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Abstract. To support the goal of distributed hydrologic and optimization process itself can be used to determine which
instream model predictions based on physical processes, wabserved responses and locations are most useful for esti-
explore multi-dimensional parameterization determined by amating the parameters that result in a global fit to guide fu-
broad set of observations. We present a systematic approachre data collection efforts.

to using various data types at spatially distributed locations
to decrease parameter bounds sampled within calibration al-

gorithms that ultimately provide information regarding the 1 |ntroduction

extent of individual processes represented within the model

structure. Through the use of a simulation matrix, parametefypically the calibration of models involves fitting simula-
sets are first locally optimized by fitting the respective datations to either single or multiple variables, error measures
at one or two locations and then the best results are selectest a single location, or combining information from multiple
to resolve which parameter sets perform best at all locationsiocations (Duan, 2003). Early calibration techniques were
or globally. This approach is illustrated using the Two-Zone notorious for converging to local optimal solutions and did
Temperature and Solute (TZTS) model for a case study imot reliably find the global optimum (Schaake, 2003). Ad-
the Virgin River, Utah, USA, where temperature and soluteditionally, many hydrological modeling procedures do not
tracer data were collected at multiple locations and zonesnake the best use of available information (Wagener et al.,
within the river that represent the fate and transport of both2001). Current research on the calibration problem primarily
heat and solute through the study reach. The result was focuses on uncertainty analysis and consideration of multi-
narrowed parameter space and increased parameter certairpje objectives (Fu and Gomez-Hernandez, 2009; Blasone et
which, based on our results, would not have been as sucal., 2008; Ajami et al., 2007; Duan et al., 2007; Vrugt and
cessful if only single objective algorithms were used. We Robinson, 2007). Rather than selecting a single preferred
also found that the global optimum is best defined by multi- parameter set, equifinality of models recognizes that there
ple spatially distributed local optima, which supports the hy- may be no single, correct set of parameter values for a given
pothesis that there is a discrete and narrowly bounded parammodel and that different parameter sets may give acceptable
eter range that represents the processes controlling the dormodel performance (Beven, 2001).

inant hydrologic responses. Further, we illustrate that the All calibration algorithms have basic design requirements,
including the selection of calibration parameters, objectives,
and the a priori space within which to search for an optimum

Correspondence toC. Bandaragoda solution or set of solutions. The measure of “acceptable” and
BY

(christina@silvertipsol.com) “optimal” is left to the design of the optimization problem,
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the model application, and the modeler. In this study, we 325TS _ _JamsTs aSTSZ (Twc — TsT9) 2
consider a global optimum as the solution where there is ac- dr PCp Ysts  (BBot)
ceptable tradeoff between fitting the model at all locations c o
there are data available, versus just matching data at one lo- 4 Psed™psedsed (Tstssed — TsTs)
cation well; this can be accomplished by using a range of pCp YsTs YHTs
mu!tlple Io_cal optima defmed by a narrowly boundeq global Turs pCp OHTs
optima. Since a model is not an exact representation of re q = c v (Tmc — THTS) 3)
ality, and observed data used for verification are not perfect, d PsedCp.sed VHTS
the theoretical global optimum of a process based model dis- ase Osed
i i in ti isti Twc — Tuts) + ——— (Tgr — THTs)
tributed in space and in time may be an unrealistic goal. (Tme HTS Yurs Yor ar
However, a practical goal is to resolve the multiple local op- HTS
tima which simultaneously perform well on a local scale t0 d7stssed  sed
narrowly bound the region surrounding the theoretical global ™, = 2 (TSTS - TSTssed) (4)
optimum. In other words, there is a need to narrowly bound HTS
the global optimum region where good results exist for all Osed
e : + ——— (Tgr — TsTssed
data distributed throughout the system. Performing well lo- Yuts Yor
cally and globally, or glocalization, can be used to define an
optimum in model calibration which bridges scales betweendCmc aCmc 3%°Cnmc 5
local and global performance. A systematic approach tous- 3y  ~ ~MC "5y 9x2 ®)
ing various data types at spatially distributed locations to de-
crease parameter bounds sampled within optimization algo- + _asTs¥sTs (Csts — Cmc)
rithms is relevant to instream and hydrologic models ranging Acsmc B Brot
in application from the stream reach to the watershed scale. 0
The Two-Zone Temperature and Solute (TZTS) model 4 ZHTS (Cuts — Cme)
(Neilson et al., 2010a,b) was developed to capture the domi- Vmc
nant instream processes associated with heat and solute fag-g sTs _ _asts
and transport. The TZTS model separates transient storage (,BB )2 (Cmc — CsT9) (6)
tot

(Bencala and Walters, 1983) into two zones, (1) dead zones
or the surface transient storage (STS) zone thatrepresents thi",;1s ~ Opts (Cmc — ChTs)
eddies, recirculating zones, and side pockets of water and™ g, ~
(2) subsurface or hyporheic transient storage (HTS) zone,
that represents the flow into or out of the stream substratewhere T =temperature °C), Q =volumetric flow rate
As discussed in Neilson et al. (2010a), sources and sinks ofm®s™1), V =zone volume (), D =longitudinal disper-
heat include fluxes across the air-water interface, bed consion (nf d1), Ax =volume length (m)esTs= exchange be-
duction, conduction between the bed and deeper ground sultween the MC and the STS &d~1), QnTs=HTS advec-
strate, HTS exchange, and STS exchange. Solute mass is ptive transport coefficient (fd—'), Acsmc = cross-sectional
marily influenced by HTS and STS exchange (Neilson et al.,area of the MC (1), Bipt=total volume width (m),
2010b). To account for each of these fluxes, the TZTS modeB =STS fraction of the total channel width =volume
calculates energy and mass balances in the main channel, tidepth (m), o = density of the water (g cr?), Cp = specific
STS zone, and the HTS zone for each reach or control volheat of the water (calgf °C™1), pseq= density of the sed-
ume. As described further in Neilson et al. (2010a,b), theiment (gcnt3), Cp,sed= specific heat of the sediment
model equations are: (calgt°C™1), aseq= coefficient of thermal diffusivity of the
sediment, and/am=atmospheric heat flux (cal crid—1)

