
Utah State University Utah State University 

DigitalCommons@USU DigitalCommons@USU 

All Graduate Theses and Dissertations Graduate Studies 

5-2000 

A Dynamic Analysis of the Global Timber Market and Carbon Flux A Dynamic Analysis of the Global Timber Market and Carbon Flux 

of Forest under Global Warming: An Integrated Modeling of Forest under Global Warming: An Integrated Modeling 

Approach Approach 

Dug Man Lee 

Follow this and additional works at: https://digitalcommons.usu.edu/etd 

 Part of the Economics Commons 

Recommended Citation Recommended Citation 
Lee, Dug Man, "A Dynamic Analysis of the Global Timber Market and Carbon Flux of Forest under Global 
Warming: An Integrated Modeling Approach" (2000). All Graduate Theses and Dissertations. 3909. 
https://digitalcommons.usu.edu/etd/3909 

This Dissertation is brought to you for free and open 
access by the Graduate Studies at 
DigitalCommons@USU. It has been accepted for 
inclusion in All Graduate Theses and Dissertations by an 
authorized administrator of DigitalCommons@USU. For 
more information, please contact 
digitalcommons@usu.edu. 

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F3909&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/340?utm_source=digitalcommons.usu.edu%2Fetd%2F3909&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/3909?utm_source=digitalcommons.usu.edu%2Fetd%2F3909&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/




Copyright © Dug Man Lee 2000 

All Rights Reserved 

ii 



ABSTRACT 

A Dynamic Analysis of the Global Timber Market and Carbon Flux of 

Forest under Global Wanning: An Integrated Modeling Approach 

by 

Dug Man Lee, Doctor of Philosophy 

Utah State University, 2000 

Major Professor: Kenneth S. Lyon 
Department: Economics 

As global wanning migrates ecosystems toward the poles, the result has been a 

iii 

change in the distribution of ecosystem types and the productivity of ecosystem as well. 

Similar to other natural resources, forests are also potentially affected as ecosystems 

move toward the poles. Consequently, human beings are forced to adapt, and global 

wanning will generate an impact on the global timber market through changes in timber 

harvests, regeneration inputs, stumpage prices, etc. In addition, the dynamic process of 

forest change in response to economic activities of human beings will accelerate or 

dampen the amount of carbon in the atmosphere. In this context, we propose an 

integrated modeling approach to identify the effect of global wanning on the global 

timber market, and examine the feedback effect of the global timber market on global 

wanning. 
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To perform the primary research objective, we estimated dynamic ecological 

change based on (1) the simulation results of BlOME 3 using Hamburg and (2) the 

linearity assumptions about change in climate and ecosystem. With the estimates of 

dynamic ecological change, we modified the Timber Supply Model 2000 (TSM 2000) 

to reflect the dynamic ecological change caused by climate change. After simulating the 

base scenario and the climate change scenario of TSM 2000, we identified that global 

warming has a positive effect on the global timber market. 

For the secondary research objective, we extended the modeling framework by 

incorporating the Terrestrial Carbon Model (TCM) designed to investigate net carbon 

release into the atmosphere. Simulating both the base TCM and the modified TCM 

which reflects climate change, we identified that the global timber market has a 

dampening (negative feedback) effect on global warming through net carbon 

sequestering. For sensitivity analyses, we performed these simulation procedures under 

three different timber demand growth scenarios. 

(172 pages) 
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CHAPTER I 

INTRODUCTION 

Beginning in the latter part of 20th century, natural scientists and policyrnakers 

alike have paid much attention on global warming associated with accumulation of 

greenhouse gases in the atmosphere. The Intergovernmental Panel on Climate Change 

(IPCC) (Houghton et a!. 1990) predicted that average global temperature would increase 

about 3 to 6 degrees centigrade between 1900 and 2100. 1 Since then, many scientific 

groups have warned policyrnakers of the potential adverse impact of global warming on 

ecosystem health and have called for severe curbs on anthropogenic emission of 

greenhouse gases into the atmosphere. At the same time, a growing number of scientists 

have questioned the scientific basis of global warming predictions. These skeptics 

suggested the need for a more comprehensive assessment of climate model predictions 

before implementing policies that may adversely affect opportunities for worldwide 

economic growth. In spite of the controversy, governments around the world have 

recently approved a framework of treaties on climate change and continue to engage in 

dialog aimed at addressing potential impacts from various global warming scenarios. 

The Earth Summit in Rio de Janeiro, Brazil (1992) and the United Nations 

conference in Kyoto, Japan (1997) were convened to discuss global environmental 

issues, such as monitoring greenhouse gas concentration into the atmosphere, its natural 

Nordhaus (1993) also predicted that the global temperature would increase about I to 5 degrees 
centigrade between 1900 to 2100. In addition, the preliminary research of U.S. National Assessment 
Synthesis Team (NAST 2000) indicates that the temperarure in the U.S. territory will rise 3 to 6 
degrees centigrade in the next I 00 years. 
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effect, and protection of the world's environmental resources. As a partial response to 

discussion in these fora, NAST of the U.S. Global Change Research Program recently 

released a document that attempts to assess the potential consequences of climate 

variability and change on the United States (NAST 2000). Similar comprehensive 

research efforts are being spearheaded by countries around the globe. In these studies, 

scientists generally attempt a comprehensive assessment of greenhouse gas 

concentration in the atmosphere for long periods, but they are somewhat deficient in 

developing integrated assessment models that capture economic effects associated with 

global warming. Recent exceptions include the work ofNordhaus (1991) and Cline 

( 1992), who have begun to consider integrated economic models that tackle impacts of 

climate change, economic costs of deterring climate change, and alternative approaches 

for implementing policies designed to protect natural environments on a global scale. 

Our research, summarized below, contributes to a growing body of literature that 

attempts to a develop a dynamic integrated model of ecosystem and economic system 

interactions that arise from predictions of global warming. The particular focus of 

inquiry is on the global timber market. 

Problem Statement 

One prediction of global warming is that if global warming forces ecosystems to 

migrate toward the poles, the distribution of ecosystem types and the productivity of 

ecosystems will be altered. The transformation and adjustment of ecosystems resulting 

from climate change also change the environmental conditions under which natural 
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resources are extracted through the economic activities of human beings. Similar to 

other natural resources, forests are also potentially affected as ecosystems move toward 

the poles. It has been discussed and predicted that changes of forest types will occur 

along two dynamic processes--the first is dieback and the second is regeneration (King 

and Neilson 1992, Shugart eta!. 1986, Solomon 1986). 

According to the explanation provided by ecologists, dieback occurs when 

environmental conditions of the forest significantly deviate from those to which current 

growing trees are accustomed. Changing climate conditions continuously harass 

growing trees and cause standing trees to stop growing. Eventually, standing trees die 

out. According to the regeneration process, as climate changes, current forest types are 

able to continue growing in the area where they are currently standing. Regeneration 

occurs through either competitive displacement of forest types or plantation 

management. As existing trees are harvested or die out naturally, however, old species 

are not regenerated again in the area in which they were growing. Instead, new species 

naturally migrate into the area with a time lag (i.e., through competitive displacement) 

or are planted by human beings to establish new plantations for economic profit. 

As forest types change along these dynamic processes, human beings are forced to 

adapt as well. As a result of economic spillovers, climate change will generate an 

impact on the global timber market through changes in volume harvested, the level of 

regeneration input, and stumpage price. This process underlies the effect of global 

wartrting on the global timber market. 
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In addition, dieback will reduce the capability of the forest to sequester carbon 

from the atmosphere. Moreover, dead trees that are not salvaged by forest management 

will release more carbon into the atmosphere through the process of decaying. On the 

other hand, regeneration will reinforce the ability of the forest to absorb carbon from 

the atmosphere as the young trees keep growing vigorously after currently standing 

trees are harvested. These dynamic processes of forest change will affect the amount of 

carbon in the atmosphere. 

These dynamic processes, in turn, will affect global warming with the 

consequence of moderating or accelerating the rate of temperature change. As a 

consequence, ecosystems around the globe experience feedback chains that will result 

in dynamic impacts on humans' ability to adapt and plan for changing ecosystems. This 

process is referred to as the feedback effect of the global timber market on global 

warming. In this context, we propose an integrated modeling approach that identifies 

the effect of global warming on the global timber market, and examines the feedback 

effect of the global timber market on global warming. 

Most literature that has attempted to identify the effect of global warming on 

timber markets has only investigated the effect of global warming on timber markets in 

limited regions. Binkley (1988) studied the impact of global warming on boreal forests 

and Joyce et al. (1995), Burton et al. (1998), and Sohngen and Mendelsohn (1998) 

focused only on the conterminous United States. 

Perez-Garcia et al. (1997) and Sohngen et al. (1999) extended the effect of global 

warming on the global timber market. Although Perez-Garcia et al. (1997) studied the 
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impact of global warming on the global timber market, they did not consider change in 

the distribution in forest types, but only examined the change of forest productivity after 

climate change. Also, most literature, with the exception of Sohngen (1996) and 

Sohngen et al. (1998) , used comparative static analysis based on comparison of current 

steady-state ecological equilibrium and changed steady-state ecological equilibrium. 

They considered neither dynamic ecological change nor dynamic change of timber 

markets after climate change. 

Studies of the feedback effect between timber markets and global warming 

include works by Bonan et al. ( 1992) and Kirschbaum et al. (1996) who studied the role 

of forests in global warming in order to correct potential bias in the IPCC forecasts of 

future temperature. They identified a net release of carbon from forests producing a 

positive feedback effect on global warming. It is of value that these studies have 

identified the feedback effect of carbon flux of forests on global warming. 

Nevertheless, their studies did not cover the worldwide forests and failed to link 

ecological change to human adaptation. 

To address integrated modeling approaches, the following economic and 

ecological models were required: timber supply model (TSM), general circulation 

model (GCM), terrestrial carbon model (TCM), and a steady-state ecological model. 

The TSM was used to model the dynamic economic behavior of human beings involved 

in the global timber market in the context of global warming. Dynamic interactions 

among the other three models were utilized to identify the ecological feedback loop of 

global warming and forest carbon flux. 
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Of several competing economic models developed to analyze timber market 

behavior (Adams eta!. 1996, Berek 1979, Brazee and Mendelsohn 1990, Sedjo and 

Lyon 1990, 1996, Sohngen and Mendelsohn 1998, Sohngen eta!. 1999), the TSM 

proposed by Sedjo and Lyon (1990, 1996) was chosen for the present study. The TSM 

is a nonlinear optimization model that is designed to examine theoretical and practical 

issues in the world timber supply. The dynamic characteristics of timber supply such as 

aging of trees , harvesting of timber, and regenerating forest have been modeled using 

discrete time, optimal control theory. This model generates the optimal time profile in 

the sense that the model maximizes the sum of discounted present value of net surplus 

(consumers' surplus and producers' surplus), subject to the initial conditions and the 

laws of motion governing the evolution of the system. Two laws of motion are 

formulated for both hectares of trees by age and level of regeneration input. In addition, 

the TSM traces out the system-wide time profile of harvesting volume in aggregate and 

by each land class, and generates a system-wide dynamic market price while 

determining the economically efficient regeneration by time period and by each land 

class. 

The GCM identifies change of climate variables in a given grid cell across the 

globe. We proposed to employ a GCM to estimate the change of climate variables 

under two competing assumptions: currently existing carbon dioxide concentration in 

the atmosphere and a doubled carbon dioxide concentration in the atmosphere. 

Comparing the distribution of climate variables in the grid cell allowed us to capture 

variations in climate change across the globe. Among numerous GCMs that have been 
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developed by atmospheric scientist groups, Hamburg (Claussen 1996) was used as the 

GCM for this research. Climate change slowly affects ecosystem types as well as the 

productivity of ecosystem type. Unfortunately, there does not currently exist a dynamic 

ecological model that spans the entire globe. Participants of VEMAP ( 1995) have only 

recently made efforts to develop a dynamic ecological model for the conterminous U.S, 

which is called VEMAP Phase II. However, the VEMAP Phase II is not currently 

available for general use. 

In order to examine dynamic ecological change based on a steady-state ecological 

model approach, we used the BlOME 3 as a steady-state ecological model. Haxeltine 

and Prentice (1996) developed BlOME 3, which is a large scale, quantitative ecological 

model covering the entire globe. BlOME 3 combines both a biogeographical 

distribution model and a biogeochemical cycle model within a single framework. 

BlOME 3 allows us to mechanically simulate the direct effect of carbon dioxide change 

on vegetation patterns, net primary productivity (NPP) , and leaf area index (LAI). In 

this context, simulation results of BlOME 3 using Hamburg were used to identify 

dynamic ecological change that results from doubling of carbon dioxide in the 

atmosphere. 

We also followed the IPCC projections (Houghton et al. 1990) that climate 

variables will linearly increase from 1990 to 2060. On the basis ofiPCC convention, 

we assumed that climate variables are linearly increasing from 1990 to 2060 and then 

stabilize. Furthermore, both the change of ecosystem types and the change in NPP were 

assumed to be proportional to the climate change (Sohngen 1996). Under these 
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assumptions, we derived critical information about dynamic ecological change from the 

steady-state ecological model. 

In order to examine the feedback effect of the global timber market on global 

warming, the TCM (Y an 1996) was utilized. TCM predicts the capability of carbon 

storage in forests when harvesting and regeneration occurs in forests. The difference of 

carbon storage in forests between before and after climate change through uptake and 

release of carbon will play a critical role in assessing the impact of global warming. As 

a consequence, carbon storage or release will accelerate or decelerate the 

responsiveness of ecosystem change to climate change. The proposed integrated 

modeling approach provided a much clearer prospective to systematically accomplish 

our research objectives. 

Research Procedures 

This research aims to identify both direct and feedback effects of global warming 

on the global timber market. To achieve the primary objective, the TSM developed by 

Sedjo and Lyon (1990, 1996) had to be modified to consider the impact of global 

warming. Modification of TSM resulted in two scenarios for the global timber market. 

We labeled these scenarios as the base scenario and climate change scenario. In 

addition, for the secondary objective, the TCM was also modified to investigate the net 

effect of carbon release into the atmosphere after climate change. Integrating both 

modified TSM and modified TCM within a dynamic framework played an important 
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role in identifying the combined effect of global wanning and global timber markets on 

carbon flux . The following process outlines the modeling approach. 

1. Using simulation results of BlOME 3 using Hamburg we examined change in the 

distribution of ecosystem type as well as the change in NPP of ecosystem type 

between before and after climate change. For each responsive region supplying 

stumpage to the global timber market, we calculated the dieback ratio, the 

regenerated land area per year, and the change in NPP of ecosystem types in each 

responsive region. According to ecosystem type of each land class in a given 

region, we disaggregated the regional estimates into each land class. 

2. Based on these results, we modified the TSM for climate change scenario. 

Modification of the TSM included change in the law of motion of hectares of trees 

by age, and the volume of timber harvests for each land class. 

3. We examined the optimal time profile of timber volume harvested, regeneration 

input, stumpage prices, and welfare level for each scenario (the base scenario and 

the climate change scenario). 

4. Based on simulated intertemporal estimates of endogenous variables in TSM, we 

used the TCM to identify the net release of carbon for each scenario. 

5. Changes of carbon storage in the atmosphere will, in tum, affect the global 

wanning. Again changed global wanning would transform ecosystems around the 

globe, and so on. In this context, we were able to identify whether there is either a 

positive or negative feedback effect on global wanning. 



Research Objectives 

Briefly, our main research objectives are summarized as follows . 

Objective I 

Simulate the effect of global wanning on the global timber market and examine 

the net release of carbon into the atmosphere by integrating both TSM and TCM. On 

the basis of empirical simulation results, if the feedback effect is not run back through 

the model , we only identify the carbon flux effects of climate change. If the feedback 

loop is considered, it requires more complicated and difficult modeling. To assess the 

feedback loop, we must not only predict the effects of atmospheric carbon change on 

climate through the GCM, but also simulate the change of ecosystems through the 

steady-state ecological model. 

Objective 2 

Analyze model results under several different timber demand growth scenarios. 

The timber demand growth would be affected by and is coming from mostly housing 

demand, population, and per capita income growth. High demand growth as well as 

very high demand growth scenarios were analyzed. 

Objective 3 

10 

In addition to reporting simulation results of important endogenous variables in 

the TSM including the volume of timber harvests, timber prices, and the level of 

regeneration input, economic welfare level was evaluated for the base scenario and the 

climate change scenario. Differences in welfare level between the base scenario and the 



climate change scenario indicate how much global warming affects the global timber 

market in the economic welfare sense. 

11 
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CHAPTER II 

THE TIMBER SUPPLY MODEL 

Forests have very distinctive characteristics that largely separate them from other 

natural resources. Specifically, their distinctive characteristics lie in the supply curve of 

the forest resource. In the short run, we can view the supply of timber as sirrtilar to that 

of nonrenewable resources. The short-run timber supply function relates to the existing 

inventory stock of forest, the marginal cost of extraction, and the transportation cost. 

Because forests have the characteristics of renewability, however, the short-run timber 

supply function has lirrtitations to account for the long-run behavior of forests. 

The long-run timber supply function relates to the rate of drawdown of current 

inventory stock and also to the rate of renewablity of the forest. The rate of renewability 

is in tum a function of the level of investment in forest regeneration as well as the 

natural endowments in the harvesting site. In this context, we can envisage that the 

short-run timber supply function deals with the extraction of timber while the long-run 

timber supply relates importantly to the costs of timber farrrting such as costs of 

planting, growing and harvesting trees (Sedjo and Lyon 1990). 

This short- and long-run dichotomy in forest management and forest ecology 

suggests the following questions. First, what would be the deterrrtination of an 

econorrtically optimal transition from an old growth forest to new stationary state 

forest? Second, at what rate does society proceed in the process of drawing down the 

old growth inventory and replace it with regenerated forest? Third, what is the optimal 

level of regeneration investment in the regenerated forest? 
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Review of Literature 

To address potential responses to these questions, several econontic timber models 

have been developed to date. These models include work by Adams eta!. (1996), Brazee 

and Mendelsohn (1990), Berek (1979), Sedjo and Lyon (1990, 1996), Sohngen (1996), 

Sohngen and Mendelsohn (1998), and Sohngen eta!. ( 1998). In this section, we briefly 

review the defining characteristics of each econontic timber model. 

In order to reconcile different behavior of the rate of timber production between 

private and public landowners, Berek (1979) constructed an econontic timber model of 

the forest industry that focused only on the Douglas-fir sector in the Pacific Northwest. 

In his model, he considered seven quarter century time horizons (about 150 years), 

which is long enough that the initial time period's supply is insensitive to a change in 

the end-time conditions. For each time period, he tried to maxintize the present value of 

the profits that entrepreneurs can extract from their forested lands subject to their initial 

endowments of land and timber, and biological constraints of growing timber. 

Using the envelope theorem, he derived the timber supply function from a profit 

function, which is dependent on the nontinal rate of time preference of the entrepreneur. 

He also estimated a demand function that included price and other variables. 

Equilibrating timber supply and timber demand, he derived the price of timber in each 

time period. He argued that the resulting equilibrium price is the rational expectation 

price of a private entrepreneur and emphasized the fact that this price depends upon the 

entrepreneur's own rate of time preference. Substituting this equilibrium price into the 



supply function, he derived the supply of timber as a function of the interest rate 

parameter for each time period. 

