
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

All Graduate Theses and Dissertations Graduate Studies

5-2014

Oral Communication in Genre Theory and Software Development Oral Communication in Genre Theory and Software Development

Workplaces Workplaces

Jason L. Cootey
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/etd

 Part of the Communication Commons

Recommended Citation Recommended Citation
Cootey, Jason L., "Oral Communication in Genre Theory and Software Development Workplaces" (2014).
All Graduate Theses and Dissertations. 3896.
https://digitalcommons.usu.edu/etd/3896

This Dissertation is brought to you for free and open
access by the Graduate Studies at
DigitalCommons@USU. It has been accepted for
inclusion in All Graduate Theses and Dissertations by an
authorized administrator of DigitalCommons@USU. For
more information, please contact
digitalcommons@usu.edu.

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F3896&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/325?utm_source=digitalcommons.usu.edu%2Fetd%2F3896&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/3896?utm_source=digitalcommons.usu.edu%2Fetd%2F3896&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

ORAL COMMUNICATION IN GENRE THEORY

AND SOFTWARE DEVELOPMENT WORKPLACES

by

Jason L. Cootey

A dissertation submitted in partial fulfillment
of the requirements for the degree

of

DOCTOR OF PHILOSOPHY

in

Theory and Practice of Professional Communication

Approved:

Dr. David Hailey
Major Professor

Dr. Keith Grant-Davie
Committee Member

Dr. Ronald Shook
Committee Member

Dr. Patricia Gantt
Committee Member

Dr. Christine Hailey
Committee Member

Dr. Mark McLellan
Vice President of Research and
Dean of the School of Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2014

	
	

ii	

	

	

	

	

	

	

	

	

	

	

Copyright	 ©	 Jason	 L.	 Cootey	 2014	

All	 Right	 Reserved	

	
	

iii	

ABSTRACT

Oral Communication in Genre Theory and

Software Development Workplaces

by

Jason L. Cootey, Doctor of Philosophy

Utah State University, 2014

Major Professor: Dr. David E. Hailey
Department: English

 While “communication” often means written communication, professional

communication involves other media that often goes unnoticed. However, once

researchers look past print media to the digital world, there are a host of genres which

professional communicators must understand to successfully practice their profession.

The software industry is a field where written communication has a strong presence,

indicating a failure to fully utilize the importance of other media.

Traditional software development methods require comprehensive

documentation. The documentation thoroughly articulates both design details and a clear

development map for the entire project. Such documentation can add to over 1000 pages

in larger, government projects. However, smaller development shops work with much

smaller, more contemporary projects; the software is not as big, does not service so many

users, and is not expected to have a long lifespan before business needs change. In those

cases, developers struggled with the same cumbersome documentation requirements

	
	

iv	

required by larger software projects.

As more development shops adopted the contemporary practices, developers

became frustrated with documentation requirements. Consequently, contemporary

developers still struggle to stuff monolithic, traditional documentation standards into their

nimble, contemporary practices.

In this dissertation, I use North American genre theory to both describe the

documentation I expect developers to write and describe the way developers were

supposed to write it. I use two postmortems in this dissertation to showcase my

expectations and the results I found. Yet, the predictions and descriptions were wrong in

each case. In my postmortems and industry, developers either fail to document or

document very poorly.

The problem was not with contemporary practices, the developers, or genre

theory. Rather, the problem is with the limitation of written communication and the

necessary recognition of additional genres. Because recent programming practices have

become so agile, the genres describing their production may include casual conversations

and even quick instructions on Post-It notes stuck onto the programmers’ monitors. In

this dissertation, I refer to “rhetorical forms” to escape the limitations of the older

tradition and include the new genres. I seek to highlight oral communication and other

“pieces” of communication as the rhetorical forms genre theory predicts.

 (263 pages)

	
	

v	

PUBLIC ABSTRACT

My dissertation defines how software developers have abandoned traditional

documentation practices for other kinds of media that work better in their workplace

practices. Ultimately, even though other media like white boards, sticky notes, and “oral

communication” are vastly different than traditional, written software documentation,

they match the fast paced, decision-making situations of contemporary developer

communities. I focus particularly on oral communication because it is the most

unacceptable means to “document,” according to traditional standards. I use North

American Genre Theory to describe those decision-making situations contemporary

developers and note how the theory does not account for all the documentation I expect

to find. Via several projects and interviews I confirm that oral communication is a new

means of “documentation” and reconciles North American Genre Theory

	

	
	

vi	

ACKNOWLEDGMENTS

Every page is for Karen because not a single page could have been written

without her. She has waited too long but has managed to believe in me all along.

Every image is for my kids—they are only interested in the pictures anyway.

Thank you to Professor David E. Hailey for his enduring patience and rewarding

collaborations.

Thank you to Professors Keith Grant-Davie, Ronald Shook, Patricia Gantt, and

Christine Hailey for their mentorship and support.

Jason L. Cootey

	
	

vii	

CONTENTS

Page

ABSTRACT.. III

PUBLIC ABSTRACT ... V
ACKNOWLEDGMENTS .. VI

LIST OF TABLES.. XI
LIST OF IMAGES...XII

CHAPTER I INTRODUCTION... 1
Dissertation Summary ... 1

Dissertation Vocabulary and Research Plan... 2
Dissertation Research Problem ... 5

Research Problem and North American Genre Theory.. 5
My Research Problems and Software Development. ... 7

Dissertation Purpose and Objectives... 11
Risks Arising from Oral Communication... 12

Dissertation Procedures... 14
Theoretical Dissertation Procedure .. 14
Dissertation Research Situation Procedures ... 15

Chapter Overview ... 18
CHAPTER II LITERATURE REVIEW .. 20

Example of Documentation Theory and Practice ... 20
A Short Narrative ... 20
Disconnect Between CEO and Development Team... 22
Reasons for the Breakdown.. 22
Genre Theorists and Programming Documentation ... 23

Reviewing Real Impact on Professionals.. 24
Impact Reported in Software Development Postmortems 24

Review Usage of Meta-Languages ... 27
Meta-Languages and Knowledge ... 27
Burke’s Rhetorical Grammars.. 29
Tenets of Genre Theory as Meta-Language ... 32
Five Meta-Language Principles to Describe Genres .. 36
Verbal and Non-Verbal Dynamics of Oral Communication.............................. 40
Reviewing Convergence of Meta-Language .. 43

Traditional Software Development and Documentation... 46

	
	

viii	

External vs. Internal Documentation.. 46
The Advantages of Documentation .. 48
Description of Governing Documentation ... 50
Example: Edgetech’s Governing Documentation .. 52
Reviewing Two Development and Documentation Methods 56

Highlighting Purpose in Genre Theory ... 62
Purpose in Rhetorical Situations .. 63
Purpose and Community Meaning-Making ... 65
Purpose and the Three Schools of Genre Theory... 69

Professionals and Their Documentation ... 72
Purpose as Central to Software Documentation... 73
The Edgetech Narrative—in the Meta-Language of Genre Theory 75

Oral Communication as a Rhetorical Form... 77
Utterances as Oral Communication.. 77
Oral Communication in Genre Theory... 80

Validation with Two Theoretical Models ... 85
The Model of Expectations .. 85
The EUPARS Model .. 89

CHAPTER III METHODOLOGY ... 91
Methodology and Procedures.. 91

Strategies of Inquiry ... 92
Experimental Design .. 95

Methodology and Participants... 98
Participant Selection... 98
Participant Perspectives from American West Project..................................... 100
Participant Interviews with Lunch Time Software Developers 103

Methodology and Analysis.. 108
Data Analysis and Interpretation .. 108
American West Postmortem Document Sampling... 111
Online Engineering Modules Projects Document Sampling............................ 114

CHAPTER IV POSTMORTEM: AMERICAN WEST HERITAGE CENTER............ 118
Context for American West Game Postmortem.. 118

This is a Postmortem .. 119
Context of the American West Game ... 120

A Context of Documents .. 120
The Context of the Actual Game.. 121
The Context in Three Phases.. 123

Participation in the American West game... 125
My Role in Both the Development Project and the Methods........................... 125

Three Samples from American West Game.. 128
A Standard Sample of Traditional Documentation .. 128
Sample Full of Collaboration and Meaning ... 135
A Dynamic Documentation Sample... 145

	
	

ix	

Discussion about American West game.. 152
American West and Development Expectations .. 152
American West and Replicating the Results .. 157

CHAPTER V POSTMORTEMS: ENGINEERING MODULE SUPPLEMENT
PROJECT.. 160

Context For the Engineering Project Postmortem... 160
The Project’s Origin ... 161
Scope of Engineering Modules Project .. 162
Research Context for Engineering Modules Project .. 165

Traditional Sample from the Engineering Modules Project.................................. 169
Sample: Standard Operating Procedure.. 169
Sample: Procedure Memo .. 171
Sample: Design Document ... 172

Evolution of Samples from the Engineering Modules Project.............................. 175
High Stakes for No Documentation ... 175

Imminent Catastrophe for the Engineering Modules Project................................ 179
A Need for Project Documentation .. 179
Engineering Modules were Not a Catastrophe... 180
Complex Situation .. 181

Rhetorical Form Samples in the Engineering Modules Project 184
Email and Calendar Updates .. 185
Meta Data Documents .. 186
Scrap Paper Notes... 187
Sticky Notes.. 189
Oral Communication .. 190

Success of the Engineering Modules Project .. 192
Engineering Modules Repercussions ... 192

Model of Expectations in the Engineering Modules Project................................. 195
Model of Expectations.. 195
Discussion from Dated Blog Posts ... 200

CHAPTER VI PREDICTING GENRES: PROFESSIONAL DEVELOPER
INTERVIEWS .. 206

Specifics about the Interview .. 206
Interview Subject Profile .. 209
Interview Questions.. 211

Results: Model of Expectations... 215
Results of Dynamism ... 216
Results of Situatedness ... 220
Results of Form and Content .. 226
Results of Duality of Structure ... 228
Community Ownership and Results ... 232

Interviews with the EUPARS Framework .. 234
The Interviews Presented in the UEPARS Table ... 236

	
	

x	

The Interviews and Appropriate EUPARS... 237
The Interviews and Inappropriate EUPARS .. 238

Discussion of Results .. 240
The Impact Rhetorical Forms on Genre Theory Research............................... 241
The Impact of Rhetorical Forms on Software Development............................ 242
Opportunities for Ongoing Research.. 244

REFERENCES ... 247
APPENDIX... 252

Appendix 1: IRB Approval ... 252
Appendix 2: Letter of Information .. 254

VITA... 256

	

	

	
	

xi	

LIST OF TABLES

	

Table Page

1 A Framework of Genre Theory……………………………..……... 34

2 The 14 Recommended Sections of a Design Document…………... 53

3 Model of Expectations Matched to Practitioner Wording…………. 88

4 Hailey’s EUPARS Model Defined………………………………… 90

5 The Interview Questions Organized According to Genre
Principles……………………………………………………………

107

6 The Film Equipment Inventory Used for Engineering
Courses……………………………………………………………..

116

7 The Original Horse Barn Documentation Version………………… 129

8 The Final Horse Barn Documentation Version……………………. 132

9 Model of Expectations Matched to Practitioner Wording…………. 209

10 The Interview Questions Organized According to Genre
Principles……………………………………………………………

212

11 Hailey’s Demonstration of His EUPARs model…………………… 235

12 Application of EUPARs to the Lunchtime Interviews…………….. 247

	
	

xii	

LIST OF IMAGES

	

Image Page

1 Organization of the Game World Section of Chris Taylor’s
Design Document Template……………………………………….

55

2 Model of Traditional Methodology………………………………. 57

3 The Spectrum of Programming Methodologies Identified
by Logan, Utah Developers……………………………………….

60

4 Spinuzzi’s Ecology Map from Modeling Genre Ecologies……….

78

5 Spinuzzi’s Ecology Map from Chains and Ecologies……………. 79

6 Spinuzzi’s Ecology Map from Software Development
as Mediated Activity……………………………………………….

82

7 A Record of 171 Revisions……………………………………….. 112

8 Visual Portrayal of the Complex Recursive Situation……………. 117

9 The File Tree Used in the Code…………………………………… 136

10 The KitcheBg.jpg had a Unique in the File Structure…………….. 137

11 The Documented Procedure for Versioning Control……………… 138

12 Sample Section Revised by Team Members……………………… 147

13 A Storyboard Panel Depicting the Grandfather…………………… 155

14 Page One of Overlaying Document……………………………..... 170

15 Page Two of Overlaying Document………………………………. 170

16 Procedural Memo Details Footage Management…………………. 171

17 Page One of the Traditional Design Document…………………… 173

18 Page Two of the Traditional Design Document………………….. 174

	
	

xiii	

19 The Chaotic Project Dependencies that Ended up Successful…….. 181

20 An Email with a Weekly Calendar………………………………… 185

21 Meta Data File Tracks a Versioning Error………………………… 186

22 Scrap of Paper for the Use of a Single Editor…………………….. 188

23 Four Sticky Note Samples………………………………………… 189

CHAPTER I

INTRODUCTION

 DISSERTATION SUMMARY

Many software industry development guidebooks outline the form and content for

software development documents—user manuals, specifications, design documentation,

etc. These guidebooks have prescribed rules, specific processes, and clear genres for

these documents. However, as I interviewed developers, observed design meetings,

sampled various documents, and managed my own projects, I discovered developers

often ignored both these guidebooks and their recommendations. In fact, some of the

contemporary developers with whom I spoke claim the industry guidebooks have long

been out of touch. While guidebooks are still relevant to the documentation requirements

of traditional development environments, where developers use more linear planning

methods, that same relevance does not extend to contemporary environments, where

developers use more iterative planning methods. When contemporary developers

abandon industry guide recommendations they also abandon their traditional commitment

to thoroughly document their development plans. Additionally, while strategies and

values of community mindsets had all changed in contemporary development

environments, the strategies and values for documentation activities had remained

traditional.

Consequently, contemporary developers tried to fit traditional documentation in to

contemporary strategies and values. After all, traditional guidebooks advocate thoroughly

articulated written documentation and eschew oral communication as accidental chitchat.

	
	

2	

In the minds of traditional developers, oral communication has such limited value they

use a common idiom to diminish it: “if it isn’t written down it didn’t happen.” However,

traditional documentation will not fit in contemporary methods. Yet, contemporary

developers still expected to write the traditional documentation. In short, the

documentation recommended by traditional guidebooks worked poorly in contemporary

software development environments, even while contemporary developers still labored to

write the documents.

Dissertation Vocabulary and Research Plan

One of three things might be the explanation for the disconnect between

traditional documentation and contemporary practices:

• Traditional documentation practice may be broken

• Developers may fail to comply with industry standards

• Developers comply in a nontraditional way

The answer is the last; they comply in a nontraditional way. Their written documentation

may be poor but their documentation activities still meet their needs. Software developers

simply do not have the language to describe nontraditional documentation activities. That

is where I use North American genre theory as a meta-language to describe how

contemporary developers shifted documentation activities to accommodate nontraditional

values, like oral communication.

The dissertation’s vocabulary. The guidebooks demand that careful project plans

and comprehensive design details all be officially recorded, rather than merely discussed

and forgotten. These prescribed documentation activities traditionally involve documents

	
	

3	

with sometimes encyclopedic levels of detail and comprehensively describe the

objectives and milestones on a linear project plan. Developers are meant to draw their

documentation vocabulary from those industry guides and describe documentation with

vocabulary provided by those guides. Having been immersed in these prescriptions from

the beginning of programming history, developers find it difficult to describe something

other than a carefully written document in their documentation activities. In contrast,

there is no vocabulary to articulate documentation that may not fit the traditional model.

Therefore, when developers refer to “documentation,” they refer to an officially labeled

development activity and contemporary developers still use that traditional vocabulary

when they talk about the act of “documentation” in their contemporary work

environments. With that in mind, I employ North American genre theory because it

comes with both predictive power and a vocabulary to describe communication practices

outside the framework of traditional documentation practice.

North American genre theory is not the only theory of genre studies; however, it

is the genre theory I use in my research. Classic genre theory and Sydney Australia genre

theory will be designated as such but I will always refer to North American genre theory

as simply “genre theory.”

While I can easily describe traditional documentation with genre theory, I do not

tend to find the contemporary documentation genre theory seems to predict. This is

because 1) the industry standards and vocabulary exclusively privilege traditional

(written) documentation and 2) contemporary developers either do not produce traditional

documentation at all or they do so only superficially. Even so, it does not follow that

contemporary developers do not perform documentation activities, even if there is no

	
	

4	

reliable trail of written communication. Rather, developers perform documentation

activities with new rhetorical forms that include oral communication.

I describe contemporary documentation and the meta-language of genre theory

gives me the vocabulary I need. In this dissertation, I use a meta-language provided by

genre theory to describe two project postmortems and a set of interviews. The vocabulary

of this meta-language serves as a foundation for my argument.

Dissertation research plan. I sought to produce documentation as prescribed by

industry guidebooks and I had genre theory to describe the success or failure of my re-

creations of traditional documentation. I vetted my findings with my contacts in the field

and I sought new contacts with whom I could field additional questions.

The narrative of my two project postmortems highlight the pain points

contemporary developers have with traditional documentation. I cap my dissertation with

a contemporary software development company in Salt Lake City, Utah; I interviewed

seven developers. I used the meta-language of genre theory to predict what I would find

and I expected that the interviews would verify an oral shift in traditional documentation

standards. In the end, although the interviews did not yield what I expected, I had a meta-

language to describe both the ecosystem of communication genres the interviewees

employed, even if the communication genres I describe do not match the

recommendations of traditional industry standards.

	
	

5	

DISSERTATION RESEARCH PROBLEM

The research problem is informed by the fact that contemporary software

developers no longer follow the old prescriptions to produce traditional documentation,

according to industry standards. The problem suggests the following questions:

1. What do they use instead?

2. Are current approaches appropriate?

3. If they are not appropriate, what should the developers be doing?

It is hard to answer those questions with traditional vocabulary. For instance, “if

developers don’t write traditional documentation then what do they write?” As long as

their vocabulary keeps referencing formally written communication (in the absence of all

other possibilities), their vocabulary is not useful. I simply cannot use traditional rules

and traditional guidebook language to describe the communication practices of

contemporary developers. However, I can use rubrics derived from genre theory to

describe what the contemporary developers actually do, the effectiveness of what they

actually do, and what their documentation should look like.

Research Problem and North American Genre Theory.

Genre theory is a model researchers use to describe how communicators might

formulate flexible rules based on social interaction (e.g., proposing a service) for the form

and content of genres, rather than conform to rigid, preset structural categories (e.g.,

detective story, news story, or magazine ad). Genre theory gives me the meta-language to

	
	

6	

describe the community actions that formulate the flexible rules in the new workplace,

giving me a framework I can use to describe the various elements I see in contemporary

documentation practices—traditional documents, plus oral and other informal

communication practices. Moreover, the theories aid me in describing my documentation

research experience as a professional.

In this dissertation, I highlight how genre theory can describe more than merely

written texts; my objective is to show how oral and other rhetorical forms are missing

pieces in what can be accurate descriptions of contemporary practice. To that end,

Berkenkotter and Huckin (1995) used the words “rhetorical form,” instead of words like

“written” or “text,” to conceive more than written communication: “Genres are dynamic

rhetorical forms that are developed from actors' responses to recurrent situations and that

serve to stabilize experience and give it coherence and meaning” (p. 4). By dynamic

rhetorical forms, Berkenkotter and Huckin meant that communities decide on strategies

of communication and reconfigure written communication as needed. The key to genre

theory is there are not inflexible, predetermined parameters for genres. Rather,

communities determine the parameters of communication, based upon the needs of the

community. Insofar as communities must frequently make decisions about rhetorical

form, Berkenkotter and Huckin called those decisions “recurrent situations.” Genre forms

are organic; each time the community responds to a recurrent situation, the community

renegotiates form and content. Communities reuse the solutions that work and that is

what Berkenkotter and Huckin meant by stabilizing experience—a genre is simply a

pattern of solutions. Contemporary software developers use genre forms to stabilize their

recurrent situations.

	
	

7	

Applying genre theory to software developers. My research suggests software

industry documentation guidelines need to describe documentation practices so they

include both written communication and oral communication acts. The problem with

contemporary software developers is the surprising dependence on oral communication.

By the standards of industry guidebooks and the predictions of genre theory, the absence

of written communication means that key development decisions are made off-stage—or

outside the documentation process. However, if oral communication is in fact a rhetorical

form then development decisions are no longer off-stage.

I originally and erroneously assumed that something was either wrong with the

software developers or with genre theory. My mistake, however, was using the theory to

examine writing practices when the communication of many contemporary developers

was no longer limited to writing. Developers were using oral communication to meet

their objectives. It was clear that I needed to expand my examinations to include a full

spectrum of communication.