@)

Yuts Asmc

dTvc = —Unmc dTvc 9%Thc Jatm 1) (consisting of net shortwave radiation — 0.31 to 2.8 um — at-
ot 0x dx2 pCp Yne mospheric longwave radiation — 5 to 25um — water long-
wave radiation, conduction and convection, and evaporation
_astsYsts (Tsts — Twc) and condensation), ar@= concentration (mgt1). The five
Acsmc B Brot subscripts (1) MC, (2) STS, (3) HTS, (4) STS, sed, and
(5) gr, specify the main channel, surface transient storage,
Onrs (Tuts — Twvc) hyporheic transient storage, sediments below the STS and
Vme the deeper ground layer, respectively.
Psed Cp, sedUsed To support TZTS model applications, simultaneous data

(Tuts — Tvc) collection of temperature and solute tracer data (referred to
more simply as tracer data throughout the rest of the paper)
in the main channel and storage zones distributed laterally

PCp Yme YHts
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Section 1 Fig. 2. Locations of temperature probes at Sites 2 and 3 within the

é;atton study reach. (Taken directly from Neilson et al., 2010a).

/O Pond

multi-objective optimization algorithms. These results were
then used to resolve which parameter sets perform best at in-

»'*‘»ites(ssj)‘k Vil o7 dividual locations (distributed laterally and longitudinally) or
& Section 2 have the best local fit, and which parameter sets result in the
best global fit. Throughout this process we also test the util-
¥ 2 ity of single and two-objective optimizations and determine
No o5 Area of Interest the most informative calibration datasets resulting in global

data fits.
Fig. 1. Study reach layout including data collection locations. In-
set map shows the state of Utah, USA, with the study area shown
highlighted in black. (Taken directly from Bingham, 2010). 2 Study area and data

A highly managed portion of the Virgin River, Utah, USA

(e.g., within the main channel, HTS, and STS) at one loca<{Fig. 1), is considered impaired due to elevated temper-
tion and longitudinally along a river segment, have createdatures that have adversely affected two endangered fish
datasets that can be used to address the high dimensiongpecies (Virgin River Chub — Gila seminuda, and woundfin
problems associated with predicting heat and solute move- Plagopterus argentissimus) and other native fishes unique
ment within streams and rivers. In recent studies (Neilsonto this river system. An 11.94 km study reach of the Virgin
et al., 2010a,b), the TZTS model was calibrated using theRiver (Fig. 1) was divided into two main sections on the basis
Multi-Objective Shuffled Complex Evolution Metropolis al- of bed slope (0.0039 between S1 and S2 and 0.0012 between
gorithm (MOSCEM; see Vrugt et al., 2003a for algorithm de- S2 and S3) and stream substrate distribution identified from
scription) and used to predict solute concentrations and tema previous mapping effort (Neilson et al., 2010a).
peratures in the Virgin River, Utah, USA, in storage zones at To support the TZTS model population, calibration, and
two different locations within the study reach. Using temper- model testing, various data types were collected from 22—
ature and tracer observations at two different sites illustratec®5 June 2007. The instream flow during the study period
that using more spatially distributed information and two dif- was found to be an average of 1.08sn' at Site 1 and
ferent environmental tracers (temperature and solute) in thd.96n?s™1 at Site 3. Information regarding several lat-
optimization improves the overall performance of the model.eral inflow rates and temperatures were collected during the
These studies found that even with the use of multi-objectivestudy, the largest being the return flow from Quail Creek
calibration, many optimal parameter sets were indistinguish-Reservoir (0.6 s™1). Groundwater exchanges were set ac-
able based on the objective functions, fairly broad parametecording to Herbert (1995) with a total gain of 0.17 81!
ranges resulted, and parameter uncertainty was still a conever the entire reach. Weather information (air temperature,
cern. solar radiation, wind speed, and relative humidity) was gath-

In this paper, we address these issues by presenting @red at Site 1 using a Davis Wireless Vantage Pro (Hayward,
systematic approach to using various data types at spatiallf¢A) weather station to provide the data necessary to calcu-
distributed locations to decrease parameter bounds sampldate the atmospheric fluxeggmin Eq. 1). Similar to Neilson
within optimization algorithms in the context of a case study. etal. (2010a,b), solute and temperature information were col-
Our hypothesis is that there is a narrowly bounded paramelected at Site 2 and Site 3 to support model calibration and
ter range that best represents the hydrologic processes cotesting. The data included solute tracer experiments result-
trolling the system, which can be determined by using keying in main channel and STS concentrations at both Site 2
data sets as multiple optimization objectives. To investigateand Site 3. Simultaneous temperatures at Site 2 and Site 3
this, we developed a simulation matrix of data types and sitegvere also collected in the main channel (sensor 2), STS (sen-
that is used first to locally optimize parameter sets by fit-sor 1 and 3), and HTS (sensor 4, 5, and 6) (Fig. 2). The
ting the respective main channel data using both single andemperature sensors were H&bwvater Temp ProV1 (Onset
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Corporation, Bourne, MA) with &0.2°C accuracy and res-
olution of 0.02°C.

