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Abstract. To support the goal of distributed hydrologic and
instream model predictions based on physical processes, we
explore multi-dimensional parameterization determined by a
broad set of observations. We present a systematic approach
to using various data types at spatially distributed locations
to decrease parameter bounds sampled within calibration al-
gorithms that ultimately provide information regarding the
extent of individual processes represented within the model
structure. Through the use of a simulation matrix, parameter
sets are first locally optimized by fitting the respective data
at one or two locations and then the best results are selected
to resolve which parameter sets perform best at all locations,
or globally. This approach is illustrated using the Two-Zone
Temperature and Solute (TZTS) model for a case study in
the Virgin River, Utah, USA, where temperature and solute
tracer data were collected at multiple locations and zones
within the river that represent the fate and transport of both
heat and solute through the study reach. The result was a
narrowed parameter space and increased parameter certainty
which, based on our results, would not have been as suc-
cessful if only single objective algorithms were used. We
also found that the global optimum is best defined by multi-
ple spatially distributed local optima, which supports the hy-
pothesis that there is a discrete and narrowly bounded param-
eter range that represents the processes controlling the dom-
inant hydrologic responses. Further, we illustrate that the
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optimization process itself can be used to determine which
observed responses and locations are most useful for esti-
mating the parameters that result in a global fit to guide fu-
ture data collection efforts.

1 Introduction

Typically the calibration of models involves fitting simula-
tions to either single or multiple variables, error measures
at a single location, or combining information from multiple
locations (Duan, 2003). Early calibration techniques were
notorious for converging to local optimal solutions and did
not reliably find the global optimum (Schaake, 2003). Ad-
ditionally, many hydrological modeling procedures do not
make the best use of available information (Wagener et al.,
2001). Current research on the calibration problem primarily
focuses on uncertainty analysis and consideration of multi-
ple objectives (Fu and Gomez-Hernandez, 2009; Blasone et
al., 2008; Ajami et al., 2007; Duan et al., 2007; Vrugt and
Robinson, 2007). Rather than selecting a single preferred
parameter set, equifinality of models recognizes that there
may be no single, correct set of parameter values for a given
model and that different parameter sets may give acceptable
model performance (Beven, 2001).

All calibration algorithms have basic design requirements,
including the selection of calibration parameters, objectives,
and the a priori space within which to search for an optimum
solution or set of solutions. The measure of “acceptable” and
“optimal” is left to the design of the optimization problem,
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the model application, and the modeler. In this study, we
consider a global optimum as the solution where there is ac-
ceptable tradeoff between fitting the model at all locations
there are data available, versus just matching data at one lo-
cation well; this can be accomplished by using a range of
multiple local optima defined by a narrowly bounded global
optima. Since a model is not an exact representation of re-
ality, and observed data used for verification are not perfect,
the theoretical global optimum of a process based model dis-
tributed in space and in time may be an unrealistic goal.
However, a practical goal is to resolve the multiple local op-
tima which simultaneously perform well on a local scale to
narrowly bound the region surrounding the theoretical global
optimum. In other words, there is a need to narrowly bound
the global optimum region where good results exist for all
data distributed throughout the system. Performing well lo-
cally andglobally, or glocalization, can be used to define an
optimum in model calibration which bridges scales between
local and global performance. A systematic approach to us-
ing various data types at spatially distributed locations to de-
crease parameter bounds sampled within optimization algo-
rithms is relevant to instream and hydrologic models ranging
in application from the stream reach to the watershed scale.

The Two-Zone Temperature and Solute (TZTS) model
(Neilson et al., 2010a,b) was developed to capture the domi-
nant instream processes associated with heat and solute fate
and transport. The TZTS model separates transient storage
(Bencala and Walters, 1983) into two zones, (1) dead zones
or the surface transient storage (STS) zone that represents the
eddies, recirculating zones, and side pockets of water and
(2) subsurface or hyporheic transient storage (HTS) zone,
that represents the flow into or out of the stream substrate.
As discussed in Neilson et al. (2010a), sources and sinks of
heat include fluxes across the air-water interface, bed con-
duction, conduction between the bed and deeper ground sub-
strate, HTS exchange, and STS exchange. Solute mass is pri-
marily influenced by HTS and STS exchange (Neilson et al.,
2010b). To account for each of these fluxes, the TZTS model
calculates energy and mass balances in the main channel, the
STS zone, and the HTS zone for each reach or control vol-
ume. As described further in Neilson et al. (2010a,b), the
model equations are:
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where T = temperature (◦C), Q = volumetric flow rate
(m3 s−1), V = zone volume (m3), D = longitudinal disper-
sion (m2 d−1), 1x = volume length (m),αSTS= exchange be-
tween the MC and the STS (m2 d−1), QHTS = HTS advec-
tive transport coefficient (m3 d−1), Acs,MC = cross-sectional
area of the MC (m2), Btot = total volume width (m),
β = STS fraction of the total channel width,Y = volume
depth (m),ρ = density of the water (g cm−3), Cp = specific
heat of the water (cal g−1 ◦C−1), ρsed= density of the sed-
iment (g cm−3), Cp,sed= specific heat of the sediment
(cal g−1 ◦C−1), αsed= coefficient of thermal diffusivity of the
sediment, andJatm= atmospheric heat flux (cal cm−2 d−1)
(consisting of net shortwave radiation – 0.31 to 2.8 µm – at-
mospheric longwave radiation – 5 to 25 µm – water long-
wave radiation, conduction and convection, and evaporation
and condensation), andC = concentration (mg L−1). The five
subscripts (1) MC, (2) STS, (3) HTS, (4) STS, sed, and
(5) gr, specify the main channel, surface transient storage,
hyporheic transient storage, sediments below the STS and
the deeper ground layer, respectively.

