energy determinations and Mr. Joseph R. Harris for his occasional help in the Animal Industry Laboratory during the process of the chemical analyses.

I also wish to thank Br. Clyde Biddulph, Dr. Delbert A. Greenwood.

Dr. Carrol I. Draper, Professor George Q. Bateman, Dr. Vayne Binns, Br.

Merthyr L. Miner, Er. Frank V. Lieberman and Professor Charles J.

Sorenson who are associated with the Utah Agricultural Experiment

Station project 289, which is partly financed by the Estional

Institute of Health for furnishing me with the photographs of the

treated alfalfa hay field, part of the chemical analyses on the

alfalfa hay and furnishing the alfalfa hay.

Then Myint

TABLE OF CONTENTS

Introduction	Page 1
Review of Literature	5
Methods of Procedure	5
Experimental design Application of DOT Animals	5566
Netabolism cages	6
Feeding and care of sheep Collection procedure	11
Sampling of feeds, feeds and urine Analysis procedures	15
Gross energy determination	14
Results and Discussion	16
Sunsary and Conclusion	5#
Bibliography	27

LIST OF FIGURES AND TANLES

Figures		Page
Figure 1.	Aerial photograph of alfalfa field	7
Figure 2.	Individual alfalfa plants	0
Figure 3.	The alfalfa field treated with various amounts of DDT	9
Figure 4.	A metabolism coge	20
Text Tablest		
Table 1.	Experimental decign	5
Table 2.	Yield and chemical composition of first cro	p 17
Table 3.	Carotene content of green alfalfa	18
Table 4.	Data for mitrogen belances	20
Table 5.	Digestion coefficients of alfelfa hay	21
Cable 6.	The metabolizable energy of alfalfa hay	23
Appendix Table	98	
Table 1.	Analysis of variance for yield and per- centage chemical composition of alfalfa bey	29
Table 2.	Analysis of variance for carotene content of alfalfa	30
Table 3.	Composition and gross energy content of sifelfs bay, orts, foces and urine	91
Table b.	Statistical analysis of the digestibility by sheep of protein in alfelfa hay when treated with various assumts of DDT	34
Table, 5.	Statistical analysis of the digestibility by sheep of other extract in alfelfa hay when treated with various assunts of DDT	35
Table 6.	Statistical analysis of the digestibility by sheep of crude fiber in alfalfs hay when treated with various amounts of DDT	100000

INTRODUCTION

DDT (2, 2 bis (p-chlorophenyl) 1, 1, 1-trichloroethane) was first synthesized in 1874 by Zeidler in Switzerland, however, its effective-ness as an insecticide was not known until about 1952. The active principle was first known as G.S.B. (Gesarol-Seccid Base): but in 1943 DDT was suggested as an abbreviation for Dichlore Diphenyl Trichloroethane (Kanegie, 1946). In fact DDT, as a powerful insecticide is one of the developments made during World War II. The importance of DDT in the control of the common insect enemies of mankind, such as mosquitoes, flies, moths, and many agricultural insect pests is realized more day by day. Many studies have been conducted to determine the uses, toxicity and residual effectiveness of DDT. However, the nutritive value of DDT dusted feedstuffs has not been investigated heretofore.

During recent years, in the west, alfalfa seed and hay production has declined as a result of injuries caused by certain species of insects such as lygus bage and alfalfa weevil. DDT has been used successfully to control these insect pests. Because of this fact there is a need for more information on the chemical composition, digestibility and metabolizable energy content of DDT treated alfalfa hay.

REVIEW OF LITERATURE

There are no references on the digestibility and metabolizable energy of DDT-treated feedstuffs. The following review, however, throws some light on work related to this problem.

Orr and Mott (1945) demonstrated that DDT is not acutely toxic to animals though some developed tremors and slight degeneration of the liver. In their investigation, 100 to 200 mgm. of DDT per kgm. of body weight was administered orally to cows, horses, and sheep. It was found that most of the DDT was eliminated with the feces and only a small amount was taken up by the blood stream.

In the investigation by the Bureau of Entomology and Flant Quarantine, three sheep were put in a pasture 48 hours after the pasture had been dusted with 40 pounds of 10-percent DDT per acre. The sheep showed extreme neurologic symptoms after 72 hours, but the animals eventually recovered. The field was dusted again a month later, and the sheep reacted in the same way, and again all recovered. One of the ewes was taken to the University of Southern California and fed 2 grams of DDT daily for 11 days. The amount was then increased to 4 grams of DDT per day for the next 40 days. During the entire period when DDT was fed orally, there were no noticeable symptoms of DDT poisoning. When the dosage was increased to 16 grams a day pronounced nervous symptoms were developed and death ensued 17 days later (Roark and McIndoo, 1947).

Nelson (1944) reported that among larger animals cows seem to be more sensitive to DDT. Characteristic symptoms such as themors of hind legs and neck occured with doses of 0.05 to 0.1 grams per pound of body weight per day for three weeks. However, only one sheep out of three

tested showed liver damage while the other sheep and a horse remained unaffected.

Two goats having received single oral doses of 1.25 grams and 0.68 grams of DDT per pound of body weight eliminated sufficient amounts of DDT in the milk to produce toxic symptoms and death in white rats after 29 to 30 hours of milk feeding (Telford, 1945).

Kanegis (1946) stated in his review of DDT that absorption of DDT in powdered form, through the gut is variable and irregular notably depending on the fat content of the diet. In the case of DDT being administered in oil 50 to 95 percent was found to be absorbed. The body eliminated DDT in the feces with the bile, and some DDT was eliminated in the urine as a detoxified product. He further stated that in experiments with rabbits from 5 to 50 percent of a single dose administered in oil was excreted in the feces.

Leary, et al. (1946), reported that a half-grown kitten died with toxic symptoms from consuming goat's milk lactated by DDT fed goats: while neither the mother goats nor the kids died, apparently goats have a higher resistance to DDT than cats.

White and Sweeney (1945) in their investigation stated that eight rabbits weighing from 2 to 3 kgm. were given a dose of 100 mgm. of DDT per kilogram of body weight and the dose was administered in clive oil solution by means of a stomach tube. On analysis of urine it showed the presence of organic chlorine, namely di (p-chlorophenyl) acetic acid. It was further demonstrated by these investigators that di (p-chlorophenyl) acetic acid can be isolated from the urine.