My Research Problems and Software Development.

Contemporary developers are an excellent model for testing genre theory; they

continually adapt their plans and rewrite their internal documents. However, where genre

theory predicts that the community should harness a cycle of documentation to formulate

decisions, the contemporary community does not. Documentation is often an activity they

do after all the decision making is done. For instance, Brad is one of the Salt Lake City

developers I interviewed; he claimed that only if his team lived in a world where written

communication was the only way to communicate would they only rely on written

	
	

8	

documents to make decisions and communicate. He suggested that there are other

ways—other rhetorical forms—that facilitate communication and design decisions.

Therefore, contemporary developers chitchat in weekly, undocumented meetings, rather

than use rigid documents to govern projects, transmit design direction or sustain team

unity.

The cycle of documentation varies according to specific software development

methods. These methodologies differ a great deal on the preplanning and the

documentation developers require. For instance, chitchat is not conducive to preplanning

requirements. The “Waterfall” methods and “Agile” methods are the chief software

development methodologies.

• Waterfall development is built on the principle of a tiered waterfall, in which water

rushes off several discreet, linear stages. The belief is that if the team plans

sufficiently then the project will flow smoothly with its own momentum. In

addition, the Traditional method values preplanning.

• Agile development is built on the principle of recursive cycles, in which a prototype

is repeatedly presented to the client. Developers believe that the existing plan

should change as required; they value the flexibility of their development method.

While the purpose of traditional documentation suits traditional development, the

purpose does not suit contemporary development. The emphasis on documentation makes

traditional development optimal for genre analysis; traditional development environments

are clear recursive situations with responsive agents. While contemporary developers

have documents that help teams negotiate recursive situations, contemporary developers

	
	

9	

change the document with each recursive situation; the document does not stabilize

contemporary developers. Some other rhetorical form performs that purpose.

 Traditional software development methodology. Traditional development has

four chief steps (Larman, 2003). The steps begin with an enormous preplanning effort

that thoroughly defines as many elements as possible (p. 57):

1. Define up front, in detail, the requirements.

2. Define the “design” (text and diagrammatic descriptions of the software and

hardware elements.

3. Implement the system (programming, and so forth).

4. Integrate and test the components.

The Traditional method’s enormous preplanning requires defining, elaborating,

diagramming, graphing, and stating projected specifications. This network of

documentation excites Genre theorists who seek to see how genres shape recursive

situations and how agents respond to those rhetorical forms. Therefore, in traditional

development, a document detailing the projected specifications will guide developers

who all work on different components—necessitating a unified document.

Contemporary software development methodology. However, contemporary

developers know preplanning and documentation do not govern development. In fact,

Hudson is one of the Salt Lake City developers I interviewed; he stated that he once did

traditional development and knew that even traditional developers did not document like

they said they should. Therefore, documentation might perhaps form from actors’

responses to recurrent situations but oral communication is what actually stabilizes the

situation. Larman (2003) suggests it is not possible to “define [contemporary] methods,

	
	

10	

as specific practices vary”; yet, Larman still identifies some basic practices: “Timeboxed,

iterative and evolutionary development, adaptive planning, promote evolutionary

delivery, and include other values and practices that encourage agility” (p. 25).

Contemporary values are diametrically opposed to Traditional values. In fact, Andreas

Rüping (2003) echoes the Agile Manifesto (p. 1):

• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

• Customer collaboration over contract negotiation

• Responding to change over following a plan

The agile manifesto highlights the small role of documentation in contemporary

development.

Genre theory provides a meta-language that can describe the documentation

industry guides recommend. For instance, actors’ situated decisions are supposed to be

typified rhetorical actions that generate documentation. Yet, contemporary developers do

not document well or do not document at all. Their documentation is more of a legacy

record than a product of situated decisions. As I expand genre theory to highlight the

rhetorical forms contemporary developers use to make decisions, idle chitchat turns into

the oral communication that stabilizes contemporary development.

	
	

11	

DISSERTATION PURPOSE AND OBJECTIVES

Genre theory is useful for describing recursive situations like the documentation

in software development practices. However, contemporary developers negotiate

decisions without recursive documentation, even if they scrawl a legacy document at the

end of each development cycle. The result is a development practice with no notable

written documentation practice. However, written documentation is not the limit of

documentation activities. Contemporary developers do in fact have an as yet undefined

documentation practice. My objective is to identify the rhetorical forms on which

contemporary developers rely for their rhetorical situation. Genre theory works as a meta-

language to describe the rhetorical forms in contemporary development.

Whereas the plan-driven methodology of traditional documents easily lends itself

to genre theory, the same document methods do not fit in a description of a flexible and

contemporary methodology. Along with the methodology, software developers changed

their values too, as they adapted to more flexible projects. Where they should have

adapted the way they performed documentation activities too, they did not. This amounts

to describing the purpose of a genre in the wrong situation.

The decisions that propel contemporary software development are not often

written. Consequently, by the standards of traditional methodology, contemporary

development’s undocumented decisions spell out unguided, poorly designed projects

destined for ruin. The rapid cycles of development are what save contemporary projects.

Recursive decision-making is so quick that oral communication seems sufficient to

	
	

12	

sustain undocumented activities on a project. In addition, the social situation transforms

so quickly that developers often cannot act on patterns of recursive writing. For instance,

whereas traditional developers need documents to easily recycle software assets,

contemporary developers change things so frequently that there often is not anything to

recycle. Consequently, contemporary developers deploy the rhetorical form of oral

communication to sustain progress in their community.

Risks Arising from Oral Communication

There are some potential risks in a development practice that operates on the

strength of oral communication. Traditional documentation is supposed to be a record of

official communication to which people can refer and on which people can rely, rather

than chitchat in the elevator. In fact, many developers do not believe a conversation

counts as a medium for decision-making because decisions need to be mapped out and

articulated in writing.

Written documentation has an important place in the professional workplace if for

no other reason than to have a record of decisions in writing. The standard phrase: “Can I

have that in writing?” provides a safety net when developers do not agree on a decision’s

exact content. Dorothy Winsor (1999) observes this safety net when she conducts a wrap

up of a 5-year longitudinal study interviewing engineers about their documentation

practices. Winsor interviewed an engineer who identified the importance of

documentation: a paper trail of documentation is protection. Put simply, Winsor’s subject

explained there are two experiences a person needs for protection before writing: 1)

getting burnt 2) burning someone else (p. 209). Consequently, the importance of

	
	

13	

documentation is significant when decisions have a long-term lifespan. In contrast, the

shorter lifespan of contemporary decisions impacts development differently.

Oral communication cannot be a comprehensive replacement of documentation

but the absence of documentation does not equate the absence of communication. The

contemporary developers may or may not write down decisions but that does not mean

the communication did not happen or that there was a failure of documentation—they

just did not have time to write it. Consequently, I plan to demonstrate that contemporary

development still bears the rhetorical forms that genre theory requires and that genre

theory can adequately describe the oral and written communication in contemporary

development environments.

	
	

14	

DISSERTATION PROCEDURES

Genre theory provides both a way of conceptualizing the situations, as well as a

schematized method of describing the situations. In addition, the meta-language of genre

theory helps me describe documentation activities that are not limited to written

communication. I use genre theory as both a conceptual framework and meta-language

with which I can describe the two research situations I have selected, as well as the

interviews I have conducted.

Theoretical Dissertation Procedure

Of the many authors who promote genre theory, I find Berkenkotter and Huckin’s

(1995) rhetorical forms to be the most useful for describing oral communication. Not

only are rhetorical forms less restrictive than the written texts other researchers favor but

Berkenkotter and Huckin break those rhetorical forms down into specific principles. The

authors identify five principles by which I can describe genre features and community

actions.

• Dynamism

• Situatedness

• Form and Content

• Duality of Structure

• Community Ownership

	
	

15	

I have broken down the five principles into 11 value statements. These value

statements constitute a Model of Expectations with which I will describe each of the three

software development situations.

I also use a second model to assess how well the documentation I find actually

works in each of the research situations. In his forthcoming book, David E. Hailey (2014)

uses genre theory to identify the exigencies, urgency, purpose, audience, rhetorical

stance, and structure of online genres. His EUPARS rubric assesses how appropriate a

particular document is for the particular situation. While EUPARS is useful to describe

how traditional documents are not appropriate in my first three contemporary situations,

the model will also be useful in the final analysis of oral communication.

Dissertation Research Situation Procedures

I use the Model of Expectations for three research situations. Two of the

situations are Postmortems of research projects in which I was closely involved. In an

effort to triangulate my work as a participant observer, I utilize a third research situation,

in which I interview seven Salt Lake City developers. Finally, I use the EUPARS model

to verify that the rhetorical forms are appropriate in contemporary environments —

among those rhetorical forms, oral communication is key to describe contemporary

development with genre theory.

American west heritage center (AWHC) spring 2009. Under the faculty

supervision of Dr. Brett Shelton, I served on one of three contemporary teams developing

a tour simulation of Logan Utah’s historic American West Heritage Center. My team

produced documentation much like Owens suggested.

	
	

16	

I was one of four graduate students on one of three teams. Dr. Shelton closely

directed the aggressive, contemporary project. My team maintained all documents on

Google Docs. In this way, we could update the same document in real-time, even if we

were each working in remote locations. I have extensive documentation samples to

represent real-time development. I planned a formal conversation, along with three

talking points, with each of my teammates. They each had very different previous

experience with documentation. However, they each came to the same conclusions about

our project’s documentation.

This situation will be a chapter that illustrates what I thought was successful,

contemporary documentation. However, the meta-language of genre theory helps me

articulate why this was not actually the case and why I tried to do it again.

USU engineering department summer 2009. Under the faculty supervision of Dr.

David Hailey, I coordinated filming and development of an online, modular interface for

engineering students at remote Utah State University campus locations. The team worked

in such close proximity in a fast paced contemporary development process so that the

absence of documentation was insufficient to account for the success of the project.

As the project coordinator, I was responsible for coordinating a film crew with

four engineering courses. I coordinated the participation of six Engineering faculty, in

addition to processing, editing, and converting film to Flash learning modules.

Strictly speaking, the project did not generate any internal software

documentation. I can use the meta-language of genre theory to articulate why it became

clear that there was another rhetorical form at play and that the rhetorical form was oral

communication.

	
	

17	

Local developer interviews spring 2012. A local Salt Lake City, Utah software

company has a small team of seven developers. The team leader led a very contemporary

style of software development. The team leader related to me his difficulty trying to

complete documentation the way he is supposed to do. I interviewed all seven team

members during seven individual lunchtime appointments.

I matched an open-ended interview question to each of the value statements in the

Model of Expectations. I interviewed the seven and will use my set of interview

questions to assess the Model of Expectations in his situation. I expect the rhetorical form

I find will be oral communication. I follow the interviews with Hailey’s EUPRAS Model

to assess the appropriateness of oral communication in a situation that traditionally

demands documentation.

	
	

18	

	

CHAPTER OVERVIEW

The following is an outline of my dissertation’s six chapters.

Chapter 1 introduction. I strengthen the exigency of oral communication and

genre theory in contemporary development by identifying the gap in contemporary

development practices and the utility of genre theory to describe the gap. I introduce

rhetorical forms of genre theory, rather than the written communication to which North

American genre theorists typically refer. Particularly, I mention the utility of oral

communication as a rhetorical form in contemporary development practices.

Chapter 2 literature review. The literature review define the principles of both

genre theory and software documentation. I outline the meta-language of genre theory

and articulate how it is a meta-language. I support both the Model of Expectations and

the UEPARS model with that meta-language. The central objective is to demonstrate that

oral communication is a rhetorical form that fits in the meta-language of genre theory

research.

Chapter 3 methodology. I drew on the literature review to support both the Model

of Expectations and EUPARS Model. I detailed the postmortem projects and the manner

by which I gathered samples. I also add more detail about the interview questions and

how I drew the questions from the Model of Expectations.

Chapter 4 postmortems: american west heritage center

 I have extensive documentation archived for this project. I also have notes from

three conversations with my development team peers. The organic documents my team

	
	

19	

maintained were an achievement of practical experience and good documentation

practices in contemporary development. At the time of the project, I felt the project was

an example of documentation best practices. However, I did not count on my inability to

replicate the success in my next project.

Chapter 5 postmortems: engineering modules project. This Engineering

Modules project was serendipitous because of the absence of documentation; however,

genre theory can only account for how we were successful if I describe rhetorical forms

like oral communication, rather than judge the project a failure. This chapter’s main

objective is to support oral communication as the central rhetorical form, as well as an

important research topic in the field of professional communication.

Chapter 6 local developer interviews. The interviews will be the final chapter of

the dissertation. I interviewed seven senior Salt Lake City software developers. I used

interview questions extracted from my Model of Expectations. I wanted to challenge their

professional practice by getting them to talk about the absence of their documentation. I

suspected they would articulate the rhetorical forms they use instead. As expected, the

developers described their oral communication as the rhetorical form that sustains their

practice, in addition to all their other rhetorical forms.

	
	

20	

CHAPTER II

LITERATURE REVIEW

EXAMPLE OF DOCUMENTATION THEORY AND PRACTICE

An important aspect of this literature review is the distinction between traditional

and contemporary development. In addition, references to traditional documentation refer

to the documentation standards and practices prescribed by traditional development. In

the past, software developers used a documentation model that required they describe all

of the steps the finished program would contain before the developers actually began the

process of programming. This was the first step of the traditional programming model to

which I refer—commonly referred to as the “waterfall model.” Although much

contemporary programming—models like Agile and Scrum—no longer involves the

waterfall model, developers still use the dated and irrelevant documentation processes. In

part, the reason they continue using the old model is because few have examined possible

alternatives. This chapter presents that problem and posits alternatives.

A Short Narrative

In an effort to ground the literature review, I begin this chapter with a short

narrative. Where traditional documentation standards and practices are not useful to

contemporary developers, the following narrative describes a contemporary developer

trying to make traditional documentation work in a contemporary work environment. I

hope the narrative adds a level of relevance to the meta-language necessary to describe a

	
	

21	

documentation practice that incorporates rhetorical forms, in addition to written

documents.

 In 2009 I made a worksite visit to an Orem, Utah computer game development

company I call Edgetech. I immediately noticed that the Edgetech used traditional

methods of documentation, rather than the liquid documentation practices contemporary

development demands. In fact, they used a template, downloaded from the Internet, to

model their entire design documentation procedure. That template carefully listed every

heading one might expect in a traditional design document and prescribed the content for

each heading. That practice was completely inappropriate for their contemporary

programming model.

Profile of edgetech. The company was a new start-up that began in 2005. In the

four years before my site visit, it had developed its flagship PC computer game. The

development studio continuously updated the game and administrated the servers that ran

the game’s persistent Massively Multiplayer Online Real-Time Strategy (MMORTS)

game world.

The developers had converted a small home on the outskirts of Orem. The living

room was their shipping room. The master bedroom was both the CEO’s office and the

storage room. The remaining two bedrooms were for the developers and the graphic

designers respectively. There were wires, cables, and power strips hanging on the walls,

along with large promotional posters for their game.

The market for the game was a cross between card gamers, battle strategy gamers,

and online gamers. Troops, weapons, buildings, and resources were all cards the player

acquired or bought in booster packs from card stores. Their game was available for

	
	

22	

digital download or mail order from retail web sites. The company was modestly

successful but was looking to expand its business. When I met with the CEO, he was

preparing a high concept document for presentation to investors in the Chinese market.

Disconnect Between CEO and Development Team

The bedroom in which the developers were set up had all the computer terminals

in the middle of the room. Where the graphic designers each sat on their respective sides

of a rectangle, the developers were sharing monitors and rolling their chairs back and

forth between terminals. When I walked through, graphic designers were seated at their

stations, whereas four developers were huddled together looking over the shoulder of a

fifth programmer—they were collaborating about the code.

The company’s CEO was writing very thorough documentation, according to

traditional industry standards. The CEO was even using a template to insure he met the

industry standards. However, that documentation was incompatible with the

contemporary development standards of the developers down the hall. They were on their

feet problem-solving at a computer workstation. They were not studying the CEO’s

documented design details. Nor were they following the comprehensive development

plan. Rather, they made changes on the fly; yet while the changes necessitated changes to

the documentation, they did not change the documentation.

Reasons for the Breakdown

Traditional development methods require a lot of pre-planning and need a great

deal of forethought and oversight to stay on track. The Orem developers were not in a

	
	

23	

large-scale project and needed to work using an agile model with the flexibility to make

quick enhancements. The developers used different standards from the CEO’s because

their needs constituted a completely different situation. However, even while the

programming community and situation were different, they still sought to produce

documents that facilitated pre-planning and rigorous organization.

In the end, the Orem developers were all clustered around a single monitor, still

seeking to stuff their contemporary needs into traditional documentation. The developers

were all standing there conversing about design decisions – in effect, ignoring the

documentation so carefully prepared to guide them through the programming process.

Genre Theorists and Programming Documentation

Genre theorists efficiently describe traditional documentation in software

development; however, when I use their meta-language to predict and describe

documentation in contemporary practices, I do not find the documentation they describe.

Instead, I find forms and genres that are no longer useful to contemporary developers.

Carolyn Miller (1994) argues genres are typified rhetorical responses in recursive

situations; in the parlance of professional communication research, Miller’s typified

rhetorical responses are usually represented as written communication. In fact, although

theorists might agree that oral communication is a typified rhetorical response,

researchers tend to class oral communication as a genre of idle chitchat that is not serious

communication. In the case of contemporary software development practices, failing to

see the importance of oral communication makes it impossible to describe many

rhetorical forms contemporary developers apply to their programming practices.

	
	

24	

	

REVIEWING REAL IMPACT ON PROFESSIONALS

The Orem developer is not the only development shop in the world with

documentation problems. In fact, contemporary developers at large experience similar

frustrations and barriers with documentation practices. Those same frustrations are often

expressed in articles published in issues of Game Developer magazine. The magazine

targets game development professionals and every issue features a project postmortem

article from a different professional development studio. Austin Grossman (2003)

compiled 25 of Game Developers postmortems; his selections feature seminal games and

key developers in the video game industry. Each of the 25 developers share the things

that went both right and wrong in a short, summative article. For instance, many

postmortems identify documentation as one thing that went wrong.

Impact Reported in Software Development Postmortems

A notable aspect of what these professionals count as successful documentation is

the planning and vision good documentation seems to bring to a project. In the success

stories, developers tout a tremendous amount of effort toward predefining the game and

setting a course for the game’s development. In contrast, all of the developers prize the

organic way the design, direction, and team dynamics all adapt to the needs of the

development project. For instance, Grossman features the postmortem of Cel Damage

(Barrett, 2003). Of cutting assets from the game’s design, Barrett states “If such changes

	
	

25	

created holes in the game’s design, we would be flexible and design around the holes” (p.

46). So while on the one hand developers subscribe to a model of traditional

documentation, when faced with the problem of programming in the real world, they

ignore the documentation’s prescriptions.

Successful professional documentation. Warren Spector writes his postmortem

about the development of Deus Ex (2003). One of the strengths behind the project was a

high level of vision, due to six months of preproduction. Spector reports: “we had 300

pages of documentation and thought we knew everything we’d needed to know to make a

game. Were we ever wrong …that 300-page document mushroomed into more than 500

pages” (p. 198). The Deus Ex documentation is the spectacular result of focused

preproduction efforts. Of course, Spector reports one of the project’s key strengths was

“recognizing that game design is an organic process” (p. 198). Spector lists nine design

elements the team changed; “the game benefited, but this was a radical change from the

original plan” (p. 200). Consequently, the two great strengths of the game were the

comprehensive documentation and their willingness to adapt the design documentation in

nine game changing ways.

Weak professional documentation. Grossman’s book contains plenty of

postmortems that detail weak documentation practices. These examples are the

postmortems of very competent games made by very adaptive, creative developers;

however the examples confess poor documentation. I highlight the competence of the

game developers to suggest that there was an additional (not mentioned) rhetorical form

that sustained meaning-making and stabilized the team’s efforts, even if written

documentation did not.

	
	

26	

Toby Ragaini’s postmortem (2003) identifies the greatest weakness of Asheron’s

Call was the “inexperienced development team” (p. 307). Their employees were often

students on work-study at the local university. Where those inexperienced developers

probably needed documentation more than others, Toby Ragaini reports: “The technical

design document process and high-level feature overviews were basically skipped. This

created severe problems, when it came to prioritizing which features were important. We

constantly had to justify features, and we had no documentation to fall back on to resolve

our discussions” (p. 309). Ragaini’s inexperienced students developed a successful game

but Ragaini does not identify the rhetorical form that did hold the students together.