To support TZTS model applications, simultaneous data
collection of temperature and solute tracer data (referred to
more simply as tracer data throughout the rest of the paper)
in the main channel and storage zones distributed laterally
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Fig. 1. Study reach layout including data collection locations. In-
set map shows the state of Utah, USA, with the study area shown
highlighted in black. (Taken directly from Bingham, 2010).

(e.g., within the main channel, HTS, and STS) at one loca-
tion and longitudinally along a river segment, have created
datasets that can be used to address the high dimensional
problems associated with predicting heat and solute move-
ment within streams and rivers. In recent studies (Neilson
et al., 2010a,b), the TZTS model was calibrated using the
Multi-Objective Shuffled Complex Evolution Metropolis al-
gorithm (MOSCEM; see Vrugt et al., 2003a for algorithm de-
scription) and used to predict solute concentrations and tem-
peratures in the Virgin River, Utah, USA, in storage zones at
two different locations within the study reach. Using temper-
ature and tracer observations at two different sites illustrated
that using more spatially distributed information and two dif-
ferent environmental tracers (temperature and solute) in the
optimization improves the overall performance of the model.
These studies found that even with the use of multi-objective
calibration, many optimal parameter sets were indistinguish-
able based on the objective functions, fairly broad parameter
ranges resulted, and parameter uncertainty was still a con-
cern.

In this paper, we address these issues by presenting a
systematic approach to using various data types at spatially
distributed locations to decrease parameter bounds sampled
within optimization algorithms in the context of a case study.
Our hypothesis is that there is a narrowly bounded parame-
ter range that best represents the hydrologic processes con-
trolling the system, which can be determined by using key
data sets as multiple optimization objectives. To investigate
this, we developed a simulation matrix of data types and sites
that is used first to locally optimize parameter sets by fit-
ting the respective main channel data using both single and
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Fig. 2. Locations of temperature probes at Sites 2 and 3 within the
study reach. (Taken directly from Neilson et al., 2010a).

multi-objective optimization algorithms. These results were
then used to resolve which parameter sets perform best at in-
dividual locations (distributed laterally and longitudinally) or
have the best local fit, and which parameter sets result in the
best global fit. Throughout this process we also test the util-
ity of single and two-objective optimizations and determine
the most informative calibration datasets resulting in global
data fits.

2 Study area and data

A highly managed portion of the Virgin River, Utah, USA
(Fig. 1), is considered impaired due to elevated temper-
atures that have adversely affected two endangered fish
species (Virgin River Chub – Gila seminuda, and woundfin
– Plagopterus argentissimus) and other native fishes unique
to this river system. An 11.94 km study reach of the Virgin
River (Fig. 1) was divided into two main sections on the basis
of bed slope (0.0039 between S1 and S2 and 0.0012 between
S2 and S3) and stream substrate distribution identified from
a previous mapping effort (Neilson et al., 2010a).

To support the TZTS model population, calibration, and
model testing, various data types were collected from 22–
25 June 2007. The instream flow during the study period
was found to be an average of 1.06 m3 s−1 at Site 1 and
1.96 m3 s−1 at Site 3. Information regarding several lat-
eral inflow rates and temperatures were collected during the
study, the largest being the return flow from Quail Creek
Reservoir (0.6 m3 s−1). Groundwater exchanges were set ac-
cording to Herbert (1995) with a total gain of 0.17 m3 s−1

over the entire reach. Weather information (air temperature,
solar radiation, wind speed, and relative humidity) was gath-
ered at Site 1 using a Davis Wireless Vantage Pro (Hayward,
CA) weather station to provide the data necessary to calcu-
late the atmospheric fluxes (Jatm in Eq. 1). Similar to Neilson
et al. (2010a,b), solute and temperature information were col-
lected at Site 2 and Site 3 to support model calibration and
testing. The data included solute tracer experiments result-
ing in main channel and STS concentrations at both Site 2
and Site 3. Simultaneous temperatures at Site 2 and Site 3
were also collected in the main channel (sensor 2), STS (sen-
sor 1 and 3), and HTS (sensor 4, 5, and 6) (Fig. 2). The
temperature sensors were Hobo® Water Temp ProV1 (Onset
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Corporation, Bourne, MA) with a±0.2◦C accuracy and res-
olution of 0.02◦C.

Following methods also described in Neilson et
al. (2010b), a 180 g instantaneous pulse of fluorescent Rho-
damine WT dye was injected at 02:00:00 on 6 June 2007, at
the head of a riffle just upstream of Site 1. A Self-Contained
Underwater Fluorescence Apparatus (SCUFA) (Turner
Designs, Sunnyvale, CA) was deployed in the main flow of
the channel at both Site 2 and Site 3. Measurements were
taken in situ every ten seconds for approximately 7 h at
Site 2 and 6 h at Site 3. Grab samples were also collected at
both Site 2 and 3 near the SCUFA to provide an independent
measure in the main channel and in two representative
STS locations. The grab samples were kept cool, stored in
the dark in amber bottles with PTFE caps, and analyzed
using a Turner Model 450 fluorometer (Turner Designs,
Sunnyvale, CA). As discussed in Neilson et al. (2010b), loss
of Rhodamine WT due to sorption to streambed sediments
(mineral and organic) was not a concern in this study
because the organic matter content in the bed sediments
was extremely low (averaging 0.05 % at four sampling
locations). Additionally, a recent sorption study within
this portion of the Virgin River (Bingham, 2010) provided
averageKd values of 1.5 mL g−1, which is low based on
other Rhodamine WT sorption studies (Bencala and Walters,
1983; Everts and Kanwar, 1994; Lin et al., 2003; Shiau et
al., 1993).