From the above review it is known that DDT is a highly poisonous substance, and it has a cummulative effect. However, to large animals

small quantities of DDT do not seem to be toxic if it is used and handled properly. Nost of the DDT consumed by the animal is excreted in milk, feces, and urine. Nevertheless, DDT excretion into milk and its concentration in the cream and butter causes great concern because of its injurious effects to nursing animals, milk fed babies and to human health generally.

METROD OF PROCEDURE

The general plan of the experiment was to determine whether residual quantities of DDT on alfalfa hay will affect its chemical composition, digestibility and metabolizable energy. The investigation was perferned from March 8, 1948, to May 24, 1948.

Experimental design. A b x b Latin square design was employed (table 1) to determine the digestibility and metabolizable energy content of the DDT-dusted alfalfa hay. Four employe of alfalfa hay were fed at random to four sheep for four periods with the restriction of not repenting the hay already fed in a row or column.

Table 1. Experimental design.

DDT per	Alfalfa hay								
acre.	20.		1		2	-	3		h
lbs.				Anis	asl nu	mber			
0	1 1	1	135	1	133	1	139	1	137
1	17	I	133		135	I	137	I	139
2	1 9		139	1	137	I	135	I	133
4	I 13	1	137	I	139		133		135

These levels of DDT were used because the recommended amount of actual DDT for insect control of alfalfa is from 1 to 2 pounds per acre.

The level of 4 pounds per acre, approximately twice that of the recommended amount, was used in order to investigate the effects of the DDT when employed in excess.

Application of DDT. The hay was treated and harvested by the personnel mentioned in the acknowledgement. Four replicated plots of first crop alfalfa growing on the Eidman farm on the west slope of Cache Valley were dusted with DDT on May 29, 1947, at the following

levels per acre: (1) none, (2) 1 pound, (3) 2 pounds and (4) b pounds. The required amount of DDT was mixed with pyrophyllite and applied at the rate of 20 pounds per acre with a power duster. Because of inadequate facilities expense and time, hay from only four of the plots was used for digestion trials, however, the hay from all the 16 plots was chesically analysed.

Figure 1 shows the field a few days before cutting. The areas which were not dusted were grayish green in color, while the dusted areas were bright green in color. The leaves of the alfalfa on the undusted areas were skeletonized by weavil while the leaves on the dusted areas were not eated by weavil (figure 2). There was a marked line of color and height difference in the dusted and non-dusted alfalfa plots (figure 3).

On June 20, 1947, the hay was cut, raked into windrows, cured, baled, and labeled. The hay was then bauled to the Animal Husbandry Farm on July 1, 1947 and stacked. The hay was of good quality, free from foreign matter or mold and was stored in a clean dry place.

Animals. Four wether lambs (three Columbia z Bambouillet and one Rambouillet) approximately one year old, weighing from 85 to 90 pounds were used. The lambs were shorn before the experiment started. They were weighed at the beginning and at the end of each collection period. The animals were given the numbers 1-133, I-135, I-137, and I-139.

Metabolism cages. Four metabolism cages were constructed for the purpose of collecting urine and feces separately from each of the individual lambs (figure 4). Each cage measures 2 feet 6 inches in width, 6 feet in length and 3 feet 6 inches in height; the legs measure 2 feet 6 inches. The inside has an adjustable partition on each side in order

Figure 1. Aerial photograph of alfalfa field taken the day before cutting the first crop. The light areas are the untreated plots and buffer strips. The light color was caused by the alfalfa weevil larvae feeding upon and damaging the alfalfa plants. The dark areas are the plots treated with DDT in which there is very little weevil damage.

Figure 2. Individual alfalfa plants from representative plots. No. 1 is from a plot receiving 2 lbs. of DDT per acre; No. 2 is from a plot receiving no DDT. Note the damage to the plant by the alfalfa weevil larvae in the latter.

Figure 3. The alfalfa in the foreground was treated with 2 lbs. of DDT per acre; the alfalfa immediately beyond in the light area is a buffer strip and received no DDT. The dark area immediately beyond the buffer strip is a plot that was treated with DDT. Note the sharp line of demarcation between the treated and untreated areas, and the difference in height of the alfalfa.

Figure 4. Metabolism cage showing the feed rack, urine and feces bottles in place.

that the animal cannot turn around. The feed trough is moveable and can be fastened after the ration has been placed in it. Just beneath the false bottom iron floor of the cage is a copper screen which prevents hay and feece from falling into the aluminum tray. The aluminum tray is constructed in such a way that urine and feeces go into receiving bottles separately.

Feeding and care of sheep. Before the beginning of the experiment, the sheep were fed alfalfa hay for about one month to occustom them to this type of feed, and to acquaint the investigator with how to feed and care for them. The hays were chopped in about three inch lengths.

The sheep were fed between 8:00 and 9:00 a.s. and between 4:30 and 5:30 p.m. The have were weighed on a balance to an accuracy of .01 lbs. The amount of bays were limited in each period, as near as possible, to that of the animals consuming the least. Each morning just before feeding the sheep, the orts (weigh-back), if there were any, were collected carefully to severa in a labeled each for weighing and analysis.

Collection procedure. A preliminary period of 5 to 7 days was allowed period the beginning of the collection period. The hay under study was fed in constant daily amounts for a preliminary period in order to free the digestive tract of the material coming from the feed consumed prior to the start of feeding the hay under investigation.

Sefore the collection began, the floore, the screens, and the trays of the astabolism cages, and the collection bottles were thoroughly brushed, cleaned and dried. The collection started and ended at a definite time; the collection period lasted 7 days.

Fifty ml. of toluene was added to each urine bottle at the beginning of each collection period. Ten drops of toluene were added to the feces bottles once daily.

The day previous to the end of the collection period all of the scattered hay was carefully gathered from the floors and screens of the metabolism cages to insure the correct amount of feed intake. On the day of collection before the orts were weighed, the scattered hay was again carefully collected and added to the orts for weighing.

At the time of the collection, feces and urine bottles were removed first of all. With the aid of a steel brush all the feces were carefully brushed off the floor, screen and tray into the collection bottles.