Following methods also described
al. (2010b), a 180 g instantaneous pulse of fluorescent Rho-

C. Bandaragoda and B. T. Neilson: Increasing parameter certainty and data utility

Table 1. Simulation matrix of ten single (1-4) and two-objective
(5-10) calibrations combining main channel temperature and tracer
in Neilson et observations at two locations (Site 2 and Site 3).

damine WT dye was injected at 02:00:00 on 6 June 2007, at Temperature Temperature Temperature —Temperature
the head of a riffle just upstream of Site 1. A Self-Contained Null Site 2 Site 3 Site 2 and Site 3
Underwater Fluorescence Apparatus (SCUFA) (Turner Tracer 1. 2. 5.
Designs, Sunnyvale, CA) was deployed in the main flow of Null TempSite2  Temp Site 3 Temp Site 2
the channel at both Site 2 and Site 3. Measurements were Temp Site 3
taken in situ every ten seconds for approximately 7h at gf‘ecgr %acer Sie 2 7+em Site 2 8-Tem Site s
Site 2 and 6 h at Site 3. Grab samples were also collected at Tracerp Site 2 Tracef Site 2
both Site 2 and 3 near the SCUFA to provide an independent Tracer 4 5 o
measure in the main channel and in two representative gjio'3 Tracersites TempSite2  Temp Site 3
STS locations. The grab samples were kept cool, stored in Tracer Site 3 Tracer Site 3
the dark in amber bottles with PTFE caps, and analyzed 1.cer 6.
using a Turner Model 450 fluorometer (Turner Designs, site2  Tracer Site 2
Sunnyvale, CA). As discussed in Neilson et al. (2010b), loss ghtfé3 Tracer Site 3

|

of Rhodamine WT due to sorption to streambed sediments
(mineral and organic) was not a concern in this study
because the organic matter content in the bed sediments

was extremely low (averaging 0.05% at four sampling . ) ]
locations). Additionally, a recent sorption study within and tracer observations at Site 3 (Test 9), and main channel
this portion of the Virgin River (Bingham, 2010) provided temperature and tracer observation at Site 3 (Test 10).
averageKy values of 1.5mLg?, which is low based on o _

other Rhodamine WT sorption studies (Bencala and Walters3-2  Calibration technique

1983; Everts and Kanwar, 1994, Lin et al., 2003; Shiau et

al., 1993). Similar to previous TZTS calibration studies (Neilson et
al.,, 2010a,b; Bingham, 2010), SCEM (for single-objective
calibration) and MOSCEM (for multi-objective calibration)
(Vrugt et al., 2003a,b) were the optimization algorithms used

3 Methods to evaluate each model test. To ensure that we were ade-

quately searching the parameter space, MOSCEM was run
with a random sample of 300 parameter sets that evolved us-
ing two complexes for a total of 3000 model runs for each
With the overall goal of iteratively reducing the size of the of the ten tests. In this case, a parameter set consists of
global search space, while simultaneously investigating thedifferent combinations of parameter values for each of the
information content within the available data types, we es-11 parameters that were calibrated and a complex is a group
tablished a simulation matrix (Table 1) to test the use of theof parameter sets within which objective function results are
most commonly collected main channel data sets used in cakompared. The parameter sets with the best results from each
ibration of instream temperature and solute models. Eaclgomplex are selected, new randomly selected parameter sets
row and column denotes a data type that represents both tenare added, and the complexes are shuffled with each search
peratures and tracer concentrations at Site 2 and 3 along thteration. We experimented with a range of sample and com-
study reach. This matrix represents all possible combinationglex sizes (e.g., 400 samples and four complexes with a to-
of single and two-objective calibrations that use the availabletal of 10000 model runs) and we found that an increase in
main channel temperature and tracer data. The calibratiothe simulations and complexes did not significantly improve
tests were Tests 1 through 4, which are single-objective calicalibration results. Therefore, we decided to maintain the
brations using main channel temperature and tracer at Site 8maller number of simulations for efficiency. Future work
and Site 3, and Tests 5 through 10 which are various comwith extended simulations may improve the search for glob-
binations of data resulting in two-objective optimizations. ally optimal parameter sets, particularly as additional data are
The latter two-objective tests include the following combina- collected or the dimensions of the search space are expanded.
tions: main channel temperatures at Site 2 and Site 3 (Test5), In this application, measurements within the STS and HTS
main channel tracer observations at Site 2 and Site 3 (Test 6)yere withheld during calibration and used to assess the pre-
main channel temperature and tracer observations at Site @ictive capacity of these components as “ungauged” model
(Test 7), main channel temperature at Site 3 and tracer obseoutputs. As will be described in detail later, the STS data
vations at Site 2 (Test 8), main channel temperature at Site 2vere used to assist in selecting globally acceptable parameter

3.1 Simulation matrix

Hydrol. Earth Syst. Sci., 15, 1547561, 2011 www.hydrol-earth-syst-sci.net/15/1547/2011/
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§ets. The HTS data \{vere_ reser\{ed for corroboration and teStaple 2. A priori parameter range and calibrated parameter list for
ing of the model calibration. Since temperature and tracekne T7Ts model.

data in the main channel are the most commonly collected

data sets, we needed to further understand whether model Parameter Range
calibration to main channel temperature and tracer data re-
sults in realistic and representative STS and HTS predictions.
Likewise, little was known about how single-objective model
calibration at individual sites controls the resulting parame-
terization at other site locations and for other data types. In

Parameter Description Parameter Lower Upper
Name Bound Bound

STS Width B 5 35
(% Total Channel Width)

addition to investigating how to narrow the optimization pa- ~ STS CS Area Acsts 05 3
rameter space, our methods are designed to test how a priori (m?)
choices in study and project design, as well as data availabil- STS Exchange Coefficient asts 1.7x10* 85x10%
ity, may affect the model calibration and resulting simulation ~ (m?d~1)
performance. HTS Advective Transport  QnTs 86 864
Coefficient (n? d—1)
3.3 Model parameters HTS Depth YuTs 0.01 1
(m)
The a priori uniform distribution of the feasible parameter  Ground Layer Depth Ygr 0.1 1.0

space was determined primarily based on earlier work that (m)
included a sensitivity analysis using Latin Hypercube sam-
pling (Neilson et al., 2010a,b). For this study, these ranges
were further expanded for some parameters based on pre-
liminary optimization tests that resulted in parameter valuesised this objective function throughout the remainder of the
consistently at the upper or lower bounds of their respectiveStudy and to quantify all local calibrations.

range (Table 2). The calibration parameters include: STS N )

fraction of the total channel widtlg{, cross-sectional area of > (Té - T4

the STS AcssT9), exchange between the main channel andg = 1 — = (8)
the STS ¢s1g), HTS advective transport coefficier®(7s), % (Tl _ m2

and HTS depth Xu7s) for each of the two sections within S 'V°

the study reach (resulting in 10 parameters). The depth of

. e . -
the ground layer below the HTS{;) was also estimated, Where, _forN tlmesteps. To = gbservatlons,Tm mode_led
simulations (at time), and 7o = mean of the observations.