3 Methods

3.1 Simulation matrix

With the overall goal of iteratively reducing the size of the
global search space, while simultaneously investigating the
information content within the available data types, we es-
tablished a simulation matrix (Table 1) to test the use of the
most commonly collected main channel data sets used in cal-
ibration of instream temperature and solute models. Each
row and column denotes a data type that represents both tem-
peratures and tracer concentrations at Site 2 and 3 along the
study reach. This matrix represents all possible combinations
of single and two-objective calibrations that use the available
main channel temperature and tracer data. The calibration
tests were Tests 1 through 4, which are single-objective cali-
brations using main channel temperature and tracer at Site 2
and Site 3, and Tests 5 through 10 which are various com-
binations of data resulting in two-objective optimizations.
The latter two-objective tests include the following combina-
tions: main channel temperatures at Site 2 and Site 3 (Test 5),
main channel tracer observations at Site 2 and Site 3 (Test 6),
main channel temperature and tracer observations at Site 2
(Test 7), main channel temperature at Site 3 and tracer obser-
vations at Site 2 (Test 8), main channel temperature at Site 2

Table 1. Simulation matrix of ten single (1–4) and two-objective
(5–10) calibrations combining main channel temperature and tracer
observations at two locations (Site 2 and Site 3).

Temperature Temperature Temperature Temperature
Null Site 2 Site 3 Site 2 and Site 3

Tracer 1. 2. 5.
Null Temp Site 2 Temp Site 3 Temp Site 2

Temp Site 3

Tracer 3. 7. 8.
Site 2 Tracer Site 2 Temp Site 2 Temp Site 3

Tracer Site 2 Tracer Site 2

Tracer 4. 9. 10.
Site 3 Tracer Site 3 Temp Site 2 Temp Site 3

Tracer Site 3 Tracer Site 3

Tracer 6.
Site 2 Tracer Site 2
and Tracer Site 3
Site 3

and tracer observations at Site 3 (Test 9), and main channel
temperature and tracer observation at Site 3 (Test 10).

3.2 Calibration technique

Similar to previous TZTS calibration studies (Neilson et
al., 2010a,b; Bingham, 2010), SCEM (for single-objective
calibration) and MOSCEM (for multi-objective calibration)
(Vrugt et al., 2003a,b) were the optimization algorithms used
to evaluate each model test. To ensure that we were ade-
quately searching the parameter space, MOSCEM was run
with a random sample of 300 parameter sets that evolved us-
ing two complexes for a total of 3000 model runs for each
of the ten tests. In this case, a parameter set consists of
different combinations of parameter values for each of the
11 parameters that were calibrated and a complex is a group
of parameter sets within which objective function results are
compared. The parameter sets with the best results from each
complex are selected, new randomly selected parameter sets
are added, and the complexes are shuffled with each search
iteration. We experimented with a range of sample and com-
plex sizes (e.g., 400 samples and four complexes with a to-
tal of 10 000 model runs) and we found that an increase in
the simulations and complexes did not significantly improve
calibration results. Therefore, we decided to maintain the
smaller number of simulations for efficiency. Future work
with extended simulations may improve the search for glob-
ally optimal parameter sets, particularly as additional data are
collected or the dimensions of the search space are expanded.

In this application, measurements within the STS and HTS
were withheld during calibration and used to assess the pre-
dictive capacity of these components as “ungauged” model
outputs. As will be described in detail later, the STS data
were used to assist in selecting globally acceptable parameter
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sets. The HTS data were reserved for corroboration and test-
ing of the model calibration. Since temperature and tracer
data in the main channel are the most commonly collected
data sets, we needed to further understand whether model
calibration to main channel temperature and tracer data re-
sults in realistic and representative STS and HTS predictions.
Likewise, little was known about how single-objective model
calibration at individual sites controls the resulting parame-
terization at other site locations and for other data types. In
addition to investigating how to narrow the optimization pa-
rameter space, our methods are designed to test how a priori
choices in study and project design, as well as data availabil-
ity, may affect the model calibration and resulting simulation
performance.

3.3 Model parameters

The a priori uniform distribution of the feasible parameter
space was determined primarily based on earlier work that
included a sensitivity analysis using Latin Hypercube sam-
pling (Neilson et al., 2010a,b). For this study, these ranges
were further expanded for some parameters based on pre-
liminary optimization tests that resulted in parameter values
consistently at the upper or lower bounds of their respective
range (Table 2). The calibration parameters include: STS
fraction of the total channel width (β), cross-sectional area of
the STS (Acs,STS), exchange between the main channel and
the STS (αSTS), HTS advective transport coefficient (QHTS),
and HTS depth (YHTS) for each of the two sections within
the study reach (resulting in 10 parameters). The depth of
the ground layer below the HTS (Ygr) was also estimated,
but was represented by one value for both sections and be-
came the eleventh calibration parameter. The total width of
the main channel (Btot) and the Manning’s roughness coef-
ficient (n), as required within the kinematic wave approach
implemented within the TZTS model, were set based on the
results of Bingham (2010). In this effort, multi-spectral and
thermal imagery of the river system were used to physically
estimate the average width of the channel over each section
and therefore, reduced the number of parameters estimated in
the calibration. WithBtot established,n was then set to result
in appropriate average travel times. The longitudinal disper-
sion (D) coefficient was set based on the methods described
in Neilson et al. (2010a).