Sampling of feeds, feecs, and uring. A composite sample of hay for each plot was used for each of the four periods for chemical analysis.

The total amount of orts was saved for each period for analysis.

At the end of the collection period the feces were weighed. They were then emptied from the bottle into a large aluminum bowl where they were thoroughly mixed by hand. A sumple was put into a quart bottle, labeled and sealed air tight. Immediately the wet feces were weighed and dried in an air-drying oven at 60° C for 24 hours, with brick air passing through. The feces were then reweighed and ground for analysis.

The urine, in the collection bottle, was thoroughly shaken and 20 percent of the measured urine was poured into a quart bottle for analysis.

The bays, orts, and feces were ground through a Wiley mill using a 1-am screen.

Analysis procedures. Hays, orts, and feces were analysed for ash, dry matter, other extract, grade fiber, nitrogen-free extract, nitrogen.

erude protein, and gross energy. Calcium and phosphorus content of the bays were also determined. Urine was analysed for nitrogen, and gross energy. All analyses were run in duplicate, and in cases where the results varied considerably, repeats were made.

Ash was determined by burning the samples in an electric furnoce at 600° C for 3 hours with an automatic control pyrometer. Dry matter was determined by drying the camples in an even at 100° C for 10 hours. Crude fat or ether extract was determined by extracting the samples with anhydrous ether for 16 hours. Crude fiber was determined by the method of the Association of Official Agricultural Chemists (1945, p 409). Sitrogen-free-extract was found by difference.

#.F.E. = 100% - (moisture # + ether extract # + crude fiber # + ash # protein #).

Total nitrogen was determined by the Ejeldahl method of the Association of the Official Agricultural Chemiete (1965, page 26 to 27) except the titration which was after Scales and Marrison (1920); boric seid is employed to hold the ammonia distilled in the process. Crude pretain was obtained by multiplying the amount of nitrogen determined by the factor 6.25.

Calcium was determined by the method of the Official Agricultural Chemists (1945, p. 119-120) except the digestion which was done by the method of digesting biological materials for calcium and phosphorus analysis (Gerrite, 1935). Phosphorus was determined by the colorizatric method after Econig and Johnson (1942). DDT residues on the have were found by determining the total chlorine (i.e all 5 atoms of chlorine is DDT molecule) based on a method described by Umhoefer (1943), except the titration was by Folbard's method according to Sunther (1945).

Gross energy determinations: The ground sir dry samples of alfalfa hay, orts, and feces were made into pellets by the use of a pellet press.

The urine was heated over a hot water bath at 45° C to dryness. The residue was transferred to a capsule containing a cellulose pellet using a minimum amount of distilled water. The contents of the capsule were again dried over a hot water bath.

The gross energy of the samples was determined by the use of a Farr Cxygen Bomb Adiabatic Calorimeter in accordance with the instructions contained in the Parr Manual No. 117.

Retabolizable energy was obtained by difference by the use of the following formula:

Netabolizable energy = gross energy in feed - gross energy in orts - (Gross energy in feces + urine + methane gas).

The amount of methane produced was estimated by using the following formula (Black 1948):

methane in gme. = 2.41 x + 9.80

x represents hundreds of grams of carbohydrates digested. To convert grams of methane to Calories, the value of 13.344 was used.

Unless the anisal is neither gaining nor losing body protein, the difference between the energy consumed and the energy lost in the solid, liquid, and gaseous excreta does not indicate the true setabolizable energy value of the feed. A correction for the gain or less of body protein was made according to the factor suggested by Rubner and quoted by Hamilton (1928). For each gram of urinary nitrogen derived from the catabolism of body proteins (equal to negative nitrogen balance) 7.45 Calories were subtracted from the urinary energy, and for each gram of nitrogen stored in the body (equal to the positive nitrogen balance) 7.45 Calories were added to the urinary energy.

All the data were analyzed statistically by the analysis of variance as described by Snedscor (1946). Differences were considered to be significant at the 5% level and highly significant at the 1% level with a probability of 19: 1 and 99: 1 respectively.

RESULTS AND DISCUSSION

The yield and chemical composition of alfalfa hay. There was a highly statistically significant difference in the yield of alfalfa hay in tons per sere between the undusted and DDT dusted hay (table 2). The average yield of undusted alfalfa hay was 1.12 tons per sere and the yield of DDT dusted alfalfa hay was 1.50, 1.40, and 1.47 tons per sere for the 1, 2, and 4 pound levels of DDT, respectively. However, there was no significant difference in yield among the 1, 2, and 4 pound levels of DDT. The increase in the yield of alfalfa hay was probably due to the protection furnished by the DDT from insect peats.

There was a highly significant difference in percentage other extract between the undusted and DDT dusted alfalfa hay. The untreated hay contained 2.16 percent other extract and the treated hay 2.46 percent, 2.46 percent, and 2.45 percent for the 1, 2, and 4 pound DDT treatments, respectively.

the DDT treated hay had a bright green color while the untreated hay had a grayich green color. The caretene content of the DDT treated hay was significantly greater than the untreated hay (table 3). There was no significant difference among the DDT treated hays.

The statistical analyses of the yield and chemical composition of the yield and chemical composition of the hays are given in appendix tables 1 and 2.

Food consumption and live-weight gain. The food consumption was held as constant as possible in the various periods in order to take out the effect of having varying food intakes. At the end of period