Brian Upton (2003) describes the development of a reliable game license in the

industry by a mature development studio—Rainbow Six (1998). Upton’s postmortem

demonstrates experience does not always equate sound documentation practices. Upton

plainly states the chief weakness was the team “never had a proper design document,

which meant that we generated a lot of code and art that we later had to scrap. What’s

worse, because we did not have a detailed outline of what we were trying to build, we

had no way to measure our progress” (p. 257). Upton’s admission identifies a

development problem that seriously impacted the project. The reference to scrapped code

is particularly expensive for developers because a few clear sentences written in a few

short minutes could have saved hours of unneeded coding. Regardless of the suggested

dysfunction and disorder, the team still shipped a competent and competitive computer

game.

	
	

27	

REVIEW USAGE OF META-LANGUAGES

 When developers use the word “document” as a verb, they refer to a kind of

activity or a phase in the development workflow. As a result, documentation is a

development activity characterized by written documents; it is the only label for the

activity. Consequently, a discussion about the methodological label “documentation,”

without highlighting anything written, is nearly impossible. It is like talking about writing

in a way that does not involve writing. Fortunately, there is another way to analyze

documentation.

 Genre theory provides a meta-language. That meta-language has it’s own set of

rules and vocabulary. In addition to supporting the use of a meta-language, I detail the

principles of genre theory. In addition to the activity of “documentation,” a meta-

language highlights the language limitations of written communication in professional

communication research. I want to demonstrate that a language about a language is the

first step to understanding alternatives to writing documents in the activity of

“documentation.”

Meta-Languages and Knowledge

The key element of a robust theoretical model is the vocabulary that it provides.

Software developers produce plenty of industry guides that describe the rules of the

documentation genres. However, they use the vocabulary of traditional documentation to

describe traditional documentation. They need a vocabulary that permits them to examine

their current language—a meta-language. A meta-language is simply an objectively

	
	

28	

positioned language above another language. While writing about language frameworks,

Foss, K.A., Foss, S.K., and Trapp, R. state: (2003) “Thoughts and ideas are never free

from the language that is used to frame them” (p. 199.) Foss, et. al suggest that writers

who describe traditional documentation might never figure out why documentation does

not work in contemporary development, as long as they use the same language to figure

out the problem. Industry writers need a meta-language outside the community of

software documentation.

Similar to the statement of Foss et al., Friedrich Nietzsche (1914) takes a strong

position on the relationship between language and knowledge: “We cease from thinking

if we do not wish to think under the control of language” (p. 38). Consequently, we can

only think about things we have the language to describe—we have a language-limited

knowledge. Thomas Kent (1986) sums up where Nietzsche believes people obtain their

language to describe their knowledge.

First Nietzsche understands language to be a thoroughly social and

historical phenomenon; second, Nietzsche claims that rational thought

derives from our use of language, and not the other way around; and third,

he conceives of rhetoric as the process we employ in order to construct

meaning and, consequently, to construct our knowledge of the world we

share with others. (p. 9)

The relevance of Nietzsche to software development documentation lies in the industry

writers who seek to describe traditional documentation for contemporary developers. As

long as they continue to use the same traditional vocabulary to outline the purpose,

	
	

29	

situation, and community of software documentation they limit what they can know

about documentation’s application to contemporary situations and communities.

Researchers like Carolyn Miller and Russell Rutter agree that knowledge

conforms to language; however, they also write a little more about what that kind of

language-limited knowledge looks like. Carolyn Miller (1979) states: “Reality cannot be

separated from our knowledge of it; knowledge cannot be separated from the knower; the

knower cannot be separated from the community...facts are human constructions which

presuppose theories” (p. 612). Industry guide recommendations for design documentation

might be straightforward but such informational data emerges from a community

knowledge system. Russell Rutter (1991) describes knowledge in terms of science. Rutter

suggests that science is not merely a product of facts but is also a product of mindsets,

expectations, and paradigms (p. 142). In other words, Rutter suggests the software

industry’s design documentation complies with mindsets, expectations, and paradigms.

Genre theory offers a rich meta-language with which I can describe

documentation practices, without getting trapped in the same vocabulary mindsets,

expectations, and paradigms as the industry developers.

Burke’s Rhetorical Grammars

There have been traditional software development methodologies since the 1960s.

It might seem unreasonable for five principles to retain relevance for 54 years of

computer science history. Fortunately, Kenneth Burke demonstrates that he can use a set

of terms to analyze and describe rhetorical motives in a broad variety of situations.

Burke’s A Grammar of Motives (1945) tackles the question of analyzing, describing, and

	
	

30	

understanding motive in his own meta-language system—Dramatism. For Burke, rhetors

can use Dramaticism to describe motive and persuasive moments much like a viewer can

describe a play or a movie. His grammar is also called Pentadic Criticism; the Pentad has

five grammars: act, scene, agent, agency, and purpose. The pentad is five key descriptors

that help rhetors code the drama-like communications between people. The grammar acts

as a reliable system that rhetors can use to describe a communication and assess the

motives.

You must have some word that names the act (names what took place, in

thought or deed), and another that names the scene (the background of the

act, the situation in which it occurred); also you must indicate what person

or kind of person (agent) performed the act, what means or instruments he

used (agency), and the purpose. (p. xv)

Burke posits that motive is too complex for either a set of five discrete grammars or strict

definitions. Rather, the power of the system is the way pair combinations (or ratios) make

for a dynamic Pentad. For instance, Burke states the scene-agent ratio pairs people and

things; a brutal scene indicates brutal agents (p. 7). Consequently, human motivation is a

complex combination of the act, agent, agency, scene, and purpose.

Burke (1945) sets up the precision of his Pentad in the first pages of A Grammar

of Motives. The remainder of the book’s first part is mainly elaboration of the different

ratios. However, part two of the book is where Burke divides the Pentad into schools of

thought and demonstrates the application of the Pentad in each school (p. 128).

• Scene=materialism

• Agent=idealism

	
	

31	

• Agency=pragmatism

• Purpose=mysticism

• Act=realism

Part two works through the schools of thought to demonstrate the versatility of the

Pentad’s ratios. Burke provides several applications of his Pentad in each school of

thought. However, there are many more applications of the Pentad.

Adapting Burke’s grammar to McAllister’s gameworks. One application for

Burke’s grammar might be a video game. However, computer game motives pose a

problem because in a computer game the audience is part of the drama, rather than simply

detached spectators. When the audience is the agent, a different set of grammars, based

on Burke’s pentad, can be useful. Ken McAllister’s (2004) grammar of gameworks is a

set of five grammars that analyze the audience as part of the drama.

Yet again, a meta-language may seem inadequate to describe an entire industry

and audience motives in general. However, in Game Work (2004), Ken McAllister seeks

to describe computer games as a complex cultural system that is larger than issues of

value systems, indoctrination or vacant stares. He uses Burke’s pentad to develop a

grammar of gameworks that lets scholars describe games without losing track of the

entire system––much like the pentadic grammar. There are five grammars of gameworks:

agents, functions, influences, manifestations, and transformative locales. Differences

between the two grammars are apparent as McAllister’s grammar becomes more focused

on understanding the role of the player as both an audience and an agent. In fact, the

McAllister’s agent also includes the game avatar, in addition to the synthetic identity of

	
	

32	

the player/avatar. Consequently, the grammar of gamework is crafted to be a pentad-like

critique of a complex computer game culture.

Grammar is a key notion for McAllister’s gameworks; by grammar, McAllister

refers to a set of terms that formulate an assessment matrix useful in understanding the

complexity of the computer game culture. McAllister describes the grammar of

gameworks as “one way to make meaning out of an artifact like a computer game” (p. 1).

For McAllister, the grammar of gameworks is a cultural system with identifiable

elements and can describe design practices, developer collaborations, fan sites,

specification improvements, and even the onscreen avatar itself—all parts of a complex

cultural system.

Much like McAllister and Burke, I will use a meta-language too. Burke’s

Dramatistic Pentad outlines persuasive motivations and McAllister’s grammar of

gameworks is a “multiperspectival” approach to studying a socioeconomically complex

game industry. I use the principles (grammars) of genre theory as the meta-language of

documentation practices in software development.

Tenets of Genre Theory as Meta-Language

Rather than the static boundaries of Sci-Fi Thrillers and Film Noire, genre theory

posits genres as social action, rather than sets of categories. Carolyn Miller (1994) coined

genre theory’s seminal definition: it is the “connection between genre and recurrent

situation and the way in which genre can be said to represent typified rhetorical action”

(p. 151). Those recursive actions are rhetorical actions because human agents validate

decisions again and again. Typified rhetorical actions are patterns of human decision and

	
	

33	

activity. In this way, genre rules are simply decisions that endure as communities comply

with their genres.

Genres are not an immutable structures of letters and words; they are community

actions. Thomas Kent (1993) advocates a shift in thinking away from structures of letters

and words: “When we move away from a conception of communication grounded in the

word and the sentence and move toward a conception of communication grounded in

genre, both the production and the reception of discourse appear in an entirely new light”

(p. 128). As opposed to the unique jargon, typical phrases, headings and content

requirements, genre researchers suggest communication should be grounded in the

purpose, situation, and community. Even more specifically, communication should be

grounded in both the recurrent situation and typified rhetorical action.

Carolyn Miller (1994) was the first to define genre as typified rhetorical action

and avoids restricting genres to written communication as well. In fact, she states, “I will

be arguing that a rhetorically sound definition of genre must be centered not on the

substance or the form of discourse but on the action it is used to accomplish” (p. 151).

Instead of something like written software documentation, Miller prefers thinking of the

rhetorical actions as the substance of a genre. Insofar as there is much more than written

communication (i.e. the horror movie, pop music, first person shooter video games),

those rhetorical actions that substantiate genres are a more flexible way to think about

genre.

Meta-language of north american genre theory. Berkenkotter and Huckin (1995)

reference “rhetorical forms,” rather than rhetorical actions. However, unlike Miller’s

rhetorical actions, Berkenkotter and Huckin locate their rhetorical forms in five principles

	
	

34	

Table 1

A Framework of Genre Theory

Theoretical Term Genre theory Definition
Dynamism “Genres are dynamic rhetorical forms that are developed from actors' responses

to recurrent situations and that serve to stabilize experience and give it coherence
and meaning. Genres change over time in response to their users' sociocognitive
needs.” (p. 4)

Situatedness “Our knowledge of genres is derived from and embedded in our participation in
the communicative activities of daily and professional life. As such, genre
knowledge is a form of "situated cognition" that continues to develop as we
participate in the activities of the ambient culture.” (p.7)

Form and Content “Genre knowledge embraces both form and content, including a sense of what
content is appropriate to a particular purpose in a particular situation at a
particular point in time.” (p.13)

Duality of Structure “As we draw on genre rules to engage in professional activities, we constitute
social structures (in professional, institutional, and organizational contexts) and
simultaneously reproduce these structures.” (p.17)

Community Ownership “Genre conventions signal a discourse community's norms, epistemology,
ideology, and social ontology.” (p. 21)

of genre, with clear labels. In fact, they identify five specific principles that define genre

theory: dynamism, situatedness, form and content, duality of structure, and community

ownership. Table 1 identifies the definitions Berkenkotter and Huckin gave for each of

the principles. I prefer the ease of descriptive principles with which I can describe

Miller’s typified rhetorical action. Berkenkotter and Huckin’s genre principles (Table 1)

have a taxonomical benefit on the way I have come to understand internal documentation.

There is clear opposition to a taxonomy of genre (Askehave & Nielsen, 2005;

Kent, 1986; Miller, 1994) in the research literature. For instance, Carolyn Miller (1994)

argues against taxonomies because of the flexibility of genres; at the same time, Miller

identifies that there is a function that taxonomies can serve. She argues: “The

	
	

35	

understanding of rhetorical genre . . . does not lend itself to taxonomy, for genres change,

evolve and decay . . . [however,] it can provide guidance in the evaluation of genre

claims” (pp. 36-37). At the same time, Miller does identify five genre features (p. 163)

that are similar to those defined by Berkenkotter and Huckin:

• Genre refers to a conventional category of discourse based in large-scale

typification of rhetorical action; as action, it acquires meaning from situation and

from the social context in which that situation arose.

• As meaningful action, genre is interpretable by means of rules; genre rules occur at

a relatively high level on a hierarchy of rules for symbolic interaction.

• Genre is distinct from form: form is the more general term used at all levels of the

hierarchy. Genre is a form at one particular level that is a fusion of lower-level

forms and characteristic substance.

• Genre serves as the substance of forms at higher levels; as recurrent patterns of

language use, genres help constitute the substance of our cultural life.

• A genre is a rhetorical means for mediating private intentions and social exigency;

it motivates by connecting the private with the public, the singular with the

recurrent.

Miller neither labels nor elaborates her five features. They are characteristics or points of

reference useful to those who evaluate genre claims. Where Miller offers guidance,

Berkenkotter and Huckin suggest principles that assess and describe genres. I can use

those principles of genre as a framework to describe documentation practices.

 A meta-language of genre needs purpose. A notable theme in the genre theory

literature is that “purpose” is a key element that constitutes a rhetorical form. In fact,

	
	

36	

Miller (1994), Berkenkotter and Huckin (1995) all identify purpose in their description of

genres. Miller writes: “But at the level of the genre, motive becomes a conventionalized

social purpose, or exigency, within the recurrent situation” (p. 162). Miller highlights the

fact that nothing can be rhetorical without a motive—without a purpose. Berkenkotter

and Huckin identify purpose as well: “analysts should pay attention to ways in which

genre users manipulate genres for particular rhetorical purposes” (p. 2). The authors

imply motive when they mention rhetorical manipulation; motives and manipulations are

impossible without a purpose. In fact, Kenneth Burke (1950) suggests agents involved in

something like a typified rhetorical action must have a purpose because persuasion is an

attitude that involves free choice (p. 50).

Yates and Orlikowski (2002) take the importance another step and support a key

formula for genre theory: “The purpose of a genre is not an individual's private motive

for communicating, but a purpose socially constructed and recognized by the relevant

organizational community for typical situations” (p. 15). In other words genres are

purpose constructed by a community in a situation. Concepts like motive, persuasion,

manipulation, choice, and typified rhetorical actions are empty without purpose,

community, and a situation. Consequently, I have derived a genre theory formula:

Genre Theory=Purpose+Situation+Community

Five Meta-Language Principles to Describe Genres

While a traditional genre might be best known as a set of rules for a specific kind

of text, genre theory suggests that communities of human agents invent and adapt those

specific rules; therefore, written communication is a social act. Berkenkotter and Huckin

	
	

37	

(1995) state: “[rhetorical forms] function within disciplinary cultures to facilitate the

multiple social interactions that are instrumental in the production of knowledge” (p.1).

In fact, communities become static without a document that facilitates social interaction.

Consequently, rhetorical forms are an influential force in a community because “genres

are the media through which [communities] communicate with their peers” (p.1).

Berkenkotter and Huckin outline a framework that describes how communities invent

and adapt rhetorical forms. The framework of genre theory has five principles:

dynamism, situatedness, form and content, duality of structure, and community

ownership.

The meta-language of dynamism. Genre possesses dynamism because of how the

writing emerges from an “actor’s responses to recurrent situations” (p. 4). The responses

are essential to dynamism because responses are part of a stabilizing struggle wherein

actors and situations create “coherence and meaning” (p. 4). With each recursion, the

actors validate meaning-making decisions. At some point, enough recursive actions

reduce variance until here is a stable genre. Actors repeat situations until the pattern

clearly marks the meaning—patterns of meaning emerge from the recursive acting.

In addition, the recurrent situation formulates specific vocabulary and style that

lend to the form and content of the genre. However, the recurrent situation is a social

adaptation to actors, rather than simply vocabulary, typical phrases, and style. The

dynamic adaptation conforms to the responses and actions so that a rhetorical form

matches the needs of the actors.

	
	

38	

The meta-language of situatedness. Berkenkotter and Huckin (1995) suggest

knowledge is the key element of situatedness; the community knowledge of which

Nietzsche writes is a situated knowledge. In other words, every time actors transmit

knowledge they situate both the knowledge and themselves within a meaning-making

community. In short, actors have a situated cognition bound by their community’s needs.

In addition, Berkenkotter and Huckin (1995) suggest situatedness refers to

“sociocultural navigation” (p. 118). In other words, situations do not come with a script

by which every actor understands the rules and strategies; on the contrary, situations are

sites of negotiation between actors who form situated knowledge together. By this

manner of persuasion do actors assimilate themselves into the situation and perform the

enculturation of new entries. Rhetorical forms help stabilize the knowledge and situation

to which new entries must assimilate themselves.

The meta-language of form and content. Form is the appearance, presentation,

organization, and sequence of a rhetorical form. Content is the topic, details, and

politically correct office phraseology of the rhetorical form. Form and content are not

abstract principles like dynamism or duality of structure; they are tangible. Berkenkotter

and Huckin (1995) claim the impact of form and content is tangible because “genre and

genre knowledge are more sharply and richly defined to the extent that they are localized

(in both time and space)” (pp. 13-14). Despite the meaning-making complications of

dynamism and situatedness, the rhetorical forms have a physical form and content that

stands as a material location in the community.

	
	

39	

The form and content of a genre demands vocabulary, typical phrases, style, and

even the organization of a rhetorical form. These conventions are the product of actor’s

recurring performances and their situated knowledge, rather than templates or categorical

rules.

The meta-language of duality of structure. Duality of Structure is the category

that conceptualizes how something like a design document can be both complete and yet

not static. Berkenkotter and Huckin (1995) describe duality of structure in the following

way: “we constitute social structures (in professional, institutional, and organizational

contexts) and simultaneously reproduce these structures” (p. 17). Duality of structure

relies on a close relationship between social structure and human action, rather than clear

separations that make human action free of the social institutions that influence human

agency. According to the authors: “human agency and social structure can be seen to be

implicated in each other rather than being opposed” (p. 18). All told, the human

participation simultaneously constitutes and reproduces social structure; the result is a

document reflexive with situated knowledge and a meaning-making community.

Duality of structure is a key term for genres of software documentation; duality of

structure describes the design document as a site that stabilizes the community. At the

same time, the design document reconstitutes the community. Traditional and

Contemporary software development might accept both stabilizing and reconstituting

documents at the same time but only traditional developers have the documentation to

show for it. Contemporary developers adapt quickly to new consumer requirements and

test results. That means the project changes too often to document anything; either than

or they employ other rhetorical forms to stabilize and reconstitute their community. They

	
	

40	

certainly do not let a document inform the decisions that drive the flexibility of their

project organization.

The meta-language of community ownership. The discourse community owns

the norms, epistemology, ideology, and social ontology of the community. With that

ownership comes the actors who participate and sustain the recurrence of situations, as

well as the constitution and reproduction of those situations. Actors draw on both situated

knowledge and the consequent rhetorical forms to both support their value system and

formulate their value system. The community discards localized conventions that do not

meet the criteria for ownership. Berkenkotter and Huckin (1995) state ownership has to

do with the “ways in which the genres of [writing] function to instantiate the norms,

values, epistemologies, and ideological assumptions of [cultures]” (p. 22). This last

description of community ownership clarifies the term’s function. As actors respond to

recurring situations, the community that constitutes and reproduces those situations also

claims various conventions or values, as each recurrence requires; the community

discards those that do not meet the criteria for ownership.

Verbal and Non-Verbal Dynamics of Oral Communication

 Genre theory research may often focus specifically on written documentation but

rhetorical forms are more than simply written forms. There are genres of movies, music,

speeches, video games, etc. Consequently, the rhetorical form is a useful term that

encapsulates all kinds of genres. At the same time, the rhetorical form is so often a

reference to written communication. It should not be surprising that researchers who

study writing would observe the writing, apply a robust theory to writing, and interpret

	
	

41	

their research results with the language of writing theory. However, a meta-language

about documentation activities needs to escape the boundaries of written communication.

A meta-language could even benefit researchers. Words like Verbal and Non-

verbal, oddly enough, do not refer to writing. A journal search supports my claim that

“verbal” refers to written communication that would otherwise require words;

“nonverbal” refers to communication that does not require words (i.e. charts, graphics,

images, etc). Therefore, the term “written” refers to the product of pens, pencils, and

paper. Simply put, once graphics became a reliable and accessible form of

communication, researchers distinguished between verbal and nonverbal

communication—particularly, scholars of visual rhetoric.

Verbal and non-verbal journal search. In the parlance of professional

communication research, verbal and non-verbal communication mean something

different. After a journal search of Technical Communication articles written between

1995 and 2010, I discovered verbal communication does not always refer to the spoken

word. When Technical Communication researchers refer to verbal communication, they

refer to written documents, as opposed to graphics or art. The following two examples are

strong cases suggesting the way that genre theory trends towards written communication.

In cases where I use the words “verbal” and “non-verbal,” the authors in fact use verbal

and non-verbal themselves.