3.4 Calibration objectives

To evaluate local and global model performance, various
types of statistical measures were investigated. Each of the
ten tests shown in Table 1 were run using different statisti-
cal objectives including bias, Nash-Sutcliffe Efficiency (E),
log error, and root-mean square error. Similar to Neilson et
al. (2010a,b), we found thatE (Eq. 8; Nash and Sutcliffe,
1970) provided the most consistent calibration results and we

Table 2. A priori parameter range and calibrated parameter list for
the TZTS model.

Parameter Range

Parameter Description Parameter Lower Upper
Name Bound Bound

STS Width β 5 35
(% Total Channel Width)

STS CS Area Ac,STS 0.5 3
(m2)

STS Exchange Coefficient αSTS 1.7× 104 8.5× 104

(m2 d−1)

HTS Advective Transport QHTS 86 864
Coefficient (m3 d−1)

HTS Depth YHTS 0.01 1
(m)

Ground Layer Depth Ygr 0.1 1.0
(m)

used this objective function throughout the remainder of the
study and to quantify all local calibrations.

E = 1 −

N∑
t=1

(
T t

o − T t
m

)2

N∑
t=1

(
T t

o − To
)2

(8)

where, forN timesteps: T t
o = observations,T t

m = modeled
simulations (at timet), andTo = mean of the observations.
When used in calibration, the algorithm minimizes the result
of 1−E, since the bounds ofE are [1,−1]. The normaliza-
tion of the difference in error by the difference between the
observed and the mean of the observed, allows comparison
of results when the observations at different locations have
different scales of variability, as is the case with temperature
and tracer information.

To achieve an acceptable globally optimal calibration, we
considered the need to match all local data available. In
this study, our local problem is that an acceptable parame-
ter set must be found that results in adequately reproducing
the dominant processes as measured by an individual time
series. Our global problem is that we have ten time series
distributed in space, six temperature and four tracer datasets,
with 11 different parameters that need to be estimated based
on matching both the observed temperature and tracer data in
all zones and at all locations. The six locations for temper-
ature calibration or comparisons based on available data in-
clude: Site 2 main channel (EMC2 Temp), STS (ESTS2 Temp),
HTS (EHTS2 Temp); and, Site 3 main channel (EMC3 Temp),
STS (ESTS3 Temp), HTS (EHTS3 Temp). Note that each ob-
served time series used to calculateE values for the STS
and HTS, consist of the average of temperatures observed
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within the two representative STS zones and the most rep-
resentative HTS time series, respectively. The appropriate
HTS time series was determined based on the calibratedYHTS
values: whenYHTS< 3 cm, the 3 cm HTS data were used,
when 3 cm< YHTS< 9 cm, an average of the 3 and 9 cm HTS
time series were used, when 9 cm< YHTS< 20 cm, an aver-
age of the 9 and 20 cm HTS time series were used; and when
YHTS> 20 cm, the 20 cm HTS time series was used. The four
local tracer data locations used for comparison or calibration
include: Site 2 main channel (EMC2 Tr), STS (ESTS2 Tr); and,
Site 3 main channel (EMC3 Tr), STS (ESTS3 Tr). The observed
STS time series used in these calibrations are the average
concentrations observed within the two representative STS
zones.

The first step in our calibration method was to populate
the simulation matrix (Table 1) based on available observa-
tions. We then identified the a priori parameter search bounds
and the most appropriate statistical objective function,E. To
compare the global calibration results (i.e., matching the ob-
servations at all ten locations) for each of the tests within
the simulation matrix (Table 1), we then calculated the arith-
metic average (AE) of various combinations of localE val-
ues (Eq. 9).

AE =
1

n

n∑
i=1

Ei (9)

An AE that used only surface data (AEs) was first defined
and included the localE values for all tracer and tempera-
ture data collected in the main channel and STS, but did not
include the HTS information. AEall included both surface
data and HTS information. AE was used to assess the global
results; onlyE was used as the calibration objectives using
the MOSCEM algorithm.

3.5 Narrowing search bounds

Using the initial a priori bounds (Table 2), we defined Level 1
results as calibrated parameter sets from the single-objective
optimizations (Tests 1–4). Level 2 results represent the pa-
rameter sets from the two-objective optimizations with these
same a priori bounds (Tests 5–10). The local (E) and global
values (AEs) were calculated for each parameter set within
each test run in the matrix. For all parameter sets that met
both criteria (E > 0.8 and AEs> 0.7), a minimum and max-
imum for each individual parameter was determined. These
ranges were then used to set the narrower search bounds.
All simulations in Table 1 were repeated using these nar-
rower bounds. Level 3 results represent the new parameter
sets from all single-objective optimizations (Tests 1–4) and
Level 4 represent the new two-objective simulation (Tests 5–
10) results given the narrowed search range.