14 

Brazee and Mendelsohn (1990) developed a continuous time, optimal control 

model of a forest to demonstrate the adjustment path of the timber market from one 

stationary state to another stationary state. Their objective function for harvesting 

standing stumpage is the discounted revenue from harvests minus the rents paid on the 

used land, subject to change of the total number of acres of standing forest at timet. For 

the formulation of total costs, they considered three costs, including harvesting costs, 

planting costs, and land rent. Also they assumed that the marginal harvesting cost, 

planting cost, and land rent are all constant. 

Through application of the pontryagin maximum principle (Pontryagin et al. 

1962), Brazee and Mendelsohn (1990) provided the optimal harvesting schedule from 

necessary conditions. The optimal harvesting schedule is governed by a marginal rule, 

which is an arbitrage equation that is dependent on the marginal benefit and the 

marginal cost of postponing the harvest. The arbitrage equation is a differential 

equation of price; hence, the optimal time path of price can be determined as long as 

any standing stock remains. 

In this context, they suggested that as long as prices are changing according to the 

arbitrage equation, the private entrepreneur could not be made better off by switching 

timber harvests to another date. Thus, they argued that a competitive market should 

choose an optimal intertemporal harvest path. They presented two examples of 

simulation results based on timber demand changes including a 20% timber demand 
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increase as well as a 20% timber demand decrease to see how endogenous variables 

change as demands change. Brazee and Mendelsohn (1990) found that while 

entrepreneurs harvest old growth trees, the growth rate of price of old growth timber is 

rising more rapidly than the rate of market interest. As such, old growth timber is 

consumed more quickly than in the case of nonrenewable resources with no rent for 

land. It indicates that the pricing rule of old growth timber does not follow Hotelling's 

rule (1931).2 

Sedjo and Lyon (1990) modeled dynamic economic behavior in the global timber 

market and labeled their model as TSM. Their model is a nonlinear dynamic 

optimization model designed to examine dynamic characteristics of timber supply such 

as aging of trees, timber harvesting and regenerating investment. Discrete time optimal 

control theory is used to formulate their model. To generate the optimal time path of 

economic variables, TSM defines the objective function as the sum of discounted 

present value of net surplus (consumers' surplus and producers' surplus) subject to 

initial inventory stock and two Jaws of motion of state variables. This objective function 

generates the property that the optimal time profile of timber harvesting is economically 

efficient from society's point of view. 

Sedjo and Lyon (1990) included heterogeneous forest types in 22 land classes in 

seven responsive regions to observe the systemwide time profile of timber harvesting 

and price in aggregate and by each land class. In particular, they extended their TSM to 

analyze the supply of solidwood and pulpwood in the world market. In an extended 

2 
For more details, see Hotelling (1931). 



model (TSM 96), they not only subdivided the timber demand into solidwood and 

pulpwood demand, but also did merchantable volume of industrial wood into 

solidwood and pulpwood using variable proportions, which vary by land classes. 
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Adams eta!. (1996) analyzed how public timber harvest policies affect the private 

timber production in the conterminous U.S. timber markets by using a dynamic 

economic model. Prices, private harvest, and private forest management investments 

were modeled as endogenous variables. They differentiated log products by six product 

classes including sawtimber, pulpwood, and fuelwood from both hardwoods and 

softwoods. They employed nine Jog-producing regions in the U.S including two 

private-ownership classes, as well as a single national demand in their model. In 

addition, they also incorporated softwood and hardwood species groups, three site 

classes, and four timber management intensity classes for the forest inventory stock. 

Species groups were used to reflect variations in timber yields, financial returns, 

and other attributes. They described the species of a particular inventory aggregate by 

one of four possible intertemporal species order classes such as SOFSOF, SOFHAR, 

HARHAR, and HARSOF. For instance, a HARSOF referred to land areas in which 

currently growing stock is in the softwood group, but the previous rotation was in the 

hardwood group. Inventory stock was also subdivided into three site classes (low, 

medium, and high) in the two southern regions and the Pacific Northwest Westside, and 

for elsewhere it was classified as only a single "average" site class. They also 

considered different timber yields by management intensity class. In this context, four 
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timber management intensity classes for both private owner groups were included such 

as passive, low, medium, and high management intensity classes. 

Based on their model specification, they defined their objective function as the 

maximization of the discounted sum of future log consumers' and producers' surplus. 

To calculate consumer and producers' surplus, they estimated consumers' willingness to 

pay for six timber products according to classifications of logs. From estimated 

consumers' willingness to pay, they subtracted the total cost of production, which 

includes timber management cost, log production cost, transportation cost, and costs of 

investment to expand domestic log processing capacity. In addition, they included 

export demand and import supply functions for each domestic timber producing region, 

and incorporated their respective surpluses in the objective function to emulate 

competitive trade. 

Although their modeling approach was consistent with an optimal control 

modeling framework, they formulated the optimization problem as a nonlinear 

programming problem to escape the computational difficulties of optimal control 

solutions. They used currently available nonlinear programming algorithms (in 

particular, a variant of the MINOS optimizer) to estimate the intertemporal endogenous 

variables in their base model. They illustrated the simulation results of the sensitivity 

analysis to important exogenous variables. In addition, they also simulated alternative 

public harvest scenarios and examined the impacts on private harvests and 

management, and welfare shifts among groups and regions. 
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Sohngen ( 1996) and Sohngen and Mendelshon ( 1998) constructed a dynamic 

ecological-economic timber model using continuous time, optimal control theory in 

order to observe how much global warming would affect timber markets in the 

terrestrial U.S. They basically followed the model specification by Brazee and 

Mendelsohn ( 1990). However, in order to reinforce the theoretical weakness of Brazee 

and Mendelsohn's model , they defined their objective function to be the discounted 

present value of the net surplus (consumers' surplus and producers' surplus) as Sedjo 

and Lyon (1990, 1996) did. In their model, they considered two control variables 

including how much to harvest, and how many hectares to regenerate. As a 

consequence, the change of land area in forest, which played as a constraint in their 

model, was formulated as the difference between land area harvested and regenerated. 

Also, they included the regeneration cost of trees in their total cost formulation. 

In modeling dynamic ecological change impacted by climate change, they 

considered two dynamic paths of ecological change discussed by ecologists: dieback 

scenario and regeneration scenario. To estimate dynamic ecological change, they 

utilized the simulation results of VEMAP ( 1995), who simulated steady-state ecological 

change associated with climate change by combining an independently developed 

biogeographical distribution model and biogoechemical cycle model. VEMAP used 

MAPSS, DOL Y, and BlOME 2 as biogeographical distribution models ; TEM, 

CENTURY, and BIOME-BGC as biogeochemical cycle models ; and UKMO, OSU, 

and GFDL R30 as general circulation models. 
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Dynamic ecological change was derived from the results of steady-state ecological 

change and linearlity assumptions about adjustment in climate and ecosystems. With 

the estimates of dynamic ecological change, they modified a dynamic economic model 

of U.S timber market in order to reflect dynamic ecological change. Using a modified 

dynamic economic model, they simulated the timber price path over the simulation 

period for each dynamic ecological scenario, respectively, and examined the welfare 

change caused by climate change by comparing the welfare level for the base scenario 

and each of the climate change scenarios (dieback and regeneration scenario). 

Sohngen et al. (1996, 1998) modified the TSM (Sedjo and Lyon 1990) to study 

how global warming would affect the global timber market. They classified forests 

across the globe into both timber types and management classes. Management classes 

were decomposed into five broad categories including regular, plantation, tropical 

inaccessible, circumpolar inaccessible, and semi-accessible. Based on classification of 

management classes, they also incorporated 44 different timber types in their model. 

Consideration of different management classes allowed them to specify differential 

harvesting patterns in their model. For example, in the circumpolar inaccessible class, 

timber harvesting does not follow the traditional harvesting rule where the oldest timber 

is harvested first. 

In particular, they did not assume constant marginal cost for timber production for 

tropical inaccessible and circumpolar inaccessible class. Instead, they defined 

increasing marginal cost for these classes. Also, they specified marginal cost as an 

increasing function of cumulative timber harvesting for the semi-accessible class. They 



specified the laws of motion governing both the hectares of trees by age and the 

regeneraton input according to the classification of management classes. They also 

endogenized the choice of plantation establishment by incorporating a cost for 

purchasing new land in the emerging region plantation. 
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In order to model dynamic ecological change impacted by climate change, 

Sohngen et al. ( 1998) used the simulation results of BlOME 3 using two general 

circulation models (the Hamburg [Claussen, 1996] and the UIUC [Schlesinger et al. 

1997]). They considered two paths of dynamic ecosystem type changes: dieback and 

regeneration. Using the dynamic ecological change framework in Sohngen (1996) and 

Sohngen and Mendelsohn (1998), they simulated the optimal time path of endogenous 

variables in their model for the base scenario and each of the two climate change 

scenarios (dieback and regeneration scenario). When they compared simulation results 

between the base scenario and each of climate change scenarios, they identified that 

global warming would affect positively the global timber market through an increment 

of timber harvests and a decrease of timber price. 

Sohngen et al. (1998, 1999) extended the model developed by Sohngen (1996) 

and Sohngen and Mendelsohn ( 1998) to observe dynamic behavior of the global timber 

market. In addition, by modifying their extended model to account for the dynamic 

ecological change, they investigated how much global warming would impact on the 

global timber market. After simulating both the base scenario and each of the climate 

change scenarios, they again identified that global warming would have a positive 

impact on the global timber market through the increase of economic welfare. 
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Among economic timber models reviewed above, the TSM developed by Sedjo and 

Lyon (1990, 1996) provided significant comparative advantages in the analysis of 

diversified forest ecosystem management strategies. In general, harvesting levels in TSM 

were affected by seven types of adjustment: (1) rotation length of age, (2) the rate of 

drawn-down of old growth inventories, (3) the number of forested land classes that are 

utilized in the harvest, ( 4) the level of regeneration input applied to the various land 

classes, (5) the rate at which new industrial plantations are added to the world's timber 

producing regions, ( 6) the rate of technical change, and (7) changes in production from 

nonresponsive regions of the world (Lyon and Sedjo 1992). Because of these 

comprehensive natures of the TSM framework, we adopted it as the key economic model 

to achieve our research objectives. 

Description of the Timber Supply Model 

The TSM was constructed to examine theoretical and empirical issues in the 

world timber market. The dynamic characteristics of timber supply such as aging of 

trees, timber harvesting, and regenerating input are modeled using discrete time optimal 

control theory. This model generates the optimal time path of economic variables in the 

timber market in the sense that the model is to maximize the sum of discounted present 

value of net surplus (consumers' surplus and producers' surplus), subject to the initial 

inventory and laws of motion governing evolution of the system. 

In this model, two laws of motion are formulated, one for the hectares of trees by 

age and the other for regeneration input level. These two laws of motion explicitly 



recognize that timber harvest levels depend on both existing capital stock and the 

growth of trees resulting from regeneration. In this sense, the TSM allows for 

estimations and projections of the economically efficient rate of harvesting from 

existing old growth forests , natural regeneration of second growth, and man-made 

plantations. 
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From a social perspective, the TSM maximizes total benefit to the society as a 

whole, not the net income stream of an individual landowner. Compared to other 

economic timber models (Berek 1979, Brazee and Mendelsohn 1990), whose objective 

function is to maximize the discounted present value of net income stream of the 

landowners, the TSM provides economically efficient solutions. 

The TSM traces out the systemwide time profile of harvesting volume in 

aggregate and by each land class, and generates a systemwide dynamic market price 

while determining the economically efficient regeneration by time period and by each 

land class. In the TSM, timber supplying regions are decomposed into two categories; 

one is the responsive region and the other is nomesponsive region. The responsive 

regions are defined because they are assumed to respond to profit-maximization 

incentives and therefore generally behave in a way that we have termed as economically 

efficient. Actually, these regions have predominant market economies and are 

functioning largely in response to market forces. The responsive regions consist of 

seven regions including: U.S. South, U.S. Pacific Northwest, western Canada (British 

Columbia) , eastern Canada, Nordic Europe, Asia-Pacific, and the emerging region. 



These seven responsive regions are subdivided into 22 land classes in the model to 

capture both physical and economic conditions. 
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Among these responsive regions, the emerging region has played a critical role in 

increasing the supply of timber to the global market. Over the past 20 years, a large area 

of plantations has been established in both subtropical and tropical regions of the globe. 

Sedjo (1995) estimated that 9.8% of global industrial wood production is supplied from 

this emerging region. The emerging region in the TSM includes Brazil, Chile, and 

Venezuela in South America; Australia and New Zealand in Oceania; and South Africa, 

Spain, and Portugal in Europe. 

The nonresponsive regions include the former Soviet Union, other European 

subregions, and all other regions in the globe. These regions are not included in the 

TSM because timber harvesting in these regions is viewed as autonomous and is 

determined independently of the usual economic incentives. However, according to 

Sedjo eta!. ( 1993) almost 50% of worldwide industrial wood production in the mid 

1980s was supplied from the non responsive regions. 

Specification of TSM 2000 

In addition to both theoretical and regional characteristics of the TSM described 

above, we extended the TSM by considering more important up-to-date components to 

achieve our research goals. First, the extended TSM (referred to as the TSM 2000) 

considers the former Soviet Union as a part of the responsive region due to more liberal 

economic incentives that exist in timber markets that are undergoing market-oriented 
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reform. Since the former Soviet Union has been in the process of transformation from a 

centrally planned and regulated economy into market functioning economy since 1990, 

the former Soviet Union will participate in the global timber market in the future . It 

will , therefore, play a critical role in supplying stumpage to the global timber market 

since it is estimated that it contains approximately 25% of worldwide forest growing 

stock (Backman and Waggener 1991). 

The Soviet forestry establishment has traditionally divided the country into two 

distinctive regions: European USSR and Asian USSR, including Central Asia. 

Moreover, the traditionally defined Asian USSR region can be divided into an East 

Siberia region encompassing most of the mountain forests and West Siberia region that 

lies immediately adjacent to the European part of the country. For this research, we 

subdivided the former Soviet Union into three subregions: European USSR, West 

Siberia, and East Siberia. Also, according to ecosystem types and the degree of 

accessibility for harvesting, these three subregions consist of 16 land classes: eight land 

classes for European USSR, four land classes for West Siberia and East Siberia, 

respectivelyJ Specific land classes for subregions in the former Soviet Union are 

shown in Table A-1 (see Appendix A). 

According to the BlOME 3 simulation, European USSR is subdivided into four ecosystem types ; 
including Boreal Coniferous, Temperate Conifer, Temperate-Boreal Mixed, and Temperate 
Deciduous. Also, West Siberia and East Siberia are subdivided into two ecosystem types; Boreal 
Coniferous and Temperate-Boreal Mixed, respectively. On the basis of ecosystem types for each 
subregion, we classified a land class as "North" if the forest type is coniferous and as "South" if the 
forest type is deciduous for each subregion. In addition, we considered a land class as accessible if 
the age of forest is young class I, II, and middle age; and as inaccessible if the age of forest is 
approaching mature, mature, and over mature. For age categories of the forest, the method used in 
Backman and Waggener (1991) was followed. 
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Second, we included more plantation forests in the emerging region in TSM 2000. 

Plantation forests in India, the Asia-Pacific region, and subregions in Africa except 

South Africa are not included as part of the emerging region in the original TSM. Both 

tropical and subtropical regions have experienced an increase in plantation forests 

(Sedjo 1995). Land areas in these regions , which are exploited for agricultural 

production or were being conserved for the future use, are now being turned into 

plantation forests . In order to obtain more detailed projections of the intertemporal time 

profile of the world stumpage price and harvesting level, we needed to include 

plantation forests of these regions as part of the emerging region in the TSM 2000. 

About six million hectares had been planted in the emerging region by 1980 (Sedjo and 

Lyon 1990); however, it is estimated that plantation forest acreage included in these 

area was about 38 million hectares in 1990 (United Nations Food and Agricultural 

Organization [UNFAO] 1993a, 1993b, 1995). 

Third, there has been a trend to withdraw forest land from timber harvesting and 

conserve it for wilderness, ecological reserves, parks, scenic corridors, and other purposes 

in many major timber-producing countries. The International Union for Conservation of 

Nature and Natural Resources (IUCN) has published the United Nations List of National 

Parks and Protected Areas since 1962. Recent publications in 1990 and 1994 included all 

the areas designed to be protected by individual governments as well as the international 

organizations. These land areas are based on three criteria such as size, management 

objective, and authority of the management agency (IUCN 1994). According to 

management categories of these versions, category 1 through category 5 are the areas 
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where all commercial timber harvesting is officially prohibited. Yan (1996) calculated the 

conserved hectares of forest for seven responsive regions being included in the TSM 

since 1981 (1980 for Asia Pacific region) based on publication ofiUCN (1994). He 

designed nine scenarios of forest conservation by combining these calculations with more 

information on conservation actions for each responsive region4 

Obviously, forest conservation will have an impact on commercial forest 

inventories and the time profile of timber harvesting, stumpage price, and forest 

management practices. Current trends to promote conservation of forest for 

environmental protection suggest that conservation patterns modeled in TSM 2000 will 

be an important factor affecting worldwide timber supply. In this respect, we modeled 

conservation of forest for each region by adopting Y an's ( 1996) scenario five and the 

forest conservation ratio of sub-regions of the former Soviet Union in Backman and 

Waggener (1991) 5 Table A-2 in Appendix A shows the conservation ratio of forest for 

each land class in the TSM 2000. Based on the conservation ratio of forest for each 

land class, we calculated the commercial inventory of forest with conservation for each 

land class (see Table A-3 in Appendix A). 

Fourth, the TSM considered only 22 land classes in seven responsive regions to 

project the optimal time profile of important endogenous variables in the model. To 

meet the first research objective (i.e., to identify the effect of global warming on the 

For more details, see Chapter 4 of Y an's dissertation ( 1996). 

For the former Soviet Union, the conservation ratios of forest for European USSR, West Siberia, and 
East Siberia are 29%, 16%, and 14%, respectively. According to Backman and Waggener, Group I 
Forest is most commonly restricted for forest conservation. 
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global timber market), we considered changes in the distribution of ecosystem type 

(vegetation pattern) and changes in the productivity of ecosystem type from simulation 

results of a steady-state ecological model after climate change. When we examined 

change in the distribution of ecosystem types on the basis of BIOME 3 predictions 

using Hamburg as our GCM, we observed that in some regions a large potion of an 

ecosystem type would be transformed into other ecosystem types after climate change. 

This reflects the fact that some species die out from the area where they are currently 

standing, and new species are regenerated naturally or planted by human beings for 

economic benefit. In this respect, we subdivided land classes in more detail in the TSM 

2000 in order not to lose the ecological information detail acquired from the BIOME 3 

predictions on ecosystem type change. The TSM 2000, therefore, included 42 land 

classes in I 0 responsive regions so that we might examine the impact of global 

warming on forest types in more detail. Detailed land class classifications are shown in 

Table A-I. 

In the TSM 2000, we included demand curves for both solid wood and pulpwood. 

Net surplus in year j is defined as the area under year j's demand curve for solidwood 

from zero to the volume of harvested, plus the area under year j's demand curve for 

pulpwood from zero to the volume of harvested minus harvesting, transportation, and 

regeneration costs for year}, where the costs are the sum of costs over the 42 land 

classes. 