• Dragga and Voss (2003). Hiding Humanity: Verbal and Visual Ethics in Accident

Reports

The article includes accident reports that feature both narrative text and

photos. The author seeks to show that the text is articulated in a way that

	
	

42	

strips the humanity from traumatic accident reports. Interestingly, Dragga

and Voss refer to the accident pictures as the non-verbal and suggest the

narrative text of the report is the verbal.

• Doumont (2002). Verbal Versus Visual: A Word Is Worth a Thousand Pictures,

Too

Doumont details the difference between verbal and non-verbal. While the

author defines verbal in a way that can include oral communication, the

article is about the written communication that accompanies non-verbal

communication. For instance, verbal displays text. Ultimately, the author

recommends combining verbal and nonverbal communication for optimal

effect in documents.

Other verbal and non-verbal examples. In addition to the articles by Dragga and

Voss (2003) and Doumont (2002), there are other examples. These remaining examples

date back to 1998. All told, the examples showcase how written communication and

verbal communication are both something to read on paper.

• Brumberger (2004). The Rhetoric of Typography: Effects on Reading Time,

Reading Comprehension, and Perceptions of Ethos

Typography is one of the visual rhetorics of written communication—font,

type size, etc. In particular, Brumberger separates non-verbal typography

from verbal documents.

• Brumberger (2003). The Rhetoric of Typography: The Awareness and Impact of

Typeface Appropriateness

	
	

43	

Brumberger investigates whether clashes in typeface and text persona

affect readers’ perceptions of the text. The author defines verbal

communication as the style and content of the text itself, rather than the

visual (or the persona established by typeface).

• Johnson-Sheehan and Baehr (2001). Visual-spatial Thinking in Hypertexts

The article distinguishes between hypertext “visual-spatial texts” and

paper-based texts “verbal-linear.”

• Qiuye (2000). A Cross-cultural Comparison of the Use of Graphics in Scientific

and Technical Communication

This article seeks to study the visuals in Chinese science magazines and

instructional manuals, as opposed to American samples that put emphasis

on the corresponding verbal explanations.

• Markel (1998). Testing Visual-based Modules for Teaching Writing

This article posits that instructional materials that incorporate basic

principles of visual design are more effective than those that are primarily

verbal.

A meta-language about the rhetorical forms and rhetorical actions of genre theory should

allow for more than what is written on paper, whether labeled verbal or non-verbal.

Reviewing Convergence of Meta-Language

Software documentation is traditional written communication. However,

traditional theories of written communication do not seem to describe contemporary

software documentation. However, not all “verbal” documentation is written anymore. I

	
	

44	

use the principles of genre theory (dynamism, situatedness, form and content, duality of

structure, and community ownership) to highlight the rhetorical form that drives

contemporary software development because limited vocabulary of written, verbal, and

non-verbal communication cannot possibly describe a rhetorical form that is not in either

the design documentation or evidenced in development decision-making activities. In

other words, I cannot conceive verbal documentation without a new vocabulary.

There is more at stake than whether the meta-language can describe software

documentation as verbal or non-verbal. The meta-language also describes how software

developer communities interact with their rhetorical forms. Yates and Orlikowski (2002)

describe the interaction of rhetorical forms and community: “A genre established within a

particular community serves as an institutionalized template for social interaction—an

organizing structure—that influences the ongoing communicative action of members

through their use of it” (p. 15). Therefore, the rhetorical forms on which software

developers rely are core decision-making assets. Yet, developers either have poor

documentation practices or no documentation practices. Consequently, there must be

another rhetorical form the community members use for ongoing communicative action.

Without an adequate meta-language to describe the invisible rhetorical form,

professional developers are left with their own understanding and expectations, within the

constraints of written documentation. Consequently, professional developers continue to

kick at traditional documentation from their contemporary development workplaces.

Yates and Orlikowski (2002) identify why developers cannot shake their expectations

and their documentation: “the genre system…provides expectations about its socially

recognized purpose” (p. 16). Therefore, software developers can expect their software

	
	

45	

documentation to serve their development projects in the prescribed way. As a

community, they struggle to fit traditional documentation into contemporary practice.

	
	

46	

TRADITIONAL SOFTWARE DEVELOPMENT AND DOCUMENTATION

 With a meta-language of genre to describe new rhetorical forms in software

development, the next step is to actually define what I specifically mean by “software

documentation,” describe the purposes of software documentation and distinguish

traditional development methods from contemporary development methods. Worth

noting is the following details about documentation relate to traditional documents alone,

as opposed to any contemporary rhetorical forms; in this way I can be clear about the

standards of traditional documentation and how they connect so closely to traditional

development practices.

External vs. Internal Documentation

There are two kinds of software documentation—external and internal. The

difference between external documents and internal documents lies in the target reader.

In the recommended practice of their own industry book about external software

documentation, Denton and Kelly (Denton & Kelly, 1993) write: “This book is designed

to help writers in the computer industry make their product documentation more useful,

attractive, and accessible to their paying customers by building in quality from the

beginning" (p. xi). In the case of the external documents Denton and Kelly describe, like

software user documents or specialist manuals, the target reader is a customer and not on

the development team (Barker, 1998). For instance, a grandmother editing photos and a

studio animator making movies are both users who have different purposes for using the

	
	

47	

same software; however, the grandmother and the animator require different external

documents to meet the complexity of their purposes. The varieties of external

documentation serve consumers of software products.

On the other hand, internal documents are written for the development team;

internal documents are design articulations that developers write to each other. Internal

documents may include specification requirements, general design documents, feature

elaborations, the art bible, specification documents, general design document, progress

reports, etc. (Adams & Rollings, 2007; Rüping, 2003; Schultz, Bryant, & Langdell,

2005). The most useful documentation for developers is nested in the code itself; code

comments are another form of software internal documentation (Rüping, 2003) because

developers record the logic that justifies how and why they wrote specific code

sequences. Other developers can pick up those sequences of code and contribute to the

design without hours of puzzling over the original developer’s inscrutable logic.

In industry guidebooks that seek to identify how to write software documentation,

the writers tend to focus on external users. Consequently, guides about external software

documentation point to user manuals, promotional materials, and troubleshooting

documents. The industry guides identify other user audiences as well: management,

investors, and other developers in the company that require specialty instructions (Barker,

2003; Robinson & Etter, 2000). Developers who read these industry guides seek

document design tips so that their user documentation can be designed in a way that both

reduces unnecessary complexity and increases readability. The industry guides do not

typically cover internal software documentation.

	
	

48	

On the other hand, internal software design documentation references the

supplementary design explanations teams of developers write to each other. In other

words, those documented explanations are helpful when a dozen different teams are

assigned to respective software features within the larger software architecture.

Consequently, the design team, the software engine team and the GUI interface team can

all access current documentation that identifies the documented details written by the

respective teams, as well as individuals on teams.

When I refer to documentation activities and the written documents those

activities produce, I refer to traditional documentation standards and practices.

Consequently, the design documentation identified so frequently in this dissertation is

internal, traditional documentation.

The Advantages of Documentation

Design documents have a specific purpose, follow conventional rules, and are

written to fill particular needs. Whether developers work on software design or

engineering, the development world loosely refers to both documentation activities and

any written material a team generates to support their development work. Scott Berkun

(2005) was a project manager at Microsoft for nine years and identifies the utility of what

he calls vision documents; “a vision document is where all of the perspectives, research,

and strategy are synthesized together. . .often contain requirements. . .anything the team

(and client) agrees will be satisfied when the project is completed” (p. 59). The

documentation consolidates the team’s ideas, design choices, development plans, and

consensus into one united vision. The more developers and designers there are the more a

	
	

49	

documented, united vision becomes critical. Among the many reasons to maintain

documentation, there are three key advantages: a record of design decisions, a

transmission of design decisions, and a reliable design resource.

 Record of design decisions. A group of individuals cannot reliably remember the

details of a detailed decision. The documentation preserves the details of those decisions;

Berkun (2005) underscores the necessity for documenting decisions: “the reasons people

had for listening to [decisions] today will be forgotten or ignored tomorrow” (p. 66). In

fact, Berkun’s textbook also suggests that managers might forget the decisions and

directions (p. 66) themselves. If only as a record of a team’s agreement the design

document is essential. In addition, before a team gets mired down in the lines of code for

a feature, they need to retain a perspective on the project’s vision and direction.

 Transmission of design decisions. While Berkun (2005) mentions design

documentation as a medium for communication “across a large organization” (p. 67),

Ernest Adams and Andrew Rollings (2007), make communication a main feature of how

they describe documentation. The authors claim, “the key part of [software] design is

transmitting the design to other members of the team” (p. 62). The transmission of design

decisions has multiple benefits for software development. The document is a record of

oral agreements, turns vague ideas into explicit plans, and once written down is a

“decision made, a conclusion reached” (p. 62). In addition, documentation ensures that

teams do not overlook features; due to the strict specificity of code languages, the

omission of a single feature necessitates rewriting thousands of lines of code to correct

the omission. The authors point out that design errors are time consuming and costly;

therefore, it is cheaper to thoroughly document the design before any code is written or

	
	

50	

artwork is created (p. 62). Design documentation’s central objective is to broadcast a

game’s design to the development team.

 Reliable resource of design decisions. The document Berkun (2005), Adams and

Rollings (2007) describe is a source of information and the consolidation of a design

plan. All the preplanning and consolidation makes documentation a fixed source of

meaning on which teams can rely; Berkun writes: “When the vision is completed, the

planning phase is over. The team should have the information needed to do good design

work that satisfies the goals” (p. 77). No matter how displaced developers may be or how

many development teams are on the same project, that one single resource keeps the

entire project united. Yet, Berkun also advises: “Don’t make the mistake of thinking that

planning documents are fixed, rigid things: they’re just documents” (p. 67). He indicates

there is some kind of space between generation and completion where teams can situate

their design document. While Berkun does not advocate endless revision, a space

between generation and completion sustains the indispensible relevance of

documentation to a team. That space is a prime example of the Duality of Structure; the

document will always have a space in the community because the community is always

sustaining and reproducing the document, at the same time.

Description of Governing Documentation

Adams and Rollings (2007) identify two important advantages to the maintenance

of quality documentation: “[they play a part in] transmitting the design to other members

of the team . . . [and] the processes of writing a document turns a vague idea into an

explicit plan” (p. 62). Consequently, rather than a bunch of developers with vague,

	
	

51	

isolated ideas, the documentation ensures that everyone can understand the details of the

team’s plan. At the same time, Adams and Rollings imply another purpose for

development documents; they are guiding documents. Apparently, the most vital reason

for documentation is to transmit concrete design plans to a distributed team and keep

everyone on track. The documents are meant to rein in work done “on the fly” (p. 62), as

well as restrain the development of great ideas that can delay the completion of

development.

Adams and Rollings (2007) suggest that the documentation can act as a “paper

trail” (p. 62) that can help teams resolve confusion about past agreements. While Adams

and Rollings classify documentation as a predevelopment activity, they suggest that the

documentation transmits those predevelopment decisions. However, that record of

transmission no longer acts as a commanding resource because developers often rewrite

the predevelopment documentation. In response, Alan Cooper (1999) suggests that

documentation should act as strict blueprints (p. 237) that literally manage a project from

the beginning; Cooper calls for developers to adhere to the predevelopment transmission.

Yet in opposition to Cooper (1999), the contemporary software developers to

whom I have spoken were guided by their own decisions, rather than by what was written

in a document. Contemporary developers were still generating the internal documents,

even while retaining the purpose of internal documents; in other words, the importance of

documentation remained, even as the importance of planning diminished. In fact,

published industry guides presently continue to outline a planning methodology for the

contemporary developers—the predevelopment transmissions Cooper advocates. Even

while the discourse community and the situation of developers abandoned the

	
	

52	

preplanning of traditional methodologies; the purpose, form, and content of internal

documentation did not.

Example: Edgetech’s Governing Documentation

Edgetech is my name for an Orem, Utah computer game company. Edgetech is a

classic example of a development studio that seeks to use a large, preplanned, governing

document to manage contemporary practices. The purpose of this example is to show a

traditional governing document that fails to adapt to the specific project and does not

serve the contemporary developers anyway.

Edgetech has a single room in which the handful of developers can program and

collaborate together in contemporary development fashion, even while the CEO writes

the governing documents down the hall. In fact, the CEO uses legendary game designer

Chris Taylor’s generic game design document template—

http://runawaystudios.com/articles/ctaylordesigntemplate.doc.

The template is an outline of feature and design sections that prompt game

developers to thoroughly articulate their game design. For instance, one section relevant

to the Edgetech might be a section about physical collectible cards interfacing with the

game. The template is available for public use; Taylor gives the following permission:

“for all of you who have ever wondered what they look like or need one for your own

personal game project.” Taylor’s template is a blueprint with all the necessary section

headings and sub headings; developers like Edgetech simply plug information into the

appropriate fields. Table 2 lists Taylor’s recommended sections:

	
	

53	

Table 2

The 14 Recommended Sections of a Design Document—abbreviated presentation of the

table of contents highlights the Design Document’s topic areas.

1. Game Overview
2. Feature Set
3. The Game World
4. The World Layout
5. Game Characters
6. User Interface
7. Weapons

8. Musical Score
9. Single Player Game
10. Multi-Player Game
11. Character Rendering
12. World Editing
13. Extra Miscellaneous Stuff
14. Six Additional Appendices

The governing document is Chris Taylor’s template that includes a category for

documenting the passage of day and night, among other things. The CEO complained to

me about having to document day and night when that is not a feature in his company’s

games; therefore Edgetech used a static, templated document that recommended specific

form and content. The purpose of Edgetech’s documentation is preset for them so that

they can have everything they need, as well as everything they do not need, thoroughly

documented. While there is nothing inherently wrong about static templates, there is

something wrong about canned preplanning that is completely disconnected from the

contemporary methodologies of developers working down the hall.

Edgetech downloaded the general design document template from the website of

Chris Taylor and was quite diligent with elaborating each of the recommended sections.

Based upon my worksite visit, I know that Edgetech uses all the generic sections to detail

their game software. Once their general design document is populated with information

that details the design of each section, there is enough design information to meet the

needs of investors and developers.

	
	

54	

Within each section of the template, Edgetech finds specific recommendations for

the form of the section, as well as content prompts. For instance, image 1 illustrates how

the “Game World” section alone recommends the organization of form and content. The

intention of image 1 is not to highlight the details of the template; rather, image 1 is

meant to illustrate the clear organization and the quantity of prompts available to the

prosumers of the template.

	
	

55	

Image 1

Organization of the Game World Section of Chris Taylor’s Design Document Template

In particular, the CEO of Edgetech confessed a frustration with the Game World

section of the template. He mentioned his frustration with the Day and Night content

recommendation: “Does your game have a day and night mode? If so, describe it here.”

Day and Night is under the Physical World subheading. Apparently, the CEO was tired of

explaining, every time he filled in the template, that his game has no cycle of day and

night. Rather than omit that part of the Physical World documentation, he was faithful to

the prescribed form and content.

Two sentences about the absence of day and night does not seem like a big hang

up for software development. However, the story does demonstrate that contemporary

	
	

56	

developers work really hard to comply with traditional documentation standards. The

CEO’s commitment to preplanning is completely disconnected from the contemporary

methods of the developers who simply cannot wait around for the documentation of day

and night cycles. The purpose of the documentation was the same, even if the community

and situation were completely different.

Reviewing Two Development and Documentation Methods

I often refer to traditional and contemporary software development

methodologies. Contemporary developers revolutionized traditional methodologies so

that Community Ownership—mindsets, philosophies, priorities, deadline management,

and client relations—was radically different. Insofar as the community and situation are

different, the purpose of documentation should be significantly different too. However,

the purpose of documentation is unchanged.

Traditional development and documentation. Software developers who use the

traditional method of software development are familiar with the purpose, discourse

community, and situation of internal documentation. In fact, they believe thorough

internal documentation is necessary for the team to have a firm grasp on purpose,

discourse community, and situation. In other words, traditional developers seek to plan,

design, and document everything they can before they begin development (Barker, 1998).

The traditional method is pictured in image 2. Not only does traditional methodology

suggest an ordered sequence of steps, the method also suggests a flow of progress that

can be credited to preplanning and documentation.

	
	

57	

Image 2

Model of Traditional Methodology

The traditional method was borrowed from engineering methods. After all, if

engineers can succeed with only one shot at making a bridge function safely, then

software developers can also rely on the same principles for similar success.

Subsequently, the significance of internal documentation in software development

required qualified writers. In fact, a 1985 Technical Communication article (Antoine,

1985) identified the need for technical writers in software development. That article also

outlined how technical writers could serve the computer industry by clearly outlining

both the kinds of documents and kinds of literacies the software industry needed. The

article demonstrates how perfectly technical writers fit into the purpose, community, and

situation. However, contemporary developers utilize more rhetorical forms than simply

written documentation so that both the community and situation are different than

Antoine described in 1985.

	
	

58	

Writers like Kent Beck (2000) look down on oral communication as the absence

of documentation and the rejection of communication. This hard position is because

industry experts see documentation as a concrete artifact of communication to which

developers can look for what might be a difficult design.

The concrete artifact is what makes documentation so vital in software

development. Scott Berkun (2005) illustrates this vitality with the drastic consequences of

an engineer forgetting the design of a nuclear reactor (pp. 66-67). Engineers need

complex, concrete instructions to build a nuclear reactor. A software program can be as

complex as a nuclear reactor, even if there are not the risks. Without a concrete design, a

team of software developers will struggle to redesign the software.

At the same time, the genre rules for a traditional document’s form and content

are very different from a contemporary rhetorical form’s structure and content.

Specifically, the form of contemporary rhetorical forms is not concrete and includes oral

communication. Yet, contemporary developers and software industry guides all expect

contemporary developers to write traditional documents. Adams and Rollings (2003,

2007), Berkun (2005), Cooper (1999), and Brown (2007) all suggest traditional

documents are the model by which contemporary developers should write

documentation. In addition, Genre Theorists like Spinuzzi (2002, 2003), Williams

(2003a, 2003b), and Winsor (1990) trace the roles of Traditional documents in decision

making.

Reviewing contemporary development and documentation. In the mid-90s,

developers began to tire of the battleship methodologies they used—they needed more

flexible ways to turn the boat around. As programs became smaller and release deadlines

	
	

59	

became shorter, developers realized the methodological hulks would no longer serve.

They changed their value systems and set new gauges for progress. They streamlined a

cumbersome process into tight cycles of development. They formed a whole new

philosophy of nimble, user-driven development practices.

Developers abandoned traditional methods—Agile, Object-oriented, Use-case,

rapid-prototyping, extreme-programming, etc —and they formulated various

contemporary methodologies. Many of those methods are classed under the category of

what I term Contemporary development. The commonality between all these methods is

the quick, responsive development practice. In fact, contemporary developers hold to the

Agile Manifesto, which outlines three distinct values:

• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

• Customer collaboration over contract negotiation

• Responding to change over following a plan

Most notable is when there is a choice between completing a prototype before the

deadline and documenting design decisions; contemporary developers abandon the

documentation in favor of completing development cycles on time. Consequently,

developers cannot comply with the documentation standards they seek to maintain. Most

interesting, contemporary developers reject traditional development methodologies, even

while they figure out how to perform traditional documentation activities.

Contemporary development described by developers. A contemporary developer

I know in Newbury Port, Massachusetts once told me: “You want to know how I

document? I don’t” (Professional Conversation). In fact, I have met many contemporary

	
	

60	

developers. I have performed on-site visits. Where I had wanted to see genre theory in

action, see samples of contemporary documentation and have conversations about

successful documentation practice, I instead heard frustration. Much of that interaction

was unrecorded and all of it was bound by nondisclosure contracts I signed. However, I

did take notes during a series of casual conversations with two developers in Logan, Utah

on March 14, 2008. We had a very conceptual conversation about programming methods

and they helped me understand the constellation of methodologies. Essentially, they told

me there was an entire spectrum of methodologies distinguished by the amount of

preplanning required. One of the two developers drew a diagram on a napkin; I have

recreated the diagram for Image 3.

Image 3

The Spectrum of Programming Methodologies Identified by Logan, Utah Developers

	
	

61	

Image 3 represents the spectrum of software methodology titles on the top and

examples of company-types that use them. The two developers had a lot to say about the

spectrum but their most poignant thoughts identify what they think of heavy weight

documentation: “map out every single thing…it is a piece of shit that doesn’t deviate

from the plan.” While traditional methods still worked for extremely large software

architectures, with a large number of program teams, there were other software projects

that were not nearly so large and not nearly so slow to require change.

 An easy contrast between traditional and contemporary. The two Logan

developers organized the spectrum left to right—contemporary to traditional. Where the

two Logan developers helped me understand contemporary development, I knew another

programmer that helped me understand traditional development. In direct opposition to

the far left of image 3 “Screw docs and get it done” is the traditional development.