The last step was using Level 3 and 4 results to further test
the model calibration. Similar to the AEs, a new AEall value
was calculated for the Level 3 and 4 simulations that used all

of the data including the temperatures within the HTS. To-
gether, the AEs and AEall measures were used to summarize
the spatially aggregated performance of model predictions of
temperature and tracer at multiple locations, and determine
the ability to predict the HTS temperatures if only surface
data were available. This verified our calibration approach,
as well as gave an indication of the added utility of collecting
subsurface data, and whether the model can be calibrated suf-
ficiently in this watershed using only surface data collected at
multiple locations and within different zones. By comparing
Levels 1 and 2, a wide parameter search space, to Levels 3
and 4, a narrow parameter search space, we investigated the
importance of a priori parameterization. In comparing Lev-
els 1 and 3, single-objective calibrations, to Levels 2 and 4,
two-objective calibration, we gained information about how
best to utilize available calibration algorithms and various
types of spatially distributed information simultaneously.

4 Results

4.1 Level 1

The AEall, AEs, and individualE for the calibrations from
the simulation matrix (Table 1) are given in Table 3. The ten
rows correspond to model outputs by test and shaded boxes
represent the data used from that location for calibration. All
other observations were used as validation data sets. Level 1
results (Table 3) provide initial information regarding how
optimization at single locations can impact the model perfor-
mance at ungauged locations. Of Tests 1–4, no tests using the
main channel data at Site 2 or Site 3 as the objective had re-
sults that met the selection criteria of AEs> 0.7, with the best
results2AEs = 0.65 and2EMC3,Temp= 0.95 and2AEall = 0.60
(preceding superscripts indicate Test numbers). Although the
E for each of these tests meet the criteria ofE > 0.8 and the
calibration did well at fitting the dataset used as the objective,
the calibration was not acceptable at other locations, nor did
it provide a good fit to tracer data.

Figures 3 and 4 show the highest performing single-
objective Level 1 results (Test 2) of the ten total data loca-
tions. The observed temperature and tracer data at Site 2 and
Site 3 are shown as black circles (Figs. 3 and 4), and the
E values for each location are given in each subplot. The
predicted values are shown in grey, and in this case there is
a single line since a single objective calibration results in a
single optimal parameter set. The calibratedYHTS (cm) value
is also shown with the HTS subplots (Fig. 3e and f) since this
value is used to determine the most representative HTS tem-
perature time series for calculatingEHTS. Although the tem-
perature results seem to fit the observations well (Fig. 3), the
tracer results (Fig. 4) show how the model optimized to tem-
perature at Site 3 (2EMC3,Temp= 0.95) is not able to capture
the timing and magnitude of the tracer pulse. This may be in
part due to fixing the Manning’sn parameter in calibration.
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4.2 Level 2

Level 2 simulations were used to determine which parame-
ter sets resulting from the two-objective optimizations (Tests
5–10) converge to the established criteria ofE > 0.8 for all
calibration data sets and AEs> 0.7 (Table 3). TheE val-
ues reported for the two-objective optimizations are based
on the parameter set that represents the best trade-off solu-
tion or the pareto solution (Vrugt et al., 2003a,b; Boyle et al.,
2000; Gupta et al., 1998, 2003; Neilson et al., 2010a). The
best results are from Test 7 with values of7EMC2,Tr = 0.94,
7EMC2,Temp= 0.91, and AEs = 0.81 (Table 3). Figures 5 and 6
present Test 7 results where the uncertainty bounds result-
ing from pareto optimal parameter sets are shown. The un-
certainty in the temperature predictions are less at Site 2
(Fig. 5) and there is a much better fit in terms of timing of
the tracer curve at Site 2 (Fig. 6), compared to Level 1 re-
sults, but there are still relatively large bounds. It should
also be noted that this calibration does not capture the peak
of the tracer at Site 3, nor the tail of the tracer curve at
Site 2, which is critical to understanding the transient storage
within the study reach (Bencala and Walters, 1983). Simi-
lar to what Neilson et al. (2010a) found, comparing Level 1
and 2 results (Table 3) illustrates the relative benefit of us-
ing two-objective optimization compared to single-objective
optimizations. For Tests 5–10, Tests 6 and 10 did not meet

the local criteria ofE > 0.8 with tracer data used as a cali-
bration objective, although Test 6 did meet the global criteria
(Table 3).

Since Test 7 met the local and global criteria, all the ac-
ceptable parameter sets (i.e., the pareto optimal parameter
sets that also met the local and global criteria) from this test
were used to define the narrowed upper and lower bounds
for a new round of calibrations using the simulation matrix
(Table 1). The narrowed minimum and maximum parameter
range (Table 4) represent a parameter range reduction with a
high of 67 % for theAcs,STS in Sect. 1 and the least reduction
of 4 % for theβ in Sect. 2. Comparing between sections,
Sect. 1 had an average of 40 % reduction in bounds while
Sect. 2 had an average of 17 % reduction. To visually com-
pare the a priori parameter range and the narrowed parameter
range derived from Test 7 results, each of the 11 calibrated
parameters were scaled between a normalized lower bound,
0, and upper bound, 1 (Fig. 7). The thick black solid lines
represents the parameter bounds if all pareto rank one sets re-
sulting from the Test 7 calibrations are considered. The grey
shaded area represents the narrowed parameter bounds for
parameter sets that resulted in meeting both local and global
criteria from the Test 7 optimization.
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4.3 Level 3 and Level 4

Similar to Level 1 results, Tests 1 through 4 all converged to
E > 0.9 for the data used in calibration during the Level 3
calibrations (Table 5). However, model performance at
other locations was poor with the exception of Test 3,
which had better AE results than Level 1:3AEs = 0.76, and
3AEall = 0.62. While these results are promising, it is impor-
tant to note that only the tracer at Site 2 (the calibration ob-
jective) fit the observations well (not shown here for brevity).