The volume of merchantable timber was divided between solidwood and 

pulpwood using variable proportions that were determined endogenously as a function 
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The role of discrete optimal control theory lies in identification of the laws of 

motion and the equations and equalities for the necessary conditions. These were used 

to identify the equations that were iteratively solved to numerically solve the problem. 

Formulation of TSM 2000 

Functional representation of the model and economic variables used in the TSM 

2000 are presented in this section. The net surplus in the year j can be defined as 

Q, f!, 

sj = f D; (n)dn + f DI (n)dn - ci (I) 
0 0 

where Q i is the quantity or volume of timber for solidwood harvested in year j; 

D; (Q i) is the inverse demand function of industrial wood for solidwood in year j; Q i 

is the volume of timber for pulpwood harvested in year j; D; (Q i ) is the demand 

function of industrial wood for pulpwood in inverse form; and Ci is the total cost in year 

j. The total costs are the summation of harvest, access, transportation costs ( CH) and 

regeneration cost ( CR). Harvesting and transportation costs in year j depend on the 

total volumes harvested by land class, and regeneration costs depend on hectares 

harvested (regenerated) and the level of input used. 

We define xhi to be a vector of hectares of trees in each age group for land class h 

in year j with elements x hij· The subscripts h, i , and j correspond to land class, age 

group, and the year, respectively. The equatin xhij denotes for land class h, the number 

of hectares of age group i in year j; let zhi be the vector of state variables for the 

regeneration input with elements zhij• the level of regeneration input associated with age 
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group i in year j for land class h. Next, uhf is defined to be control vector of hectares 

harvested. The elements of uhi denote for land class h the portion of the hectares of trees 

in age group i harvested in year j. Let w h1 be the level of regeneration input per hectare 

for those hectares regenerated in year j , and let P wh be the price of regeneration input for 

land class h. 

The merchantable volume of timber per hectare for land class h in time period j 

for a stand regenerated i time periods ago depends on i and on the magnitude of the 

regeneration input used on this stand (z.,). We denote this merchantable volume as 

follows: 

(2) 

This volume is divided between solidwood and pulpwood using variable 

proportions that vary by land class, with </Jh referring to the portion going to solidwood 

and ( I - </Jh) the portion going to pulpwood. The proportion </Jh a constant elasticity 

function of the price of solidwood relative to the price of pulpwood (p; I pj). When 

this relative price is greater than or equal to 1.05, it is given by 

(3) 

where p' and pP are solid wood and pulpwood price, respectively; e is the elasticity of 

</J with respect to relative price, which is the same for all land classes, and Ah is a 

scaling factor that varies by land class. When, however, the relative price is between 1 

and 1.05, we use the function 



l/>h1 == [ (p; I P)) -1]' 2
h 
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(4) 

where t:2h is selected so that these two functions for r/Jhj give the same value at a 

relative price of 1.05. Note that the value of this function approaches 0 as the relative 

price approaches I. For the base case and several scenarios to be considered, we use an 

elasticity, e, of 0.6, and select the scaling factors so that the reference level of ¢ •. given 

in Table A-8 (Appendix A), would exist at a relative price of 1.5. 

With these definitions, the volume of commercial timber harvested for solid wood 

and pulpwood from land class h in year j, Qhj and Q hj is given by 

(Sa) 

(Sb) 

and 

(6) 

where Xhj is a diagonal matrix using the elements of xhj • and the total volume harvested 

in the responsive regions is the summation of these over all land classes. 

Costs including harvest, access , and transportation cost for land class h are a 

function of the volume harvested in that land class; 

and regeneration cost for land class h in time periodj is given by 

(7) 
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(8) 

where the inner product in parenthesis gives the hectares harvested in land class h, vhj is 

the exogenously determined number of hectares of new forest land in land class h, and 

the product of the last two terms gives expenditure per hectare. Total costs are 

formulated as 

(9) 

With these definitions, the objective function ofTSM 2000 is the discounted 

present value of the net surplus as follows: 

(10) 

where p is the discount factor, e·', with r as the market interest rate; J is the last time 

period; u is any admissible set of control vectors, ul)u1, ... ,u1_1 (including all land 

classes); w is any set of admissible control scalars, wl) w 1, .. . wj.J (also covering all land 

classes); and S1* (.,.) is the optimal terminal value function. 

The equation ( 10) should be maximized subject to the laws of motions of state 

variables and constraints on the value of control variables. 

The portions of hectares harvested are constrained to be nonnegative and less than 

or equal to 1, and the regeneration inputs are constrained to be nonnegative; 

for all h, i, j (lla) 

for all h, j (llb) 
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The laws of motion for the given system are given by 

for all h,j (12a) 

for all h, j (12b) 

where 

0 0 0 0 0 

0 0 0 0 0 

0 I 0 0 0 0 

0 0 1 0 0 0 
A= e= 

0 0 0 0 

0 0 0 0 0 0 0 0 

1 1 1 1 1 

-I 0 0 0 0 

0 -1 0 0 0 

0 0 -1 0 0 
B= 

0 0 0 -1 0 

0 0 0 0 0 0 -1 0 

A, B, and U are M-square matrices; U,j is a diagonal matrix using the elements of u,j; 

and e is an M-vector where M is equal to or greater than the index number of the oldest 

age group in the problem. 





36 

the discrete time maximum principle. Applying the maximum principle for this timber 

supply problem, we can derive the necessary conditions. The maximum principle is a 

theorem that states that the constrained maximization of equation ( I 0) can be 

decomposed into a series of subproblems. In each time period, the following 

Hamiltonian is maximized with respect to u,i and w,i subject to constraints. 

The Hamiltonian for year j is 

Q, Q, 

Hi = f D; (n)dn + f D) (n)dn-Ci + LA•.i•1[(A+BU,i )x,i +v,ie] 

where 

and 

0 0 h 

+ Lll';.i.,(Az,i + p.,, w.ie) 
h 

(} = 1, .. .. .. .. .1) 

(} = 1, .. .. .. .. .1-1 ) 

(} = 1, .. .. ...... 1) 

(} = 1, ........ .. 1-1) 

(15) 

( 16a) 

(16b) 

The derivatives with respect to vectors are gradient vectors, and s;., ( ) is the solution 

function in}+ 1. The solution function in year j + 1 can be conceptualized as the result 

of an application of Bellman's optimality principle and backward recursion. The Ahi and 
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I{F.j are costate (adjoint) vectors and identify the shadow values of the hectares of forest 

and the regeneration input, respectively, in each age group in year j. 

The necessary conditions for constrained maximization of the Hamiltonian in 

equation (15) are both necessary and sufficient for the constrained maximization of 

equation ( 1 0). The correspondence of necessary conditions is the essence of the 

maximization principle (Halkin 1966). The conditions are sufficient because an 

equivalent form of the constrained maximization of (10) can be shown to be the 

maximization of a quasi-concave function subject to a set of linear constraints. 

The Lagmagian function and the Kuhn-Tucker necessary conditions of this 

optimization problem are: 

L7 =Hj + L~•/ (1-u.) (17) 

h 

(for all h) (18a) 

(for all h and i) (18b) 

(for all h) (18c) 

(for all h and i) (18d) 

(for all h) (18e) 

(for all h and i) (18f) 

These Kuhn-Tucker conditions, the laws of motion for the state variables (equations 



12a-12b), and the laws of motion for costate variables (equations 16a-16b) identify a 

two-point boundary value problem that can be used to solve both theoretical and 

numerical problems. 

The Analytic Solution 
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Equations (12a-12b) identify the method for calculating the values of state 

variables (hectares of forest by age group and stock of regeneration investment) in each 

year, given the values of the control variables in each year. These equations move the 

state variables forward through time. Equations (16a-16b) identify the method for 

calculating the costate variables (shadow values of the state variables) in each year, 

given the values of the control variables in each year. This procedure calculates the 

costate variables starting at year J and moving backward through time to the present 

(} = 0 ). Finally, equations (18a-18f) identify the method of finding the values of control 

variables in each year. Now, we will manipulate equations (18a) and (18b) into a set of 

difference equations and use the difference equations in our solution algorithm and in 

our theoretical discussions of the solution time profiles. The elements of CJL7 1 duhj in 

equation (18a) can be written as 

where Phj is the net price or stumpage price of timber for land class h. Stumpage price is 

equal to the market price of solid wood weighted by the portion of timber in land class 

h, that is solidwood, rp.v; (Qj ) , plus the price of pulpwood weighted by the portion 
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that is pulpwood (l-¢. )Dj (Qi ) minus the marginal harvesting, access, and 

transportation cost of timber c; (Q•i + Q.i ). This equation gives the marginal net 

surplus (net shadow value) of harvesting hectares of trees by age group and land class. 

In equation ( 19), ?.. •. l.i• ' is the shadow value of trees that are one year old in year j 

+ 1 (i .e. , trees regenerated in year j) . Examination of equation ( 16a) indicates that its 

solution value is the discounted value of the actual harvest of these trees in the future . 

The costate variable, ?..h.i+ l. i+J , is the discounted value of age group i in the land class h 

from next year. For age group kin this land class it can be written as 

which states that the opportunity cost of harvesting k year old trees in year j is the 

discounted value of the trees that could be regenerated a year in the future plus the 

stumpage price of timber next year times the merchantable volume of timber on that 

hectare one year in the future minus the optimal regeneration expenditures on that 

hectare. Combining equation (20) with equation ( 19) yields 

(20) 

The solution to this discrete time optimal control model is the time paths of state 

variables, control variables, and costate variables, such that the laws of motion for state 

variables, equations ( 12a-12b ), the laws of motion of costate variables, equations (16a-

16b), the difference equation for the net price of timber (stumpage price) given in 

equation (21 ), and the remaining first-order condition, equations (18b-18f) through 
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(2.14f), are simultaneously satisfied. These form a two-point boundary value difference 

equation problem. 

Solution Algorithm 

Our solution algorithm solves the optimal values of the control (choice) variables 

in the transition period. These time paths generate an evolution of the state variables 

(e.g., hectares of trees by age group) from their initial values to those in the stationary 

state. The algorithm uses a shooting (binary search) method to solve a constrained 

difference equation problem. The difference equations are the law of motions of the 

state variables; the law of motions of costate variables; and an equation that is derived 

from the first two necessary conditions. These form a two-point boundary value 

difference equation problem, which is to be solved subject to the remaining first-order 

conditions. The boundary values are determined by the initial and terminal conditions. 

These difference equations with their initial conditions have a set of solutions, one 

for each value of market price of timber in the first time period. The shooting method is 

a search for the member of this set that satisfies the terminal conditions. This search is 

carried out by starting with an arbitrary element from the set of solutions and 

systematically eliminating solutions that do not satisfy the terminal conditions until a 

satisfactory solution is found. 
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CHAPTER III 

THE ECOLOGICAL CHANGE IMPACTED BY GLOBAL WARMING 

The primary objective of this chapter is to explicitly model the dynamic ecological 

change generated by global warming. While a dynamic ecological model that covers all 

regions of the globe has not yet been developed, recent advances by VEMAP (1995) 

have focused efforts on development of a dynamic ecological model for the 

contenninous U.S. This model is referred as VEMAP Phase II, and is not currently 

available for general use among the scientific community working on global warming 

issues. As a result, we depended on steady-state ecological models in order to derive 

necessary information about dynamic ecological change. Steady-state ecological models 

have been constructed only to observe the change of steady-state equilibrium of 

ecosystems before and after climate change. 

In order to observe the change of steady-state ecological equilibrium, a GCM was 

used to capture the climate change when carbon dioxide is doubled in the atmosphere. 

Using changed-climate variables as inputs, the steady-state ecological model simulated 

not only the change of distribution of ecosystem type, but also the change of 

productivity of ecosystem type across the globe. 

Steady-state ecological models are, in general , classified into two types of models: 

the biogeographical distribution model and the biogeochemical cycle model. The 

biogeographical distribution model predicts the change of distribution of ecosystem 

types (vegetation patterns) and the biogeochemical cycle model evaluates the change of 
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productivity of the ecosystem. Steady-state ecological models only provided 

information on the change of steady-state ecological equilibrium, but they did not 

supply information on the transient change of ecosystem type during the time period of 

climate change. We compensated for this limitation by assuming that both climate 

change and ecosystem change occurs as a linear function of carbon dioxide 

accumulation in the atmosphere. Under this assumption, we were able to simulate 

dynamic ecological changes between steady-state ecological equilibria before and after 

climate change. In the following sections, we examine characteristics of the two 

conventional steady-state ecological models and discuss our attempt to extract 

information about dynamic ecological change based on the results of a steady-state 

ecological model. 

The Steady-State Ecological Model 

The General Circulation Model 

The GCM is designed to predict the distribution of climate variables in a 

geographic grid cell (e.g. , .5o x .5°) latitude and longitude grid cell. To examine 

climate change, we supposed that the current distribution of climate variables across the 

globe serves as the base climate. Using the GCM, we simulated the distribution of 

climate variables, at the cell level, contingent upon a doubling of carbon dioxide in the 

atmosphere. Once the distribution of climate variables between the base scenario and 

the scenario in which atmospheric carbon dioxide is doubled is compared, the variation 



of climate across the globe can be examined. Simulation results from the GCM were 

used as inputs in the steady-state ecological model. 
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There are approximately 30 GCMs in use by scientists investigating climate 

change issues. These include GISS (Hansen et al. 1988), UKMO (Wilson and Mitchell 

1987), GFDL-R30 (Manabe and Wetherald 1987), OSU (Schlesinger and Zhao 1989), 

Hamburg (Claussen 1996), and UIUC (Schlesinger et al. 1997), etc. We used Hamburg 

for our GCM since it is designed to simulate most aspects of the observed time-mean 

circulation and its intraseasonal variability with remarkable skill (Claussen 1996). 

The Biogeographical Distribution Model 

The biogeographical distribution model (geographic model) is designed to 

simulate the potential natural distribution of vegetation patterns as a function of climate 

and soils across the globe. MAPSS (Neilson and Marks 1994), BlOME 2 (Prentice et 

al. 1992), and DOLY (Woodward et al. 1995) were developed and used to simulate the 

change of distribution of ecosystem types under various climate scenarios. These 

models use mechanistic rules to classify spatial vegetation patterns which are dependent 

on climate variables. Although each model utilizes a different algorithm to generate the 

change of distribution of ecosystem type, all models are dependent on the fact that 

climate determines vegetation patterns in the site in which they are growing. In general, 

it is known that the distribution of forest types is highly correlated with the distribution 

of ecosystem types. On the basis of this relation , we can acknowledge that if the 
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ecosystem types are adjusted or transformed by the global warming, forest types across 

the globe will follow the change in ecosystem types. 

The Biogeochemical Cycle Model 

The biogeochemical cycle model (biogeochemistry model) has been developed to 

simulate biogeochemical fluxes through ecosystems given a prescribed distribution of 

ecosystem types. These models consider the processes involved with carbon, nitrogen, 

and water cycles to determine ecosystem production under given climate conditions. 

Given that a specific ecosystem type is present, biogeochemical cycle models predict 

net primary productivity (NPP). The NPP is defined as the net amount of carbon 

available for plant growth from photosynthesis in any given period. Net primary 

productivity represents the carbon stored in plants per unit time, which is not used for 

respiration, but is exploited only for plant growth (Sohngen 1996). In this sense, the 

difference in the NPP between the base climate and changed climate affects the size of 

a tree. Biogeochemical cycle models currently in use include TEM (Mellio et al. 1993), 

CENTURY (Parton et al. 1988), and BIOME-BGC (Running and Coughland 1988, 

Running and Gower 1991). 

Both the biogeographic distribution models and the biogeochemical cycle models 

have, for the most part, been developed independently. Both have been used for large 

geographic regions using various GCMs. It is, however, widely acknowledged that any 

serious attempt to assess how global climate change will affect natural ecosystems must 

combine the insight provided by both models (VEMAP 1995). VEMAP began to 
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employ several models of each type and to compare combined models in order to 

provide more realistic simulation of ecological response to climate change. Their efforts 

have resulted in models providing more robust insight into the process of steady-state 

ecological change which underlies climate variation. However, they failed to link 

formally specific models so that both models interact truly. In addition, the VEMAP 

project included only the conterminous U.S., but did not span the entire globe. 

Description of BlOME 3 

The work of Haxeltine and Prentice ( 1996) reflects an attempt to provide explicit 

interaction between the biogeographical distribution model and the biogeochemical 

cycle model within a single global framework. They labeled their model BlOME 3. 

BlOME 3 has been developed to simulate ecosystem types around the globe using a 

minimal set of just five woody and two grass plant types as plant functional types 

(PFTs) 6 This classification scheme was used to map outputs to biomes. Biomes across 

the globe are classified into 18 legends. Of these, forests are mapped using only nine 

legends.' 

An important application of BlOME 3 is to simulate the equilibrium response of 

vegetation patterns to climate change, which results from change in atmospheric carbon 

dioxide concentrations. The model captures the direct response of photosynthesis and 

6 For more detail about the plant functional types, see the Haxeltine and Prentice (1996). 

7 Nine legends denoting the forests are as follows; I: Boreal Deciduous Forest/Woodland, 2: Boreal 
Coniferous Forest/Woodland, 3: Temperate-Boreal Mixed Forest, 4: Temperate Conifer Forest, 5: 
Temperate Deciduous Forest, 6: Temperate Broadleaved Evergreen Forest, 7: Tropical Seasonal 
Forest, 8: Tropical Rain Forest, and 9: Tropical Deciduous Forest. 
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stomatal conductance to change in carbon dioxide. Its output consists of a quantitative 

vegetation state description in terms of the dominant PFTs, the total leaf area index 

(LAI), and the NPP. Thus , this model is used to simulate the direct effect of changing 

carbon dioxide on vegetation distribution, the net primary productivity, and leaf area. 

We utilized the BlOME 3 for our research to observe steady-state ecological 

equilibrium change. Simulated results of BlOME 3 using Hamburg provided the 

necessary information about steady-state ecological changes when carbon dioxide is 

doubled in the atmosphere. 

The Dynamic Ecological Model 

Linearity Assumptions 

When carbon dioxide is doubled in the atmosphere, the steady-state ecological 

model predicts a steady-state equilibrium response in the distribution of ecosystem type 

as well as in the productivity of ecosystem type. In reality, the steady-state equilibrium 

response for climate and ecosystems is likely to occur with a time lag. Climate variables 

will change slowly as the amount of carbon dioxide is accumulated into the atmosphere. 

Ecosystems also respond slowly as changes in climate variables occur slowly over a 

time period. In this sense, both climate and ecosystem change are considered in a 

dynamic process rather than in a steady-state process. 

In order to examine the dynamic ecological change, we imposed three linearity 

assumptions about adjustment in climate and ecosystems as Sohngen (1996) and Sohngen 

and Mendelsohn ( 1998) did. First, climate variables are linearly increasing from 1990 to 
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2060. After 2060, climate variables are assumed to stabilize as environmental agencies 

around the world successfully regulate the anthropogenic emission of carbon dioxide into 

the atmosphere. This assumption is consistent with the IPCC (Houghton et a!. 1990) 

projection of a linear increase of temperature from 1990 through 2060, the time in which 

carbon dioxide is posited to double. Second, dynamic ecosystem adjustment occurs 

proportionally to climate change. Third, the annual net primary productivity also changes 

in proportion to climate change. These linearity assumptions enable us to identify 

dynamic ecological change from outputs of a steady-state ecological model. 