but was represented by one value for both sections and be; : Lo . S
. . : hen used in calibration, the algorithm minimizes the result
came the eleventh calibration parameter. The total width of

. o of 1— E, since the bounds of are [1,—1]. The normaliza-
the main channelR;,;) and the Manning’s roughness coef- . : . ;
- ) . . . tion of the difference in error by the difference between the
ficient (z), as required within the kinematic wave approach

implemented within the TZTS model, were set based on theObseNed and the mean of the obser\{ed, allows comparison
: . . of results when the observations at different locations have
results of Bingham (2010). In this effort, multi-spectral and

. . . different scales of variability, as is the case with temperature
thermal imagery of the river system were used to physically . .
. . > and tracer information.
estimate the average width of the channel over each section : . L
To achieve an acceptable globally optimal calibration, we

and therefore, reduced the number of parameters estimated in

the calibration. WithByot established;y was then set to result cqn5|dered the need to matgh all local data available. In
in appropriate average travel times. The longitudinal disper-thIS study, our local problem is th‘fﬂ an acceptable parame-
) r set must be found that results in adequately reproducing

sion (D) coefficient was set based on the methods describetﬁ . R .
e dominant processes as measured by an individual time

in Neilson et al. (2010a). series. Our global problem is that we have ten time series
distributed in space, six temperature and four tracer datasets,

3.4 Calibration objectives with 11 different parameters that need to be estimated based
on matching both the observed temperature and tracer data in

To evaluate local and global model performance, variousall zones and at all locations. The six locations for temper-

types of statistical measures were investigated. Each of thature calibration or comparisons based on available data in-

ten tests shown in Table 1 were run using different statisti-clude: Site 2 main channeEfc2 temp, STS EsTs2 Temp,

cal objectives including bias, Nash-Sutcliffe Efficiendy)( HTS (EnTs2 Temp; and, Site 3 main channeEfc3 temp,

log error, and root-mean square error. Similar to Neilson etSTS (Ests3 temp, HTS (EnTs3 Temp. Note that each ob-

al. (2010a,b), we found thak (Eq. 8; Nash and Sutcliffe, served time series used to calculdevalues for the STS

1970) provided the most consistent calibration results and weand HTS, consist of the average of temperatures observed

www.hydrol-earth-syst-sci.net/15/1547/2011/ Hydrol. Earth Syst. Sci., 15, 15422011
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within the two representative STS zones and the most repef the data including the temperatures within the HTS. To-
resentative HTS time series, respectively. The appropriatgether, the AEand AEy measures were used to summarize
HTS time series was determined based on the calibiaiegl  the spatially aggregated performance of model predictions of
values: whenryts <3cm, the 3cm HTS data were used, temperature and tracer at multiple locations, and determine
when 3 cmk Yyts < 9cm, an average of the 3and 9cm HTS the ability to predict the HTS temperatures if only surface
time series were used, when 9 enYyts <20cm, an aver- data were available. This verified our calibration approach,
age of the 9 and 20 cm HTS time series were used; and wheas well as gave an indication of the added utility of collecting
YuTts > 20 cm, the 20 cm HTS time series was used. The foursubsurface data, and whether the model can be calibrated suf-
local tracer data locations used for comparison or calibratiorficiently in this watershed using only surface data collected at
include: Site 2 main channekfc2 1r), STS EsTs2 T); and, multiple locations and within different zones. By comparing
Site 3 main channeKvcs 1r), STS Estss 1)- Theobserved Levels 1 and 2, a wide parameter search space, to Levels 3
STS time series used in these calibrations are the averagend 4, a narrow parameter search space, we investigated the
concentrations observed within the two representative ST3mportance of a priori parameterization. In comparing Lev-
zones. els 1 and 3, single-objective calibrations, to Levels 2 and 4,
The first step in our calibration method was to populate two-objective calibration, we gained information about how
the simulation matrix (Table 1) based on available observabest to utilize available calibration algorithms and various
tions. We then identified the a priori parameter search bounds$ypes of spatially distributed information simultaneously.
and the most appropriate statistical objective functionTo
compare the global calibration results (i.e., matching the ob-
servations at all ten locations) for each of the tests within4 Results
the simulation matrix (Table 1), we then calculated the arith-

. . o 4.1 Levell
metic average (AE) of various combinations of lo¢éalal-

ues (Eq. 9). The AEy, AEs, and individualE for the calibrations from
" the simulation matrix (Table 1) are given in Table 3. The ten
AE = 1 Z E; (9) rows correspond to model outputs by test and shaded boxes
ni3a represent the data used from that location for calibration. All

] ] other observations were used as validation data sets. Level 1
An AE that used only surface data (§Bwas first defined  resyits (Table 3) provide initial information regarding how
and included the locak values for all tracer and tempera- gptimization at single locations can impact the model perfor-
ture data collected in the main channel and STS, but did NOance at ungauged locations. Of Tests 14, no tests using the
include the HTS information. Ak included both surfacé  main channel data at Site 2 or Site 3 as the objective had re-
data and HTS information. AE was used to assess the globaljts that met the selection criteria of AE 0.7, with the best
results; onlyE was used as the calibration objectives using results2AEs = 0.65 andZEMC&Temp:O-gS ancRAE 4 =0.60
the MOSCEM algorithm. (preceding superscripts indicate Test numbers). Although the
E for each of these tests meet the criterigfof 0.8 and the
calibration did well at fitting the dataset used as the objective,

ing the initial iori bounds (Table 2 defined L Ilthe calibration was not acceptable at other locations, nor did
Using the initial a priori bounds (Table 2), we defined Leve it provide a good fit to tracer data.