Table 2. Yield and chemical composition of first crop alfalfa bay

Pounds	Hey	Dry	T. L. D. T. L. V.	-	Perce	et comp		on on dry	basis	
of DD9 per agre		tons/	PDT resi- due	Protein	Ether	Crude fiber	Ash	Si trogen free extract	,	Ca
		AND DESCRIPTION OF STREET	ppm		and market extreme planning steps	CONTRACTOR OF STREET	e marini di marini d		account of the local designation	
0.	1-1	1.23	0	15.2	2.02	32.25	9.14	42.5	0.23	2.1
0	1-2	1.23		14.7	2.21	31.08	8.79		0.19	1.9
0	1-3	1.05	15.	16.0	2.21	32.37	9.30	40.1	0.26	1.9
9	I-b	0.98		15.5	2.18	30.25	8.91	43.0	0.18	2.3
·BTA		1.12		15.4	2.16	31.48	9.03	41.9	0.22	2.0
1	X-5	1.60	133	15.8	2.59	27.18	9.55	44.9	0.20	2.1
1	1-6	1.66		16.5	2.35	32.64	9.07	39.5	0.25	1.8
1	1-7	1.37	17	15.0	2.51	31.27	8.74	43.6	0.26	1.7
1	I-8	1.37		16.8	2.38	33.38	9.01	38.5	0.30	1.9
Avg.		1.50		16.0	2.46	31.10	9.09	41.4	0.23	1.9
2	1-9	1.34	23	16.0	2.28	31.12	8.74	41.9	0.21	1.8
2	1-10	1.60		16.4	2.55	30.62	8.94	41.6	0.24	1.9
2	1-11	1.35		15.2	2.67	31.95	8.30	42.9	0.20	1.9
2	I-12	1.32		15.5	2.32	31.08	8.83	42.2	0.23	1.5
AVE.		1.40		15.8	2.46	31.19	8.70	41.9	0.22	1.8
•	1-13	1.56	50	26.1	2.25	32.63	9.39	39.6	0.25	1.8
b	1-14	1.73		16.8	2.33	30.30	9.52	41.0	0.21	2.0
b	1-15	1.28		16.2	2.67	28.93	8.95	43.3	0.24	2.0
b	1-16	1.30		16.5	2.45	29.45	8.94	42.6	0.23	1.7
AVE.		1.47	1 /2 // 10	16.4	2.43	30.32	9.20	41.6	0.23	1.9
Minimu	m 1e	vel of	oienifi	cance bet	ween tre	etmant	avera	gee	•••	
P 0.0	15	0.12		2/	0.21	2/	1/	2/	2/	1/
7 - 0 -	17	0.17			0.30		71		10.00	

P -0.05 P - 0.01	0.12	2/	0.21	2/	V	2/	2/	1/
F-0.01	0.17		0.30				-	

^{1/} Difference between treatment means are not considered eignificant.

Table 3. Carotene content of green alfalfa just before cutting for hay

Pounds of DDT per	Plot	Reg	Carotene content
acre	no.	no.	
9	2	I-1	PPH 123
0.	8	I-2	223 332
0	10	1-9	30b 297
0	16	1-6	326 369
Avg.			334 288
1	3	1-5	352
1	6	1-6	345 446 289
1	9	1-7	376
1	13	1-8	332 359
Avg.			328 35k
2	4	1-9	153
2	5	1-10	329 410
2	12	1-11	337 529 540
2	14	1-12	380 626
Avg.			388
4	1	1-13	200
4	1	1-14	203 398
4	n	1-15	455
4	15	1-16	398 421 455 635 459 391 395
Avg.			395

l it was noted that the sheep would eat more food, therefore, the in-

There were no significant differences among the live-weight gains which could be attributed to the hays fed. However, there was a significant difference among the periods. The statistical analyses of the live-weight gain is shown in appendix table 11.

Ritrogen balance. The sitrogen balance was significantly in favor of the untreated alfalfa hay when compared to the hay which had been dusted with 2 and b pounds of DDT per agre. However, there was no significant difference between the undusted hay and the hay which was dusted with one pound of DDT. Also there was no significant difference among the DDT dusted hays, although as the amount of DDT on the hay increased the nitrogen balance decreased. From these results it appears that the concentration of DDT on the hay influences the amount of nitrogen stored.

The statistical analyses of the nitrogen balance is in appendix table 10.

Digestibility of alfalfa har. There were no significant differences among the digestion coefficients for protein (Sitrogen X 6.25), ather extract, crude fiber, ash and nitrogen free extract (table 5).

However, the digestion coefficients for other extract approached eignificance (F value was 4.49, the significant value at P = 0.05 being 5.76). There was also so significant differences among the hays as regards the total digestible nutrients. From these results it appears that the DDT residues on the hay did not effect the digestibility of the above constituents when the hay was fed to sheep.

The statistical analyses for the digestibility of the hays are given in appendix tables 4, 5, 6, 7 and 8.

Table 4. The dry matter intake, average body weight, gain and nitrogen balances of sheep fed alfalfa bay dusted with various amounts of DDT

Sheep	Period	DOT	Hay	Avg.	Period	Dry		Wite	egen i	1	
no.	no.	per	no.	wt.	gain	matter intake		Orte	Peces		Bal- ance
		16.		10.	16.	en.	en.	gn.	gn.	en.	ØR.
1-133	2	0	1-1	94.3	- 0.6	1114	28.7	0.9	8.2	15.6	4.0
1-135	1	0	1-1	93.9	0.7	1004	24.6	0.1	7.4	15.0	2.1
1-137		0	1-1	97.5	- 5.0	1169	28.4	0.0	8.5	16.8	3.2.
1-139	3	0	I-1	48.8	6.5	1165	28.7	0.2	9.9	15.2	3.4
Avg.	Krijere i			93.6	1.5	1113	27.6	0.3	8.5	15.6	3.1
1-133	1	1	1-7	90.1	1.1	997	24.1	0.2	4.4	17.3	2.2
I-135	2	1	1-7	95.4	0.3	1124	7.9	0.7	8.6	16.4	2.2
1-137	3	1	1-7	96.8	6.5	1167	27.9	0.0	9.1	17.1	1.7
I-139	A	1	1-7	91.0	- 2.0	1146	27.9	0.3	8.6	18.0	1.0
Avg.				94.1	1.5	1109	26.9	0.3	7.7	17.2	1.8
1-133		2	1-9	98.5	- 4.0	1052	29.2	2.8	7.6	17.8	1.0
1-135	3 2	2	1-9	98.0	7.0	1169	29.0	0.0	7.9	21.6	-0.7
1-137	2	2	1-9	94.1	- 1.1	2152	29.2	0.6	7.3	17.9	3.4
1-139	1	5	1-9	84.8	- 0.5	996	24.9	0.1	7.6	19.1	-1.9
AVE.				93.8	0.3	1092	28.1	0.9	7.6	19.1	0.5
1-133	3	4	1-13	97.3	6.5	2132	29.8	0.4	8.5	19.2	1.7
1-135	3	4	1-13	99.0	- 5.0	1165	30.1	0.0	9.6	20.9	-0.4
1-137	1	4	1-13	94.5	0.6	936	24.7	0.3	7.5	19.2	-2.3
1-139	2	4	1-13	85.0	1.0	1135	30.4	0.6	9.2	19.1	1.5
AVE.				93.9	0.8	1092	20.1	0.3	8.7	19.6	0.1

^{*} Grams of netrogen per animal

Table 5. Digestion coefficients and total digestible nutrients of alfalfa hay dusted with various amounts of DDT when fed to sheep.