The traditional programmer had previously worked for a government software

contractor in St. Paul, Minnesota. The programmer joked that for every one line of code

he had to write 20 pages of documentation. While this was an exaggeration, the life of a

government software product, the scale of development, and the need for frequent audits

made traditional development the best option. Contrary to traditional values,

contemporary developers are smaller companies, with changing needs, and products with

a short lifetime.

	
	

62	

HIGHLIGHTING PURPOSE IN GENRE THEORY

I have presented a meta-language of genre theory and have outlined the chief

purpose of traditional documentation. However, that “Purpose” does not match the needs

of contemporary developers, even if they still try to meet that “Purpose” in their

contemporary practice. In terms of my research, as soon as developers formed new values

to support more contemporary methods of software development, developers changed

their situation and their community. However, they did not change the purpose of

documentation to meet the needs of their situation or community.

There are clear examples of how the industry has not converted the purpose of

documentation from traditional to contemporary. One example is in the Forward of

Communicating Design: Developing Web Site Documentation for Design and Planning.

Daniel Brown identifies the target audience of his book and explains how to read his

book; he also identifies his assumption that the situation does not impact the document's

content: "Although this book tries to remain agnostic about process, it does make some

assumptions about how you operate and what your working environment is like. You

may find yourself in a different situation, but it should not affect the content of your

documentation" (Brown, 2007). Brown suggests the traditional documentation is static

and always serves the same purpose no matter the situation. In fact, how developers

operate and how their environment works has everything to do with the purpose of a

document. By extension, the document serves a different purpose for each situation, and

community.

	
	

63	

Genre theory indicates a reason why traditional documents fail in contemporary

practice: genre theory is the combination of purpose, situation, and community. Situation

and Community are key elements in genre theory. Consequently, the following sections

elaborate the rhetorical situation and the meaning-making of communities. In order to

showcase the centrality of purpose for genre theory, I review three different schools of

genre to elaborate how purpose fits into each one.

Purpose in Rhetorical Situations

 The situation might be an important element but the trick is that with an organic

model like genre theory, the situation is necessarily different every time, even though a

repeating situation seems to suggest comparable or similar material features. This is the

particular conundrum Miller (1994) tackles in her own research:

What is particularly important about rhetorical situations for a theory of

genres is that they recur…What recurs cannot be a material configuration

of objects, events, and people, nor can it be a subjective configuration, a

‘perception,’ for these, too, are unique from moment to moment and

person to person. Recurrence is an intersubjective phenomenon, a social

occurrence, and cannot be understood on materialist terms. (p. 156)

Miller points to the persuasion in a community as an intersubjective phenomenon that

morphs an otherwise immutable, repeating situation.

The rhetorical situation is a moment on which forces of persuasion have a great

deal of influence. Keith Grant-Davie (1997) states the meta-definition for the rhetorical

situation is: “a set of related factors whose interaction creates and controls a discourse”

	
	

64	

(p. 265). The interaction of those related factors necessarilly involves rhetors—people

who seek to persuade an audience. Whether intersubjective phenomenon or related

factors, either one suggests rhetors can evaluate the results, or consequences, because a

rhetorical situation is a historical event with causality (Grant-Davie, p. 264). A real-time,

causal approach to rhetorical situations allows rhetors to analyze, “why decisions were

made and why things turned out as they did. . .that some events might easily have turned

out otherwise, while the outcomes of other events seem all but inevitable when seen in

light of the situations in which they occurred” (Grant-Davie, p. 264). Rhetors can clearly

delineate between cause and effect on historical events because the outcomes are

indisputable, as when the American colonists won the Revolutionary War in 1783; the

outcome was clear because the United States is no longer a British colony. Yet, rhetors

implement symbolic strategies of persuasion to project what kind of situation generates a

specific outcome. Historians use both evidence and rhetoric to interpret the cause of the

Revolutionary War. The extrapolation of cause can then demonstrate how one persuasive

strategy, or sequence of events, over another can produce different effects in the same

rhetorical situation.

In terms of software documentation, the historic event is clear to everyone on the

team. For instance, a team meets every Monday morning to showcase prototypes; that

weekly meeting is a historic event. However, the outcome of that event might be new

design directions and new prototype requirements; that outcome is the result of the

intersubjective phenomenon Miller described and the symbolic strategies of persuasion

Grant-Davie described.

	
	

65	

Purpose and Community Meaning-Making

 Like Carolyn Miller suggests, the intersubjective phenomenon are the features of

a rhetorical situation, rather than materialistic features. That intersubjectivity is resolved

by the rhetors involved in the rhetorical situation. The resolution those rhetors create is an

act of meaning-making that defines the community. Consequently, there are many social

theories that define “community” and that research can highlight the value of meaning-

making communities in genre theory.

Social theory varies from genre theory insofar as community is the primary

transmission of meaning-making, rather than written communication. While Nancy

Roundy Blyler and Charlotte Thralls (1992) suggest that all social theories might agree

on the “centrality of socially mediated meaning” (p. 125), they use four categories to

trace differences in the key tenets––community, knowledge and consensus, discourse

conventions, and collaboration. Rather than tackle the impossible task of reviewing all

social theories, I plan to showcase community, knowledge and consensus, discourse

conventions, and collaboration with only two social theories: social constructionism and

paralogic hermeneutic theory. Of the two, I believe paralogic hermeneutic theory does the

most to highlight how a community of contemporary developers can employ new

rhetorical forms to communicate in development projects.

A brief summary of paralogic hermeneutic theory. Paralogic Hermeneutic theory

focuses on the unlikely coherence of two different minds in the same unique moment of

communication. Thomas Kent (1993) defines Paralogy in the following manner:

“paralogy refers to the uncodifiable moves we make when we communicate with others,

and ontologically, the term describes the unpredictable, elusive, and tenuous decisions or

	
	

66	

strategies we employ when we actually put language to use” (p. 3). The uncodifiable

nature of communication is key to the theory because the community must negotiate

unpredictable communication moves. Another key term is coherence because meaning-

making happens when the rhetors in a paralogic situation align their understanding. Mark

Zachry (2005) clearly identifies exactly why paralogy literally defies logic: “human

communication is paralogical rather than logical because in any given example of

communicative interaction, a superfluity of potential understandings is only temporarily

and locally arrested when the participants involved in the communication ‘come to terms’

over meaning so that they can interact” (p. 179). The former social theories rely on a

community that can arrest understanding and codify that knowledge in a meaning-making

process. However, paralogic hermeneutic researchers insist that understanding is

uncodifiable. Therefore, a document can be complete but the community is too

uncodifiable to surrender meaning-making to that document.

 Social theory tenet: community. For the social constructionist, Community is the

source of knowledge. In fact, social constructionist researcher Kenneth Bruffee (1986)

posits that knowledge is social in nature, rather than individual, internal, or mental (p.

775). Yet according to Blyler and Thralls (1992), ideologists argue that social

constructionists like Bruffee “separated the social conditions of writing from questions of

power and control” (p. 131); rather than a benign and apolitical process that presupposes

the communal membership of everything, the ideologist sees “the authority structures that

enable communities. . .to maintain and legitimize social orders and practices under the

auspice of tradition and custom” (p. 132). Ideologic communities situate meaning-making

in the power struggle.

	
	

67	

 Paralogic hermeneutic theory posits that Community is notably impermanent and

insubstantial. Superfluous communities have no structure because such constructions or

authoritative forms require stable, codifiable definitions. Instead, Blyler and Thralls

(1992) argue that paralogic hermeneutic theory builds uncodifiable community on the

temporary “rapport experienced by communicants as they interact” (p. 137).

 Social theory tenet: knowledge and consensus. Socially justified beliefs are

forms of Knowledge and Consensus that benefit from the agreement of an entire

community; Blyler and Thralls (1992) detail how social construction goes on to suggest

that community interaction enables consensus (pp. 128-9). However, Ideologic social

theory believes knowledge and consensus is an instrument of power and exclusion (p.

133). Consequently, while social construction minimizes and silences discourses, the

ideologic approach makes meaning as “some interests are suppressed while others

dominate. Consensus is not so much an index of agreement as an exercise of power” (p.

133). In other words, the ideologic meaning is in the struggle for power.

 Zachry (2005) states that paralogic hermeneutic theory focuses Knowledge and

Consensus on interpretation and the “primacy of communicative interaction” (p. 137).

Interpretative achievements are still uncodifiable and temporary because each additional

interaction shifts understanding once again. Zachry states: “meaning is never predictably

constrained because communicative interaction is always defined by ongoing interpretive

acts” (p. 180). Therefore, knowledge and consensus is an ongoing interpretation, rather

than static truth.

 Social theory tenet: discourse conventions. The social construction approach to

Discourse Conventions suggests that communities are constituted by language.

	
	

68	

Consequently, language is a tool or an intermediary that communities use to understand

and identify communal agreements and truth. On the other hand, ideologic researchers

focus on the signs and symbols that mark ideologic knowledge and support the dominant

consensus. Ideologic researchers therefore seek to examine those dominant discourse

conventions in the hopes of breaking down their power.

 Discourse Conventions and paralogic hermeneutic meaning-making are actually

incompatible; discourse convention is the definition of codified, planned, and reliable

communication, whereas Paralogic Hermaneutic theory is uncodifiable and unplanned.

Zachry (2005) articulates the place of discourse convention in paralogy: “communication

always occurs in the presence of an ‘other’ via communicative interaction. That is to say,

meaning does not reside ‘in’ texts” (p. 180). Rather, the meaning is always in the

interaction. Zachry goes on to suggest exactly why discourse conventions are inadequate

as either signs, symbols, or markers: “any given rule, guideline, or strategy––regardless

of its complexity––cannot offer a fail-proof way for moving ideas from one mind to

another” (p. 180). The only remedy for communication is to simply create temporary

communities within which communicants can parley for meaning.

 Social theory tenet: collaboration. Blyler and Thralls (1992) indicate that social

constructionists believe (p. 130) Collaboration is a participation in conversations with

knowledgeable peers; the effect de-centers authority and acculturates communicants. On

the other hand, the ideologic approach argues that the collaboration is a site of struggle,

where power and acculturation is suspect (p. 135).

 Paralogic hermeneutic is a social theory of purely Collaboration; consequently,

Blyler and Thralls (1992) indicate the theory is collaborative by nature (p. 139). Zachry

	
	

69	

(2005) outlines exactly what role tools and preparations play in paralogic collaboration:

“words are introduced and consumed, meanings are assigned, new words are exchanged,

meanings are remade to accommodate this exchange, and the process continues on as

long as the communicators are engaged with each other. Communication, therefore, is

never static” (p. 181). Collaboration means design documents are moments of exchange

and constant negotiation.

The uncodifiable nature of paralogic documentation is worrisome to some

developers who rely on what they see as the predictability of more traditional

development methods. Traditional documentation simply utilizes discourse conventions

negotiated by a community of meaning-makers. On the other hand, contemporary

developers already practice an uncodifiable development practice. They embrace new

rhetorical forms in their communication; contemporary developers bring meaning to the

documentation, rather than look to the documentation for the discourse conventions.

Purpose and the Three Schools of Genre Theory

Not all genre theorists trace documents in the same way. In fact, there are three

different schools of genre theory. There is classical genre theory, Sydney Australia school

of genre theory and genre theory. The nature of the rhetorical forms is where the different

schools vary—i.e. prescribed forms versus organic forms. These variations are important

to specifically identify what I mean by genre theory.

Classical genre theory. Classical genre theory precedes both Sydney and North

American genre theories. I term the theory “classical” to distinguish it from the newer

theories. Classical genre theory is made up of static categories like romance novels, haiku

	
	

70	

poetry, and software industry guides. In the case of software development documentation,

there are specification documents, the user manual, specialist instructions, and the art

bible. The categories are constrained by clearly set rules. William Harmon and C. Hugh

Holman (1996) state classical genres, like the User Acceptance Test Plan document,

designate: “the types or categories into which literary works are grouped according to

form, technique, or, sometimes, subject matter . . . [and] implies that there are groups of

formal or technical characteristics among works of the same generic kind regardless of

time or place of composition, author, or subject matter” (p. 231).

These categories have specific rules that make it easy to find them in different

parts of a bookstore. In addition, the genre categories make it easy for people to talk

about their favorite horror novel author with a common idea of which authors qualify for

that kind of conversation. Consequently, the formal rules identify the form a genre should

take and the content a genre should include. Of course, artists push the boundaries of

genres but that does not mean that “pushing the envelope” entails transgressing the actual

boundary. Instead, an artist seeks to play within the boundary in original ways that keeps

the genre fresh and exciting.

Sydney australia genre theory. The Sydney School of genre theory acknowledges

fairly inflexible standards and rules; however, the theory conceives of genre structures as

always imbedded in political and economic situations (Freedman & Medway, 1994). In

other words, the Sydney researchers are not so interested in what makes a good office

memo; rather, the Sydney Australia genre researchers extrapolate the impact of an office

memo in a political or economic milieu (Freedman & Medway, 1994). The rules are

static so that something like a memo might have had a controversial impact and heighten

	
	

71	

office tensions. Another example might be a specialist instruction written for a cadre of

multi-lingual and illiterate factory workers who must tangle with international issues that

might conflict with company values.

North american school. Genre theory proposes that genre categories actually

shift the temporary genre rules each time the community participates and repeats a

situation. Rather than static, self-evident categories; genres are social, community-

defined phenomenon. In other words, genres like software documentation have form and

content set by organic social needs and unstable community standards. Genre theory

highlights recursive interactions between people and the rhetorical forms they use to

communicate.

Two key distinctions. There are two ways that the Sydney school and the North

American school blur together. Whether an office memo in a political milieu or an office

memo in a community of meaning-makers, there is still a document that imposes stability

and meaning on a situation. In addition, social structures are key elements in both

theories; a structured office memo genre has a meaning-making impact in both schools.

Situatedness in the Sydney school and Situatedness in the North American school

are distinguishable because of the situated knowledge and enculturation specific to the

North American school. In other words, genre theory posits a Nietzsche-like

situatedness—in which knowledge and agents form a strict context of meaning-making.

Therefore, the situation and the community organically form a specific epistemology.

Social structures are distinguishable because genre theory features a Duality of

Structure—genres reproduce and sustain themselves at the same time. Duality of

Structure makes rhetorical forms like an office memo both change to the needs of the

	
	

72	

community and stabilize meaning-making activities in the community. That means

rhetorical forms are mutable structures in genre theory.

PROFESSIONALS AND THEIR DOCUMENTATION

I have previously suggested that genre equals purpose, community, and situation.

Shifts in this triad substantiate changes to the documentation of the software industry.

Consequently, a shift from traditional to contemporary was necessitated by the rapid rate

of change any single software development project undergoes. The traditional method

was meant for titanic-sized software implementations and was not agile enough to work

for more enterprise software projects. The contemporary developers changed the situation

by which they document and the community within which they document but they did

not realize the purpose of their documents changed too. They no longer need

comprehensive, forecasting documents that clearly elaborate features and govern the path

of development. However, they still try to meet the governing purpose of their

documents, even while they already employ newly purposed rhetorical forms in their new

situation, and community.

Part of the reason for the oversight is the word “document” itself. The word

naturally lends itself to written communication. In addition, the word is both a noun and a

verb at the same time: I like to document my work; I like to work on my document. Even

more complex is the label “Documentation” because it is a classified activity in

development methodology. Without more vocabulary words, it is difficult to demonstrate

how the purpose of documentation changed but developers did not stop documenting in

	
	

73	

the same way. In fact, I nearly did not see the oversight myself. The meta-language of

genre theory reduces that difficulty.

Purpose as Central to Software Documentation

I made the same oversight while meeting with two Logan, Utah developers

(personal communication, March 26, 2008). I was looking for samples of documentation

that would illustrate genre theory in the software development industry. I had read the

industry guides and had my head full of theories; I could not wait to see something like

the practical application of “Duality of Structure.”

The senior programmer walked me step-by-step through his contemporary

development methods. He described a recursive, rapid development cycle of

implementation, testing, client feedback, design, and documentation. Documentation was

actually situated between every step in his development cycle as each cycle ended with

documentation. In fact, the two developers’ workflow included 13 different proprietary,

internal documents and five distinct documentation stages.

With a process that was clearly marked by a thorough documentation procedure, I

concluded that the two developers’ documents were the milestones that marked progress

on their development projects. However, the senior programmer did not agree with my

conclusion about document milestones; after all, he did not think of his process as a

documentation heavy, preplanning-oriented, traditionally modeled practice. In his words,

traditional development is a “piece of shit” and his practice was not a piece of shit, even

if he produced documentation.

	
	

74	

Insight about purpose in software documentation. I still perpetuated the isolation

of purpose from both meaning-making communities and rhetorical situations. In other

words, even though his situation, and community was not traditional, I imposed

traditional purpose on his documentation. I interpreted the presence of adequate

documentation as a practice that met the standards of genre theory. Instead, I should have

seen that two developers’ documentation transmitted design but was not the dynamic

rhetorical form in which they situated their knowledge, owned their conventions and both

structured and reconstituted their community.

 The two developers knew the documentation was not governing their workflow,

even if they called them “governing documents.” They understood something I could not

see and that they did not have a meta-language to describe. They understood their

discourse community, as well as their situation. While their documents served traditional

purposes, the actual role they played in the discourse community was less important.

Where I concluded that documents were the milestones in the workflow, the developers

saw only a bunch of required documents. They knew there was something else—another

rhetorical form—that they used to structure and reconstitute their practice.

There is always another traditional document that records legacy decision making;

however, there is no documentation for the decision work that happened between

cubicles or in the hall near the drinking fountain. In the case of the two Logan, Utah

developers, there was no documentation when they surreptitiously collaborated to resolve

design problems. They talked and then they implemented; when the step in their

workflow was done they would document what they ended up with but did not document

the meaning-making process, rather, they conversed about meaning-making. If there was

	
	

75	

a milestone marking each stage of their development cycle, the developers frequently

described their ongoing contact with their users.

The Edgetech Narrative—in the Meta-Language of Genre Theory

With the intent to come full circle back to Edgetech, I want to refer again to that

developer’s narrative—this time with the meta-language. There are two ways to interpret

what I know of Edgetech’s documentation practices. In the first case, there is what genre

theory predicts. In the second case, there is what I observe when I can work directly with

developers. The two means of interpretation yield very different results.

Narrating genre predictions. Genre theory predicts that the community recycles

through written documents and that each cycle creates the form and content of the

documentation—one rhetorical situation at a time. Communities act on documents based

upon needs. Those needs determine the form and content of the document. In the case of

Edgetech and Chris Taylor’s generic design document template, the community simply

omits the “Day and Night” entry. Consequently, the form and content are very liquid

conventions. Genre theory also predicts that the community responds to what is already

written; consequently, the writing still guides the community. For instance, the omission

of “Day and Night” might prompt a design discussion about its absence from the

documentation if the team becomes aware of a need for Day and Night transitions in the

game.

Therefore, I would expect to see Edgetech’s CEO writing and using

documentation among the developers and graphic artists—among those who make the

design decisions. I would expect to see the general design document organized according

	
	

76	

to the needs of the community. In addition, I would expect the developers and graphic

artists to draw on the documentation as they develop their game; after all, genre theory

suggests that documents have authority when the community makes decisions. Finally, I

would expect the developers and graphic designers to play key roles in the authorship of

the community’s written communication. However, none of this is what I found at

Edgetech’s studio.

Narrating what was not predicted. Even if the Edgetech developers and artists do

not use the CEOs general design document, genre theory still predicts that the discourse

community generates communication. That communication does not have to be

something long and detailed like a general design document. Particularly, many software

developers write much smaller documents, instead of the general design document. Most

importantly, they write what matters when it matters in the way that it matters.

Genre theory does not predict Edgetech’s useless, template-like general design

document. The theory does not predict the company’s developers and artists cut off from

the production of a guiding document. Neither does genre theory predict that decisions

made by the community might never be documented; Edgetech developers clustered

around the computer monitor might implement a decision without writing a single thing.

Genre theory does not predict a successful discourse community if the community does

not generate written communication; however, there was a new rhetorical form that

stabilized the meaning-making community, even while the CEO plugged information into

the cookie cutter template.

	
	

77	

ORAL COMMUNICATION AS A RHETORICAL FORM

I have frequently referred to rhetorical forms. While an ecosystem of rhetorical

forms is key to stabilize a development project, I want to highlight oral communication as

a rhetorical form. I explain what I mean by oral communication, apply oral

communication to documentation failure and plug oral communication into genre theory

as a rhetorical form.

Utterances as Oral Communication

While the utterance is a core unit in genre theory (Berkenkotter & Huckin, 1995;

Kent, 1993; Spinuzzi, 2003) and while researchers do identify a speech genre, it is

actually a very novel observation that developers “speak to each other.” In fact, M. M.