results as calibrated parameter sets from the single-objective Figures 3 and 4 show the highest performing single-
optimizations (Tests 1-4). L(_avel_ 2 resglt; re_presen_t the paZ)bjective Level 1 results (Test 2) of the ten total data loca-
rameter se_ts_ftr)om tge tWO'ObJeCtB/e o;r)]tml”nzatlonz Wl'thbtrllesetions. The observed temperature and tracer data at Site 2 and
same a priori bounds (Tests 5-10). The lodd) énd global  gjt0 3 are shown as black circles (Figs. 3 and 4), and the
values (Af) were calculated for each parameter set within E values for each location are given in each subplot. The

Eacr? te_:st run in Bhg ma:]'l[rz(. F%r7all para_mjeter setz that meE)redicted values are shown in grey, and in this case there is
oth criteria ¢ > 0.8 and Ak > 0.7), a minimum and max- 5 ingle line since a single objective calibration results in a

imum for each individual parameter was determined. Thesesingle optimal parameter set. The calibralgs (cm) value

ranges were thgn used to set the narrower .search boundi§'a|so shown with the HTS subplots (Fig. 3e and f) since this
All simulations in Table 1 were repeated using these nar

‘value is used to determine the most representative HTS tem-
rower bounds._ Level 3 re_sults re_pr_ese_nt the new parame"ap;erature time series for calculatidtyts. Although the tem-
sets from all single-objective opt|_m|z_at|ons (Te_sts 1-4) andperature results seem to fit the observations well (Fig. 3), the
Level 4 reprgsent the new two-objective simulation (Tests 5—tracer results (Fig. 4) show how the model optimized to tem-
10) results given the narrowed search range. erature at Site FEwca Temp=0.95) is not able to capture

The last step was using Level 3 and 4 results to further tesy, timing and magnitude of the tracer pulse. This may be in

the model calibration. Similar to the AFa new Ak value Part due to fixing the Manning’s parameter in calibration.
was calculated for the Level 3 and 4 simulations that used al

3.5 Narrowing search bounds
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Fig. 3. Test 2 (Level 1) plots of temperature data for Site 2 and Site 3 in the main channe(#V))STS(c, d), and HTS(e, f). Test 2 met

the local criteria £ > 0.8), but not the global criteria (AE- 0.7). E for each location is shown in each subplot. The calibrated hyporheic
sediment depthHyTs in cm) is shown in the HT $e, f) with the observations at three depths labeled (3, 9 and 20 cm). The temperature data
sets closest to thigyTg are used to calculate tHeyTg since observations at multiple depths were available.
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Fig. 4. Test 2 (Level 1) plots of tracer data with results at Site 2 and Site 3 in the main channe(dMg})and in the STSc, d). E, the
performance at each location, is shown in each subplot, observations are shown as a dotted line, and the model simulations are in grey.
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Fig. 5. Test 7 (Level 2) plots of temperature data for Site 2 and Site 3 in the main channe@Vi9)) STS(c, d), and HTS(e, f). E, the
performance at each location, is shown in each subplot. The calibrated hyporheic sedimentigepih €m) is shown in the HT$e, f)
with the observations at three depths labeled (3, 9 and 20 cm).

4.2 Level2 the local criteria ofE > 0.8 with tracer data used as a cali-
bration objective, although Test 6 did meet the global criteria
(Table 3).
Level 2 simulations were used to determine which parame- gjnce Test 7 met the local and global criteria, all the ac-
ter sets resulting from the two-objective optimizations (TeStSceptabIe parameter sets (i.e., the pareto optimal parameter
5-10) converge to the established criteriafof- 0.8 for all  gets that also met the local and global criteria) from this test
calibration data sets and AE 0.7 (Table 3). TheE val-  \yere used to define the narrowed upper and lower bounds
ues reported for the two-objective optimizations are basegor g new round of calibrations using the simulation matrix
on the parameter set that represents the best trade-off 50"(’Table 1). The narrowed minimum and maximum parameter
tion or the pareto solution (Vrugt et ql., 2003a,b; Boyle et al., range (Table 4) represent a parameter range reduction with a
2000; Gupta et al., 1998, 2003; Neilson et al., 2010a). Theyigh of 67 % for theds sTsin Sect. 1 and the least reduction
best results are from Test 7 with values’dfuc2r=0.94,  of 49 for the g in Sect. 2. Comparing between sections,
" Emc2,Temp=0.91, and Ag=0.81 (Table 3). Figures 5and 6 sect. 1 had an average of 40 % reduction in bounds while
present Test 7 results where the uncertainty bounds resulisect. 2 had an average of 17 % reduction. To visually com-
ing from pareto optimal parameter sets are shown. The unpaye the a priori parameter range and the narrowed parameter
certainty in the temperature predictions are less at Site fange derived from Test 7 results, each of the 11 calibrated
(Fig. 5) and there is a much better fit in terms of timing of parameters were scaled between a normalized lower bound,
the tracer curve at Site 2 (Fig. 6), compared to Level 1 re-g gng upper bound, 1 (Fig. 7). The thick black solid lines
sults, but there are still relatively large bounds. It should represents the parameter bounds if all pareto rank one sets re-
also be noted that this calibration does not capture the peakyiting from the Test 7 calibrations are considered. The grey
of the tracer at Site 3, nor the tail of the tracer curve atgpaded area represents the narrowed parameter bounds for

within the study reach (Bencala and Walters, 1983). Simi-cyiteria from the Test 7 optimization.

lar to what Neilson et al. (2010a) found, comparing Level 1
and 2 results (Table 3) illustrates the relative benefit of us-
ing two-objective optimization compared to single-objective
optimizations. For Tests 5-10, Tests 6 and 10 did not meet
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Fig. 6. Test 7 (Level 2) plots of tracer data with results at Site 2 and Site 3 in the main channel(d@M®)) and STSc, d). E, the local
performance at each location, is shown in each subplot.
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Fig. 7. The parameter bounds for 11 calibrated parameters within the normalized a priori seach space [0, 1]. The parameter sets which met
the global and local performance criteria for single objective and two-objective tests, Levels 1 and 2, are used to define a narrowed search
space (the grey shaded area) for the Level 3 and 4 calibrations. The black lines represent the bounds of the Pareto optimal parameter se
from Level 1 and 2 calibrations.