Dynamic ecological changes are decomposed into two categories: change in land 

area of each ecosystem type and change in productivity of each ecosystem type. Dynamic 

land area change can be derived from the biogeographical distribution model, while 

dynamic productivity change can be estimated from the biogeochemical cycle model. 

Changes in distribution of ecosystem type, as well as change in net primary productivity, 

are simultaneously provided by BIOME 3 through their functional interaction. 

Dynamic lAnd Area Change 

There has been considerable controversy among ecologists surrounding how the 

old type forest is transformed and displaced as climate changes over time (King and 

Neilson 1992, Shugart eta!. 1986, Solomon 1986). In general, two processes for 

dynamic ecosystem type change were considered among ecological scientists. One is 

dieback and the other is regeneration. Dieback occurs when environmental conditions 

of the forest become significantly different from those to which the currently growing 



trees are accustomed. Changing climate conditions continuously harass the growing 

trees and, finally, cause them to die. Dieback results from large-scale fires in forests, 

bug infestations, or other harassment that kill trees. Naturally, new species migrate 

slowly into the sites where dieback occurs, and replace old type species. However, if 

human beings regenerate the forest by planting it rather than waiting for natural 

regeneration, the migration of new species will occur more rapidly. 
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According to the regeneration process, currently standing trees are able to continue 

growing in their current site prior to climate changes. However, as these growing trees are 

harvested, or die out naturally, old species are not naturally regenerated. Instead, new 

species migrate naturally into the area with a time lag, or are planted by human beings for 

economic benefit. These changes in ecosystem types force human beings to adapt to the 

change of forest types; therefore, climate change will have an impact on the economic 

structure of the global timber market. 

In the context of these two processes of dynamic ecosystem type change, we 

identified the dynamic land area change in potential forest. In Sohngen ( 1996) and 

Sohngen et al. (1998), they only estimated the dynamic land area change of ecosystem 

types instead of considering the potential forest. 

In order to identify the dynamic ecological change in potential forest, we first 

created potential forest area by eliminating nonforest land area from ecosystem types 

simulated by BlOME 3. In order to perform this objective successfully, we chose the 

world geographic map created by Olson (1989-91), which displays 74 ecosystem 

categories across the globe, including nonforest land area within .5o x .5 o as well as 10 
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minx 10 min grid cells. In Olson's map, nonforest land area categories include 

fannland and settlements, city complexes, paddy, cropland and pasture, coastal, and 

water and islands. After synchronizing the grid cells in Olson's map within a BlOME 3 

simulation map, we derived the potential forest area by subtracting nonforest area in 

Olson's map from the BlOME 3 simulation map8 

On the basis of potential forest, we calculated steady-state ecological changes of 

ecosystem types in each responsive region after climate change such as the dieback 

ratio and the regeneration ratio. Specifically, we considered two factors in selecting 

ecosystem types in each responsive region. These factors include dominant forest types 

for commercial use, as well as a degree of ecological transformation after climate 

change. For most responsive regions except European USSR and Nordic Europe, 

ecosystem types were selected according to the dominant forest types for commercial 

use. On the other hand, for European USSR and Nordic Europe, ecosystem types were 

chosen by considering the dominant forest types for commercial use, as well as the 

degree of ecological transformation after climate change. 

For each ecosystem type in a responsive region, the dieback ratio was calculated 

by dividing a dieback land area by the total base land area (total land area in the absence 

of climate change). The regeneration ratio was also calculated by dividing a regenerated 

land area by the total base land area. To calculate the dieback ratio and the regeneration 

ratio, Geographic Information System (GIS) was used from previous published work. 

Instead of using GIS, however, we made a computer program to facilitate what we 

' Simulation results of BlOME 3 using Hamburg is displayed in .5 ' x .5 ' grid cells. 
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intended to calculate. Appendix B shows regional steady-state ecological changes 

including land area change and net primary productivity change of each ecosystem type. 

TSM 2000 included four land classes in 10 responsive regions; each land class was 

identified according to biological and geographical characteristics such as ecosystem type 

as well as the degree of harvesting accessibility. Thus, the regional steady-state ecological 

changes were disaggregated into each land class according to its ecosystem type. 

Under the linearlity assumptions that were imposed to estimate dynamic 

ecological change, we estimated dynamic land area change of all 42 land classes. The 

dieback ratio and the regenerated area per year for each land class are tabulated in Table 

A-4. The regenerated area per year was calculated through following two steps. First, 

we calculated the yearly regeneration ratio by dividing the calculated regeneration ratio 

into 70 years. Second, we calculated the regenerated area per year by multiplying the 

yearly regeneration ratio with the commercial inventory area with conservation (see 

Table A-3 in Appendix A for the commercial inventory stock with conservation). 

Dynamic Productivity Change 

The NPP is not a dynamic concept, but a steady-state concept in the sense that the 

biogeochemical cycle model predicts the equilibrium NPP at given time. Thus, as part 

of the dynamic ecological specification, the dynamic path of NPP was assumed to be 

linear over the period of climate change. In the context that the NPP is the net amount 

of carbon garnered for plant growth, changes in net primary productivity (NPP) that 

result from climate change allow for inference about change in plant growth. We 
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assumed that the growth per unit of time of the trees is proportional to NPP. Letting 

t = 0 for 1990 and t = 70 for 2060, we linearlized the effects of climate change using 

(22) 

where 

1C = (NPP.m -lJ/70 
NPPo 

The nonclimate change yield function per hectare was defined as q Mj = f , (i, z,,j) 

for land class h in time period} and the standing trees were regenerated i years ago.9 To 

capture the effects of NPP change, we modified the yield function for trees for the time 

period during which climate change occurs. To simplify this discussion we wrote the 

nonclimate change yield function as 

.l.. 
q,ij =a e'-r (23) 

9 In this research, we used the yield function of trees formulated by Sedjo and Lyon (1990) as a non 
climate change yield function. The nonclimate change yield function of tree consists of functional 
components such as age of trees and management of practices (regeneration input). The nonclimate 
change yield function of tree is as 

q=q'(z) ·q 2 (age) 

q'(z) = (z+l)'' for z ~ z 
for z ~ z 

and 

q 2 (age) = c2 exp(c 3 +c 4 l(age-c 5
)) for age> c' 

0 for age> c' 



and the growth per unit time due to aging of the tree is 

dq 

di 

__ {3_ 

(i- y)2 

_{J _ 

a·e<i-r> 
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(24) 

On the other hand, while climate change is occurring (j c[ 1990, 2060])) the growth due 

to aging at year j is given as 

_P_ 
dij = ___ /3_. a· eu-r> ·(I+ K'(i- a)) 
di (i-y) ' 

_P_ _P_ 
=---/3-·a·e <i-r> ___ {3_ a·K'(i-a) e<i-r> 

(i-y)' (i-y)' (25) 

where a is the age of trees at year j* at which climate change begins to occur; thus, i 

and} are related by the equation i =a+ (j- j*), and 1 + K(i- a) denotes the level of 

NPP at year j. Thus, the yield function is the solution to the differential equation (25). 

In addition, the yield function for j c [2061 , co) would be the solution to 

dq =--{3--·a·eu~r> ·iC 
di (i-y) 2 (26) 

where iC = 1 + K'. 70 = NPP7rfNPP0. We used these yield functions to reflect the growth 

of tree associated with the increment of net primary productivity. The ratios of net 

primary productivity change of each land class are also provided in Table A-5. 



53 

CHAPTER IV 

TIMBER MARKET ANALYSIS 

In this chapter, we focus our attention on the effect of global warming on the 

global timber market through the simulation of TSM 2000. To assess the effect of the 

global warming on the global timber market, we modified the TSM 2000 to reflect 

dynamic ecological change associated with climate change. 

We start with a brief overview of the underlying assumptions of the non climate 

change base scenario of TSM 2000. Then, for the simulation of climate change we 

explain how the TSM 2000 was modified to reflect dynamic ecological change. 

Modification of the TSM 2000 includes both the law of motion of hectares of trees by 

age and the volume of commercial timber harvested per hectare. Under the assumption 

of a normal timber demand (ND) scenario, we estimated intenemporal values of 

endogenous variables for both the base scenario and the climate change scenario of 

TSM 2000 over a time horizon of 90 years, starting in 1995. 10 The estimations obtained 

for both the base scenario and the climate change scenario allow us to predict the effect 

of global warming on the global timber market. Moreover, estimates obtained from 

model simulation for each scenario provided not only the aggregate projections of 

intertemporal endogenous variables in the TSM 2000, but also estimates of the 

changing regional structure of endogenous variables in response to economic and 

ecological forces . 

10 We refer to a timber demand scenario, which has the properties of timber demand growth assumed in 
the section entitled "An Analysis of the Base Scenario," as a normal timber demand scenario. 
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To assess sensitivity of the results to different assumptions of timber demand 

growth, we also simulated the model under both high timber demand growth and very 

high timber demand growth. We referred to these two timber demand scenarios as the 

high timber demand (HD) scenario and the very high timber demand (VHD) scenario, 

respectively. Under these different timber demand scenarios, we also observed different 

projections of the endogenous variables in both the base scenario and the climate 

change scenario, respectively. Analysis of changes in projections of different timber 

demand scenarios provided significant insights into the behavior and the responsiveness 

of the global timber supply systems over the long run. 

Finally, we also examined the changes in economic welfare (i.e., economic benefit 

and cost) between the base scenario and the climate change scenario under each of the 

timber demand scenarios. Comparison of the welfare level between the base scenario 

and the climate change scenario indicated how much impact global warming would 

have on human behavior in the global timber market. We begin by analyzing the base 

scenario and then the climate change scenario of TSM 2000 under a normal timber 

demand scenario. 

An Analysis of the Base Scenario 

In our modeling framework, we assumed that in the absence of climate change, 

the base scenario is likely not only to be the best reflection of the world in estimating 

intertemporal endogenous variables in the model, but also to provide the most accurate 

forecasts. As such, if there is no climate change, the base scenario outcomes are 
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considered most presumable and will be used as the baseline to compare with and 

contrast against all other scenarios. The assumptions used for model simulation of the 

base scenario under normal demand scenario are as follows. 

1. World demand schedule for industrial wood (combined pulpwood and solidwood 

products) will increase at an annual growth rate of 1.0% in the first year and 

decreases in a linear fashion each successive year until growth rate is zero in the 

90th year. 

2. World demand schedule for pulpwood initially increases at an annual growth rate 

of 2.72% in the first year and decreases in a linear fashion each successive year 

until the growth rate is zero in the 90th year. 

3. New forest plantations are established in the emerging region at a annual rate level 

of 2, 773,298 hectares for 10 years. 

4 . The dollar exchange rate is assumed to remain at an intermediate level throughout 

the period of analysis11 

In addition to the probable assumptions for the base scenario, we will discuss 

some other economic components used in the base scenario in the context of the real 

world. In previous TSM versions, Sedjo and Lyon (1990, 1996) specified the timber 

demand function for responsive regions as an excess or residual demand function. The 

quantity of demand for the responsive regions is estimated by subtracting the quantity 

supplied by the nonresponsive regions from the quantity of total world demand. In the 

11 These four conditions were also used in the analysis of the climate change scenario, which will be 
discussed later. 
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formulation ofTSM 2000 the former Soviet Union as well as plantation forests in India, 

African countries, and Asia Pacific were included as a part of responsive regions. 

As a result, we needed to estimate the new demand function for responsive 

regions. Due to this regional realignment, we considered the world timber demand 

function as the demand function for the responsive regions in TSM 2000. Initial total 

world timber demand is estimated by the following function 

p = 250- 0.001215. Q 

Following the method in estimating the initial solid wood and pulpwood demand 

functions connoted in TSM 96 (Sedjo and Lyon 1996), we assumed that the initial 

demand portion of solidwood is 60% of the total world demand. On the basis of this 

portion, the initial solidwood and pulpwood demand functions were specified as 

follows: 

(27) 

P' = 162-0.001215. Q' (28a) 

pP: 1J8- 0.0012}5 · QP (28b) 

By extending land classes from 22 land classes contained in TSM to 42 land classes in 

TSM 2000, we needed to include not only the cost functions but also the yield functions 

for new land classes. Estimated components of cost function for new land classes such 

as harvest, access, domestic and international transportation cost are shown in Table 

A-6 (Appendix A). Yield functions for the new land classes were selected to have the 
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same basic equations as those in Sedjo and Lyon (1990). The coefficients of these yield 

functions were selected to reflect characteristics of the region such as climate and 

topography, in which each land class is located. 

The variable proportions of production in solidwood, ¢, , for new land classes 

were constructed from those given in Sedjo and Lyon (1996) by considering land 

classes with similar geographical characteristics, ecosystem type, climate, NPP, etc. 

Both the parametric values of yield functions and the variable portions going to 

solidwood, ¢,,for 42land classes are given in Tables A-7 and A-8 (Appendix A). In 

general, the annual market discount rate would fluctuate over the simulation period; 

however, in this research we used a 4% fixed interest rate as the annual discount rate for 

the entire simulation time period. 

Given the initial commercial timber stock inventory for each land class, we 

simulated the base TSM 2000 scenario and identified the optimal time profile of 

harvesting volumes and prices of solid wood and pulpwood, respectively. 

Simulation Results of the Base Scenario 

Simulation results of the base scenario are shown in Figures 1-4. Figure I shows 

that the total industrial wood production increases 31% from 1.59 billion cubic meters 

in 1995 to 2.08 billion cubic meters in 2085 . 

Figure 2 shows a 55% increase of the volume of pulpwood production from 821 

million cubic meters in 1995 to 1.28 billion cubic meters in 2085. The estimate of 

pulpwood production suggests that 93% of the increase in total industrial wood ( 455 
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million cubic meters) would be pulpwood and only 7% of increase in total industrial 

wood would be solidwood production over the 90 years. This suggests that the large 

portion in the composition of industrial wood would be shifted away from solidwood to 

pulpwood in order to accommodate the more rapidly rising demand growth in 

pulpwood. As a result, the solid wood production increases very slowly to allow such a 

large portion of total industrial wood to shift into pulpwood. Figure 3, therefore, shows 

that the solidwood increases 4.6% from 765 million cubic meters in 1995 to 800 

million cubic meters in 2085. 

Figure 4 shows estimated price changes for solidwood and pulpwood over the 

simulation period. The prices for pulpwood and solidwood experience an increasing 

trend over the simulation period: the price of pulpwood increases 44% from $43 in 

1995 to $62 in 2085, while the price of solidwood increases 21% from $76 in 1995 to 

$92 in 2085. The faster rise of pulpwood price is due to higher demand growth for 

pulpwood relative to solidwood. This relative price increase of pulpwood signals 

producers to switch away more industrial wood production from solidwood to 

pulpwood. 

Simulation of timber production by regions suggests that the current dominant 

production regions, as well ast those in 2085, are in the emerging region, the U.S. South 

and East Siberia. Over 90 years, the emerging region increases production by a factor of 

three while the U.S. South and the East Siberia regions roughly double their timber 

production. Most timber production of these regions contributes to the increase of 

pulpwood production. 



63 

Eastern Canada and European USSR also increase timber production, mostly in 

supplying pulpwood. Nordic Europe maintains fairly substantial timber production over 

the first 70 years ; after that, timber production declines slightly. The change of timber 

production patterns in Nordic Europe suggests that a fairly substantial amount of timber 

production over the early period is a result of matured postwar regenerated trees being 

harvested (Sedjo and Lyon 1990). However, declining timber production after year 70 

is due to the fact that standing matured, second growth trees are not sufficient to 

maintain the harvest level even though the timber demand grows. 

The U.S. Pacific Northwest, western Canada, West Siberia, and Asia Pacific are 

only modest producers of timber, and experience a minimal change over the 90-year 

period. Prior to the initial simulation year, both the U.S. Pacific Northwest and western 

Canada experienced increasing government oversight directed at withdrawal of forests 

on public lands. These conservation efforts will only allow these regions to show the 

modest timber production over the entire simulation period. 

An Analysis of the Climate Change Scenario 

Climate change caused by the accumulation of carbon dioxide in the atmosphere 

generates a change in the distribution of ecosystem types as well as a change in 

productivity of ecosystems. Simulated results of BlOME 3 using Hamburg for each 

land class were analyzed to examine dynamic ecological change. Dynamic ecological 

changes were denoted as the dieback ratio, the regenerated hectares per year, and 

change in NPP. 
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Thus, equation (14a), which denoted the law of motion of the hectares of trees by age, 

was changed as follows: 

where 

0 0 0 0 

0 0 0 

0 d j 0 0 

0 0 d j 0 
C= 

0 0 0 d j 

0 0 0 0 

d, d j d j 

0 0 0 

0 -d j 0 

0 0 -d j 
D= 

0 0 0 

0 0 0 

and 

d j = 1 
dieback per yearh 

L,xh.i.J 

0 0 

d , 

0 

0 

0 

-d j 

0 

d , 

0 

for all h, j 

0 

0 

0 

0 

0 

0 

0 

-d j 

d j 

0 

0 

0 

0 

0 

for i = 2, 3, .... . ... M 

(30) 

(31) 
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This equation can also be expressed as 

x . = x h.2.j+1 h,l,j for all h, j 

(i = 2, 3, .............. M-1) (32) 

For the land areas where standing trees were expected not to die out, equation (14a) was 

also changed as follows : 

for all h, j (33) 

where RR, denotes the regeneration hectares per year for land class h, and A,B, U,1 v,i, 

and e are the same as defined in Chapter II (see the equations (12a-12b)). This equation 

can be expressed as 

for all h, j 

(i = 1, 2, ........ .. .... . , M-1) (34) 

Next, the volume of commercial timber harvested for the total industrial wood after 

climate change was modified by identifying three harvesting categories. In the first 

category, commercial harvesting occurs in the land areas in which standing trees were 

expected to die out after climate change. The second category accounts for the 

possibility that some portion of dieback trees was salvaged from dieback areas. The 

third category considers commercial harvesting in the land areas in which standing trees 

were expected not to die out after climate change. 
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For the salvage of dieback trees, the salvage rate of dieback trees was assumed to 

be 60% of normal merchantable volume on average for both accessible and inaccessible 

land areas, and 70% of merchantability ratio for all salvage operations.13 The 

merchantability ratio is defined as the minimum age of salvage trees divided by the 

optimal harvest age. 

At year j , the three cases of commercial harvesting volume were specified as 

follows: Commercial harvesting volume in the land area in which standing trees were 

expected to die out after climate change is 

for all h, j (35) 

where X hj is a diagonal matrix using the elements of xhj• the vector of hectares of trees in 

this land area; qhj is the vector of non climate change yield function (see equations in 

footnote 10 in Chapter III). Salvage volume of dieback trees is 

M 

s (l-d) · L xh,i,J qh,i,J for all h,j (36) 
i=k 

where sis the salvage rate, and age k is the margin for the salvage of dead trees." 

Commercial harvesting volume in the land area in which standing trees were expected 

not to die out after climate is 

13 In reality, both salvage rate and the merchantability ratio are not flxed as we assumed here, but they 
change as timber prices change. To simplify the analysis of salvage of dead trees after climate 
change, we assumed that both ratios are flxed. 