Level 4 had improved results when compared to Lev-
els 1–3. The AEall and AEs values increased for most tests

(Tables 3 and 5), and the maximum value increased to 0.78
and 0.9 for AEall and AEs, respectively. Although Test 6
met the global and local criteria, the temperature simulations
at Site 2 overestimated the high temperatures and underes-
timated the low temperatures by approximately 3◦C in the
main channel, STS, and HTS zones. Figures 8 and 9 show
the best overall result for Level 4 temperature and tracer
predictions, Test 9:9AEs = 0.9 and9AEall = 0.78. Not only
are the temperature predictions more representative, but the
tracer responses are generally captured better in the tail of
the tracer curves. As with the Level 2 calibrations, both tem-
perature and tracer objectives at different locations seem to
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Table 3. Results for single objective (SO, Level 1) and multi-
objective (MO, Level 2) calibration tests. Including HTS data gives
the AEall result shown in Column 1, excluding HTS and using only
main channel (MC) and STS data resulted in AEs shown in Col-
umn 2. Following the AEall and AEs results are theE results for
each test in the simulation matrix.E and AEs were used to de-
termine the best models using parameter sets that meet both local
(E > 0.8) and global (AES> 0.7, bolded) criteria. AEall was in-
cluded for comparison to Level 3 and 4 calibrations. Shown in grey
shading are the Site 2 and Site 3 locations in the main channel used
for a calibration objective; unshaded boxes in Columns 3–6 are lo-
cations where data were withheld during the calibration.

AEall AEs Site 2 Site 3 Site 2 Site 3
Temp Temp Tracer Tracer
MC MC MC MC

Level 1

1 – SO Temp 2 0.30 0.36 0.95 0.87 0.32 −0.10
2 – SO Temp 3 0.60 0.65 0.93 0.95 0.23 0.72
3 – SO Tr 2 0.34 0.50 0.72 0.91 0.96 −0.42
4 – SO Tr 3 0.16 0.42 0.89 0.92 −0.70 0.96

Level 2

5 – MO Temp 2 Temp 3 0.42 0.46 0.96 0.93 0.36 0.11
6 – MO Tr 2 Tr 3 0.61 0.76 0.83 0.93 0.35 0.99
7 – MO Temp 2 Tr 2 0.75 0.81 0.91 0.88 0.94 0.62
8 – MO Temp 3 Tr 2 0.39 0.57 0.86 0.94 0.98 −0.17
9 – MO Temp 2 Tr 3 0.47 0.58 0.91 0.93 −0.16 0.92
10 – MO Temp 3 Tr 3 0.65 0.68 0.91 0.95 0.94 0.12

provide the information necessary to achieve an acceptable
global calibration.

Figure 10 shows the parameter ranges resulting from the
Test 9 optimization that met the local and global criteria and
the bounds of all the pareto optimal sets. The dashed line
shows the narrowed parameter range within the original a
priori search range (normalized here [0, 1]). The thick black
line is the bounds of the pareto optimal parameter sets. The
grey area is the parameter variability given the parameter sets

which meet both local and global performance criteria. This
global fit resulted in a better representation of the dominant
processes controlling instream processes, where the final re-
duction of bounds in the upstream section was by an average
of 49 % and the in the downstream section by an average of
69 %.

5 Discussion

Comparing the results of the simulation matrix calibrations
when using only the main channel temperatures or tracer
concentrations as an objective (Test 1–4, Table 3), we see
how the choice of a calibration objective affects the global
performance of the model by comparing the AEs and AEall
values. In general, the best individual temperature and tracer
main channel result is from a single objective optimization of
that constituent at that location, but the corresponding model
results are generally inappropriate at other locations. Our re-
sults also show that when a main channel temperature objec-
tive at one location results in reasonable predictions, the tem-
perature at the other location will also be reasonable. How-
ever, this is not necessarily the case when using tracer data in
single objective optimizations in this study.

The best Level 2 local results at Site 2 and Site 3 for tracer
are8EMC2,Tr = 0.98 and6EMC3,Tr = 0.99 and for temperature
are5EMC2,Temp= 0.96 and10EMC3,Temp= 0.95 (Table 3). It
is interesting that the best fit for tracer at Site 3 uses tracer
information at both Site 2 and 3 (Test 6), but the best fit at
Site 2 uses tracer information at Site 2 and temperature infor-
mation at Site 3 (Test 8). In this case, the tradeoff between
solute at two sites is greater than the tradeoff between solute
and temperature. For temperature, the best fit at Site 2 uses
temperature data at both Site 2 and Site 3 (Test 5). However,
the best temperature fit at Site 3 uses temperature and tracer
data at Site 3 (Test 10). It should be noted that when tempera-
ture data at Site 3 and tracer data at Site 2 were used (Test 8),
8EMC2,Temp= 0.94, the results were not significantly differ-
ent than Test 10. Having both main channel temperature and
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Table 4. The 11 calibration parameters distributed between two sites, the narrowed upper and lower parameter bounds, and associated
percent reduction in parameter range compared to the a priori values shown in Table 2. The a priori range was the same for each section, but
the narrowed bounds resulting from calibration varied between Sects. 1 and 2.