4.3 Level 3and Level 4 (Tables 3 and 5), and the maximum value increased to 0.78
and 0.9 for Agy and AK, respectively. Although Test 6

Similar to Level 1 results, Tests 1 through 4 all converged tomet the global and local criteria, the temperature simulations
E > 0.9 for the data used in calibration during the Level 3 at Site 2 overestimated the high temperatures and underes-

calibrations (Table 5). However, model performance attimated the low temperatures by approximateRC3in the

other locations was poor with the exception of Test 3, Main channel, STS, and HTS zones. Figures 8 and 9 show

which had better AE results than Level 3AEs=0.76, and the best overall result for Level 4 temperature and tracer

3AEa =0.62. While these results are promising, it is impor- Predictions, Test 99AEs:_0-9 and®AEq =0.78. Not only

tant to note that only the tracer at Site 2 (the calibration ob-are the temperature predictions more representative, but the

jective) fit the observations well (not shown here for brevity). tracer responses are generally captured better in the tail of
Level 4 had improved results when compared to Lev- the tracer curves. As with the Level 2 calibrations, both tem-

els 1-3. The AE; and AR values increased for most tests perature and tracer objectives at different locations seem to
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Fig. 8. Test 9 (Level 4) plots of temperature data for Site 2 and Site 3 in the main chann@,M§; STS(c, d), and HTS(e, f), where the
observations at three depths are labeled (3, 9 and 20Enthe performance at each location, is shown in each subplot.
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Fig. 9. Test 9 (Level 4) plots of tracer data with results at Site 2 and Site 3 in the main clfanpbgland STSc, d). E, the performance at
each location, is shown in each subplot.
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Fig. 10. The parameter sets which met the global and local performance criteria for multiple objective tests in Level 4, Test 9, are shown in
grey within the bounds of all of the Pareto optimal parameter sets from Test 9 (black lines). The narrowed search space for the Level 3 and
Level 4 calibrations, derived from the Level 1 and Level 2 results, is shown with the dashed line (shown as the grey area in Fig. 7). The a
priori search space is the [0, 1] normalized bounds.

Table 3. Results for single objective (SO, Level 1) and multi- which meet both local and global performance criteria. This

objective (MO, Level 2) calibration tests. Including HTS data gives 9l0Pal fit resulted in a better representation of the dominant

the AE, result shown in Column 1, excluding HTS and using only Processes controlling instream processes, where the final re-
main channel (MC) and STS data resulted ins’fown in Col-  duction of bounds in the upstream section was by an average
umn 2. Following the AEj and AE; results are theE results for ~ of 49 % and the in the downstream section by an average of
each test in the simulation matrix€ and AE were used to de- 69 %.

termine the best models using parameter sets that meet both local

(E > 0.8) and global (Ak > 0.7, bolded) criteria. AR was in-

clude_d for compar_ison to Lev_el 3and 4 caliprations. _Shown ingreys  Discussion

shading are the Site 2 and Site 3 locations in the main channel used

for a calibration objective; unshaded boxes in Columns 3-6 are lo

‘Comparing the results of the simulation matrix calibration
cations where data were withheld during the calibration. Comparing the results of the simulatio atrix calibrations

when using only the main channel temperatures or tracer

concentrations as an objective (Test 1-4, Table 3), we see

AEy AEs Site2 Sie3 sie2 sies NOw the choice of a calibration objective affects the global
Temp Temp Tracer Tracer performance of the model by comparing the Adhd ARy

MC MC  MC  MC values. In general, the best individual temperature and tracer
Level 1 main channel resultis from a single objective optimization of
1-S0 Temp 2 0.30 03¢ 0.95 087 032 —0.10 that constituent at that location, but the corresponding model
g— 28 Fgﬂp 3 (;Jff 8-5%3 8;925 0-‘359] 8-9263 00‘-1722 results are generally inappropriate at other locations. Our re-
- r . . . . ° —0. . .
4-SOTr3 016 042 085 092 —0.70 WEOSE §ults also show_that when amain channel tempgrature objec-
tive at one location results in reasonable predictions, the tem-
Level 2 . .
perature at the other location will also be reasonable. How-
5-MOTemp2Temp3 042 0.4( 096 0.93 0.36 0.11 e : P P
6 MOTI2Tr3 061 076 oo Do BRIEEEERTES ever, thls_ls n_ot nec_es_sarll_y the_ case when using tracer data in
7-MO Temp2Tr2 075 081 091 0.88 0.94 0.62 single objective optimizations in this study.
8-MO Temp3Tr2 039 057 086 094 098 -017 The best Level 2 local results at Site 2 and Site 3 for tracer
9-MO Temp 2 Tr 3 0.47 056 091 093 -0.16 092

are® Eyco1r =0.98 and® Epca 1r =0.99 and for temperature
are®Epc, Temp=0.96 and®Eycs temp=0.95 (Table 3). It
is interesting that the best fit for tracer at Site 3 uses tracer
information at both Site 2 and 3 (Test 6), but the best fit at
Site 2 uses tracer information at Site 2 and temperature infor-
provide the information necessary to achieve an acceptableation at Site 3 (Test 8). In this case, the tradeoff between
global calibration. solute at two sites is greater than the tradeoff between solute
Figure 10 shows the parameter ranges resulting from thend temperature. For temperature, the best fit at Site 2 uses
Test 9 optimization that met the local and global criteria andtemperature data at both Site 2 and Site 3 (Test 5). However,
the bounds of all the pareto optimal sets. The dashed linghe best temperature fit at Site 3 uses temperature and tracer
shows the narrowed parameter range within the original adata at Site 3 (Test 10). It should be noted that when tempera-
priori search range (normalized here [0, 1]). The thick blackture data at Site 3 and tracer data at Site 2 were used (Test 8),
line is the bounds of the pareto optimal parameter sets. ThéEMcz,Tempz 0.94, the results were not significantly differ-
grey area is the parameter variability given the parameter setent than Test 10. Having both main channel temperature and

10-MO Temp 3 Tr3 0.65 0.68 091 0.95 0.94 0.2
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Table 4. The 11 calibration parameters distributed between two sites, the narrowed upper and lower parameter bounds, and associatec
percent reduction in parameter range compared to the a priori values shown in Table 2. The a priori range was the same for each section, bu
the narrowed bounds resulting from calibration varied between Sects. 1 and 2.