14 Age k (i.e. , the marginal age for salvage of dead trees), is identifled through the merchantability ratio 
if the optimal harvesting age is determined in the land area where standing trees are expected to die 
out. 
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for all h, j (37) 

where q hj is the vector of modified yield function of trees when climate change occurs 

(see equation (25) in Chapter ill). 

The total volume harvested of industrial wood after climate change is the sum of 

harvesting volume of these three cases. Harvesting volume for solid wood was 

calculated by multiplying the total harvested volume of industrial wood by t/J • , while 

harvesting volume for pulpwood was calculated by multiplying the total harvest volume 

of industrial wood by (I - t/J •) . 

Simulation Results of the Climate 
Change Scenario 

In order to project intertemporal endogenous variables over the entire simulation 

period, we modified the TSM 2000 computer program to include the change in the law 

of motion and the change in total commercial harvesting volume described above. 

Output projections are shown in Figures 5-8. Figure 5 reveals that total industrial 

wood production increases from 1.64 billion cubic meters in 1995 to 2.70 billion cubic 

meters in 2085. The increment of total industrial wood is 1.06 billion cubic meters 

(65% increase) over the entire simulation period. Relative to the base scenario, 

production is larger by 625 million cubic meters in 2085, and it reflects 30% larger 

production than in the base scenario. 

Estimated gains in timber production due to climate change are the result of two 

important factors: First, BlOME 3 predicts an increase in net primary productivity for all 

land classes, and second, BlOME 3 predicts that there will be an increase in hectares of 
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faster growing tree species. As a result, the climate change scenario shows global 

timber supply grows faster than global timber demand, resulting in declining timber 

prices. 
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Specifically, Figure 6 shows that the volume of pulpwood will increase from 846 

million cubic meters in 1995 to 1.54 billion cubic meters in 2085. This increment of 

pulpwood production will be 694 million cubic meters over the entire simulation 

period. In the climate change scenario pulpwood production in 2085 is 261 million 

cubic meters larger than in the base scenario. 

Figure 7 shows the volume of solid wood production increasing from 793 million 

cubic meters in 1995 to 1.16 billion cubic meters in 2085. Solidwood production in the 

base scenario shows only modest gains; however, in the climate change scenario, 

production gains are larger. Estimates for the climate change scenario indicate that 

solidwood production in 2085 is 364 million cubic meters larger than in the base 

scenario. 

Figure 8 shows that the supply response induces a substantial price decrease for 

both solidwood and pulpwood. Solid wood price is estimated to decrease about 34% 

from $73 per cubic meter in 1995 to $48 in 2085. Pulpwood price will decrease about 

25% from $40 in 1995 to $30 in 2085. This simulation suggests that the global 

warming will have a positive effect on the global timber market through increasing 

timber production and decreasing the prices of solidwood and pulpwood. 

Regional variation in timber production suggests some differences relative to the 

base scenario. The dominant production region over 90 years is East Siberia, followed 
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by the U.S. South and the emerging region. In East Siberia, the total volume of 

industrial wood increases 107% from 413 million cubic meters in 1995 to 854 million 

cubic meters in 2085. Unlike the base scenario, this region has an increase in the 

production for both pulpwood and solidwood. The volume of pulpwood and solid wood 

increases to 267 million cubic meters and 174 million cubic meters, respectively. In the 

U.S. South, the total volume of industrial wood increases 126% from 268 million cubic 

meters in 1995 to 605 million cubic meters in 2085. The volume of pulpwood and 

solidwood increases 196 million cubic meters and 142 million cubic meters, 

respectively. 

In the emerging region, the total volume of industrial wood increases 29% from 

435 million cubic meters in 1995 to 562 million cubic meters in 2085. The volume of 

pulpwood and solidwood increase 92 million cubic meters and 34 million cubic meters 

over the simulation period, respectively. The increment of timber production in the 

emerging region after climate change is relatively less than in the other dominant 

region. Also, most of the production increase in total industrial wood is in pulpwood. 

Unlike other dominant regions, the increase in production of solidwood in the emerging 

region is very modest. 

Regional production estimates imply that East Siberia and the U.S. South are 

greatly impacted by the global warming, mostly through the increase in hectares of 

faster growing species, and the increase in NPP. In these regions, global warming 

increases timber production for both pulpwood and solidwood. Although the emerging 

region is also impacted by climate change, timber production in this region is 





Simulation Results of High Timber 
Demand Scenario 
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Figures 9-12 show the simulation results of the base scenario. Figures 13-16 also 

present the simulation results of the climate change scenario. Figure·9 suggests that 

total industrial wood production increases 90%, from 1.15 billion cubic meters in 1995 

to 2.18 billion cubic meters in 2085. Figure 10 indicates the volume of pulpwood 

production increases 114%, from 665 million cubic meters in 1995 to 1.42 billion cubic 

meters in 2085. Figure 11 shows that solidwood production increased 58%, from 484 

million cubic meters in 1995 to 759 million cubic meters in 2085. 

In the high-demand scenario, Figure 9 presents that the initial annual total 

industrial wood production is about 437 million cubic meters lower than that in the 

normal demand scenario. In particular, Figures 10 and 11 show that the initial annual 

production for both pulpwood and solid wood are also lower than those in the normal 

timber demand scenario, about 157 million cubic meters and 281 million cubic meters, 

respectively. These lower initial annual timber productions imply that rational forward-

looking producers postpone the initial timber production with the anticipation of higher 

prices in the future. In addition, in 2085, their rational forward-looking behavior in 

timber production generates a larger timber production than in the normal timber 

demand scenario by about 100 million cubic meters in total production. This is 

primarily the result of the higher demand causing higher prices. 

Figure 12 shows the price change of solid wood and pulpwood over the entire 

simulation period. Over the simulation period, the price of solidwood increases 32%, 

from $126 to $166, while the price of pulpwood increases 64%, from $76 to $125. The 
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Figure 14. Pulpwood volume (HD climate change scenario]. 
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Figure 15. Solidwood volume [HD climate change scenario). 

D 
East Siberia 

~be ria 

D 
European USSR 

II 
Eastern Canada 

D 
U.S. South 

E:1 . 

No c urope 

D 
Western Canada 

II 
U.S. Pacific 

D 
Emerging Region 

00 
w 



0 
C\J 

I 
0 
0 

"0 
0 
0 
~ 

:9 
0 
ell 

0 
co 

! 
j 
l 

I 
II 

I I 
l 
I 

I 

i 

r-o 
t g 
~ c. 
:; 

'"" 
I 
I 

I 
I 
I 

! 
! 
i 
I 

0 c:o 
sJeuoa 

: 

0 
C\J 

0 

0 
co 

0 c:o 

0 
'<t 

0 
C\J 

0 

Ill 
E 
i= 

84 

~ 
= c .. 
" "' .. 
101) 
c 
= ..c 
" :! 
= .§ 

<:i 
Q 
~ 
~ 

.!:! .. c. .. ., 

..Q 
s 

E= 

~ ., .. = 101) 

1i; 



price trends suggest that high-demand growth induces higher prices in both the initial 

year and the terminal year than in the normal timber demand scenario. 

Figures 13 and 14 present the simulation results of the climate-change scenario. 
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Figure 13 shows that the total industrial wood production increases 150%, from 1.39 

billion cubic meters in 1995 to 3.47 billion cubic meters in 2085. The total industrial 

wood production in 2085 is about 1.29 billion cubic meters larger than in the base 

scenario. Figures 14 and 15 also show that production for both pulpwood and 

so1idwood in 2085 is 588 million cubic meters and 698 million cubic meters larger than 

in the base scenario, respectively. As with the base scenario, simulation results of the 

climate change scenario also show that the initial production of timber is lower than in 

the climate change scenario under the normal timber demand scenario. 

Similar to the climate scenario under the normal timber demand scenario, the 

larger timber production due to climate change exceeds the growth rate of timber 

demand. As a result, the supply response due to climate change decreases the prices of 

timber in the market. Figure 16 presents the change of prices for solid wood and 

pulpwood. The price of solidwood decreases 24%, from $107 in 1995 to $81 in 2085, 

while the price of pulpwood decreases 17%, from $64 in 1995 to $53 in 2085. In this 

sense, under the high timber demand scenario, we also identified a positive effect of 

global warming on the global timber market through the increment of timber production 

and the decrease of timber prices. 

Regionally, under the high timber demand scenario, most of the increase in timber 

production occurs in East Siberia and U.S. South. However, Nordic Europe, eastern 
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Canada, and European USSR also show a substantial increase of timber production. 

The remaining regions, including the emerging region, experience only modest gains in 

production. In particular, although the timber production in the emerging region 

maintains a large portion of timber production for the world timber market, the 

simulation indicates that the emerging region shows a modest rate of timber production 

increment over the entire simulation period. 

Simukltion Results of the Very High 
Timber Demand Scenario 

Figures 17-20 show the simulation results of the base scenario. Figures 21-24 also 

present the simulation results of the climate scenario. In the base scenario, total 

industrial wood production increases about 1 billion cubic meters, from 1.74 cubic 

meters in 1995 to 2.71 cubic meters in 2085. The pulpwood production also increases 

about 1 billion cubic meters, from 943 million cubic meters in 1995 to 1.97 billion 

cubic meters in 2085. This production trend suggests that most of the increment of 

industrial wood production contributes to the pulpwood production. 

The solid wood production increases modestly over the first 25 years; after year 

25, it decreases over the remainder of the time horizon. As a consequence, the 

solidwood production decreases about 20 million cubic meters from 761 million cubic 

meters in 1995 to 743 million cubic meters in 2085. This trend suggests that too large a 

portion of industrial wood is shifted from solidwood to pulpwood over later simulation 

years due to a more rapidly rising price of pulpwood relative to that of solidwood. 
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Figure 18. Pulpwood volume (VHD base scenario). 
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Figure 19. Solidwood volume (VHD base scenario]. 
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Figure 21. Total volume [VHD climate change scenario). 
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Figure 22. Pulpwood volume [VHD climate change scenario]. 
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Figure 20 shows the price of pulpwood rises faster because the rise in demand for 

pulpwood is a higher proportionate relative to solid wood. The price of solidwood 

increases 213%, from $137 in 1995 to $430 in 2085, while the price of pulpwood 

increases 405%, from $81 in 1995 to $409 in 2085. The faster rising price of pulpwood 

also signals producers to switch resources from solid wood production to pulpwood 

production. 

In the climate change scenario, the total industrial wood production increases 2.88 

billion cubic meters, from 1.31 billion cubic meters in 1995 to 4.19 cubic meters in 

2085. The pulpwood production increases 2.0 billion cubic meters, from 780 million 

cubic meters in 1995 to 2.78 billion cubic meters in 2085. The solidwood production 

also increased 891 million cubic meters, from 529 million cubic meters in 1995 to 1.42 

billion cubic meters in 2085. The increment of total industrial wood in 2085 is about 

1.48 billion cubic meters larger than that in the base scenario. The increment of both 

pulpwood and solid wood in 2085 is about 807 and 673 million cubic meters larger than 

in the base scenario, respectively. 

Figure 24 presents the price changes of pulpwood and solid wood over the 

simulation period. The price of solidwood increases 122%, from $166 in 1995 to $368 

in 2085, while the price of pulpwood increases 189% from $101 in 1995 to $292 in 

2085. The larger timber production, due to the climate change, results in a lower growth 

rate of timber prices. As a result, the prices of pulpwood and solidwood in 2085 are 

about $118 and $62Jower than in the base scenario, respectively. The trends of timber 



production and timber prices suggest that the climate change also have a positive 

impact on the global timber supply under the very high timber demand scenario. 
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We have investigated how much global warming affects the global timber market 

under three different timber demand scenarios. We found the estimates of intertemporal 

endogenous variables in the TSM 2000 responded significantly to changed 

environments generated by different timber demand growth scenarios. This sensitivity 

analysis provides significant information on the direction, magnitude, and natures of 

various adjustment mechanisms in the global timber market. 

In summary, the economic system responded to increasing growth of timber 

demand through changes in timber production and prices. Differences in timber 

production and prices are highly related with differences in the growth rate of timber 

demand and in the potential capacity to produce and expand available supply. 

Also, if growth of pulpwood demand increases at a significantly higher rate than 

solid wood demand, the production of solidwood increases at a very modest rate or 

decreases in the later part of simulation period. This trend results from the fact that 

higher growth of pulpwood demand relative to solidwood demand switches industrial 

wood from solidwood to pulpwood. Finally, if timber demand grows at a higher rate 

than that in the normal demand scenario, the initial timber production is lower, but 

timber production is ultimately larger than in the normal timber demand scenario. This 

structure suggests that rational forward-looking producers postpone the initial timber 

production with the anticipation of higher prices in the future. 



An Analysis of Welfare Change 
in Timber Market 
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In order to examine how much global warming affects the global timber market in 

the economic welfare sense, we measured the welfare change between the base scenario 

and the climate change scenario under each of timber demand scenarios. As already 

stated, the welfare level in TSM 2000 is the sum of discounted present value of net 

surplus over the simulation period. Suppose that the optimal volume of timber 

production for solidwood and pulpwood in year j is Q; and Q;. Then the net surplus at 

optimum in year j is 

Q' o; 
s1 = JDJ(n)dn + JD) (n)dn -c; (38) 

0 0 

and the sum of the discounted present value of the net surplus at optimum over the 

simulation period is 

(39) 

where k = 0 for year 1995 and k = J for year 2085. 

Under the normal timber demand scenario, we calculated the welfare levels for 

both the base scenario and the climate change scenario. The total discounted present 

value of the net surplus (the welfare level) for the base scenario is about 336 million 

dollars, while that for the climate scenario is about 352 million dollars. The welfare 

level in the climate change scenario is 16 million dollars (4.8%) larger than in the base 

scenario. This amount of welfare increase suggests that society will experience an 
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economic benefit through the global timber market when climate change occurs. 

Under the high timber demand scenario, the welfare level for the base scenario is 

about 385 million dollars, while that for the climate change scenario is about 450 

million dollars. The welfare level in the climate scenario is about 65 million dollars, 

16.9% larger than in the base scenario. Also, under the very high timber demand 

scenario, the welfare level for the base scenario is 750 million dollars, while that for the 

climate scenario is 878 million dollars. The welfare level in the climate scenario is 

about 128 million dollars, 17.1 % larger than in the base scenario. These amounts of 

welfare increase in both timber demand scenarios also indicate that the global warming 

is economically beneficial to society through the global timber market. 
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CHAPTERV 

THE NET RELEASE OF CARBON INTO THE ATMOSPHERE 

Up to this point, we have modeled and simulated the effect of global wanning on 

the global timber market. Using a modified TSM 2000, we identified a positive effect 

of global wanning on the global timber market through an increase of timber 

production and a decrease of timber prices. In this chapter, we extend the modeling 

framework by incorporating the TCM to investigate the feedback effect of the global 

timber market on global wanning. In order to achieve this objective, we estimated the 

net release of carbon into the atmosphere using both the base TCM and the modified 

TCM, which reflects climate change. The reference TCM used for the base TCM is the 

same as that developed by Yan (1996). 

Model simulations of the base TCM and the modified TCM allowed us to identify 

the net release of carbon into the atmosphere for six different scenarios (i.e. , the base 

scenario and the climate scenario for three timber demand scenarios). Under each 

timber demand scenario, the difference in net release of carbon between the base 

scenario and the climate change scenario of TCM provided information to assess the 

feedback effect of the global timber market on global wanning. 

Description of the Terrestrial 
Carbon Model 

The TCM was developed to examine net carbon release into the atmosphere 

after mamre trees are harvested and when new trees are regenerated in the harvested site 

of the mature trees. Harvested mamre trees release stored carbon into the atmosphere 
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from all parts of the tree (bole, debris, and root) , and from the soils on which mature 

trees have been standing. On the other hand, if young trees are replanted in the 

harvested sites, they will sequester carbon from the atmosphere as they grow 

vigorously. Simultaneously, the soil builds up carbon storage to a certain level as young 

trees grow. 

In the TCM, CV(h) denotes the level of carbon storage in the tree, where h is the 

land class. The tree is divided into three parts, including the merchantable bole, 

nonmerchantable part (tops, branches, and barks, etc), and the roots. CW(h) is the level 

of carbon stored in the bole; CD( h) is the level of carbon stored in the debris left on the 

harvested site; and CR(h) is the level of carbon stored in the roots. Hence, the level of 

carbon storage in vegetation is the sum of the bole, the debris, and the roots. This holds 

the following relation: 

CV(h) = CW(h) + CD(h) + CR(h) (40) 

It is assumed in the TCM that both the merchantable bole and debris follow the 

exponential functional form in the process of decomposition (or decaying) after 

harvesting. In addition, following Houghton et al . (1983), the TCM assumes that the 

decaying rate is primarily dependent upon the final product of harvested timber. 

Houghton et al. (1983) observed that it takes over 100 years for solid wood to 

decompose, while it takes about 10 years for paper. For decomposition of debris, it is 

also observed that almost 40% of the carbon stays in debris at the end of the first year 

after harvesting. Another 20% decomposes from the second year to year 10. Finally, the 
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remaining 20% decays from year 11 to year 100. Carbon in the roots is assigned to the 

decay pool of the soil and will decay in a few years following the harvest. 

To observe the change of carbon storage in the soil, CS.(h) is defined as the level 

of carbon storage in the soil on which the matured trees have been standing, and CSlh) 

for the next generation of trees. After harvesting matured trees some of the carbon is 

added to tbe soil as dead roots; hence the carbon in the soil increases immediately after 

the harvest to CSih) = CS.(h) + CR(h) for the matured trees. However, as more of the 

soil is exposed to oxidation after harvesting, decomposition of the organic matter in the 

soil is enhanced. As a result, carbon storage in the soil decreases due to loss of the 

organic carbon in the soil, and approaches its minimum level as it continuously declines 

until the harvested site is regenerated with young trees. From the minimum level, the 

addition of carbon to the soil, in the form of litter, increases as replanted young trees 

grow. Carbon storage in the soil increases to the level of carbon storage, CSb(h). 

It is assumed that T.(h) is the time of harvesting, and Tm(h) is the time for reaching 

the minimum carbon storage in the soil after harvesting the matured trees. Tlh) is the 

time of next harvest. Therefore, time period Tlh)- T.(h) is the rotation cycle and 

determines the level of carbon storage in the soil. Table A-9 (Appendix A) illustrates 

tbe data used in tbe TCM to define changes of tbe carbon in the soil during the time 

period between harvests. 

If the harvested trees are regenerated with young trees, carbon in the young trees 

increases as the young trees grow vigorously. In this context, the TCM assumes that tbe 

increase of carbon storage in the three parts of young trees follows tbe yield function 
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pattern of the standing volume of young trees. To estimate the carbon of trees, tbe dry 

weight of timber per hectare is calculated and then converted into carbon in the trees 

per hectare. The volume of merchantable bole of trees per hectare in year J is denoted 

by q(h, i , }) ; 15 cfl (h) is the specific gravity of forest type; cj2(h) is the portion of the 

carbon in the dry weight of the merchantable bole. The dry weight of the merchantable 

bole is calculated by multiplying q(h, i,}) by cfl (h). Also, the dry weight of the 

merchantable bole multiplied by portion of carbon, cj2(h) generates the carbon content 

of merchantable bole per hectare. Conversion factors, which are used to calculate 

carbon storage in each part of tree, are tabulated in Table A-1 0 (Appendix A) for 42 

land classes. 