Sheep no.	Period	DDT per sere	Protein	Ether extract	Grude fiber	Witrogen free extract	Total digestible nutrients
-	Manual State	10.	%			3	
1-133	2	0	71	57	44	70	53
1-135	1	0	70	57 53 33 42	48	73	55
1-137	4	0	70	33	Isla	75	55 53 69
1-139	3	0	65	42	44 46	62	80
Avg.			69	46	46	70	53
1-133	1	1	64	55	46	74	5A
1-135	2	1	69	55	41	72	53
1-137	2	1	68	45	50	71	53 54 55 54
1-139	4	1	69 68	43	47	75	55
AVE.			68	48	46	73	54
1-133	4	2	72	28	48	78	56
1-135	3	2 2 2	74	32	50	72	55
1-137	3 2	2	75	35	50	77	55 58 55 56
1-139	1	2	69	55	48	72	55
Avg.			73	38	49	75	56
1-133	3	4	71	29	54	73	55
1-135	4	4	68	29	47	73	53 54
1-137	1	4	69		50 46	71	54
1-139	2	4	69	50 43		73	53
Avg.			69	38	49	73	54
Cooffs	cient of		An 3 3	12.3	5.0	3.9	3.0

Estabolizable energy between the undusted and DDT dusted bay (table 6). The untreated bay contained 2108 Calories per kilogram of dry matter, while the dusted bay contained 2542, 2601 and 2573 Calories per kilogram of dry matter for the 1, 2 and 4 pound DDT treatments, respectively. There was no significant difference among the bays which were treated with DDT.

From the appearance of the hays in figure 2 it would appear that there should be some difference in the utilization of the hays. If these facts are considered it seems that metabolizable energy is a better measure of utilization than total digestible nutrients.

The statistical analyses for the metabolizable energy content of the bays is shown in appendix table 9.

Table 6. The gross energy, its losses, and the metabolizable energy of the alfalfa hay dusted with various amounts of DDT when fed to sheep

Sheep	Period	DUT	Dry	Energy	- Engage	Energy		Correction	Metaboli	zable energy
		per	satter	in hay	in	In	In	for %	In dry	per kgm
no.	no.	acre	intake	eaten	_feces_	urine.	methans_	belance	matter	dry patter
		16.	ga.	Cal.	Cal.	Cal.	Cal.	Cal.	Cal.	Cal.
1-133	2	0	1116	4872	2051	231	285	129.8	2235	2096
1-135	1	0	1004	4393	1713	223	279	<i>†</i> 15.6	2194	2185
1-137	la la	0	1169	5114	2039	225	277	f23.1	2596	2221
I-139	3	0	1165	5103	2358	238	283	f25.3	2249	1931
Avg.										2108
1-133	1	1	997	4796	1836	242	321	-25.6	2381	2389
1-135	1 2	1	1124	5424	2081	238	233	+15.4	2888	2570
1-137	3	1	1167	5605	2115	230	303	<i>4</i> 12.7	2970	2545
1-139		1	1146	5512	1949	238	279	+ 7.5	3054 1	2664
Avg.										2542
1-133	4	2	1052	4996	1615	241	268	4 7.45	2880	2737
1-135	3	2	1169	5489	1948	284	304	- 5.20	2948	2522
I-137	3 2	2	1151	5419	1825	253	309	f25.3	3057	2656
1-139	1	2	996	4681	1685	229	276	-14.2	2477	2487
Avg.			,,,							2601
1-133	-	4	1131	5439	1868	292	299	<i>4</i> 12.7	2992	2639
	3	4	1165	5587	2080	253	271	- 3.0	2980	2558
1-135	i			4505	1660	226	264	-17.1	2338	2498
1-137	2	4	936			240	291	<i>4</i> 11.2	2945	2595
1-139	-	*	1135	5464	1999	240	674	722.6	-7-7	2573
AVE.										-717

SUMMARY AND CONCLUSIONS

- 1. DDT has been successfully used to control lygus bugs and alfalfa weevil which cause injuries to the production of alfalfa seed and hay. However, the nutritive value of DDT dusted feedstuff has not been investigated heretofore. Because of this fact this study was conducted during the spring of 1948 at the Utah State Agricultural College, Logan, Utah.
- 2. Four replicated plots of first crop alfalfa growing on the Ridman Farm on the west slope of Cache Valley were dusted with DDT on May 29, 1947, at the following levels per acres (1) none (2) 1 pound (3) 2 pounds and (4) 4 pounds in connection with the Utah Agricultural Experiment Station, project number 289.
- 3. The four keys were fed at random to four sheep in metabolism cages for four periods with the restriction of not repeating the hay already fed in a row or column (latin square design).
- b. A preliminary period of 5 to 7 days was allowed before the beginning of a collection period. The collection of feces and urine started and ended at a definite time; each collection period lasted 7 days.
- 5. Samples of feeds, feees, and orts (weigh-backs) were prepared and analysed for ash, dry matter, other extract, crude fiber, nitrogen, and gross energy. In case of urine, nitrogen and gross energy were determined. Coloius, phosphorus, carotene and DD7 residues were also determined on the bays.
- 6. There was a highly significant difference in the yield of alfalfa hay in tone per sere between the undusted and DET dusted hay. The average yield of DET dusted alfalfa hay increased from 1.12 tons

per eers in the undusted hay to 1.50, 1.40, and 1.47 tons per sore in the 1, 2, and 4 pound levels of DDT respectively.