Bakhtin (2007) gives as examples of the speech genre: “novels, dramas, all kinds of

scientific research, major genres of commentary, and . . . organized cultural

communication (primarily written)” (p. 62). Bakhtin specifically identifies that speech

genres are primarily written. Actual, literal speech in genre theory is novel because so

often speech signifies meeting minutes, rather than the meeting.

Genre ecologies, without utterances. Clay Spinuzzi is a genre theorist who

researches the web of internal and external documentation used at workplace sites. His

research highlights the concept of genre ecologies (Spinuzzi, 2002, 2003). In other words,

document genres are not isolated pieces of writing; rather, document genres are parts of a

constellation of co-constituted (Spinuzzi, 2003) genres—a genre ecology. Spinuzzi maps

out what ecologies look like in the various communities he researches; the maps detail

	
	

78	

the connections between documents and highlights the clusters of activity at work sites.

Image 4 is one such map taken from Modeling Genre Ecologies (Spinuzzi, 2002).

Image 4

Spinuzzi’s Ecology Map from Modeling Genre Ecologies.

The map details the genre ecology (Spinuzzi, 2002) used by credit and collections

workers at a “medium-sized regional telecommunications company” (p. 200). The map

outlines the co-constitution of genres like bankruptcy notices, labels, log of actions,

sticky notes, and email. However, the map does not include workers talking to each other.

Spinuzzi interviewed and observed workers at the telecommunications company; he was

aware that the workers spoke to one another and regretted how he simply could not

record spontaneous speech acts; however, the genre ecology omits speech. The missing

	
	

79	

bubbles from this ecology map are chitchat at the drinking fountain, the soda machine,

and any other location where oral communication impacts the project.

This is not to say that Spinuzzi does not acknowledge speech acts in other

ecologies. For instance, Image 5 showcases how oral communication is a central

component of the ecology. The ecology showcases the work of a single

telecommunications professional named Ralph (Spinuzzi, Hart-Davidson, & Zachry,

2006). Ralph’s ecology of genres all connect to his phone conversations.

Image 5:

Spinuzzi’s Ecology Map from Chains and Ecologies.

Telecommunication companies sustain meaning-making with or without oral

communication but a software development company cannot omit speech without

neglecting to account for how the community makes meaning-making decisions.

	
	

80	

Documentation goals and documentation failures. Many developers are like the

Orem developer; they produce traditional documents that do not really serve their needs,

and some developers do not document at all; yet, they are still communicating. In both

cases, developers employ oral strategies as their principle rhetorical form.

Unfortunately, both professional communicators and the authors of industry

guides agree that an absence of documentation is poor practice—whether or not there are

new rhetorical forms of communication. In fact, even the father of Extreme

Programming—Kent Beck—does not recommend the absence of documentation: “saying

‘we don’t have to write documentation because we’re extreme,’ shows contempt for

communication, not an embracing of communication as a value” (Beck, 2000).

Consequently, Beck and many developers in the field declare a failure to maintain

traditional documents is a failure of communication. The Orem developer is not exempt

because poor traditional documentation is also a failure. However, all these judgments of

failure rely on the traditional purpose of traditional documentation practices, whereas the

discourse community and situation changed to contemporary development.

Oral Communication in Genre Theory

Genre theory gives me a meta-language with which I can describe software

documentation in Contemporary development. Yet, there are still things for which the

meta-language does not account. All the design decisions made by developers in the

elevator or while playing golf are rhetorical forms of oral communication. At the same

time, by the standards of industry guides, the idle chitchat is contempt for

communication. genre theory is useful to describe oral communication in terms that

	
	

81	

validate its role in Contemporary development. Whereas my dissertation seeks to identify

a need for that validation, genre theory still overlooks oral communication. The following

uses the meta-language to demonstrate the omission of oral communication in each of

Berkenkotter and Huckin’s five principles.

Principle of dynamism. Dynamism states that the rhetorical forms develop from

the actor’s responses to situations. In other words, Traditional developers write

documents that guide development; in addition, those developers adapt the

documentation to fit into the constraints imposed by their preplanning work. However,

Contemporary developers document while they develop and only document what is

necessary. Consequently, the apparent absence of rhetorical forms—documentation—

means no genres are formed from their agility. The three most important features of

Berkenkotter and Huckin’s Dynamism are (1) Forms develop from responses (2) stabilize

development experience and (3) give meaning to what might be a chaotic mess with no

commonality to focus a community of developers. Traditional documentation is precisely

like that. On the other hand, while Contemporary documents are still generated because

of Contemporary flexibility, those documents do not stabilize anything and are not what

give meaning. The oral communication of software development is the rhetorical form to

which Berkenkotter and Huckin refer: “Genres, therefore, are always sites of contention

between stability and change. They are inherently dynamic, constantly (if gradually)

changing over time in response to the sociocognitive needs of individual users” (p. 6).

Oral communication fills those requirements set by genre theory. The office chitchat of

the cubicle jungle drives development.

	
	

82	

Principle of situatedness. Situated knowledge is the cornerstone of

documentation activities in both traditional and contemporary software development

practices. However, without additional rhetorical forms, the developers are reliant on

simply documentation activities to record that situatedness. They look for code comments

in the code of other developers; they review code libraries to acquire team standards; they

write up requirements; they report progress to key stakeholders; they email each other to

justify coding logic. However, the design decisions that should form from community

responses to recurrent situations are not often documented. They are mediated and

sustained as community knowledge via oral communication and other rhetorical forms.

Image 6.

Spinuzzi’s Ecology Map from Software Development as Mediated Activity.

	
	

83	

Clay Spinuzzi’s ecology maps demonstrate situatedness is a web of

documentation and activity. Image 6 showcases an ecology map taken from Software

Development as Mediated Activity (Spinuzzi, 2001). In his article, Spinuzzi focuses “on

how artifacts (such as manuals, code comments, and the code itself) collectively mediated

the developers’ production and comprehension of code at three units of the same global

corporation” (p. 58). In order to work in this environment, a worker must accept the

situatedness and become a participant. Even though image 6 identifies “conversations,”

the ecology’s collective mediation focuses on written communication. While oral

communication is represented in the ecology as a form of situated mediation, the

“conversations” are not included among the written communication Spinuzzi targets.

Principle of form and content. Rather than rhetorical forms like documentation

that have conventions like headings, page numbers, and appendixes, the only conventions

of oral communication are the developers themselves. In other words, the developer

becomes the convention or agent of the genre. Clay Spinuzzi (2004) clarifies the “Agent”

in genre theory: “the agent is ‘genre’ or ‘genre ecologies’ rather than human beings” (p.

114). While the traditional agent might have been the genre, the contemporary agent is

the developers making design decisions on napkins at lunch time. Industry writer Alan

Cooper (Cooper, 1999) takes a strong position against developer-agents generating form

and content, without the appropriate documentation; Cooper suggests that developers

should never deviate from the “blueprint” preset by the documentation. However, the

very principle of office chitchat is a daily deviation from any documentation

contemporary developers write.

	
	

84	

Principle of duality of structure. Development documents are communication

tools that outline guidelines, detail policies, and record a team's unified vision; teams

produce these documents during pre-design stages of development. They are meant to be

authoritative and reliable sources of information that guide development stages.

However, projects rarely go according to plan and the documents are rewritten as fast as

the project changes. At the same time, even while teams of writers, designers, and

managers write these documents to act as development bibles (Adams & Rollings, 2003,

2007), the team actually writes all the changes to their own bible. In other words, the

team is constantly rewriting their rules. Because of redundancy, many teams do not even

keep their development documents. My dissertation seeks to bridge the paradox of

document authority and author agency by highlighting oral communication as the bridge.

Principle of community ownership. Oral communication is clearly the

Community Ownership of Contemporary developers; oral communication is a convention

that signals Contemporary norms and ideology because Contemporary development

values face-to-face communication. Ruping echoes the Contemporary Manifesto (p. 1)

valued by Contemporary developers:

• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

• Customer collaboration over contract negotiation

• Responding to change over following a plan

These community values favor flexibility and an oral communication that stabilizes and

gives meaning to Contemporary development practices.

	
	

85	

 Genre theory is perfect for the Traditional documents in Spinuzzi’s genre

ecologies. However, a similar map of Contemporary documents is incomplete without the

oral communication.

VALIDATION WITH TWO THEORETICAL MODELS

I use two very different models to analyze software development documentation

genres. My intent is to capture what rhetorical forms I expected to see in past

development projects and assess the appropriateness of oral communication with

professional developers. The following supports the two models I use.

The Model of Expectations and David Hailey’s EUPARS (Exigency, Urgency,

Purpose, Audience, Rhetorical stance, and Structure) model of genre evaluation serve

different parts of the dissertation. I use the Model of Expectations to establish my genre

expectations in the two postmortems. I use EUPARS to evaluate the new rhetorical forms

in contemporary development workplaces. Where the Model of Expectations is more

appropriate for postmortems, the EUPARS model is more useful for assessing whether

the new rhetorical forms in contemporary development are actually genres that efficiently

meet the needs of the community. The methodology section explains how I use the two

models and the following is the theoretical support of the models.

The Model of Expectations

 I encountered genre theory before I became familiar with software

documentation. Consequently, I had the meta-language at my disposal when I began

	
	

86	

reading about documentation goals and standards. When I sought out professionals to

compare their methods to the industry standards, I had specific expectations. Rather than

simply look for the documentation industry guidebooks described, I was looking for the

theoretical practice I could describe with the meta-language. Therefore, my procedures

are modeled after specific expectations I have formed over the years.

I wanted my postmortems to be as close to my original expectations as possible.

Therefore, I used research papers I wrote at the time to create the Model of Expectations.

Fortunately, I wrote many papers about comparisons between my own documentation I

wrote for my student projects and the documentation professionals described from their

practice. Invariably, those research papers each utilize the meta-language of genre theory.

I adapted those original research papers into my postmortems. I wanted to accurately

draw on my expectations and conclusions.

The greatest commonality between all the research papers is the utilization of

Berkenkotter and Huckin (1995). Their five principles of genre theory feature in all my

early work: dynamism, situatedness, form and content, duality of structure, and

community ownership. I broke up the commas and semi-colons in the descriptions of

Berkenkotter and Huckin’s five genre principles into 11 phrases. These are the 11 value

statements on which I base my interview questions.

Of course, professional developers would not respond to questions like: “How is

your community knowledge bound by recursive activities?” I needed my meta-language

to breach the lexical walls of industry vocabulary because no one in industry would know

what I was talking about without the industry vocabulary. The solution was to translate

the 11 value statements without loading my dice—so to speak. Once again, those

	
	

87	

research papers I wrote were indispensible; I had already done the translation from meta-

language to industry vocabulary. Neither my documentation practices nor those of

developers met my expectations and my research papers articulated why.

The following table includes the 11 value statements in my Model of Expectations. I

translate those value statements from the meta-language of genre theory into the language

of traditional industry documentation recommendations.

	
	

88	

Table 3

Model of Expectations Matched to Practitioner Wording

Model of Expectations	 Worded for Practitioners 	
Dynamism

● Genres are developed from actors’ responses to
recurrent situations.	

● Genres serve to stabilize experience and give it
coherence and meaning.

● Genres change over time in response to their
users’ sociocognitive needs.

Dynamism
● The document forms as the team uses it

and responds to it.	
● The document is a common resource for

teams and is a foundation for the
innovative solutions teams require.

● The document changes with team
decisions so that it is a decision making
tool.

Situatedness
● Genre knowledge is derived from and embedded

in our participation in the communicative
activities.	

● Genre knowledge is a form of “situated
cognition.”

● Genre knowledge continues to develop as we
participate in the activities of the ambient
culture.

Situatedness
● If it isn’t documented then it didn’t

happen. The act of documentation is the
formation of common knowledge.	

● Project productivity and long-term goals
originate from documented knowledge.

● Documents become more comprehensive
and typified as the community
collaborates and tests the document’s
relevance.

Form and Content
● Genre knowledge embraces both form and

content.	
● Genre knowledge is a sense of what content is

appropriate to a particular purpose, situation,
and time.

Form and Content
● Form and Content conform to

documented knowledge.	
● Document-based knowledge prompts

decisions about relevant rhetorical
content.

Duality of Structure
● Genre rules inform activities that constitute

social structures	
● Genre rules inform activities that

simultaneously reproduce these structures.

Duality of Structure
● Project planning, roles, and

responsibilities match procedures
established in the documentation.	

● The documented rules guide procedural
and organizational decision-making.

Community Ownership
● Genre conventions signal a discourse

community’s norms, epistemology, ideology,
and social ontology.	

Community Ownership
● Philosophy of development methodology

expressed through documentation and
practice. 	

	
	

89	

The EUPARS Model

 EUPARS stands for Exigency, Urgency, Purpose, Audience, Rhetorical stance,

and Structure. The model is best applied to text moved between Internet sites; insofar as

all moves are not appropriate to the respective purposes, Hailey (2013) endeavors to use

EUPARS as an assessment tool that measures the appropriateness of a move. He

simplifies the objective of EUPARS: “figure out what the page is supposed to do and see

if it does that” (p. 167). Where Hailey uses EUPARS on texts that already exist, I apply

EUPARS to show traditional documentation is inappropriate in contemporary

development and show that new rhetorical forms meet the needs of the situation.

I have been very careful to identify new rhetorical forms, rather than specify

methods of oral communication. While I believe the latter is supportable, I adhere to the

reasoning of David Hailey (2014) and cautiously avoid naming the new rhetorical forms:

“naming the genre will not get us what we need for evaluating. Instead, we need to

dissect the genres. Only when we are looking at the genres’ parts are we able to see if the

individual parts work” (p. 167). Consequently, the Model of Expectations works well for

documents I thought I understood and the EUPARS works well for rhetorical forms I

seek to assess.

	
	

90	

Table 4

Hailey’s EUPARS model Defined

EUPARS term Definition Core Question
Exigency A pressing requirement (p. 174) Why is the text needed? (p. 168)

Urgency The reason for the pressing nature
of the requirement

How badly is the text needed? (p.
168)

Purpose Seeing whether it does what it is
supposed to for the right audience
(p. 181)

What is the text supposed to do?
(p. 168)

Audience The audience is not named. It is
described…Audiences are made
up of collectives of different
groups with different needs and
expectations (p. 185) It isn’t so
much that you want to know who
your audience is as you need to
know what they want or expect
and how you can meet those
expectations (p. 193)

With whom are you trying to
communicate? (p. 168)

Rhetorical stance Rhetoric can be described as that
part of communication
intended to persuade, and all
communication has a persuasive
component. This persuasion
occurs when you effectively meet
the needs and expectations of the
audience (p. 199), in the way the
audience needs and expects

What are the audience needs and
expectations?
What do you hope to do with the
reader?
What is the appropriate stance to
accomplish these goals? (pp. 168-
169)

Structure The structures of
[communication] range from the
document’s physicality through
real and conceptual metaphors to
the document’s ambiance or
emotional tone (p. 202)

Should the text be bulleted,
numbers, narrative? (p. 169)

Hailey does not see the table as a template or worksheet; however, Hailey does

indicate that a table formatted like table 4 might be helpful. In fact, Hailey (2013) claims

that after diligent inquiry into each of the six EUPARS terms, “you have enough

information to instantly tell whether the text is appropriate for the situation” (p. 171).

	

	
	

91	

CHAPTER III

METHODOLOGY

METHODOLOGY AND PROCEDURES

I used the following methods to discover and verify the rhetorical forms in

contemporary development. In addition, I implemented genre theory as a theoretical

framework to describe those rhetorical forms. However, it is not enough to use genre

theory to describe my own development experiences; I also used the theoretical

framework and a set of interviews to describe development in professional practice. In

other words, I used a schematized meta-language to describe several different

documentation practices. The following three research situations are key practices to

showcase alternative rhetorical forms in contemporary development.

1. Development of an educational simulation for the American West Heritage

Center in Logan, Utah. I preserved document samples and captured peer

perspectives.

2. Coordination of learning-modules to supplement Department of Engineering

online courses in Logan, Utah. I preserved a broad sampling of materials to

demonstrate rhetorical forms in contemporary development.

3. Organization of interviews with seven professional developers in Sandy, Utah.

I recorded interviews with seven local developers.

In addition to a meta-language and some development experiences, I employed

two theoretical models—Model of Expectations and EUPARS model. The models

	
	

92	

insured that I deployed the meta-language the same way in all three research situations.

In addition, they highlight common findings so I could triangulate my data.

Strategies of Inquiry

I used three strategies of inquiry in each of the three research situations. First, I

used a theoretical framework to consistently apply the same lens to all the research

situations. Second, I used well-documented project postmortems to recapture the path of

discovery that led to my research conclusions. Finally, I used semi-structured interviews

with seven professional developers to foster a frank conversation about efficient

documentation practices. The framework supported the meta-language I used to both

describe the postmortems and formulate the interview questions.

Inquiring with a theoretical framework. I used genre theory as a conceptual

framework and meta-language with which I could describe the research situations I have

selected. Of the many authors who describe genre theory, I find Berkenkotter and

Huckin’s (1995) five categories are the most useful in describing oral communication.

While genre theory can be summed up in a single sentence by Carolyn Miller (1994), the

five categories lend themselves to a more methodical analysis of rhetorical forms.

Berkenkotter and Huckin break genres down into five component parts. The five

principles create a meta-language by which I describe genre features and community

actions.

I use two genre models: Model of Expectations and the EUPARS Model. I use the

Model of Expectations to methodically describe the documentation I sought in each of

	
	

93	

my research situations. I use EUPARS to verify oral communication is a rhetorical form

appropriately situated in contemporary development practices.

Inquiring with postmortems and interviews. Developers produce postmortems at

the end of a project to process any lessons-learned. Scott Berkun (Berkun, 2005)

explains:

Team leaders must be committed to investing in the postmortem process.

As things wind down, leaders should be asking people to start thinking

about what went well and what didn’t, even if it’s just in the form of their

private lists. A plan should be made for team leaders to collect these lists

and build a postmortem report. The report should have two things: an

analysis and summary of lessons learned, and a commitment to address a

very small number of them in the next project. (p. 316)

Berkun (Berkun, 2005) also suggests what should be expected from a postmortem: “build

a report based on what was learned, filtered through the consultant’s expertise” (p. 316).

As the documentation leader in each of the two research situations, I had all the

communications, lists, documents, and reflections I preserved. These samples were

sufficient information to capture an accurate postmortem. Most importantly, I rely on

reflections I preserved, to build my conclusions in this dissertation.

My postmortems might relay trouble areas that I found but I also interviewed

professionals to demonstrate that the postmortems and document samples supported what

I claimed. I had a theoretical framework but interviews would prove I was not simply

plugging aspects of the three research situations into Berkenkotter and Huckin’s five

categories. I used semi-structured interviews because, while I have a set of interview

	
	

94	

questions, I wanted to hear what the developers had to say about rhetorical forms, without

guiding them in that direction with a series of structured questions.	

Inquiring after pilot research. I have previously worked with professional

developers. I have done site visits, reviewed proprietary documentation, and interviewed

developers. However, where my extensive experience with professional developers

reveals weaknesses in their documentation practices, I quickly discovered my potential

participants were all constrained by standard industry disclosure contracts. Software

development companies make non-disclosure a condition of employment; consequently,

disclosure is grounds for disciplinary action. I have also signed non-disclosure statements

in order to do the site visits and interviews I have done for the past few years. In fact,

security would confiscate my electronic devices and some of those companies literally

own my observations. It would not be appropriate to expose my participants to such legal

and employment risk with their employers.

At the same time, those interactions served to help me feel out the extent of the

problem and get a sense of direction as I explored documentation practices. I was also

able to learn the parameters of a development project. Therefore, in an attempt to be

sensitive to industry professionals with whom I have had interaction, I developed

research situations that replicated industry practices and revealed similar weaknesses. I

also conducted offsite semi-structured interviews so that my interview subjects could

control the open-ended discussion.

	
	

95	

Experimental Design

My data comes from both documentation samples and participant interviews. I

have collected this data in three research situations—two postmortems and a set of

interviews. Whereas, I gathered a healthy corpus of documentation samples for the two

postmortems, I used theoretically-based interview questions to prompt data collection in

the interviews with professional developers. In each of the three research situations, I

used my Model of Expectations to assess the situation’s match with genre theory and

industry standards.

The following are the specific research situations I used in my research. I briefly

describe the situation; I identify my role in the situation; I articulate how I implemented

the situation in my methods.

Research situation one: american west heritage center (AWHC). Spring 2009.

Under the faculty supervision of Dr. Brett Shelton, I served on one of three Agile teams

developing a tour simulation of Logan Utah’s historic American West Heritage Center.

Development was done under the name of Dr. Shelton’s Interdisciplinary Media

Research Consortium (IMRC). The IMRC gathers funding to create student development

projects that serve community organizations. My team produced documentation much

like industry recommends.