Parameter Description Parameter  Sect. Narrow Narrow Bound
Name Lower Upper reduction
Bound Bound (%)
STS Width B1 1 19 35 47%
(% Total Channel Width) Bo 2 6 30 4%
STS CS Area Ac sTS1 1 0.8 1.3 67 %
(m?) AcsTs2 2 1.0 2.4 44%
STS Exchange Coefficient  agrs1 1 38x 10" 8.1x10* 38%
(m2d=1) asTs? 2 2.2x 10 8.1x 104 15%
HTS Advective OHTS1 1 86 415 58 %
Transport Coefficient (fd~1)  Qprs2 2 173 786 21%
HTS Depth (m) YuTs1 1 0.04 0.82 21%
Yuts2 2 0.06 0.92 9%
Ground Layer Depth (m) Ygr land2 0.2 1.0 11%

tracer. data at.two different longitudinal ]ocauons provided 1 e 5 Results for single objective (SO, Level 3, Tests 1-4) and
more information about the system than just one data type. myti-objective (MO, Level 4, Tests 5-10) calibration tests usihg
While these local results give insight into the utility of and AR to determine the best model results using parameter sets
calibration data, it is important to acknowledge how eachthat meet both localf > 0.8) and global (AE> 0.7, bolded) crite-
of these calibrations perform globally. Given a broad pa-ria. Including HTS data gives th&Eg result shown in Column 1.
rameter search range (Level 2), Test 7 had the best ovefollowing the ARy and AEs results are thet results for each test
all results with AE=0.81 and provided some corroboration in the simulation matrix. Shown in grey shading are the Site 2 (S2)
of the model representing the dominant processes with afnd Site 3 (S3) main channel (MC) information used as the temper-
AE4 =0.75. Most Level 2 AEand AEy values were higher ature (Temp) ar_1d solute tracer (Tr) cah_braﬂon obj_ectlves; ur_lsha_ded
than Level 1 values. This is consistent with the findings of boxes are locations where data were withheld during the calibration.
Neilson et al. (2010a) who noted that two-objective calibra-

tions performed better at locations not used in model calibra- AE. AEs Site2 Site3 Site2 Site3
tion than did single objective calibrations. While Test 7 had Temp Temp Tracer Tracer
the best global value, the individual results were not nearly MC MC me  wme
as good as the best fits at each location for each data type. Level 3
It did, however, provide the necessary information to narrow 1-SO Temp S2 0.34 04 094 081 035 004
; ; 2-S0 Temp S3 064 0.7 091 095 081 033
the ;earch b_og_nds for the Lev_eI 3and4 _s,lmulatlons. _ 3 SOTISH 062 076 o790 TRy o1
With this initial understanding of the importance of sin- 4_soTrs3 064 069 092 094 00( 099
gle versus two-objective calibration and various data types in Level 4
model calibration to narrow the search space, Level 3 and 4,5 TempS2TempS3 073 076 094 094 059 071

results provide a more complete picture of how the system 6-mo Trs2rs3 072 09 079 091 098 097
is functioning (Table 5). The majority of the Level 3 single- 7—MOTemp S27Tr 52 041 04giliog 0.83 puisny —0.10

N N 8 — MO Temp S3 Tr S2 0.66 0.79 079 083 098 072
objective optimizations have AEand AEy values that are 9_MOTempS2TrS3 078 09 08 092 090 0.98
higher than those in the Level 1 simulations. The actial 10-MOTempS3TrS3 067 0.75 0.89 094 026 099
values for the location being used in the calibration are also
higher with the exception of Test 1. This suggests that the
more narrow search range was appropriate.