- 7. There was a highly significant difference in percentage ether extract between the undusted and DDT dusted alfalfa hay, the untracted hay containing 2.16 percent other extract while the treated hay contained 2.46, 2.46 and 2.43 percent for the 1, 2, and 4 pound DDT treatments respectively.
- 8. The caretene content of DDT treated bay was eignificantly bigher than the untreated bay. The caretene content increased from 288 parts per million in the untreated bay to 35% parts per million. 388 parts per million, and 395 parts per million in the 1, 2, and % pound DDT treatments respectively.
- 9. There was no significant difference many the live weight gains which could be attributed to the hays fed. However, there was significant differences among the periods.
- 10. The nitrogen belance was significantly in favor of the untreated alfalfa hey when compared to ? and h pounds DDT treated hay. However, there was no significant difference between the undusted and 1 pound DDT dusted hay.
- 11. There were no eignificant differences among the digestion coefficients for protein, other extract, crude fiber, ash and nitrogen free extract. However, the digestion coefficient for other extract approached significance (F value was 4,49, the significant value being 4.76).
- 12. There was also no significant difference among the have in regard to the total digestible nutrients.
 - 13. There was a highly eignificant difference in the metabolizable

energy between the undusted and DDT dusted hay. The undusted hay contained 2108 Calories per kilogram of dry matter, while the dusted hay contained 2542, 2601, and 2573 Calories per kilogram of dry matter for 1, 2, and 4 pounds DDT treatments, respectively. However, there were no significant differences among the DDT dusted hays.

BIBLIOGRAPHY

- Association of Official Agricultural Chemiste, 1945. Methods of analysis 6th ed. Washington, D. C.
- Black, Alex 1946. Personal Communication.
- veloped for the Armed Porces. U.S.D.A. Misc. Pub. No. 606.
- Gerrits, H.W. 1935. Method of digesting biological material for calcium and phosphorus analysis. Ind. Eng. Chem. Anal. Ed.
- Gunther, Francis A. 1945. Quantitative estimation of DDT and of DDT apray dust deposits. Ind. Sng. Chem. Ann. Md. 17: 149.
- Hamilton, T.S. et al. 1928. The digestibility and metabolisable energy of soybean products for sheep. Univ. Ill. Agr. Expt. Sta. Bull. 303: 239 295.
- Kanegis, L.A. et al. 1946. DDF: A review with special reference to Veterinary Medicine. Jour. Am. Vet. Med. Assoc. 108 (5): 316. No. 830.
- Koonig, R.A. and C.B. Johnson. 1942. Colorimeter determination of phosphorus in biological materials. Ind. Eng. Chem. 14:155 So. 2.
- Leary, James C. 1946. DDP and the insect problem. New York: Mc-Graw - Hill Co. 176 pp.
- Lepper, Neary A. 1945. Official and tentative methods of analysis of the Association of Official Agricultural Chemist. 6 Ed. Washington D. C. A.C.A.C. 932 pp.
- Helson, Arthur A. et al. 1944. Histopathological changes following administration of DDT to several species of animals. Public Health Report. Vol. 59 No. 30. Nov.
- Orr, L.W. and L.O. Mott. 1945. The effects of DDT administered orrally to cows, horses, and sheep. Jour. Scon. Ent. 38: 428 432. No. 4.
- apperatus. Henuel No. 117. Meline, Illinois. Parr Instrument Go. 41 pp. Illus.
- Roark, S.C. and S.E. McInio. 1947. A third digest of the literature on DDF (January through June 1945). U.S.D.A. Agr. Research administration Bureau of Entomology and Plant Quarantine. No. 3-726. June.

- Scales, F.M. and A.T. Harrison, 1920. Boric Acid modification of the Kjeldahl method for crop and soil analysis. Jour. Ind. Eng. Chem. 12: 350 - 352.
- Snedecor, George V. 1946. Statistical methods. 4th. Ed. Ames., love State Fress. 485 pp.
- Telford, M.S. 1945. DDT texicity. Scap and Sanit. Cham. 21: 161 163, 167, 169. No. 21.
- Unhoefer, Robert R. 1943. Determination of halogens in organic compounds. Ind. Eng. Chem. Analytical Ed. 15 (6): 383 - 384.
- White, William C. and Thomas R. Sweeny. 1945. Metabeliam of 2. 2 bis (p chlorophenyl) 1, 1, 1 trichloroethane (DDT). Public Sealth Reports. Vol. 60. No. 3. Jan.

Appendix table 1. Analyzis of variance for yield and percentage chemical composition of alfalfa hay

					新春島路 免疫協園	res			The state of the s
Source of variation	Degrees of freedom	Dry satter tons/sere	Protein	Rther	Grude Aeb fiber	ę,	Mitrogen Fi free extract	· Phospherus Caleina	is Caleta
Treatments	•	0.1146**	0.780	0.08563*	0.9788	0.1841	0.287	0.000267	0.03610
Replicates	•	0.0880**	0.237	0.03960	0,1059	0.1143	0.410	0.00633	0.000737
Strot	0	6.0052	0.361	64910.0	3.6139	0.0733	\$.35¢	0.000788	0.03754
Confficient of variability		5.22 \$	3.78 \$	5.43 \$	6.29\$	3.0 %	5.0 \$ 1	12.76 \$	\$ 66.6

* Significant P 0.05

Appendix table 2. Analysis of variance for carotene content of alfalfa

Source of variation	Degrees	of freedom	Hes	D_squares
Treatments Untreated vs DDT	3	1	9482	24.457*
Between levels of DDT		2		7.977
Replicates	3		27,186*	
Experimental error	9		4,667*	
Sampling error	16		1,818	

^{*} Significant P 0.05

Coefficient of variability = 19.18% Based on experimental error Coefficient of variability = 16.9% Based on empling error

Appendix table 3. Composition and gross energy content of alfalfa hay, orts, feces and urine