We further define XH (h, }) as hectares of timber harvested in land class hand 

year J and CSJ(h) is the initial level of carbon storage in the soil of land class h at the 

timber harvesting time. CSI(h) will be CS
0
(h) if mature trees are harvested, and CSlh) 

if the next generation of trees is cut; cw (h, ]) is carbon in the harvested wood at the 

time of harvest. The decaying rate of harvested wood is rw(h), which is a weighted 

average of solid wood and pulpwood decaying rates. CD(h, }) is carbon in debris left on 

the harvested site, and rd(h) is the decaying rate of debris. CR (h, ]) is the carbon in the 

roots, which is transferred to the decaying pool of the soil. CY (h, ], j) is carbon 

storage of young trees per hectare in year j, which is regenerated in year J (j > J ). 

15 In the equation, q ( h, i , ]) which defines the volume of merchantable bole of trees per hectare in 
land class h, i, and } denote the age of trees and the year of harvesting, respectively. 



Formulation of Terrestrial Carbon Model 

Formulation of Net Carbon Release in the 
Base Scenario 

For the base scenario, the net carbon release from trees in year j , which are 

harvested from land class h in year J, is estimated using the following formula: 

and 

+ [XH(h,J)(CSJ(h) - CSm(h)) + CR (h,J)J!(Tm-JJ 

+ XH(h,])(CY(h,] ,JJ- CY(h,J,j- 1)) 

+ CD(h,J)(e·"'I•JU -J-n _ e·'dlh!U·h; 

+ [XH(h,])(CSlh)- CSm(h))I(Tb(h)- Tm(h)) 

+ XH(h,])(CY(h,J,j)- CY(h,J,j- 1)) 
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(41) 

(42) 

In year j for land class h, the net carbon release due to timber harvests is the sum of the 

net carbon release from all harvesting activity occurring before year j. This holds as 

follows : 



SNC(h,j)= ±NC(h,},j) 
}=0 

According to previous statements, CW(h,]) , CD(h,J), CR(h,]) and come from 

CW(h}) = cfl(h) · cf2(h) · qlc(h}J 

CD(h,]J = cf3(h) · CW(h,]J- CW(h,J; 

CR(h,]J = cf3(h) · CW(h}J · (cf4(h) -1) 
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(43) 

(44a) 

(44b) 

(44c) 

where qlc(h,J) is the total volume harvested for land class h and year J; cf3(h) is the 

ratio of carbon in the tree above the ground over that in the bole, and cf4(h) is the ratio 

of carbon in the whole tree over that in the tree above the ground. Both cf3(h) and 

cf4(h) are reported in Table A-7 (Appendix A). CY(h,],j) is calculated as 

CY(h.J,j) = cfl(h) · cf2(h) · cf3(h) · cf4(h) · q(h,i,j) (45) 

where q(h,i,j) is the merchantable volume of tree per hectare in year j of land class h, 

which is regenerated in year J (age i = j- J;. 

Formulation of Net Carbon Release in the 
Climate Change Scenario 

For the climate scenario, the net carbon release from trees in year j, harvested 

from land class h in year J, is estimated using the following formula: 



and 

NC(h,J.j) = CWcl(h,'J)(e·nv!hiU·J·II _ e·mth!U·h) 

+ CDcl(h,'J)(e·'dlhJU·J·il _ e·'dlhiU·h) 
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+ [(XHcl(h,J) + XHslvg(h,'J))(CSJ(h)- CSm(h)) + CR (h,i)]I(Tm- }; 

-( XHcl(h,J) + RR.)(CYcl(h,}J)- CYcl(h.'JJ -1)) 

NC(h,'j.j) = CWcl(h,})(e·~lh!U·J.il _ e·~lh!U·h; 

+ CDcl(h,'J)(e·'dlh!U·J-n _ e·"'lh!U·h) 

- (XHcl(h,'J) + XHslvg((CSb(h,J))CSb(h)- CSm(h)) I (Tb(h)- Tm(h)) 

- (XHcl(h,'J) + RR.J(CYcl(h,J,j) - CYcl(h.'J.j- 1 )) 

(46) 

(47) 

where XHcl(h,'J) is the hectares of trees harvested in land class hand year 'j after climate 

change; XHslvg(h,J) is the hectares of trees salvaged in the land class hand year]; RR. 

is the regenerated hectares per year for land class h. CWcl(h,]J. CDcl(h,]J. and 

CRcl(h.]J come from 

CWcl(h.]J = cj1(h) · cj2(h) · ijlc(h}J (48a) 

CDcl(h,}J = cj3(h) · CWcl(h,}J- CWcl(h,'J) (48b) 

CRcl(h.}J = cj3(h) · CW(h}J · (cj4(h)- 1) (48c) 
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where qlc(h,]J is the total volume harvested for land class hand year J including trees 

salvaged after climate change. CYcl(h,J,j) is calculated as 

CYcl(h,J,j) = cfl(h) · cj2(h) · cf3(h) · cf4(h) · q(h,i,j) (49) 

where q(h,i,j) is the modified merchantable volume of tree per hectare in year j of land 

class h, regenerated in year J (age i = j- J;. In year j for land class h, the net carbon 

release due to timber harvest activity is the sum of the net carbon release from all 

harvesting activity occurring before year j. This holds as follows: 

Decaying Rates 

J 

SNC(h, j) =I NC(h, } , j) 
}=0 

The decaying rate of the bole of a tree is divided into two different rates that 

(50) 

depend on the final products manufactured from harvested timber. If the final product 

of timber harvested is paper, then the decaying rate is 

rwP (h)= -ln(O.Ol) 
10 

If the final product usage is solid wood, then the decaying rate is 

rw 5 (h) 
-ln(O.Ol) 

100 

The decaying rate of the bole of tree is a weighted average of that of solidwood and 

pulpwood decaying rates. This is expressed as follows: 

rw(h) = rw' (h) ·1/>h + rwP (h)· (l-¢h) 

(51) 

(52) 

(53) 



The decaying rates of debris left on the harvested site are calculated as follows: 

rd 1 = -ln(0.40) 

rd = -ln(0.20/0.40) 
2 9 

rd = -ln(O.Oll 0.20) 
3 90 

Simulation Results of Terrestrial 
Carbon Model 

Net Carbon Release under Normal Demand 
Scenario 

when t = 1 

when 1 < t .$.10 

when 10 < t .$.100 
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(54a) 

(54b) 

(54c) 

On the basis of formulations of TCM, we simulated the projections of net carbon 

release for both the base scenario and the climate change scenario under three timber 

demand scenarios. Figure 25 shows net carbon release for both the base scenario and 

the climate change scenario under the normal demand scenario. In the base scenario, the 

net carbon release is positive during the first 48 years, with the peak in year II releasing 

1014.39 x 1012 g amount of carbon into the atmosphere. After year 48, the net carbon 

release becomes negative, with decreasing rate until year 2085. In 2085 the net carbon 

release will be -641.7 x 1012 g (negative value implies net carbon sequestering). 

The structure of net carbon release over the entire simulation period suggests that 

in the early years most carbon released into the atmosphere comes from the harvested 

volume of wood, debris, roots, and the soil. At the same time, the regenerated young 
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trees in the harvested land sites sequester carbon from the atmosphere as regenerated 

young trees grow. Carbon release is larger than carbon sequestering in the early years 

because absolute volume of regenerated young trees is smaller. However, as the 

regenerated young trees grow vigorously, resulting in the increase of volume of 

regenerated young trees, they sequester more carbon from the atmosphere. 

Consequently, carbon sequestering dominates carbon release. From year 48, carbon 

sequestering of regenerated young trees is larger than carbon release from timber 

harvests. 

In the climate change scenario, the net carbon release is positive during the flrst 

37 years. After year 37, it becomes negative with a decreasing rate until2085. Thus, in 

the climate scenario, the year when net carbon release changes from positive to negative 

is achieved II years earlier than in the base scenario. Furthermore, the amount of net 

carbon release is -1527.1 x 1012 gin 2085. This shows that net carbon sequestering 

(negative value of net carbon release) in this scenario is about 885 x 1012 g larger than 

in the base scenario in 2085. 

The accumulated differences in net carbon release between the base scenario and 

the climate scenario measure how the global timber market has a long-run feedback 

impact on global warming when climate change occurs. Table I shows the accumulated 

differences in net carbon release by every 1.5 decades between the base scenario and 

the climate change scenario under normal timber demand scenario. 

As shown in Table I , the accumulated difference in net carbon sequestering 

between the base scenario and the climate change scenario increases over the 
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Table 1. The accumulated difference in net carbon release (1012g) between the 
base scenario and the climate change scenario under ND scenario. 

Time (year) 

Scenario 15 30 45 60 75 90 

Base' (A) 10,893 21 ,268 26,553 26825 22,433 14,313 

Climate change' (B) 10,797 18,601 17,766 10,016 -6,203 -25,966 

Difference in net carbon -96 -2,667 -8,787 -16,809 -28,636 -40,279 
release' (B-A) 

aDenotes accumulated amount of net carbon release. 

simulation period. This structure suggests that the global timber market will have a long-

run dampening (negative feedback) impact on global warming through net carbon 

sequestering. This structure is also dependent on two important factors presented in the 

simulation results of BlOME 3. BlOME 3 predicted an increase in net primary 

productivity for all land classes as well as an increase in hectares of faster growing tree 

species. 

These two factors predicted by BlOME 3 not only increase total industrial wood 

production, but also spur the regenerated young trees to grow faster. Consequently, the 

increase of total industrial wood production releases more carbon into the atmosphere; 

at the same time, the regenerated young trees sequester more carbon from the 

atmosphere. Although both carbon release and carbon sequestering increase 

simultaneously due to the climate change, Table 1 shows that an increase of carbon 

sequestering exceeds that of carbon release as simulation time passes. This trend 

implies that the global timber market has a dampening (negative feedback) impact on 

global warming through the increment of net carbon sequestering. 



Net Carbon Release under Both High Timber 
Demand Scenario and Very High Timber 
Demand Scenario 

Net carbon release under both the high timber demand and very high timber 
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demand scenarios shows a similar tendency to that under the normal demand scenario. 

For the high timber demand scenario, Figure 26 presents net carbon release for both the 

base scenario and the climate change scenario over the simulation period. In the base 

scenario, net carbon release is positive during the first 66 years, with the peak in year 11 

releasing 7 51.57 x 1012 g amount of carbon into the atmosphere. After year 66, the net 

carbon release is negative with a decreasing rate until 2085. The net carbon release will 

be -625.5 x 1012 gin 2085. In the climate change scenario, positive net carbon release is 

during the first 54 years, with the peak in year 11 releasing 978.63 x 1012 g amount of 

carbon into the atmosphere. By 2085, net carbon release is -1145.1 x 1012 g. Thus, in 

the climate change scenario the year when net carbon release changes from positive to 

negative is achieved about 12 years earlier than in the base scenario. In 2085, net carbon 

sequestering is about 520 x 1012 g larger than in the base scenario. Figure 26 also shows 

that the net carbon release in the climate scenario is lower than in the base scenario 

from 27 years. 

For the very high timber demand scenario, Figure 27 shows net carbon release for 

both the base scenario and the climate change scenarios. In the base scenario, net carbon 

release is positive during the fust 45 years, with the peak in year 12 releasing 1147.43 x 

10'2 g amount of carbon into the atmosphere. In year 2085, net carbon release is -1350.7 

x 1012 g. In the climate change scenario, net carbon release is positive during the fust 45 
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years, with the peak in year 16 releasing 986.39 x 1012 g amount of carbon. Also, in 

year 2085 the net carbon release is -2556.2 x 1012 g. Tables 2 and 3 show the 

accumulated difference in net carbon release between the base scenario and the climate 

scenario for both high timber demand and very high timber demand scenario. 

According to Tables 2 and 3, the accumulated difference in net carbon 

sequestering between the base scenario and the climate change scenario increases as 

simulation time 

Table 2. The accumulated difference in net carbon release (1012g) between the 
base scenario and the climate change scenario under HD scenario. 

Time (year) 

Scenario 15 30 45 60 75 90 

Base' (A) 8,076 18,028 25,805 29,571 28,713 21 ,830 

Climate change' (B) 10,412 21 ,359 27,057 27,300 21,598 7,760 

Difference in net carbbon 2,336 3,33 1 1,252 -2,271 -7,115 -14,070 
release' (B-A) 

3Denotes accumulated amount of net carbon release. 

Table 3. The accumulated difference in net carbon release (1012g) between the 
base scenario and climate change scenario under VHD scenario. 

Time (year) 

Scenario 15 30 45 60 75 90 

Base' (A) 12,297 26,353 31,081 26,062 14,630 -3,216 

Climate change' (B) 9,386 22,744 27,759 19,289 -1 ,566 -35,091 

Difference in net carbbon -2,911 -3,609 -8,787 -6,773 -16,196 -31,875 
release' (B-A) 

aDenotes accumulated amount of net carbon release. 
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passes. As a result, these structures also suggest that the global timber market has a 

dampening (negative feedback) impact on global warming through the increment of net 

carbon sequestering. 

To estimate dynamic ecological change in Chapter III, we used the simulation 

results of BlOME 3. In the process of simulation of BlOME 3, the Hamburg was used 

as a GCM to identify the change of climate variables between current carbon dioxide 

concentration and a doubling of carbon dioxide concentration in the atmosphere. 

According to Sohngen et al. (1998), the Hamburg used 340 ppmv for current carbon 

dioxide concentration and 500 ppmv for a doubling of carbon dioxide concentration in 

the atmosphere. 16 In Table I , we found that the accumulated difference in net carbon 

release between the base scenario and the climate change scenario is -40,279 x 1012 gin 

2085 for the normal timber demand scenario. In this context, we identified that climate 

change reduces about 3.8% of the amount of carbon dioxide concentration in the 

atmosphere in 2085. 

For both the high timber demand and very high timber demand scenarios, the 

accumulated difference in net carbon release shows that the climate change reduces 

1.3% and 3.0% of the amount of carbon concentration in the atmosphere over 90 years, 

respectively. The accumulated difference in net carbon release, which reduces the 

amount of carbon concentration in the atmosphere, is so negligible that it has little 

feedback impact on global warming. In this sense, we do not need to identify the 

repeated effect of climate change on the global timber through the feedback loop. 

16 The relationship between ppmv and g is I ppmv = 2.123 x !012g. 
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CHAPTER VI 

SUMMARY AND RECOMMENDATIONS 

Summary of Research Results 

Our main research objective was to identify the direct and feedback effects of 

global warming on the global timber market. To achieve this research objective, the 

TSM 2000, Hamburg, BIOME 3, and TCM were used as suitable economic and 

ecological models. The TSM 2000 was used to model dynamic economic behavior in 

the global timber market. The other three models were utilized to identify both the 

dynamic ecological change and forest carbon flux through their dynamic interactions 

when climate change occurs. 

We developed the TSM 2000 by extending the existing TSM to consider more 

important up-to-date components in the global timber market. These components 

included the former Soviet Union as a part of the responsive regions , increased 

plantation forests in the emerging region, forest withdrawals for environmental 

protection, and the transformed ecosystem types after climate change. 

In order to estimate dynamic ecological changes, a steady-state ecological model 

(BIOME 3) was used to simulate a steady-state ecological change before and after 

climate change. Based on the simulation results of BIOME 3 and linearity assumptions 

about adjustment in climate and ecosystems, we derived dynamic ecological change as 

measured by the dieback ratio, the regenerated land areas per year, and the change in 
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NPP. With these estimates of dynamic ecological changes, we modified both the TSM 

2000 and the TCM to reflect the dynamic ecological change after climate change. 

Using an integrated model, we simulated both the base scenario and the climate 

change scenario of TSM 2000 over 90 years under three timber demand scenarios. After 

simulation of each scenario, we identified the intertemporal projections of important 

endogenous variables in the model. Simulation results suggest that global wanning will 

have a positive impact on the global timber market through an increase of timber 

production and a resulting decrease of timber prices. 

Also, in order to examine the effect of global wanning on the global timber 

market in the economic welfare sense, we calculated the sum of discounted present 

value of net surplus at optimum for both the base scenario and the climate change 

scenario under each timber demand scenario. When comparing the welfare level of the 

base scenario with that of the climate change scenario, we also observed that global 

wanning is economically beneficial to society through the global timber market. 

Finally, we simulated both the base scenario and the climate change scenario of 

TCM under each demand scenario to identify net carbon release into the atmosphere. 

As a result, the accumulated difference in net carbon release over the simulation period 

under each demand scenario suggested that the global timber market has a dampening 

(negative feedback) impact on global wanning. However, the accumulated difference in 

net carbon release is so negligible that it would have little impact on global wanning. 
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Recommendations for Further Research 

We achieved our research objectives as stated in the beginning of this study; 

however, there are several remaining studies to be conducted in the future. We would 

briefly recommend the following as remaining studies. 

1. In this research, we used the simulated results of BlOME 3 using Hamburg as the 

GCM to identify dynamic ecological change. However, there are approximately 

30 GCMs in use to forecast climate change by atmospheric and biospheric 

scientists. Also, it is known that some research is still underway to develop a 

better GCM to assess the climate change more accurately. In this sense, sensitivity 

of our results to currently existing GCMs or a better GCM to be developed in the 

future should be investigated. 

2. Because a dynamic ecological model that covers the globe has not been developed 

yet, we depended only on a steady-state ecological model (BlOME 3) to estimate 

dynamic ecological change. Consequently, we derived the dynamic ecological 

change from the simulation results of BlOME 3. If a dynamic ecological model 

covering the globe is developed in the future, it will serve as a better way to 

estimate more robust results of how global warming affects the global timber 

market, and vice versa. In addition, if more accurate yield functions for new land 

classes are estimated, our research results will also be improved by further 

validation of these functions. 

3. For sensitivity analyses, we simulated both TSM 2000 and TCM under high 

timber demand and very high demand scenarios to examine the combined effect 
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of global wanning and the global timber market on carbon flux. We suggest 

broadening tbe number of different scenarios to further explore the implications of 

our research objectives, including other timber demand scenarios, different 

plantation forest establishments, biotechnological changes, parametric values in 

tbe model, etc. These sensitivity analyses will provide significant insights into 

how the TSM 2000 and TCM respond to the changed environments generated by 

different scenarios. 

4. In our research we used a deterministic dynamic ecological-economic model to 

simplify complexities in measuring the dynamic change of global timber market 

and global ecosystems. However, it would be of interest to develop a stochastic 

dynamic ecological-economic model to explore our main research objectives in a 

more realistic sense. 
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Table A-1. Regions and land classes. 