Parameter Description Parameter Sect. Narrow Narrow Bound
Name Lower Upper reduction

Bound Bound (%)

STS Width β1 1 19 35 47 %
(% Total Channel Width) β2 2 6 30 4 %
STS CS Area Ac,STS1 1 0.8 1.3 67 %
(m2) Ac,STS2 2 1.0 2.4 44 %
STS Exchange Coefficient αSTS1 1 3.8× 104 8.1× 104 38 %
(m2 d−1) αSTS2 2 2.2× 104 8.1× 104 15 %
HTS Advective QHTS1 1 86 415 58 %
Transport Coefficient (m3 d−1) QHTS2 2 173 786 21 %
HTS Depth (m) YHTS1 1 0.04 0.82 21 %

YHTS2 2 0.06 0.92 9 %
Ground Layer Depth (m) Ygr 1 and 2 0.2 1.0 11 %

tracer data at two different longitudinal locations provided
more information about the system than just one data type.

While these local results give insight into the utility of
calibration data, it is important to acknowledge how each
of these calibrations perform globally. Given a broad pa-
rameter search range (Level 2), Test 7 had the best over-
all results with AEs = 0.81 and provided some corroboration
of the model representing the dominant processes with an
AEall = 0.75. Most Level 2 AEs and AEall values were higher
than Level 1 values. This is consistent with the findings of
Neilson et al. (2010a) who noted that two-objective calibra-
tions performed better at locations not used in model calibra-
tion than did single objective calibrations. While Test 7 had
the best global value, the individual results were not nearly
as good as the best fits at each location for each data type.
It did, however, provide the necessary information to narrow
the search bounds for the Level 3 and 4 simulations.

With this initial understanding of the importance of sin-
gle versus two-objective calibration and various data types in
model calibration to narrow the search space, Level 3 and 4
results provide a more complete picture of how the system
is functioning (Table 5). The majority of the Level 3 single-
objective optimizations have AEs and AEall values that are
higher than those in the Level 1 simulations. The actualE

values for the location being used in the calibration are also
higher with the exception of Test 1. This suggests that the
more narrow search range was appropriate.

The best Level 4 results at Site 2 and Site 3 for tracer
are8EMC2,Tr = 6EMC2,Tr = 0.98 and10EMC3,Tr = 0.99 and for
temperature are7EMC2,Temp= 0.95 and 5EMC3,Temp =
10EMC3,Temp= 0.94 (Table 5). The best tracer results at Site 2
are consistent with the Level 2 results where tracer informa-
tion at Site 2 and temperature information at Site 3 is most
appropriate (Test 8). The best Site 3 tracer results suggest

Table 5. Results for single objective (SO, Level 3, Tests 1–4) and
multi-objective (MO, Level 4, Tests 5–10) calibration tests usingE

and AEs to determine the best model results using parameter sets
that meet both local (E > 0.8) and global (AEs> 0.7, bolded) crite-
ria. Including HTS data gives theAEall result shown in Column 1.
Following the AEall and AEs results are theE results for each test
in the simulation matrix. Shown in grey shading are the Site 2 (S2)
and Site 3 (S3) main channel (MC) information used as the temper-
ature (Temp) and solute tracer (Tr) calibration objectives; unshaded
boxes are locations where data were withheld during the calibration.

AEall AEs Site 2 Site 3 Site 2 Site 3
Temp Temp Tracer Tracer
MC MC MC MC

Level 3

1 – SO Temp S2 0.34 0.45 0.94 0.81 0.35 0.04
2 – SO Temp S3 0.64 0.7 0.91 0.95 0.81 0.33
3 – SO Tr S2 0.62 0.76 0.79 0.84 0.98 0.61
4 – SO Tr S3 0.64 0.69 0.92 0.94 0.06 0.99

Level 4

5 – MO Temp S2 Temp S3 0.73 0.76 0.94 0.94 0.59 0.71
6 – MO Tr S2 Tr S3 0.72 0.9 0.79 0.91 0.98 0.97
7 – MO Temp S2 Tr S2 0.41 0.48 0.95 0.83 0.53 −0.10
8 – MO Temp S3 Tr S2 0.66 0.79 0.79 0.83 0.98 0.72
9 – MO Temp S2 Tr S3 0.78 0.9 0.82 0.92 0.90 0.98
10 – MO Temp S3 Tr S3 0.67 0.75 0.89 0.94 0.26 0.99

that both temperature and tracer data at Site 3 (Test 10) is
better than tracer data at Site 2 and Site 3 (Test 6). Within
the narrow search bounds, the best tracer results rely on tem-
perature information at some location.

For Level 4 temperature results, the best fit at Site 2 uses
temperature and tracer data at Site 2 (Test 7), however the
Test 5 results are quite similar. The best temperature fit at
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Site 3 still uses temperature and tracer data at Site 3 (Test 10),
but the results for Test 5 (which uses Site 2 and 3 tem-
peratures) have the sameE. These results demonstrate the
need to use both temperature and solute data in two-objective
TZTS calibration. The Level 4 results also showed a marked
improvement in most AEs and AEall values from Level 1–
3 simulations. This improvement can be related to the in-
creased parameter certainty when comparing Level 2, Test 7
(Fig. 7) with Level 4, Test 9 (Fig. 10). These figures show
the usefulness of using more information, or local data, to
define a narrow range bounding the global optimum. They
also highlight the importance of multi-objective calibrations
to capture the spatial heterogeneity within streams and rivers
and the need to determine the appropriate optimization pa-
rameter ranges.