Sross energy par	20065 10065 1842 2911/	1765 1765 1765 1792/	1296 803	1065 3774 1848 1881/	1933 1933 2941/	1424 1959 1866 2951/
Sen per ml.	"@. - 19.6	2.5	20.9	12.0		
Sitro- gen free Extract	38.5 37.1 12.3	38.5	8.5.5	30.3	33.2	0.00°
Yep	6.54. 6.45. 10.60	3.38.	5.67	6.11.	855.	55.5
Crude	20.5	63.5	29.9	8.3.2.	39.6	17.5
Sther	0.750	1.68	1.68	1.68	1.30 1.30	2.31 0.570 1.32
Frotein Sther extract	2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		14.1 sere no . k.11		844 853	
Dry	8 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	655.0	92.9 20.5 50.5	0.004 0.004	13.6	1.693.1
Dally wt. s	18-13.	1089 873 6991	1296 1296 803	1270 16 12661/	1095 129 8241/	1270 1270 806
Ites	Say III Orte Feces Urine	Say III Orte Foces Ortse	Say III Orts Feces Urine	Hay III Orts Feces Urise	Say 17 Orts Feess Griss	Say 17 Orts Feces Urise
Per ser	ë o	•	•	•		-
Sheep Feriod 50%	Ci .		•	•	-	0.0
She ap	1-133	1-135	1-137	1-139	1-133	1-135

Appendix table 3 continued

Sheep	Period	DDT per acre	Item	Daily vt.	Bry matter	Protein	Ether extract	Crude fiber	Aeh	Sitro- gea free extract	Sitro- cen per al.	Gross energy per
		16.	16.	gn.	-		Sale Addition	1	1	3	ngn.	Cal.
1-137	3	1	Bay 17	1267	92.1	13.8	2.31	28.8	8.05	39.2		bb2b
			Orts	13931/	There :	ere no o	rts					2303
			Feces	1040	34.7	4.08	1,13	13.2	5.97	10.3	•	1519.
			Srine	•	•	•		• 1	•	• /- /-	16.4	2214/
1-139	4	1	Bay 17	1270	92.1	13.8	2.31	28.8	8.05	39.2		4424
			Orts	26	92.0	8.06	2.50	47.11	6.28	29.2		4068
			Faces	2153,1	39.1	4.67	2.84.	16.5	60	10.6	• /	1640.
			Frice	9144	•	•		•			19.7	269
1-133	4	2	Hay 19	1270	92.7	14.8	2.11	28.8	8.10	38.9		4353
			Orts	134	91.9	13.1	2.09	35.P	9. 96	31.7		3912
			Peces	810.	48.6	5.88	2.14	20.3	8.30	11.98		1194, /
			Urine	5638/	• •	•	•		-		•	6434
1-135	9	2	Bay 19	1261	92.7	14.8	2.11	28.8	8.10	38.9	•	4353
			Orte	There s	ere no c	rts						
			Feces	1056.	44.3	4.66	1.70	17.1	8.13	12.8		1845,
			Urine	971		•	•	•	•		22.5	2924
1-137	1	2	Hay 19	1270	92.7	14.8	2.11	28.8	8.10	38.9		4353
			Orts	28	93.4	12.9	1.01	34.2	11.2	34.2	•	3887
			Feces	1301,	30.7	3.40	1.28	13.2	4.65	8.13		1361,/
			Urine	8314/	•		•				21.5	30941
1-139	2	2	Hay 19	1092	92.7	14.8	2.11	28.8	8.10	38.9		4353
			Orta :	7	94.2	8.00	0,575	50.0	6.18	29.0	•	4137
			Peces	262,	46.4	5.49	2.40	18.6	7.76	23.4		1955,
			Urine	13554							13.9	1694

Appendix table 3 continued

Sheep	Period	DDT per acre	Item	Saily st.	Bry matter	Protein	Sther extract	Grude fiber	Ash	Hitro-	Sitro- gen per ml.	energy per
		16.	1b.	gn.	8	*	3	. 5	18	15	agn.	Cal.
1-133	3	4	Hay 113	1246	92.5	14.9	2.08	30.2	8.68	36.6		4438
			Orts	24	9251	10.5	0.265	38.9	9.69	32.8	•	3808
			Feces	985,	45.3	5.43	1.82	17.3	8.28	12.5		1896,
			Urine	9434		• 44	•		•	•	20.4	3104
1-135	h		Ney 113	1259	92.5	14.9	2.08	30.2	8.68	36.6		4438
			Orts		The Paris of the P	rts						
			Feces	1076	8.44	5.56	1.73	19.8	7.30	11.4	-	1934
			Urine	891	•			•		•	25.3	2841
1-137	3	4	Hay 115	1034	92.5	24.9	2.08	30.2	8.68	36.6		4438
			Orts	21	93.8	10.2	0.550	40.0	7.73	31.3		3984
			Feces	881.,	42.6	5.32	1.22	17.2	6.57	12.3		18841
			Urine	11174	• 37			•			17.2	2024
1-139	2	4	Hay 113	1270	92.5	14.9	2.08	30.2	8.68	36.6		4438
		Orte	43	93.7	9.19	2.88	14.9	7.90	28.9		1000	
. 25			Feces	1114.	42.0	5.15	1.29	17.7	6.83	21.0		17941
			Urine	1271		100					15.0	1894

M This is in terms of al. of urine

Appendix table 4. Statistical analysis of the digestibility by sheep of protein in alfalfa hay when treated with various amounts of DDT

Sheep	Picestibility Period						
en en en en en		2		1		Sun	
1 135	13170	17:69		19174	113168	281	
1 133	19164	1,171		123:71	19172	278	
1 139	19169	123169		13165	17169	272	
1 137	113:69	19175		17168	1,170	282	
Sun	272	284		278	279	1113	
		Suppary by	r treatme	nt (elfelfe	hay-1/)		
	r _k	17		19	113		
Sum	276	270		290	277	1113	
Heen	69.0	67.5		72.5	69.3	69.6	
		Annl	reig of v	ariance			
Houres	of variation	Degrees of freedom	Sun of square	Nean equare	F value	Tall To	
Total		15	1118	7.87			
Hays Period		3	33	6.0.	3.34		
Sheep		3	15	5.0	1.13		
Brror		36	32	5.3			

If Prontments of alfalfa hay: I 1 up 13, I 7 are used 137 per sere: I 9 2 pounds 202 per sere; I 13 4 paunds 202 per sere.