I was one of four graduate students on one of three teams. Dr. Shelton closely

directed the aggressive, contemporary project. My team maintained all documents on

Google Docs. In this way, we could update the same document in real-time, even if we

were each working in remote locations. I have extensive documentation samples to

represent real-time development. I asked my three team members to share their

	
	

96	

perspectives with me. They each had very different previous experience with

documentation and I was interested in how they perceived the documentation we wrote.

This situation will be a chapter that illustrates what I thought qualified as

successful, contemporary documentation. However, the meta-language of genre theory

helps me articulate why this was not actually the case after all.

Research situation two: USU engineering department. Summer 2009. Under the

faculty supervision of Dr. David Hailey, I coordinated filming and development of an

online, modular interface for engineering students at remote Utah State University

campus locations. The team worked in such close proximity in a fast paced contemporary

development process so that the absence of documentation was insufficient to account for

the success of the project.

As the project coordinator, I was responsible for coordinating a film crew with

four engineering courses. I was not project manager and was not involved with

development. I coordinated the participation of six Engineering faculty, scheduling

recording sessions, and making sure the interns were where they needed to be for filming,

converting, and editing film footage to Flash learning modules.

Strictly speaking, the project did not generate sufficient internal software

documentation. However, the student developers were successfully producing Flash files

and coding the files into a website, despite the absence of traditional documentation. I

could use the meta-language of genre theory to articulate why there was another

rhetorical form involved and that the rhetorical form was oral communication.

Research situation three: software developer interviews. Spring 2012. I worked

for a local Sandy, Utah software company. My workstation was in close proximity to a

	
	

97	

team of experienced, senior developers. The project manager led a very contemporary

style of software development. The project manager often expressed to me his interest in

hiring a technical writer to manage the documentation his team could not complete. I was

able to secure permission to interview him and his team.

 I prompted open discussion with a set of semi-structured interview questions,

based on the Model of Expectations. I took each team member to lunch; we could discuss

documentation in general and offsite, rather than in the context of their employment. This

meant we did not discuss their specific employer’s development and I did not need to see

any of their work. Consequently, we did not need a non-disclosure statement to simply

discuss documentation at a restaurant. In addition, the time I required would not cost the

employer or impact project timelines because the interviews were during lunch break.

After the interviews, I reviewed the notes against my Model of Expectations. In

addition, I included Dr. David Hailey’s (2013) EUPRAS Model to assess the

appropriateness of oral communication as a rhetorical form, based on the semi-structured

interview results.

	
	

98	

METHODOLOGY AND PARTICIPANTS

There were 11 participants in total between all three research situations. The

participants play an important part in my methodology because the document samples all

come from my own research projects. Consequently, my interpretation is suspect because

my claim is that my documents meet my expectations. The inclusion of research

participants necessarily offers 11 different perspectives about rhetorical forms in

contemporary development. This balances the objectiveness of my analysis.

Participant Selection

There are two types of participants split between only two of my three research

situations. The first four participants were involved in the first research situation: the

American West Heritage Center simulation development. The remaining seven

participants are the professional developers in the third research situation: the lunch hour

developer interviews. The seven developers in the third research situation are meant to

verify conclusions made at the end of the second research situation.

While there were four student developers in the second research situation, they

did not engage them as participants. After all, they did not document anything and would

not have relevant perspective on both documentation and oral communication. There are

no participants in the second research situation because there was no documentation.

Participant assumptions. My interview questions initially posed a problem when

I sought to instruct my participants; I did not want to tell my participants to explain how

	
	

99	

they use oral communication as a rhetorical form. Rather, I wanted participants to discuss

their documentation practices, without knowing I expected to hear more about oral

communication as a rhetorical form.

Therefore, I instructed participants about my interest in software documentation

standards. This emphasized traditional, written communication and set expectations for

the topic of discussion. While the participants were experts on industry practices for

documentation, based on pilot research, I predicted the participants did not have

documentation practices that matched industry standards. In fact, the participants

discussed their documentation or their lack of it. When they had documentation they

accounted for how their documentation differed from the standard.

Participant briefing. I was not interested in data that only showed what

participants did not do so I guided the participants away from confessions about their

poor documentation practices. I briefed developers about my specialty and my project. I

did not want to be absolutely clear about oral communication in the beginning because I

expected that information to emerge from the interview. The central assumption of my

research was that developers with poor documentation do not work in a vacuum of

communication; rather, they do something else. My semi-structured questions elicited

open-ended discussions about either the role of traditional documentation or the role of

another rhetorical form.	

The briefing explained my interest in internal software documentation. I repeated

the following to give developers context for my research:

Software developers are frequently frustrated because traditional

documentation rules do not work well in contemporary development

	
	

100	

methodologies. I do not mean to imply that it cannot work or that many of

the values are not worth preserving. However, what exactly is “Agile

Documentation” and how exactly does it work?

Participant protection and IRB. The Utah State University Internal Review

Board (IRB) determined that this research is IRB Exempt. I only asked questions about

participants’ documentation and development practices. There were no personal

questions, no mention of real names, no disclosure of other participants, and no reference

to identifying information. The IRB approval letter is in appendix 1.

Participant Perspectives from American West Project

The participants in the American West Heritage Center simulation development

project were three graduate students from a class in which I was also a student. I selected

these three students because they were on my own development team and were the most

familiar with the documentation they wrote with me. The conversation I had with each of

them yielded a perspective about documentation that was meant to offer some credibility

to my own conclusions about the project documentation.

I have ascribed each of my graduate student peers a name to sustain their

anonymity.	 I	 used the first three letters of the NATO phonetic alphabet—Alpha, Bravo

and Charlie.

Alpha—mobile unit programmer. From the beginning of the project, Alpha had a

lot of energy and a lot to offer. Alpha actively contributed to the design documentation.

Alpha generated his own documents, rather than only using documents I generated.

Alpha was responsible for most of the game art for all three game modules on both

	
	

101	

platforms. In addition, Alpha was responsible for the GPS mobile unit coding. In fact,

Alpha was really motivated to shoulder the GPS mobile unit programming all alone

because of the speed with which Alpha could do it and because of the pride Alpha felt in

doing it well.

Bravo—PC software programmer. Bravo was quick to pick up on the design tool

we used to develop the tour game for the PC platform. Bravo completed a lot of work on

both the general inventory interface and the avatar navigation controls for all three

project teams. Consequently, Bravo became the PC programmer for our team. Bravo

tended to work in a hermit-like style so that there was no communication; then Bravo

would emerge from isolation with an enormous amount of work completed. Bravo

confided in me that he had been required to maintain documentation in the past and that it

was a frustrating chore. Bravo simply did not want to waste time documenting when

Bravo could be developing. Not surprisingly, Bravo asked for dialogs, object descriptions

and narrative scripts, without relying on the documentation. Bravo could have benefited a

great deal from reviewing the design documentation. However, despite Bravo’s key role

developing the PC platform of the game, Bravo apparently did not look at the design

documentation until I directed him to it in April 2009.

Charlie—PC software designer. Charlie recorded research and design work in

the documents. While Charlie expressed unfamiliarity with the development technology,

Charlie was very valuable with research, with supporting Bravo’s programming and a lot

of little careful things that made the documentation better and the development easier.

Charlie was the least familiar with documentation practices and goals.

	
	

102	

Utilizing three conversations. My peer students offered valuable perspectives in a

postmortem that would otherwise be introspective. However, I was not objective or

rigorous in the selection of my three participants; they were the only sample that could

answer for documentation on my team because they were the only other people on my

team. Fortunately, I only wanted perspectives that would counter my own interpretation

of my own documentation.

I recognize three limitations with the conversations: (1) these are more like brief

conversations than they are interviews, (2) my own presence on the project must have

necessarily made my peer-students sensitive to the importance of documentation and (3)

the articulation from each of my peer-students was not equal due to differences in both

experience and background.

After Bravo requested the design information that was already documented, I

became very interested in what my peers thought documentation was and whether they

thought differently after experiencing what I felt was a best practice situation. I prepared

three very general questions and arranged to meet with my peers; I wanted them to have

the chance to answer the questions without trapping them on the way out of class. My

objective was simply to discover if specialists unfamiliar with documentation would

define documentation the way I did—without the meta-language and imposing genre

theory everywhere I look.

I let them choose where they wanted to discuss documentation with me. I met

Bravo and Charlie each at the same university lab. Alpha was busy and asked to discuss

documentation at Alpha’s home. I limited each conversation to approximately 20

	
	

103	

minutes. The small timeframe was sufficient to elicit clear definitions during a formal

conversation. The following are the three conversation points I planned.

1. What did you think what a General Design Document was before we started the

semester?

2. Can you describe for me the role of a General Design Document in a development

process?

3. Now that we are 9 weeks into development, what do you think it is now?

I was confident I would get very significant answers that would support my

impression that the American West tour game documentation was a best practice example

of how traditional documentation practices can be as dynamic as contemporary

workplaces.

Participant Interviews with Lunch Time Software Developers

I interviewed seven professional, contemporary software developers. They are

senior developers, knowledge experts, and very competent with their job responsibilities.

The seven developers are all on the same team and consist of software engineers,

database developers, and web developers. Their specializations are the strength of their

comprehensive project strategy.

Interview participant inclusion criteria. I wanted a developer that was a small

team with very contemporary methods. In addition, the team must be too small to afford a

professional writer so that the developers needed to manage the documentation

themselves. Teams that have a professional writer do not experience the documentation

	
	

104	

problems I have identified in my research. After all, a documentation expert does really

well at generating documentation, no matter what the standards are.

I tapped into my network of developers to find the right subjects. I had a pool of

four teams: two did not qualify, one did not cooperate, and the last is the group I chose. I

included the following inclusion criteria when I recruited developers:

• I need a flexible, contemporary team of software developers. There is some latitude

with the amount of methods by which I label “contemporary”; however, developers

who use more traditional methodologies will not meet my requirements. I need

contemporary developers with very quick, flexible methods.

• I need 5-10 developers; that number can include the project manager. I do require

the project manager. It would be best if the subjects engage each other during the

course of the workweek. This would be the best way to learn about the

communication they employ.

• I need a contemporary team that does not employ a technical writer. A writer would

do the documentation and probably does the documentation very well. Rather, I

need a team that is responsible for writing the documentation. My expectations are

that such developers have resolved their documentation methods, even if they do

not match traditional documentation standards.

• I need local developers who work together in the same office. The alternative is

remote developers and based on experience with the American West Heritage

Center simulation project, I believe that a remote developer confounds my results;

remote developers must write documentation in order to develop together—

otherwise they would have to stay on the phone all day with each other.

	
	

105	

These requirements set clear expectations so I could rely on using the information once I

acquired information.

Participant payment. Developers track their time to specific revenue-driven

projects and they capitalize time spent on operations that do not generate product.

Consequently, their willingness to cooperate with me costs them money. I did not have

grant funding so I was limited in how much I could compensate developers for their

interviews. Consequently, the solution must not cost the developer time and money.

I scheduled time with the developers during their respective lunch breaks. In

addition, I paid for their meal at a quiet, local restaurant. We talked offsite, without

costing the company any money or costing the team project time.

 Participants and recording. I used a Livescribe Pen to record my interview notes.

The Livescribe pen technology uses a special notebook to capture, use, and share audio

lectures and interviews. The Livescribe pen captured an audio recording of the

interviews.

 After the interview, I used the pen to cue the audio of each session by tapping the

respective notes with the digital pen. Therefore, I could search the audio recording by

simply reviewing my notes.

 I transferred the audio notes to a Livescribe software program. I deleted the notes

from the pen. My computer is a password protected Macintosh that uses an encrypted

backup system. The notes would be securely stored on my computer. Finally, I could use

the Livescribe software program to annotate my notes.

 I could make the interview notes available to interviewees on a secure Livescribe

community website, if the participants requested a copy. They received official consent

	
	

106	

paperwork (see Appendix 2) that indicated the availability of the recording. The

community website is the property of Livescribe and the security is managed by

Livescribe. The default setting for any recordings I upload to the website is "private."

Consequently, I have no plans to mark the recordings as public. I can set independent

passwords to each recording so I can restrict access to only the interviewee.

Procedures: Semi-Structured Interview Questions. I matched an interview

question to each of the 11 value statements in the Model of Expectations. The questions

assume that I will have access to documentation during the interview, even if we did not

actually use specific documentation during the interviews. We wanted to decrease the

proprietary disclosure required by the interviews and documentation would have

necessarily increased risk of proprietary disclosure.

Each of the 11 questions was a starting point for an open-ended discussion. I

wanted participants to answer questions about documentation and to elaborate as

necessary. There were four additional icebreaker questions to get some general

information and to set the participant at ease. Table 5 showcases my interview questions,

organized according to the five principles of genre theory.

	
	

107	

Table 5

The Interview Questions Organized According to Genre Principles

Interview Questions	
Ice Breakers

1. How long have you been operating? Can you explain how you are agile and why you choose agile
methods?

2. What is your development philosophy? What development standards do you value most?
3. What does a typical day look like for your own role and responsibilities?
4. If it is not documented it didn’t happen. The absence of documentation is a failure to

communicate. What kind of response do you have for these two statements?
Dynamism

1. I’m looking at these two documents. Describe how they fit into your workflow--both writing and
using them.

2. Describe a situation in which you needed the documentation to resolve the team’s confusion about
the design.

3. Some professionals refer to live documents or organic documents. Describe a situation in which
an organic document a) evolved with the development cycle and b) informed the development
cycle?

Situatedness

1. What changes when design concepts are written down, rather than merely “known” by the team.
2. Industry writers suggest documentation is a bible or blueprint or governing document. Vision

documents. Guiding documents. What kind of governance does documentation have in your shop?
3. Aggregation. Compounding. Synthesis. These are all words that suggest a whole is formed by the

sum of its parts. Can you explain how a document is the sum of development activities?

Form and Content

1. Books have recommended outlines and there are templates available online. What kind of
adaptations do you make when you measure your work against industry samples? Describe an
experience when the recommendations didn’t fit right.

2. In addition to standards, there are other things that don’t fit right. You make decisions about
direction, design, procedure, and operational details that don’t always fit right. I’m looking at this
document sample; can you tell me some tough decisions that involved this document?

Duality of Structure

1. I've observed that your workplace is organized to meet specific needs. In what way did you use
documentation to identify those needs and record your business solutions? Can you tell me how
well the documented business solution works for everyone else in the company?

2. How much do you draw on documented business solutions when you have a meeting? Can you
describe what that would/should look like in a perfect world?

Community Ownership

1. You told me about your development philosophy. Now that we have discussed documentation so
much I wonder how you connect your documentation to your philosophy.

	
	

108	

METHODOLOGY AND ANALYSIS

 I used a theoretical framework for analysis, as well as some advanced technology

for my interview notes/recording. I used two models formed from genre theory.

Central to their framework of genre are Berkenkotter and Huckin’s five key

principles: Dynamism, Situatedness, Form and Content, Duality of Structure, and

Community Ownership. I broke down the five principles into 11 value statements. These

value statements constitute a Model of Expectations with which I described each of the

three research situations.

I also used a second model to assess how well the documentation I found in the

interviews actually worked. In his forthcoming book, David E. Hailey (2013) uses genre

theory to identify the Exigencies, Urgency, Purpose, Audience, Rhetorical stance, and

Structure of online genres. His EUPARS Model assesses how appropriate a particular

document is for the particular situation. The EUPARS model was useful in the final

research situation to highlight how appropriate oral communication was as a rhetorical

form in the contemporary development workplace.

Data Analysis and Interpretation

 While my research methods are not ethnographic, my analysis and interpretation

borrow a great deal from ethnographic research. Specifically, I use the methodology

detailed by Emerson, Fretz, and Shaw (1995) to not only systematically turn my notes

into conclusions but also guard against my conclusions speaking for the participants.

	
	

109	

 Method that identifies participant voice. Emerson et al. (1995) outline three

steps in their methodology. Their objective goes beyond a system that organizes

ethnographic data but is a procedure for making objective conclusions that originate in

the voice of the participants. They encourage researchers to write jottings on the spot,

detail the jottings immediately after and code the field notes later.

• Jottings: jottings translate to-be-remembered observations into writing on paper as

quickly rendered scribbles about actions and dialogue…will jog the memory later

in the day and enable the field worker to catch significant actions and to construct

evocative descriptions of the scene. (p. 20)

• Field notes: write up their observations into full field notes…turning recollections

and jottings into detailed written accounts that will preserve as much as possible.

(p. 39)

• Coding Field Notes: sift systematically through the many pages of field note

accounts…the ultimate goal is to produce a coherent, focused analysis of some

aspect of the social life that has been observed and recorded. (p. 142)

An important feature of this methodology is delaying the insertion of personal

interpretation for as long as possible. So while the goal of field notes is “looking to

identify threads that can be woven together to tell a story about the observed social

world” (p. 142), the authors discourage anything other than privileging the voice of the

participants. The authors write: “even seemingly straightforward descriptive writing, is a

construction. Through his choice of words and method of organization, a writer presents

a version of the world” (p. 66). There is always a lens in ethnographic research. The

	
	

110	

researcher’s interpretation is always in the way. Consequently, the authors divide up the

formation of conclusions into the three steps to reserve analysis for as long as possible.

 Even when the researcher finally begins to code, the authors still encourage a

coding practice that highlights the participants’ meanings. In other words, Emerson et al.

(1995) believe that any code words are derived from the words of the participants.

Consequently, the field notes are a “data set” (p. 144) that presents the key words the

researcher must identify before tracing any patterns in what the participants say

themselves.

 Using ethnographic values with interviews and developers. Jottings and field

notes are how I managed my own data. I used my Livescribe pen and notepaper during

my interviews. Consequently, my notes are the jottings to which Emerson, Fretz, and

Shaw refer. The audio recording captured by the pen is directly synced to the jottings but

I still took the time to write field notes after each of the interviews. I wanted to be sure

that I preserved any thoughts or insights I had during the interviews, rather than project

back or forget what could turn into useful findings. The pen made it very easy to write

useful field notes that were closely synced to what participants actually said in the

interviews.

 Where Emerson et al. (1995) suggest I identify threads and tell the participants’

stories, I was looking to see what threads I could find about documentation specifically. I

expected to find other rhetorical forms and coded those as well. The end result was a

picture that included oral communication in contemporary development workplaces but

involved a lot of other little rhetorical forms.

	
	

111	

American West Postmortem Document Sampling

While we developed the American West Heritage Center tour game, Alpha,

Bravo, Charlie, and I wrote all our documentation in a browser-based software called

Google Docs. Google is an online corporation that released a revolutionary web search

engine in 1998. The Google web search engine uses a proprietary algorithm to return

search results for nearly any information a person might seek. Since 1998, Google has

extended its mission of open access and free information to communication tools, media

portals, storage space, and business solutions. The Google Doc is a free word processor

document to which the owner can invite several contributors. The shared document is a

site of co-authorship where every contributor has equal editorial powers.

Rather than email a single document and wait to see changes until the document

circulates through the team, a Google Doc is not circulated and all changes are visible in

real-time. Consequently, four graduate students can write the same document together, at

the same time, no matter how remote they are when they do it. In fact, the absence of a

common workspace necessitated a documentation solution like Google Docs.

The bi-product of real-time co-authorship is a comprehensive awareness of

project progress. Consequently, the Google Docs we all shared are a body of evidence

that demonstrates how we worked so closely together, even though our development

activities took place remotely.

Example of remote collaboration. The “Tasks for our Story” document was

written at the end of January and represents some original design work. We each

researched 1917 farm chores we could incorporate into our module of the tour game. We

	
	

112	

recorded our findings in the same document. We updated the farm chores with not only

greater detail but also broke the chores down into programmable steps.

Image 7 showcases the 171 revisions made to the document. We did not take turns

editing the document. Rather, we simply turned it on and wrote. The Google doc

identifies which contributor is editing the document at the same time and it tracks all

changes in a revision history.

Image 7.

A Record of 171 Revisions.

	
	

113	

The revision history shows that Alpha, Bravo, and “Me” each contributed 1917

farm chores. In addition, the revision history shows the numerous revisions Charlie made

to Alpha’s contribution. Charlie deleted text, even while Alpha was editing; they worked

in tandem as if they were co-authors in the same office.

Gathering american west documentation samples. I chose my documentation

samples from my Google Doc collection. Every Google Doc is stored in the Documents

tab of an individual’s Google user account. From that account, a person can check email,

manage a calendar, and share documents. The list of Documents includes both documents

I own and documents I share with others.

I wanted to select three kinds of document to showcase the dynamism,

situatedness, form and content, duality of structure, and community ownership of the

game tour documentation. In addition, I wanted the samples to link to what Alpha,

Bravo, and Charlie told me about the project documentation.

1. I wanted a document that met industry standards and simply transmitted

knowledge. The document should have changed the least over the course of the

project. This would be the document that fails to meet my expectations.