Regions/characteristics Ecosystem type Land class 

Emerging Region N.A 

U.S Pacific Northwest, Normal Access 5 2 
U.S Pacific Northwest, Limited Access 5 3 
U.S Pacific Northeast, Normal Access 4 4 
U.S Pacific Northeast, Limited Access 4 5 

Western Canada, Normal Access 2 6 
Western Canada, Limited Access 2 7 

Nordic Europe, South 2 8 
Nordic Europe, South 3 9 
Nordic Europe, South 4 10 
Nordic Europe, North 2 11 

U.S South site I, Normal Access 3 12 
U.S South site I, Limited Access 3 13 
U.S South site IT, Normal Access 3 14 
U.S South site II, Limited Access 3 15 
U.S South site III, Normal Access 3 16 
U.S South site III, Limited Access 3 17 
U.S South site IV, Normal Access 5 18 
U.S South site IV, Limited Access 5 19 

Eastern Canada, Lake (pulp) 3 20 
Eastern Canada, Lake (sawlog) 3 21 
Eastern Canada, Boreal/Acadia (pulp) 2 22 
Eastern Canada, Boreal/Acadia (pulp) 3 23 
Eastern Canada, Boreal/Acadia (sawlog) 2 24 
Eastern Canada, Boreal/Acadia (sawlog) 3 25 

European USSR North, Normal Access 2 26 
European USSR North, Limited Access 2 27 
European USSR North, Normal Access 4 28 
European USSR North, Limited Access 4 29 
European USSR South, Normal Access 3 30 
European USSR South, Limited Access 3 31 
European USSR South, Normal Access 5 32 
Euro12ean USSR South, Limited Access 5 33 



West Siberia North, Normal Access 2 34 
West Siberia North, Limited Access 2 35 
West Siberia South, Normal Access 3 36 
West Siberia South, Limited Access 3 37 

East Siberia North, Normal Access 2 38 
East Siberia North, Limited Access 2 39 
East Siberia South, Normal Access 3 40 
East Siberia South, Limited Access 3 41 

Asia Pacific 8 42 
Note: 

I . Ecosystem type of each land class follows classification of biome types given in Haxeltine and 
Prentice (1996). 
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2. Nine legends are used in BlOME 3 for the classification of forest types; including I : Boreal 
Deciduous Forest/Woodland, 2: Boreal Coniferous Forest/Woodland, 3: Temperate-Boreal Mixed 
Forest, 4: Temperate Conifer Forest, 5: Temperate Deciduous Forest, 6: Temperate Broadleaved 
Evergreen Forest, 7: Tropical Seasonal Forest, 8: Tropical Rain Forest, 9:Tropical Deciduous 
Forest. 
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Table A-2. Percentage of forest conservation for each land class. 

Percentage of 
Land Ecosystem forest 
class tll;!e conservation 

Emerging Region N.A 0.00 

2 U.S Pacific Northwest, Normal Access 5 7.97 
3 U.S Pacific Northwest, Limited Access 5 7.97 
4 U.S Pacific Northeast, Normal Access 4 7.97 
5 U.S Pacific Northeast, Limited Access 4 7.97 

6 Western Canada, Normal Access 2 0.00 
7 Western Canada, Limited Access 2 23.06 

8 Nordic Europe, South 2 9.50 
9 Nordic Europe, South 3 9.50 
10 Nordic Europe, South 4 9.50 
II Nordic Europe, North 2 9.50 

12 U.S South site I, Normal Access 3 0.39 
13 U.S South site I, Limited Access 3 0.39 
14 U.S South site II, Normal Access 3 0.39 
15 U.S South site II, Limited Access 3 0.39 
16 U.S South site III, Normal Access 3 0.39 
17 U.S South site III, Limited Access 3 0.39 
18 U.S South site IV, Normal Access 5 0.39 
19 U.S South site IV, Limited Access 5 0.39 

20 Eastern Canada, Lake (pulp) 3 2.92 
21 Eastern Canada, Lake (saw log) 3 2.92 
22 Eastern Canada, Boreal/Acadia (pulp) 2 2.92 
23 Eastern Canada, Boreal/Acadia (pulp) 3 2.92 
24 Eastern Canada, Boreal/Acadia (sawlog) 2 2.92 
25 Eastern Canada, Boreal/Acadia (sawlog) 3 2.92 

26 European USSR North, Normal Access 2 29.00 
27 European USSR North, Limited Access 2 29.00 
28 European USSR North, Normal Access 4 29.00 
29 European USSR North, Limited Access 4 29.00 
30 European USSR South, Normal Access 3 29.00 
31 Euro2ean USSR South, Limited Access 3 29.00 



32 European USSR South, Normal Access 5 29.00 
33 European USSR South, Limited Access 5 29.00 

34 West Siberia North, Normal Access 2 16.00 
35 West Siberia North, Limited Access 2 16.00 
36 West Siberia South, Normal Access 3 16.00 
37 West Siberia South, Limited Access 3 16.00 

38 East Siberia North, Normal Access 2 14.00 
39 East Siberia North, Limited Access 2 14.00 
40 East Siberia South, Normal Access 3 14.00 
41 East Siberia South, Limited Access 3 14.00 

42 Asia Pacific 8 13.12 
Note: 

1. Percentage of forest conservation for each land class was calculated from scenario five in Yan 
( 1996), except that in the former Soviet Union. 
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2. For each land class in the former Soviet Union, percentage of forest conservation was selected from 
Backman and Waggener (1991). 
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Table A-3. Commercial inventory of forest with/without conservation for each 
land class. 

Commercial Commercial 
inventory w/o inventory with 

Land Ecosystem conservation conservation 
class t~e (Millon, hr) (Millon, hr) 

Emerging Region N.A 6 6 

2 U.S Pacific Northwest, Normal Access 5 4.91 4.52 
3 U.S Pacific Northwest, Limited Access 5 2.50 0.23 
4 U.S Pacific Northeast, Normal Access 4 3.38 3.11 

U.S Pacific Northeast, Limited Access 4 5.15 4.74 

6 Western Canada, Normal Access 17.7 17.7 
7 Western Canada, Limited Access 14.3 11.00 

8 Nordic Europe, South 16.7 15.11 
9 Nordic Europe, South 2.79 2.52 
10 Nordic Europe, South 4 2.81 2.54 
11 Nordic Europe, North 2 28.14 25.47 

12 U.S South site I, Normal Access 3 16.14 16.08 
13 U.S South site I, Limited Access 3 4.51 4.49 
14 U.S South site II, Normal Access 3 15.97 15.91 
15 U.S South site II, Limited Access 3 4.21 4.19 
16 U.S South site ill, Normal Access 3 9.53 9.49 
17 U.S South site ill, Limited Access 3 1.29 1.28 
18 U.S South site IV, Normal Access 5 9.46 9.42 
19 U.S South site IV, Limited Access 5 6.81 6.78 

20 Eastern Canada, Lake (pulp) 3 12.6 12.23 
21 Eastern Canada, Lake (sawlog) 3 11.18 10.85 
22 Eastern Canada, Boreal/Acadia (pulp) 2 28.27 27.44 
23 Eastern Canada, Boreal/Acadia (pulp) 3 2.10 2.04 
24 Eastern Canada, Boreal/Acadia (sawlog) 2 25.07 24.34 
25 Eastern Canada, Boreal/Acadia (sawlog) 3 1.86 1.81 

26 European USSR North, Normal Access 2 55.27 39.24 
27 European USSR North, Limited Access 2 40.64 28.85 
28 European USSR North, Normal Access 4 0.066 0.047 
29 European USSR North, Limited Access 4 0.048 0.034 
30 European USSR South, Normal Access 3 28.28 20.08 
31 European USSR South, Limited Access 3 8.340 5.92 
32 European USSR South, Normal Access 5 5.100 3.62 
33 European USSR South, Limited Access 5 1.510 1.07 

34 West Siberia North, Normal Access 2 22.84 19.19 
35 West Siberia North, Limited Access 2 29.27 24.59 
36 West Siberia South Normal Access 3 13.17 11.06 



37 West Siberia South, Normal Access 8.620 7.24 

38 East Siberia North, Normal Access 162.26 139.54 
39 East Siberia North, Limited Access 2 207.93 178.82 
40 East Siberia South, Normal Access 3 28.26 24.30 
41 East Siberia South, Limited Access 3 18.51 15.92 

42 Asia Pacific 58.31 50.66 
Note: 

1. Commercial inventory data (without conservation) was used given in Sedjo and Lyon (1990) for 
each land class, except that in the former Soviet Union. 

132 

2. For each land class in the former Soviet Union, commercial inventory data (without conservation) 
was selected from Backman and Waggener (1991) 

3. Commercial inventory data (with conservation) was calculated by multiplying percentage of forest 
conservation tabulated in Table 2-2 and commercial inventory data without conservation. 
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Table A-4. The dieback ratio and the regeneration area per year for each land 
class after climate change. 

Regeneration 
Land Ecosystem Die back area per year 
class tl:Ee ratio (Million, hr) 

Emerging Region N.A N.A N.A 

U.S Pacific Northwest, Normal Access 0.34352 0.063280 
U.S Pacific Northwest, Limited Access 5 0.34352 0.003220 

4 U.S Pacific Northeast, Normal Access 4 0.28729 0.010663 
U.S Pacific Northeast, Limited Access 4 0.28729 0.016251 

6 Western Canada, Normal Access 0.35148 0.055629 
7 Western Canada, Limited Access 0.35148 0.034571 

8 Nordic Europe, South 2 0.52571 0.006476 
9 Nordic Europe, South 3 0.81414 0.087948 
10 Nordic Europe, South 4 0.65109 0.063681 
ll Nordic Europe, North 2 0.00943 0.047301 

12 U.S South site I, Normal Access 3 0.00000 0.101074 
13 U.S South site I, Limited Access 3 0.00000 0.028223 
14 U.S South site II, Normal Access 3 0.00000 0.100006 
15 U.S South site II, Limited Access 3 0.00000 0.026337 
16 U.S South site III, Normal Access 3 0.00000 0.059651 
17 U.S South site III, Limited Access 3 0.00000 0.008046 
18 U.S South site IV, Normal Access 5 0.36439 0.000000 
19 U.S South site IV, Limited Access 5 0.36439 0.000000 

20 Eastern Canada, Lake (pulp) 3 0.32275 0.183450 
21 Eastern Canada, Lake (sawlog) 3 0.32275 0.162750 
22 Eastern Canada, BoreaVAcadia (pulp) 2 0.50846 0.078400 
23 Eastern Canada, BoreaV Acadia (pulp) 3 0.45174 0.188263 
24 Eastern Canada, BoreaVAcadia (sawlog) 2 0.50846 0.069543 
25 Eastern Canada, BoreaV Acadia (saw log) 0.45174 0.167037 

26 European USSR North, Normal Access 0.35920 0.016817 
27 European USSR North, Limited Access 0.35920 0.012364 
28 European USSR North, Normal Access 1.00000 0.067062 
29 European USSR North, Limited Access 1.00000 0.048513 
30 European USSR South, Normal Access 0.11253 0.140560 
31 European USSR South, Limited Access 0.11253 0.041440 
32 European USSR South, Normal Access 0.37788 0.073434 
33 European USSR South, Limited Access 0.37788 0.021706 

34 West Siberia North, Normal Access 2 0.15521 0.035639 
35 West Siberia North, Limited Access 2 0.15521 0.045667 
36 West Siberia South, Normal Access 3 0.00000 0.112180 
37 West Siberia South Limited Access 3 0.00000 0.073434 
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38 East Siberia North, Normal Access 0.14942 0.159474 
39 East Siberia North, Limited Access 0.14942 0.204366 
40 East Siberia South, Normal Access 0.05955 2.863929 
41 East Siberia South, Limited Access 0.05955 1.876286 

42 Asia Pacific 0.11464 0.079609 
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Table A -5. The ratio of net primary productivity (NPP) change for each land class 
after climate change. 

Ratio of 
Land Ecosystem NPP 
class Ti:Ee chan~e 

Emerging Region N.A 1.0000 

2 U.S Pacific Northwest, Normal Access 5 1.5008 
3 U.S Pacific Northwest, Limited Access 5 1.5008 
4 U.S Pacific Northeast, Normal Access 4 1.3525 
5 U.S Pacific Northeast, Limited Access 4 1.3525 

6 Western Canada, Normal Access 2 1.2184 
7 Western Canada, Limited Access 2 1.2184 

8 Nordic Europe, South 2 1.2228 
9 Nordic Europe, South 3 1.1233 
10 Nordic Europe, South 4 1.2218 
11 Nordic Europe, North 2 1.4504 

12 U.S South site I, Normal Access 3 1.3010 
13 U.S South site I, Limited Access 3 1.3010 
14 U.S South site II, Normal Access 3 1.3010 
15 U.S South site II, Limited Access 3 1.3010 
16 U.S South site III, Normal Access 3 1.3010 
17 U.S South site III, Limited Access 3 1.3010 
18 U.S South site IV, Normal Access 5 1.3248 
19 U.S South site IV, Limited Access 5 1.3248 

20 Eastern Canada, Lake (pulp) 3 1.3189 
21 Eastern Canada, Lake (saw log) 3 1.3189 
22 Eastern Canada, Boreal/Acadia (pulp) 2 1.0187 
23 Eastern Canada, Boreal/Acadia (pulp) 3 1.1377 
24 Eastern Canada, Boreal/Acadia (sawlog) 2 1.0187 
25 Eastern Canada, Boreal/Acadia (sawlog) 3 1.1377 

26 European USSR North, Normal Access 2 1.1694 
27 European USSR North, Limited Access 2 1.1694 
28 European USSR North, Normal Access 4 1.3859 
29 European USSR North, Limited Access 4 1.3859 
30 Euro2ean USSR South, Normal Access 3 1.2029 
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31 European USSR South, Limited Access 3 1.2029 
32 European USSR South, Normal Access 5 1.2939 
33 European USSR South, Limited Access 5 1.2939 

34 West Siberia North, Normal Access 2 1.2842 
35 West Siberia North, Limited Access 2 1.2842 
36 West Siberia South, Normal Access 3 1.3406 
37 West Siberia South, Limited Access 3 1.3406 

38 East Siberia North, Normal Access 2 1.5684 
39 East Siberia North, Limited Access 2 1.5684 
40 East Siberia South, Normal Access 3 1.1293 
41 East Siberia South, Limited Access 3 1.1293 

42 Asia Pacific 8 1.4035 
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Table A-6. Harvest, access, domestic, and international transportation cost. 

Domestic International 
Land Harvest cost transportation Access \Z'ost ,transportation 
class ($/hr) %ost ($/hr) ($/hr) ¢ost ($/hr) 

6.00 4.50 2.63 8.50 

2 10.00 7.00 4.00 7.30 
3 11.00 9.00 5.00 7.30 
4 11.00 7.00 5.00 8.50 
5 12.00 7.00 8.00 8.50 

6 9.50 6.65 5.70 7.30 
7 19.00 12.35 7.60 7.30 

8 7.20 4.80 2.80 4.50 
9 7.20 4.80 2.80 4.50 

10 7.20 4.80 2.80 4.50 
11 12.80 8.80 3.20 9.00 

12 8.00 6.00 3.50 5.00 
13 11.00 7.00 4.00 5.00 
14 9.00 7.00 3.50 5.00 
15 12.00 10.00 5.50 5.00 
16 13.00 10.00 4.00 5.00 
17 15.00 12.00 5.00 5.00 
18 14.00 12.00 5.00 5.00 
19 16.00 14.00 6.00 5.00 

20 11.40 8.55 3.80 5.00 
21 13.30 13.30 7.60 5.00 
22 11.40 10.45 4.75 5.00 
23 11.40 10.45 4.75 5.00 
24 13.30 17.10 8.55 5.00 
25 13.30 17.10 8.55 5.00 

26 13.00 8.00 5.00 4.50 
27 260.00 16.00 7.50 4.50 
28 13.00 8.00 5.00 4.50 
29 260.00 16.00 7.50 4.50 
30 8.00 6.00 3.50 4.50 
31 160.00 12.00 5.25 4.50 
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32 8.00 6.00 3.50 4.50 
33 160.00 12.00 5.25 4.50 

34 13.00 12.50 5.00 0.00 
35 260.00 20.50 7.50 0.00 
36 8.00 10.50 3.50 0.00 
37 160.00 16.50 5.25 0.00 

38 13.00 8.00 5.00 4.50 
39 260.00 16.00 7.50 4.50 
40 8.00 6.00 3.50 4.50 
41 160.00 12.00 5.25 4.50 

42 10.50 6.75 4.50 10.0 

Note: 

Components of cost function are used appearing on Sedjo and Lyon (1990) and Sohngen et al. (1996) to 
estimate components of cost function in the TSM 2000 for each land class. 
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Table A-7. Parameter values of yield functions. 

Land class Cl c' c' c• c' 

0.1474 0.334 6.520 -6.5889 6.927 650 

2 0.1115 0.5 7.320 -56.9222 10 650 
3 0.1115 0.5 7.320 -56.9222 10 650 
4 0.1115 0.5 6.770 -76.2117 0 650 
5 0.1115 0.5 6.770 -76.2117 0 650 

6 0.1115 0.5 6.204 -37.0169 18 650 
7 0.1115 0.5 6.204 -37.0169 18 650 

8 0.050 0.3 7.457 -90.0 0 650 
9 0.1115 0.5 7.100 -76.2117 0 650 

10 0.1115 0.5 6.504 -37.0169 18 650 
11 0.050 0.5 7.697 -135.0 0 650 

12 0.1474 0.4 6.1367 -10.2576 7 650 
13 0.1474 0.4 6.1367 -10.2576 7 650 
14 0.1474 0.4 6.0739 -15.3563 6 650 
15 0.1474 0.4 6.0739 -15.3563 6 650 
16 0.1115 0.5 5.9272 -24.0982 3 650 
17 0.1115 0.5 5.9272 -24.0982 3 650 
18 0.050 0.5 7.697 -135.0 0 650 
19 0.050 0.5 7.697 -135.0 0 650 

20 0.1115 0.5 6.135 -28.4649 14 650 
21 0.1115 0.5 6.135 -28.4649 14 650 
22 0.1115 0.5 5.283 -15.1954 15 650 
23 0.1115 0.5 6.135 -28.4649 14 650 
24 0.1115 0.5 5.283 -15.1954 15 650 
25 0.1115 0.5 6.135 -28.4649 14 650 

26 0.050 0.5 7.397 -135 0 650 
27 0.050 0.5 7.397 -135 0 650 
28 0.1115 0.5 6.204 -37.0169 18 650 
29 0.1115 0.5 6.204 -37.0169 18 650 
30 0.1115 0.5 6.770 -76.2117 0 650 
31 0.1115 0.5 6.770 -76.2117 0 650 
32 0.1115 0.5 6.235 -28.4649 14 650 
33 0.1115 0.5 6.235 -28.4649 14 650 
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34 0.050 0.5 7.497 -135.0 0 650 
35 0.050 0.5 7.497 -135.0 0 650 
36 0.1115 0.5 6.135 -28.4649 14 650 
37 0.1115 0.5 6.135 -28.4649 14 650 

38 0.050 0.5 7.297 -135.0 0 650 
39 0.050 0.5 7.297 -135.0 0 650 
40 0.1115 0.5 6.135 -28.4649 14 650 
41 0.1115 0.5 6.135 -28.4649 14 650 

42 0.0 1.0 4.689 -1600 0 650 
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Table A-8. The portion going to solid wood <1>. for each land class. 