Appendix table 5. Statistical analysis of the digestibility by sheep of other extract in alfalfa hey when treated with verious amounts of BDT

Sheep	Digestibil: ty Period							
			j					
I 135	1,153	1,:49	19132	1,3129	163			
1 199	1,155	I ₂ 157	113129	19128	169			
1 139	19:55	13143	1,142	1,143	183			
1 137	113150	19135	17:46	1,133	164			
Sum	223	184	149	133	679			
	The second secon	Susmary by tre	atment (alfalf	a hay)				
	1,	17	19	1,3				
Sun	185	193	150	151	679			
Nean	46.3	48.3	37.5	37.8	42.4			
		Analysis o	f variance					
Source of variation		Degree of freedom	Sum of square	Neun equare	F value			
Total Hays Periods Sheep Error		15 3 5 2 6	1576 379 964 64 169	105.1 126.33 321.3** 21.3 28.16	4.49 11.39 ²³ 0.76			

^{**} Highly significant P 0.05

Appendix table 6. Statistical analysis of the digestibility by sheep of crude fiber in alfalfa hay when treated with various amounts of DDF

		Digestib			
Sheep		Perio:	1_2		Sua
1 135	1,148	17:41	19150	113147	186
1 133	17:46	1,145	113154	19:48	193
1 139	19148	113146	1,:46	17:47	187
1 137	113150	19150	17:50	1,144	194
Sua	192	182	200	186	760
		many by tre	atment (alfa)	fa hay)	
	1,	1,	19	113	
Sun	163	184	196	197	760
Hean	45.8	46.0	49.0	49.3	47.5
		Analysis o	f variance		
Source of variation		Degree of freedom	Sum of squares	Hean square	y value
Total Eays Periods Sheep Error		15 3 3 3	136 43 46 13	14.3 15.3 4.33 5.67	2.57 2.70 0.76

Appendix table 7. Statistical analysis of the digestibility by sheep of nitrogen free extract in alfalfa hay when treated with various amounts of DDT

Sheep	Portod Portod							
	1	2 "	3	<u> </u>	Sun			
1 135	12:73	17172	19172	123173	290			
X 133	17:74	1,170	113173	19:78	295			
I 139	19172	1,3173	1,162	17175	282			
I 137	113171	19177	17172	1,175	294			
Sun	290	292	278	301	1161			
		Summary by tre		lfa hoy)				
	ī,	1,	1,9	1,3				
Sun	280	292	299	290	1161			
Kena	70	73	74.8	72.5	72.6			
		Analysis	of variance					
Source of variation		Pogree of freeden	Sum of equare	Sean square	F value			
Total Hays Period Sheep Error		15 3 3 3	188 46 67 26 49	15.33 22.33 8.67 8.17	1.88 3.62 1.06			

Appendix table 8. Statistical analysis for total digestible natrients by sheep in alfalfa hay when treated with various amounts of DD?

	See			
1,155	1,153	19155	1,3153	216
17154	1,153	1,3155	1,157	219
19:55	123153	1,149	1,155	212
113154	19158	59154	1,159	219
218	217	213	216	966
	Summery by	treatment (s	lfelfa bay)	
1,	1,	1,	ī ₁₃	
210	216	225	215	866
52.5	54	56.3	53.8	50.3
	Analysis of	' variance		
of lon	Degrees of freedom	Sum of equates	Heas square	F value
	15	60		
				3.75
	2	16	3.00	-1.12
Total Street	1,:55 1,:54 1,:55 1,:54 1,:55 1,:54 2,:55 1,:54 218 218 218		Times	1,155

Appendix table 9. Statistical analysis of the metabolisable energy by sheep in calories when treated with various amounts of DDT

Sheep	Netabolizable energy							
	1	2	3	<u> </u>	Sun			
1 135	1,12185	17:2570	1912522	1,312558	9835			
1 133	1712389	1,12096	11312639	1912737	9861			
1 139	1912487	11312595	1,:1931	1,12664	9677			
1 137	12312498	1912656	1712545	1,12221	9920			
Sum	9559	9917	9637	10180	39293			
, i		Summary by tr	eatment (elf	elfa bay)				
	1,	1,	1,	113				
Sum	9433	10168	10402	10290	39293			
Esan	2108	2542	2601	2573	2456			
		Analysis	of variance					
Source of variation		legree of freedam	Sum of equares	Mean equare	F valu			
Total		15	791916		10.00			
Enys Period			651113	217043	17.97			
Shaep Error		3000	9078 72491	2693 12080	0.22			

Appendix table 10. Statistical analysis of mitrogen balance by sheep in alfalfa hay when treated with various amounts of DDT

Sheep		Sum				
oneeb			eried 3	4	2) (4.2)	
1 135	1,12.1	17:212	191-0.7	113:-0.4	3.2	
I 133	1712.2	1,:4.0	1,3:1.7	1911.0	8.9	
1 139	191-1.9	1,311.5	1,:3.6	1,11.0	4.0	
1 137	1131-2.3	1917.4	1911.7	1,:3.1	5.9	
Sum	0.1	11.1	6.1	4.7	22.0	
		Summary by	treatment (s	lfalfa Hay)		
	1,	17	19	I ₁₃		
Sta	12.6	7.1	1.8	0.5	22	
Nenn	3.2	1.8	0.5	0.1	5.5	
		Analysis o				
Source (Degrees of freedom	Sum of equares	Nean equare	P value	
Total Haya Period Sheep Error		15 3 3 3 6	52.15 22.92 15.38 4.81 9.04	7.64 5.13 1.60 1.50	5.09 3.42 1.07	

Appendix table 11. Statistical analysis of live weight gain by sheep on the alfalfa dusted with various assumts of DDT

Sheep		Ston			
eneeb			101 3		5) 1628
1 195	121.7	1,10.3	19170	1291-5.0	3.0
I 133	17:2.1	1,1-0.6	11316.5	191-6.0	3.0
1 139	191-0.5	1,311.0	1,16.5	171-2.0	5.0
1 137	13310.6	19:-1.1	17:6.5	1,1-5.0	3.0
Sum	1.9	-0.h	26.5	-16.0	12.0
7.34		Summary by	treatment (lfolfa bay)	
d	1,	17	1,	I ₁₃	
Sus	1.6	5.9	1.5	3.1	12
Henn	0.4	1.5	0.6	0.8	3
		Analys	is of various	•	
Source of variation		Degrees of freedom	Sum of squares	Nens equere	P velu
Total Haye		15	261.7	1.06	00
Period		3 3 6	3.2 168.1	56.03	a.91
Sheep		3	2.0	.7	0.000
Error		0	68.4	11.4	