To further incorporate important physical processes and
continue advancing our predictive capabilities, there is a need
for a connected cycle of inquiry that includes model develop-
ment and refinement, identification of data types and scales
of measurement required to support modeling, and estab-
lishing the most effective approach for calibration based on
the application of interest. Since data collection methods to
support parameter estimation in two zone transient storage
modeling are evolving (e.g., Briggs et al. 2009; Neilson
et al., 2010a,b), the need for flexibility when incorporating
dynamic external information is underscored in model cali-
bration particularly when dealing with both local and global
scales. This type of flexibility is not available when opti-
mization algorithms rely solely on the options encoded to
solve the problem, which is the case for most single ob-
jective algorithms (e.g., nonlinear gradient-based search al-
gorithms such as the Levenberg-Marquardt algorithm (Mar-
quardt, 1963, used by Hil, 1998; Doherty, 2005; Poeter et
al., 2005), evolutionary algorithms (Duan et al., 1992; Deb,
2001) or Bayesian approaches (Metropolis et al., 1953; Hast-
ings, 1970; Doherty, 2003). Although multi-objective algo-
rithms (e.g., Gupta et al., 1998; Boyle et al., 2000; Madsen,
2000, 2003; Madsen et al., 2002; Deb et al., 2002; Vrugt et
al., 2003a,b) and multi algorithm genetically adaptive search
methods (AMALGAM, Vrugt and Robinson, 2007) incor-
porate multiple datasets into optimization, the number of
datasets considered have generally been limited to two or
three time series and there is limited flexibility in the ob-
jectives considered due to limitations of the algorithm design
requirements (e.g., soil hydraulic models calibrated to mul-
tiple soil depths, but only at one location; Wöhliing et al.,
2008).

The approach presented here builds on those of Vrugt
(2003a), also used in Ẅohliing et al. (2008), where results
from single objective optimizations are used to construct the
boundaries of the search space. However, we use results
from two-objective optimization studies to establish search
space boundaries while considering multiple locations (MC
and STS at two sites), multiple environmental tracers (tem-
perature and solute), and using additional information for

corroboration (HTS temperatures). Rather than limiting the
optimization search, we approach the problem from more
angles by including all information available, iteratively ap-
proaching optimal parameter sets, and highlighting the most
important datasets for model calibration.

Consistent with what others have found (Gupta et al.,
1998; Vrugt et al., 2003a; Neilson et al., 2010b), multi-
objective optimization approaches were found to be more ef-
fective and efficient at determining appropriate calibrations
and data sets compared to single-objective optimizations.
Additionally, multi-objective optimization results assisted in
assessing the utility of datasets in narrowing the parameter
bounds due to consideration of tradeoffs between objectives.
We found that inclusion of all available site specific data in
model calibration and corroboration not only provided in-
formation that decreased the number and range of param-
eters, but also provided information about model certainty,
can guide the incorporation of processes missing in the con-
ceptual model in future model development work, and will
assist in prioritization of future data collection efforts.

6 Conclusions

With the overall goal of iteratively reducing the size of the
global search space while simultaneously investigating the
information content within the available data types, we es-
tablished a simulation matrix to test the use of the most com-
monly collected main channel data sets used for model cal-
ibration of instream temperature and solute models. This
systematic approach to using multiple types of distributed
information allowed us to examine the application of both
single and multi-objective optimization algorithms to the
TZTS model using both temperature and solute data avail-
able within the main channel and transient storage zones
(STS and HTS). In the context of a case study in the Vir-
gin River, Utah, USA, our global problem was to optimize
the model given ten time series distributed in space. Our lo-
cal problem was that any unacceptable parameter set (i.e.,
the model does not represent one observed time series well)
signified a failure to adequately reproduce the dominant pro-
cesses affecting both the heat and solute response at that lo-
cation.

Using data representing both main channel and transient
storage processes, we found that two-objective calibrations
consistently performed better at all locations where data were
available within the study reach for corroboration, than did
single objective calibrations. However, we also found neither
single objective results nor multiple objective pareto optimal
results alone were able to produce acceptable global calibra-
tions (in other words, appropriately match all 10 data sets
available). This led to using parameter sets from initial cal-
ibration efforts (Level 1 and 2) to narrow parameter ranges
used within optimization, resulting in a reduction of bounds
in the upstream section of the river by an average of 40 %,
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and in the downstream section by an average of 17 %. Level 3
and 4 calibrations, based on narrowed parameter bounds, led
to improved predictions of instream temperatures and tracer
concentrations at multiple locations and zones in the study
area not used in calibration. This global fit resulted in a bet-
ter representation of the dominant processes controlling in-
stream processes, where the final reduction of bounds in the
upstream section was by an average of 49 % and in the down-
stream section by an average of 69 %.

Another key finding was that, in general, using both main
channel temperature and solute data in calibration provided
better global results. Therefore, we suggest that both data
types be collected at different locations, for example, solute
at one calibration site and temperature at another. Based on
the results of this study, and the need to use resources associ-
ated with data collection more efficiently, we recommend fu-
ture data collection focused on collecting a single tracer ob-
servation time series in the main channel, with temperatures
collected simultaneously in multiple locations and zones to
be used in model calibration and testing.
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