Percentage of 
Land solidwood 
class Region/characteristics (reference) 

Emerging Region 30 

2 U.S Pacific Northwest, Normal Access 55 
3 U.S Pacific Northwest, Limited Access 55 
4 U.S Pacific Northeast, Normal Access 55 
5 U.S Pacific Northeast, Limited Access 55 

6 Western Canada, Normal Access 55 
7 Western Canada, Limited Access 55 

8 Nordic Europe, South 40 
9 Nordic Europe, South 40 
10 Nordic Europe, South 40 
11 Nordic Europe, North 30 

12 U.S South site I, Normal Access 60 
13 U.S South site I, Limited Access 60 
14 U.S South site II, Normal Access 50 
15 U.S South site II, Limited Access 50 
16 U.S South site III, Normal Access 45 
17 U.S South site III, Limited Access 45 
18 U.S South site IV, Normal Access 40 
19 U.S South site IV, Limited Access 40 

20 Eastern Canada, Lake (pulp) 30 
21 Eastern Canada, Lake (saw log) 50 
22 Eastern Canada, Boreal/ Acadia (pulp) 30 
23 Eastern Canada, Boreal/Acadia (pulp) 30 
24 Eastern Canada, Boreal/Acadia (sawlog) 50 
25 Eastern Canada, Boreal/Acadia (sawlog) 50 

26 European USSR North, Normal Access 30 
27 European USSR North, Limited Access 30 
28 European USSR North, Normal Access 30 
29 European USSR North, Limited Access 30 
30 European USSR South, Normal Access 40 
31 EuroEean USSR South, Limited Access 40 
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32 European USSR South, Normal Access 40 
33 European USSR South, Limited Access 40 

34 West Siberia North, Normal Access 30 
35 West Siberia North, Limited Access 30 
36 West Siberia South, Normal Access 40 
37 West Siberia South, Limited Access 40 

38 East Siberia North, Normal Access 30 
39 East Siberia North, Limited Access 30 
40 East Siberia South, Normal Access 40 
41 East Siberia South, Limited Access 40 

42 Asia Pacific 80 
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Table A-9. Carbon contents (CS •. cs., and CSml and time period to reach minimal 
carbon storage (Tm- T.). 

Ecosystem cs. cs. csm 
Land class !l:Ee (106 ~a) (106 ~a) (106 ~a) T.,-T,(~) 

N.A 120 120 67 10 

2 5 120 120 67 10 
3 5 134 120 67 10 
4 4 120 120 67 10 
5 4 134 120 67 10 

6 2 185 185 175 15 
7 2 206 185 175 15 

8 2 185 185 175 15 
9 3 185 185 175 15 

10 4 120 120 67 10 
11 2 185 185 175 15 

12 3 120 120 67 10 
13 3 134 120 67 10 
14 3 120 1~0 67 10 
15 3 134 120 67 10 
16 3 120 120 67 10 
17 3 134 120 67 10 
18 5 120 120 67 10 
19 5 134 120 67 10 

20 3 185 185 175 15 
21 3 206 185 175 15 
22 2 185 185 175 15 
23 3 185 185 175 15 
24 2 206 185 175 15 
25 3 206 185 175 15 

26 2 185 185 175 15 
27 2 206 185 175 15 
28 4 120 120 67 10 
29 4 134 120 67 10 
30 3 185 185 175 15 
31 3 206 185 175 15 
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32 5 120 120 67 10 
33 5 134 120 67 10 

34 2 185 185 175 15 
35 2 206 185 175 15 
36 3 185 185 175 15 
37 3 206 185 175 15 

38 2 185 185 175 15 
39 2 206 185 175 15 
40 3 185 185 175 15 
41 3 206 185 175 15 

42 8 88 88 76 5 
Note: 

Carbon contents and time periods to reach minimal carbon storage for each land class are estimated from 
Table 2 provided in Houghton eta!. (1983). 
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Table A-10. The conversion factors used to calculate carbon storage in each part 
of the tree. 

Wood properties 

Specific gravity Proportion Carbon Carbon 
Land (cjl(h)) carbon (above/bole) (whole/above) 
class (106 Jim3

) (cf2(h)) (cf3(h)) (cf4(h)) 

0.51 0.53 1.60 1.35 

2 0.45 0.51 1.60 1.35 
3 0.45 0.51 1.60 1.35 
4 0.42 0.51 1.82 1.35 
5 0.42 0.51 1.82 1.35 

6 0.37 0.5 1 1.69 1.35 
7 0.37 0.5 1 1.69 1.35 

8 0.37 0.52 1.69 1.35 
9 0.37 0.52 1.69 1.35 
10 0.37 0.52 1.69 1.35 
11 0.37 0.52 1.69 1.35 

12 0.51 0.53 1.69 1.35 
13 0.51 0.53 1.61 1.35 
14 0.51 0.53 1.61 1.35 
15 0.51 0.53 1.61 1.35 
16 0.51 0.53 1.61 1.35 
17 0.51 0.53 1.61 1.35 
18 0.58 0.50 1.64 1.35 
19 0.58 0.50 1.64 1.35 

20 0.50 0.52 1.64 1.35 
21 0.50 0.52 1.64 1.35 
22 0.37 0.52 1.64 1.35 
23 0.50 0.52 1.64 1.35 
24 0.37 0.52 1.64 1.35 
25 0.50 0.52 1.64 1.35 

26 0.37 0.52 1.69 1.35 
27 0.37 0.52 1.69 1.35 
28 0.37 0.52 1.69 1.35 
29 0.37 0.52 1.69 1.35 
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30 0.37 0.52 1.64 1.35 
31 0.37 0.52 1.64 1.35 
32 0.42 0.52 1.64 1.35 
33 0.42 0.52 1.64 1.35 

34 0.37 0.52 1.69 1.35 
35 0.37 0.52 1.69 1.35 
36 0.37 0.52 1.64 1.35 
37 0.37 0.52 1.64 1.35 

38 0.37 0.52 1.69 1.35 
39 0.37 0.52 1.69 1.35 
40 0.37 0.52 1.64 1.35 
41 0.37 0.52 1.64 1.35 

42 0.64 0.50 1.70 1.35 
Note: 

Conversion factors used to calculate carbon storage for each land class are estimated from Turner et al . 
(1995) and Freedman et al. (1992). 





Region 1: The U.S. South 

I. Geographical Location of Region 

Longitude: 95W to 75W 
Latitude: 40N to 30N 

2. Classification of Region by Forest Type 

Mixed hardwood: site IV 
Southern pine: site I, II, ill. 

Land areas where Mixed hardwood is stocked are associated with Temperate 
Deciduous (legend number 5) in BlOME 3 ecosystem type 
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Land areas where Southern pine, especially loblolly pine, is stocked are associated 
with Temperate-Boreal Mixed Forest (legend number 3) in BlOME 3 ecosystem 
type. In particular, the region where Temperate-Broadleaved Evergreen Forest 
(legend number 6) in BlOME 3 ecosystem type are stocked with long leaf pine and 
slash pine. Thus, we include the legend number 6 into legend number 3. 

3. Steady State Ecological Change 

Temperate-Boreal Temperate 
Mixed Forest Deciduous Forest 

Total Land (Base, km2
) 667236 802195 

Total Land (Hamburg, km2
) 959549 509882 

NPP(Base, g/m2/yr) 1020 775.2 
NPP(Hamburg, g/m2/yr) 1327 1027 

Dieback(km2
) 0 292313 

Regeneration(km2
) 292313 0 

Dieback ratio 0 0.36 
Regeneration Ratio 1.438 0.64 
NPP Change Ratio 1.30 1.33 



Region II: The Pacific Northwest 

The Pacific Northwest (West) 

1. Geographical Location of Region 

Longitude: 125W to 122W 
Latitude: 49N to 37.5N 

2. Classification of Region by Forest Type 

Douglas fir 
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Douglas fir is classified as Coniferous. But land areas where Douglas fir is stocked 
in West of Pacific North West are associated with Temperate Deciduous (legend 
number 5) in BlOME 3 ecosystem type. 

This region is highly conserved to protect biodiversities living in this region such as 
the spotted owl, etc. 

3. Steady State Ecological Change 

Temperate 
Deciduous Forest 

Total Land (Base, km2
) 49383 

Total Land (Hamburg, km2
) 80912 

NPP(Base, g/m2/yr ) 
NPP(Hamburg, g/m2/yr) 

Dieback(km2
) 

Regeneration(km2
) 

Dieback ratio 
Regeneration Ratio 
NPP Change Ratio 

538.9 
808 .8 

16964 
48493 

0.34 
1.64 
1.50 



The Pacific Northwest (East) 

1. Geographical Location of Region 

Longitude: 122W to 108W 
Latitude: 49N to 42N 

2. Classification of Region by Forest Type 

Ponderosa pine 
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Ponderosa pine is associated with Temperate Conifer Forest (legend number 4) in 
BlOME 3 ecosystem type 

In 49N to 46N, larch is distributed with Ponderosa pine. When we consider 
inventory stock of this region and the yield function in Sedjo and Lyon (1990), larch 
could be considered as Temperate Conifer Forest (legend number 4) even if larch is 
denoted as Boreal Coniferous (legend number 2) in BlOME 3 ecosystem type. 

In 45.5N to 42N, lodge pole is stocked in the high altitude Rocky Mountains area, 
but in this subregion, lodge pole is extensively conserved; hence it is not harvested 
for commercial use. 

3. Steady State Ecological Change 

Temperate 
Conifer Forest 

Total Land (Base, km2
) 467474 

Total Land (Hamburg, km2
) 445769 

NPP(Base, g/m2/yr) 
NPP(Hamburg, g/m2/yr) 

Dieback(km2
) 

Regeneration(km2
) 

Dieback ratio 
Regeneration Ratio 
NPP Change Ratio 

343,1 
464.05 

134302 
112597 

0.29 
0.95 
1.35 



Region III: Nordic Europe 

1. Geographical Location of region 

Longitude: 5E to 30E 
Latitude: 70N to 57N 

We divide Nordic region into two subregions such that warmer region is the "South" 
and cooler region is the "North". 

2. Classification of Region by Forest Type 

North: Coniferous 

Coniferous is associated with Boreal Coniferous (legend number 2) in BlOME 3 
ecosystem type 

South: Coniferous and Mixed 
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Coniferous is associated with Boreal Coniferous Forest (legend number 2) and 
Temperate Conifer Forest (legend number 4) in BlOME 3 ecosystem type,and 
Mixed wood is associated with Temperate-Boreal Mixed Forest (legend number 3) 
in BlOME 3 ecosystem type. 

3. Steady State Ecological Change 

Boreal 
Coniferous Forest 

Total Land (Base, km2
) 369155 

Total Land (Hamburg, km2
) 416847 

NPP(Base, g/m2/yr) 
NPP(Hamburg, g/m2/yr) 

Dieback(km2
) 

Regeneration(km2
) 

Dieback ratio 
Regeneration Ratio 
NPP Change Ratio 

148.3 
215.1 

3484 
47694 

O.ol 
1.13 
1.45 
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South 

Temperate 
Boreal Temperate-Boreal Conifer 
Coniferous Forest Mixed Forest Forest 

Total Land (Base, km2
) 398202 66261 67258 

Total Land (Hamburg, km2
) 200243 174202 141516 

NPP(Base, g/m2/yr) 220.4 327.7 254.7 
NPP(Hamburg, g/m2/yr) 269.5 368.1 311.2 

Dieback(km2
) 209337 53946 43791 

Regeneration(km2
) 11378 161887 118049 

Dieback ratio 0.53 0.81 0.65 

Regeneration Ratio 0.50 2.63 2.10 
NPP Change Ratio 1.22 1.12 1.22 



Region IV: Western Canada 

1. Geographical Location of Region 

Longitude: 135W to 119W 
Latitude: 60N to 49N 

2. Classification of Region by Forest Type 

Softwood 
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Softwood is associated with Boreal Coniferous Forest (legend number 2) in BlOME 
3 ecosystem type 

5. Steady State Ecological Change 

Boreal 
Coniferous Forest 

Total Land (Base, km2
) 805791 

Total Land (Hamburg, km2
) 702783 

NPP(Base, gjm2/yr) 
NPP(Harnburg, gjm2!yr) 

Dieback(km2
) 

Regeneration(km2
) 

Dieback ratio 
Regeneration Ratio 
NPP Change Ratio 

241.75 
294.55 

283218 
180210 

0.35 
0.87 
1.22 



Region V: Eastern Canada 

BoreaVAcadia Area 

1. Geographical Location of Region 

Boreal Area 

Longitude: 96W to 60W 
Latitude: 60N to SON 

Acadia Area 

Longitude: 68W to S2W 
Latitude: SON to 44N 

2. Classification of Region by Forest Type 

Softwood 

1S4 

Softwood is associated with Boreal Coniferous Forest (legend number 2) in BlOME 
3 ecosystem type 

3. Steady State Ecological Change 

Total Land (Base, km2
) 

Boreal 
Coniferous Forest 

141917S 

Total Land (Hamburg, km2
) 977S76 

NPP(Base, g/m2/yr) 
NPP(Hamburg, g/m2/yr) 

Dieback(km2
) 

Regeneration(km2
) 

Dieback ratio 
Regeneration Ratio 
NPP Change Ratio 

230.4 
234.7 

721S94 
27999S 

O.S1 
0.69 
1.02 

Temperate-Boreal 
Mixed Forest 

IOS837 

742633 

387.2 
440.S 

47811 
683977 

0.4S 
7.02 
1.38 



Lake Area 

I. Geographical Location of Region 

Longitude: 85W to 68W 
Latitude: 49N to 45N 

2. Classification of Region by Forest Type 

Hardwood 
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Hardwood is associated with Temperate-Boreal Mixed Forest (legend number 3) in 
BlOME 3 ecosystem type 

3. Steady State Ecological Change 

Temperate-Boreal 
Mixed Forest 

Total Land (Base, km2
) 179931 

Total Land (Hamburg, km2
) 311634 

NPP(Base, g/m2/yr ) 
NPP(Hamburg, g/m2/yr) 

Dieback(km2
) 

Regeneration(km2
) 

Dieback ratio 
Regeneration Ratio 
NPP Change Ratio 

395.4 
521.5 

58073 
189776 

0.32 
1.73 
1.32 



Region VI: European USSR 

I. Geographical Location of Region 

Longitude: 30E to 60E 
Latitude: 70N to SON 

2. Classification of Region by Forest Type 
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European USSR is subdivided into four land classes associated with BIOME 3 
ecosystem types such as Boreal Coniferous Forest (legend number 2), Temperate 
conifer Forest (legend number 4), Temperate-Boreal Mixed Forest (legend number 3), 
and Temperate Deciduous Forest (legend number 5). 

3. Steady State Ecological Change 

Boreal Temperate Temperate- Temperate 
Coniferous Conifer Boreal Mixed Deciduous 
Forest Forest Forest Forest 

Total Land (Base, km2
) 1260884 1557 845599 152540 

Total Land (Hamburg, km2
) 849073 155508 1168141 310830 

NPP(Base, g/m2/yr ) 180.6 255 309 389.9 
NPP(Hamburg, g/m2/yr) 211.2 353.4 371.7 504.5 

Dieback(km2
) 452909 1557 95152 57642 

Regeneration(km2
) 41098 155508 417694 215932 

Dieback ratio 0.36 0.11 0.38 

Regeneration Ratio 0.67 99.88 1.38 2.04 
NPP Change Ratio 1.17 1.39 1.20 1.29 



Region VII: West Siberia 

1. Geographical Location of region 

Longitude: 60E to 85E 
Latitude: 70N to SON 

2. Classification of Region by Forest Type 
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West Siberia is subdivided into two land classes such that one land class is stocked with 
Coniferous and the other land class is stocked with Softwood Deciduous. 

Coniferous is associated with Boreal Coniferous Forest (legend number 2) and 
Temperate Conifer Forest (legend number 4) in BlOME 3 ecosystem types. 

Softwood Deciduous is associated with Temperate-Boreal Mixed Forest (legend 
number 3) and Temperate Deciduous Forest (legend number 5) in BlOME 3 
ecosystem types. 

3. Steady State Ecological Change 

Boreal 
Coniferous Forest 

Total Land (Base, krn2
) 1196950 

Total Land (Hamburg, krn2
) 1168435 

NPP(Base, g/m2/yr) 
NPP(Harnburg, g!m2/yr) 

Dieback(krn2
) 

Regeneration(krn2
) 

Dieback ratio 
Regeneration Ratio 
NPP Change Ratio 

144.6 
185.7 

185775 
157260 

0.16 
0.98 
1.28 

Temperate-Boreal 
Mixed Forest 

354155 
604544 

279.2 
374.3 

0 
250389 

0 
1.71 
1.34 



Region VIII: East Siberia 

I. Geographical Location of Region 

Longitude: SSE to 160E 
Latitude: 70N to SON 

2. Classification of Region by Forest Type 

ISS 

East Siberia is subdivided into two land classes such that one land class is stocked with 
Coniferous and the other land class is stocked with Softwood Deciduous. 

Coniferous is associated with Boreal Deciduous Forest (legend number I) and 
Boreal Coniferous Forest (legend number 2) in BlOME 3 ecosystem type. For 
Coniferous, we included Boreal Deciduous Forest (legend number I) in Boreal 
Coniferous Forest (legend number 2). Maps showing vegetation zone in East 
Siberia (e.g., Backman &Waggener 1991 and Haden-Guest et al.l9S6) indicate that 
most of region associated with Boreal Deciduous Forest in BlOME 3 ecosystem 
type is stocked with Boreal Coniferous Forest (legend number 2). 

Softwood Deciduous is associated with Temperate-Boreal Mixed Forest (legend 
number 3) in BlOME 3 ecosystem type. 

3. Steady State Ecological Change 

Boreal 
Coniferous Forest 

Total Land (Base, km') 6914968 
Total Land (Hamburg, km') 6416182 

NPP(Base, g/m2/yr) 
NPP(Hamburg, glm2/yr) 

Dieback(km') 
Regeneration(km2) 

Dieback ratio 
Regeneration Ratio 
NPP Change Ratio 

120.7 
189.3 

10332S8 
S34472 

0.15 
0.93 
!.57 

Temperate-Boreal 
Mixed Forest 

9991S 
918047 

282.2 
318.7 

S9SO 
824082 

0.06 
9.19 
1.13 



Region IX: Asia Pacific 

!.Geographical Location of Region 

Indonesia and Malaysia 

Longitude: 95 E to 120 E 
Latitude: 10 N to 5 S 

Phillipines 

Longitude: 120 E to 128 E 
Latitude: 20 N to 5 N 

2. Classification of Region by Forest Type 

Tropical Hardwood 
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Tropical Hardwood is associated with Tropical Rain Forest (legend number 8) and 
Tropical Seasonal Forest (legend number 7) in BlOME 3 ecosystem type. 
According to BlOME 3 ecosystem type, Tropical Rain Forest and Tropical Seasonal 
Forest has the same plant functional type. If monthly average available soil moisture 
is higher than 50 %, Tropical Rain Forest is mapped and if not, Tropical Seasonal 
Forest is mapped. Thus, we can include Tropical Seasonal Forest into Tropical Rain 
Forest. 

3. Steady State Ecological Change 

Tropical Rain 
Forest 

Total Land (Base, km2
) 1264121 

Total Land (Hamburg, km2
) 1254899 

NPP(Base, g/m2/yr) 
NPP(Hamburg, g/m2/yr) 

Dieback(km2
) 

Regeneration(km2
) 

Dieback ratio 
Regeneration Ratio 
NPP Change Ratio 

971.5 
1363.5 

144919 
135697 

0.11 
0.99 
1.40 
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