The best Level 4 results at Site 2 and Site 3 for tracerthat both temperature and tracer data at Site 3 (Test 10) is
areEpca1r =8 Emca1r=0.98 and®Eyca 1, =0.99 and for  better than tracer data at Site 2 and Site 3 (Test 6). Within
temperature are7EMcg,Temp=O.95 and 5EMC3’Temp = the narrow search bounds, the best tracer results rely on tem-
1°EMC3,Temp: 0.94 (Table 5). The best tracer results at Site 2perature information at some location.
are consistent with the Level 2 results where tracer informa- For Level 4 temperature results, the best fit at Site 2 uses
tion at Site 2 and temperature information at Site 3 is mosttemperature and tracer data at Site 2 (Test 7), however the
appropriate (Test 8). The best Site 3 tracer results suggesfest 5 results are quite similar. The best temperature fit at
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Site 3 still uses temperature and tracer data at Site 3 (Test 10yorroboration (HTS temperatures). Rather than limiting the
but the results for Test 5 (which uses Site 2 and 3 tem-optimization search, we approach the problem from more
peratures) have the sanie These results demonstrate the angles by including all information available, iteratively ap-
need to use both temperature and solute data in two-objectivproaching optimal parameter sets, and highlighting the most
TZTS calibration. The Level 4 results also showed a markedmportant datasets for model calibration.
improvement in most AEand AEy values from Level 1- Consistent with what others have found (Gupta et al.,
3 simulations. This improvement can be related to the in-1998; Vrugt et al., 2003a; Neilson et al., 2010b), multi-
creased parameter certainty when comparing Level 2, Test @bjective optimization approaches were found to be more ef-
(Fig. 7) with Level 4, Test 9 (Fig. 10). These figures show fective and efficient at determining appropriate calibrations
the usefulness of using more information, or local data, toand data sets compared to single-objective optimizations.
define a narrow range bounding the global optimum. TheyAdditionally, multi-objective optimization results assisted in
also highlight the importance of multi-objective calibrations assessing the utility of datasets in narrowing the parameter
to capture the spatial heterogeneity within streams and riverounds due to consideration of tradeoffs between objectives.
and the need to determine the appropriate optimization pawe found that inclusion of all available site specific data in
rameter ranges. model calibration and corroboration not only provided in-
To further incorporate important physical processes andiormation that decreased the number and range of param-
continue advancing our predictive capabilities, there is a neeters, but also provided information about model certainty,
for a connected cycle of inquiry that includes model develop-can guide the incorporation of processes missing in the con-
ment and refinement, identification of data types and scaleseptual model in future model development work, and will
of measurement required to support modeling, and estabassist in prioritization of future data collection efforts.
lishing the most effective approach for calibration based on
the application of interest. Since data collection methods to
support parameter estimation in two zone transient storagé Conclusions
modeling are evolving (e.g., Briggs et al. 2009; Neilson
et al., 2010a,b), the need for flexibility when incorporating With the overall goal of iteratively reducing the size of the
dynamic external information is underscored in model cali- global search space while simultaneously investigating the
bration particularly when dealing with both local and global information content within the available data types, we es-
scales. This type of flexibility is not available when opti- tablished a simulation matrix to test the use of the most com-
mization algorithms rely solely on the options encoded tomonly collected main channel data sets used for model cal-
solve the problem, which is the case for most single ob-ibration of instream temperature and solute models. This
jective algorithms (e.g., nonlinear gradient-based search alsystematic approach to using multiple types of distributed
gorithms such as the Levenberg-Marquardt algorithm (Mar-information allowed us to examine the application of both
guardt, 1963, used by Hil, 1998; Doherty, 2005; Poeter etsingle and multi-objective optimization algorithms to the
al., 2005), evolutionary algorithms (Duan et al., 1992; Deb, TZTS model using both temperature and solute data avail-
2001) or Bayesian approaches (Metropolis et al., 1953; Hastable within the main channel and transient storage zones
ings, 1970; Doherty, 2003). Although multi-objective algo- (STS and HTS). In the context of a case study in the Vir-
rithms (e.g., Gupta et al., 1998; Boyle et al., 2000; Madsengin River, Utah, USA, our global problem was to optimize
2000, 2003; Madsen et al., 2002; Deb et al., 2002; Vrugt ethe model given ten time series distributed in space. Our lo-
al., 2003a,b) and multi algorithm genetically adaptive searchcal problem was that any unacceptable parameter set (i.e.,
methods (AMALGAM, Vrugt and Robinson, 2007) incor- the model does not represent one observed time series well)
porate multiple datasets into optimization, the number ofsignified a failure to adequately reproduce the dominant pro-
datasets considered have generally been limited to two ocesses affecting both the heat and solute response at that lo-
three time series and there is limited flexibility in the ob- cation.
jectives considered due to limitations of the algorithm design Using data representing both main channel and transient
requirements (e.g., soil hydraulic models calibrated to mul-storage processes, we found that two-objective calibrations
tiple soil depths, but only at one location; 3Miing et al.,  consistently performed better at all locations where data were
2008). available within the study reach for corroboration, than did
The approach presented here builds on those of Vrugsingle objective calibrations. However, we also found neither
(2003a), also used in @liing et al. (2008), where results single objective results nor multiple objective pareto optimal
from single objective optimizations are used to construct theresults alone were able to produce acceptable global calibra-
boundaries of the search space. However, we use resultions (in other words, appropriately match all 10 data sets
from two-objective optimization studies to establish searchavailable). This led to using parameter sets from initial cal-
space boundaries while considering multiple locations (MCibration efforts (Level 1 and 2) to narrow parameter ranges
and STS at two sites), multiple environmental tracers (tem-used within optimization, resulting in a reduction of bounds
perature and solute), and using additional information forin the upstream section of the river by an average of 40 %,
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and in the downstream section by an average of 17 %. Level Boyle, D. P., Gupta, H. V., and Sorooshian, S.: Toward Improved
and 4 calibrations, based on narrowed parameter bounds, led Calibration of Hydrologic Models: Combining the Strengths of
to improved predictions of instream temperatures and tracer Manual and Automatic Methods, Water Resour. Res., 36, 3663—
concentrations at multiple locations and zones in the study 3674, 2000.

area not used in calibration. This global fit resulted in a bet-399s. M. A., Gooseff, M. N., Arp, C. D., and Baker, M. A.: A
ter representation of the dominant processes controlling in- Method for Estimating Surface Transient Storage Parameters for

stream processes, where the final reduction of bounds in the Streams with Concurrent Hyporheic Exchange, Water Resour.
P AN Res., 45, WO0D270i:10.1029/2008WR006952009.
upstream section was by an average of 49

’ % andinthe doWrbeb, K.: Multi-objective optimization using evolutionary algo-
stream section by an average of 69 %. rithms. John Wiley & Sons, Chichester, UK, 2001.

Another key finding was that, in general, using both mainpep, K., Pratap, A., Agarwal, S., and Meyarivan, T.: A fast and
channel temperature and solute data in calibration provided elitist multiobjective genetic algorithm: NSGA-II, IEEE Trans.
better global results. Therefore, we suggest that both data Evolut. Comput., 6, 182-197, 2002.
types be collected at different locations, for example, soluteDoherty, J: MICA: Model-Independent Markov Chain Monte Carlo
at one calibration site and temperature at another. Based on Analysis, Watermark Numerical Computing, Brisbane, Aus-
the results of this study, and the need to use resources associ-tralia, 2003.
ated with data collection more efficiently, we recommend fu- Poherty, J.: PEST: Software for Model-Independent Parameter Es-
ture data collection focused on collecting a single tracer ob- timation. Watermark Numerical Computing, Australia, available

. . . . . from: http://www.sspa.com/pegtast access: 10 May 2011),
servation time series in the main channel, with temperatures 2005.
collected simultaneously in multiple locations and zones toDuan’ Q. S., Sorooshian, S., and Gupta, V. K.: Effective and effi-

be used in model calibration and testing. cient global optimization for conceptual rainfall runoff models,

. Water Resour. Res., 28(4), 1015-1031, 1992.
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