2. I wanted a document that organized our remote team and provided clarity. The

document would showcase real-time changes by a remote team.

3. I wanted a document that would capsulate the success of the entire project. The

document should have a strong edit history to show the level of collaboration.

I want to show that the American West Heritage Center documentation met my

expectations for how the genre of traditional software documentation should work in

	
	

114	

contemporary workplaces. I wanted to demonstrate that with the right community

ownership, the traditional documents can perform as recommended by industry guides. I

wanted documents that showcased this success; however, my student peers articulated the

success I sought to demonstrate with the selected samples.

Online Engineering Modules Projects Document Sampling

The Engineering Modules project followed the American West project by mere

days. I needed to see if I could repeat the documentation success of the American West

project. My team of graduate student tour game developers had documented so much and

if I could do it again then the interns of the online module team could write a similarly

rich quantity of documentation.

To my surprise, after three months of online module development, the interns had

not produced any documentation. As in the case of my pilot research, they were too busy

keeping pace with their development cycles to spend time documenting. Consequently, I

thought I was left without any documentation but I discovered that I was wrong. The

interns did documentation activities with different rhetorical forms. None of the rhetorical

forms they used matched any industry standards; sticky notes, emails, schedules, scraps

of paper, and little memo files on the computer are definitely insufficient forms of

traditional documentation. In fact, they constitute a documentation failure, according to

industry standards.

If the success of the project was an indicator of efficient communication then

there was a rhetorical form that I clearly missed when I gathered the samples.

Communication was so simultaneous with development that the only missing rhetorical

	
	

115	

form was the oral communication that bound the participants, the little samples of

documentation, and the recursive situation.

Example of diverse rhetorical forms. As the interns walked from the Department

of Engineering building back to the Department of English building, they would discuss

what went wrong or they would identify a good practice that made a great deal of

difference. They would make decisions about the editing and identified software features

that would speed up the editing.

Unfortunately, I did not plan on capturing oral communication samples; I was

looking for written documentation. Therefore, the only samples I have from the project

are the sticky notes, emails, schedules, scraps of paper, and little memo files. However,

these minor rhetorical forms are still artifacts of the oral communication between the

interns. A sticky note affixed to a cassette tape would indicate the editorial status of that

tape. And a memo file in the same folder with a video file would be the meta data that

described why the video was stored but not implemented.

The following is a procedural checklist the interns used to make sure they had all

the necessary equipment with them before they went to film the live courses. This

inventory was on a sheet of paper the interns left in the camera bag.

	
	

116	

Table 6

The Film Equipment Inventory Used for Engineering Courses

Film Equipment Transport Inventory
□ Camera Bag
• Camera
• Battery
• Power cord
• Tapes
□ Microphone Case
• Receiver
• Transmitter
• Microphone
• Power cord
• Feed Cable
• Extra Battery
□ Laptop Bag
• Laptop
• Power cable
• Mouse
□ Tri-pod
□ Extension Cord
□ Power Strip
□ Headphones
□ External Hard drive and cable

An inventory list is an artifact of lengthy conversations about what was needed

for each recording session. The list is an artifact of debates about whether the interns had

all the right equipment before they left for each recording session. Consequently, even

while rhetorical forms like the inventory list are not samples of the actual oral

communication, the sticky notes, emails, schedules, scraps of paper, and little memo files

were all simultaneous rhetorical forms, along with the oral communication.

Gathering online engineering modules documentation samples. I retained all the

rhetorical forms I could find. When the interns were done for the day, I would go into the

	
	

117	

development room and grab any written document I could find. I scanned documents and

returned the documents to their appropriate location in the room.

Image 8

Visual Portrayal of the Complex Recursive Situation

The documents I selected were meant to showcase the simultaneousness of

communication in that project. There were so many moving pieces and the little pieces of

documentation were far too insufficient to keep things from falling apart. Image 8

portrays the complexity of the recursive situation I coordinated. There were too many

important intersections for a sticky note to stabilize the experience. A little text file

hidden the file architecture of the computer was too obscure to foster any kind of

coherence or meaning. The samples I choose are meant to highlight the rhetorical form

that actually turned potential chaos into a fabulous success.

	
	

118	

CHAPTER IV

POSTMORTEM: AMERICAN WEST HERITAGE CENTER

	

CONTEXT FOR AMERICAN WEST GAME POSTMORTEM

The American West Heritage Center is a historic farm in Logan, Utah. In spring

2009, graduate students from both Dr. Brett Shelton’s IMRC initiative and Instructional

Technology course worked in teams to develop educational tour games for the farm. The

students were not experienced developers; with the exception of myself, the students

were not experienced with software documentation either. The three other graduate

students on my team—I call them Alpha, Bravo, and Charlie—worked with me to both

develop and generate documentation. The documentation of that project is perhaps a best

practice example of documentation for contemporary development methods. In fact, I

was thrilled to mentor my three graduate student peers in the dynamic documentation

practice that facilitated our project’s success. We created a small community that was

literally situated in the documentation. At the time, I was extremely committed to the

traditional documentation rules and quite earnest to implement them for the American

West Heritage Center project. I was confident that with the right community ownership I

could generate documentation predicted by genre theory.

I did not disappoint myself. We generated extensive documentation. More to the

point, we wrote documentation that was not merely an archive of design elements or

documents irrelevant to design decisions.

	
	

119	

This is a Postmortem

This chapter is a postmortem of the American West Heritage Center development

project. During the student project, I was still looking for written communication that met

traditional rules, yet worked in contemporary practice. I was particularly interested in

identifying what the “duality of structure” looked like in documentation practice. In

theory, each time an agent rewrites a document, there is an exchange between genre and

writer that both sustains and reproduces the written communication. However, based on

my experience and the developer with whom I had spoken, I did not know what duality

of structure was supposed to look like—if it was at all possible in the first place.

This postmortem seeks to demonstrate what dynamism, situatedness, form and

content, duality of structure, and community ownership all looked like in practice. While

we were students, rather than professionals, we created a series of documents that met

industry standards and adapted to our needs at the same time. Most importantly, while

Alpha, Bravo, and Charlie understood design documentation as merely a method to

communicate and archive design concepts, they came to see documentation as a dynamic

hub of communication that plays an active role on the team.

Postmortem as a snapshot in time. In an attempt to preserve the expectations I

had and the conclusions I made, much of the text for this postmortem was taken from a

report I wrote at the end of Spring 2009. I have since learned the project is not a best

practice of documentation and subsequent chapters will explain why. The purpose of this

chapter is to accurately capture documentation from Spring 2009 and present samples

that showcase how I met my expectations. I include remarks from my student peers to

support the objectivity of the conclusions I made at the time.

	
	

120	

CONTEXT OF THE AMERICAN WEST GAME

While Alpha, Bravo, Charlie, and I worked on the tour game, Bravo made a

request that prompted me to think about the project documentation and what my peers

thought of the documentation. While the game was fully elaborated in the design

document, Bravo asked for verbal explanations of elements already detailed in the

general design document. In the first week of April, Bravo asked for item descriptions

that he could input into the PC version of the game. He wanted narrative dialogs and

descriptions for the characters. He wanted to know about recent modifications to the plot,

dialog, and code I had recently made; I had added a plot element, including garden seeds.

Finally, Bravo wanted an account of how the conclusion had been resolved in the mobile

unit. Of course, all these things were already detailed in the design documentation.

A Context of Documents

The purpose of documentation is so that developers do not use their time

answering the long string of questions Bravo asked. Rather, Bravo should review the

documentation. It is worth noting that I could have answered his questions without

deferring to the documentation like I did; however, that would have consumed much

more time than was necessary. There was enough documentation for enough work that a

quick conversation was not possible. In fact, best practice suggests that rather than use

precious development time verifying, confirming, and repeating elaborations at every

inquiry throughout a week, teams should be able to access any of several central

	
	

121	

documents, without necessitating the verbal repeat of elaborations, reflections, and

solutions.

Our team documentation was not nearly as elaborate as many professional

development companies but it was still sufficient for Bravo’s needs. Specifically, a Salt

Lake City developer I once interviewed boasted over 500 pages of documentation for

each development project. They had multiple teams, over 200 employees and

simultaneously produced two or three development projects every year. On the other

hand, we created approximately 18 documents in total; many of the documents were

collaborative workspaces for the team to hammer out game problems or fill out narrative

details. All told, the documents totaled a little over 100 pages. There was all the

information Bravo needed to complete the game for the PC platform.

The Context of the Actual Game

The development for the American West Heritage Center tour game began in

early February 2009. The American West Heritage Center is a historic farm located in

Logan, Utah; the farm provides local elementary schools the opportunity for field trips

and a seasonally open farm for people who seek to explore the historical interpretations

represented on the farm. The game permits children to take GPS-guided tours of the farm

while playing three different farm adventures.

The farm site is the target of the four historical interpretations: 1917 farmstead,

Pioneer settlement, Cache Valley Trappers, and Shoshone Native Americans. Different

parts of the American West Heritage Center showcase different features of these four

interpretations. The 1917 farmstead is by far the strongest interpretation; the farmstead

	
	

122	

features a farmhouse, blacksmith, chicken coop, etc. The student team to which I was

assigned was also responsible for the 1917 farmstead interpretation.

There were several communication activities used to develop the game. As

graduate students in a classroom, there was no common office space in which we

collaborated every day. We worked remotely at asynchronous times of the day (and

night)—from home or from computers in Dr. Brett Shelton’s IMRC research lab. The

only time many of us engaged face-to-face was in the classroom once a week.

Consequently, communication was oral, email, phone, web chat, and shared online

documents. Bravo kept up with much of the communication activities; however, Bravo

neglected the shared online documents. Therefore, Bravo neglected the remotely situated

team’s key communication activities.

Team organization. The team divided up into discrete roles as we made progress

towards development. Insofar as Alpha and Bravo were so comfortable and confident

with programming, they naturally took on programming responsibilities. Of course, the

majority of my time was spent documenting, even if I worked closely with Alpha on

coding and bugtesting. However, there are advantages and disadvantages to the discreet

roles the team used. On one hand, the team members were very efficient as everyone

focused on their own skill sets. In addition, the team was able to trust each other as the

team met deadlines in the contemporary development cycle.

At the same time, there were disadvantages too. Chiefly, the team was not able to

adapt to the absence of one member; in fact, I was out of contact with the team for a week

and they had to scramble to complete tasks they were not prepared to complete without

me. However, the team came to an agreement that the disadvantages were worth the high

	
	

123	

level of efficiency afforded by discrete roles. In other words, dividing up coding

responsibilities quickly became difficult; as inexperienced developers, we were not able

to find a natural way to distribute programming tasks with the same efficiency as we

found with specialization.

The Context in Three Phases

There were three phases on two different platforms—PC computers and mobile

handheld units—in the space of four weeks.

• Design and Development

• Quality Assurance Testing

• Refinement and Unification

In an attempt to demonstrate the scale of the project and the difficulty of meeting Bravo’s

requests, I will describe more about the project’s scale.

Design and development. The three teams were assigned to three of the four

historic interpretations. Each team had four or five graduate students. On February 10, the

teams were all instructed to have a design document from which teams could manage

their ongoing development. Every class—once a week—after February 10 required a

prototype that could showcase weekly progress. The weekly prototyping did not mean

that the design work was complete and that there was nothing to document; rather,

weekly prototyping happened in tandem with new implementations and revised designs.

The documentation was constantly changing and we were constantly challenged to stay in

sync. We relied on the documentation as a hub of communication. Throughout that time

	
	

124	

period, my team met once a week to get our bearings and set goals but the work we did

was always remote and always communicated through the documentation.

Quality assurance testing. By mid-March, the teams started their own quality

testing. Teams went to the historic farm with their GPS units and tried to break their

game. I started a bug tracking spreadsheet online. We filled that document with bugs and

logged the solutions, as well as dates when we implemented the solutions. After the third

week of beta testing, the teams all exchanged games so that a second team conducted

third party quality assurance tests. The fourth week involved a second round of third

party testing so that all three groups had tested all three modules of the game. Not only

did this fill up the bug tracking document but the activity in the design document

increased as changes were made to implement the feedback.

Refinement and unification. At the beginning of April, all three teams were

making final changes. In addition, the three teams began the awkward process of merging

the different modules together for a unified game experience. This required interface

standards, art standards, and compression standards. Any independent work was

subsumed by group collaboration; the importance of documentation increased in value as

the teams adapted their design to the standards set by large-scale consensus.

	
	

125	

PARTICIPATION IN THE AMERICAN WEST GAME

The American West Heritage Center tour game was not a research study. Rather,

it was a student development project. Through the course of that project, the primary goal

was a tour game on two platforms. Towards the end of the project, Bravo had a series of

questions about the game, specific narrative, and character details; he did not know that

everything was documented. At that point, we suggested he look at the documentation

and then ask questions. He had no further questions but only registered his amazement at

the work we had done. Only then did I begin to think about the documentation we had

produced. I was confident I could describe our documentation practices with genre

theory; however, I wondered whether my peers noticed anything different about the

documentation they had written with me.

I kept every version of every document. I kept all project assets. I preserved our

email record. I saved online chats. Finally, I asked each of my three peers about our

documentation practices and noted their responses. Consequently, not only was the

project’s documentation both successful and thoroughly preserved but my three student

peers confirmed our practice was as unique as I thought.

My Role in Both the Development Project and the Methods

Three teams, with four or five graduate students, developed the tour game. I was

on a team of four. At the beginning of the semester, my own team revised the narrative of

the game multiple times. In each case, the narrative became simpler. The team left me

	
	

126	

with the responsibility of writing the narratives, as well as the revisions. On February 3rd

the class was given the task of presenting a design document to capsulate the three weeks

of rapid planning. I produced 20-single spaced pages of design documentation before

February 10th. By the end of the semester, Alpha, Bravo, Charlie, and myself increased

the design document to 47-single spaced pages.

Other communication responsibilities. In addition to the documentation, I

managed the communication of the team. At the very beginning of the project I set up an

online project site to share documents. At the beginning of March, we discovered that our

Photoshop and Illustrator files exceeded file transfer size limits for the project site.

Consequently, I quickly generated an FTP alternative through my own Internet provider.

Our team had our own FTP server, with our own password; in addition, the team had one

gigabyte to fill, without file size limits.

I played a larger role than simply the documentation specialist. For instance, I

spent time in the Utah State University Library’s special collections researching the

Wyatt family from Jeannie Thomas’s folklore thesis (1987). The American West

Heritage Center actually relied on an interview in that thesis paper for their historical

interpretations of the Wyatt family’s 1917 farm life. There were many details about the

family—names, dates, and history—as well as interesting vignettes that we used to enrich

the game.

Coding responsibilities. I have limited programming experience that was

adequate for the development of the American West Heritage Center’s tour game.

However, I did feel I could serve my team better by focusing on the generation of

documentation, as opposed to slowing down my team with my amateur scripting and

	
	

127	

coding. I generated a bugtracking document as I started conducting tests and recording

the results of tests conducted by other teams. I managed the bugtracking and completed

54 out of the 76 bugs on my own. Admittedly, the 54 bugs were not code intensive—

Alpha was so familiar with his own coding methodology that he took hard coding;

however, I still had to learn to find my way around Alpha’s coding methodology and

learn the coding logic he had implemented.

I was solely responsible for coding GPS zones for the tour game’s mobile

platform. Unlike the game’s modules built by the other teams, the 1917 farm featured

replica structures that were clustered close together. Consequently, I had to code very

specific GPS zones that matched physical structures on the planet’s surface. I returned to

the farm several times to test my latitude and longitude coordinates with the farm

structures.

	
	

128	

THREE SAMPLES FROM AMERICAN WEST GAME

Each of the following three samples showcase the documentation I expected to

create during the tour game project. In addition, I transcribed the documentation

definitions my student peers gave me during our formal conversations. While I chose the

first sample to represent standard industry documentation, I chose the remaining two

samples to illustrate the documentation I expected.

A Standard Sample of Traditional Documentation

Dr. Shelton started the student project with the task of finding activities for the

game tour. My group of four graduate students researched activities relevant to 1917 farm

life in Logan, Utah. Research materials were in the Utah State University Merrill library

special collections and in Dr. Shelton’s IMRC research lab. We identified the precise

steps to churn butter, wash the laundry, shop at the general store, and make soap.

Precision was key because each step would become a coded, executable action in the

game tour. The next assignment was to think of the objects necessary to perform these

activities and the locations in which the activities would be performed. Our deliverable

for our Monday morning class was a document identifying all the objects and locations.

The document for our objects and locations was a very traditional document,

insofar as we designed and documented before we did any coding. Not only did we

identify the objects and locations for respective activities, but we also (1) identified the

learning objectives for game tour activities (2) wrote the narrative descriptions for each

	
	

129	

object and location and (3) identified the ways we wanted users to interface with objects

and locations. I use this particular predevelopment document to demonstrate not all

traditional documentation is out of place, unusable or broken in contemporary

development practices. This particular document served the team very well and is a great

way to showcase the traditional documentation my peers and I expected.

Table 7

The Original Horse Barn Documentation Version

Scene Name: Horse Barn

Description: The Horse barn was meant to house the horses, as well as cows and
pigs. There is hay in there. There are partitioned spaces for the
different animals.

Scene Links to: Aerial Access

Characters Interactive Items/Objects

Father (moving hay around for
the animals)

Water Bucket

Learning Objective: Care of animals.

Activity: The father is moving hay around so that the animals have fresh hay
to eat. After a long night, the hay bales are a mess and need to be
cleaned up.

Learning Objective: Cows and Horses eat all the time. Horses need to drink after pulling
a wagon.

Activity: When a horse pulls a wagon between farms, it needs time to recover
energy after exercise just like everybody else.

A sample of traditional documentation. The original document detailed twelve

farm locations and nine farm objects. As four remote graduate students worked with the

code and developed the tour game, the thoroughly documented assets were easy to

	
	

130	

manage. Rather than showcase all locations and objects, I have selected the Horse Barn

location and Water Bucket object. The Water Bucket is the only object associated with

the Horse Barn in the original document. Table 7 is the exact template used in the

original document.

 Even while the original document was completed so close to the beginning of the

semester on February 10, 2009, the location entries were still ready to support

development. The location entries detail the description used in the game, as well as the

characters and objects associated with the scene. The learning objectives are clearly

articulated; insofar, as the tour game is a learning experience on a historic farm, we

decided to clearly identify what players should learn with each activity.

 In addition to locations, the original document detailed usable objects in the game.

The Water Bucket is the only object identified in the Horse Barn documentation and is

therefore a natural object to showcase the traditional strengths of the document.

Water Bucket for Horse

Description – (Phase 1) There isn’t much to say about a bucket of water.
In phase 1, the bucket of water must be taken from the barn to outside of
the farmhouse. The neighbor’s horse will drink without any prompting.

Examine – The water looks cool and refreshing.

Take/Use – The player can take the bucket and use it on a horse. The
bucket will disappear from inventory and reappear at the pick-up location.
The player can use the bucket to give the daughter a drink.

Other Wherigo Functions – Water the horse

Reusable – The player can return to water horses as much as the player
wants.

Unlike the location entry, the object description is more oriented towards development

and implementation. The object entry for the Water Bucket identifies the interface

	
	

131	

options and the instructions for implementation. The water bucket description is flippant

but the description is still a reflection about the purpose of the Water Bucket.

The original document was a great place to start on February 10, 2009. However,

an engaging development process necessitates change and the document was a site of

remarkable changes before the end of the semester.

Three months later and the same traditional documentation. Later in the

semester, on April 29, 2009, our team completed the final version of the documentation.

The document went from 21 pages to 47 pages in length. The finalized version of the

document still included locations and objects; however, there were three more locations

and thirteen more objects added between February and April. Table 8 showcases those

changes to the horse barn location.

	
	

132	

Table 8

The Final Horse Barn Documentation Version

Scene Name: Horse Barn

Description: The Horse barn was meant to house the horses, as well as cows and
pigs. There is hay in there. There are partitioned spaces for the
different animals.
41.659673, -111.900651
41.659794, -111.900622
41.659771, -111.900457
41.659653, -111.900434

Scene Links to: Aerial Access

Characters Interactive Items/Objects

Father (moving hay around
for the animals)

Water Bucket
non-takeable items/objects:
Horses: they were used to pull the wagons for people transportation
hay: it is used to feed the horses and cows in the barn.

Learning Objective: Care of animals.

Activity: The father is moving hay around so that the animals have fresh hay to
eat. After a long night, the hay bales are a mess and need to be
cleaned up.

Learning Objective: Cows and Horses eat all the time. Horses need to drink after pulling a
wagon.

Activity: When a horse pulls a wagon between farms, it needs time to recover
energy after exercise just like everybody else.

 There are several changes to the Horse Barn location entry. There was a subtle

change to the formatting; Google docs enable co-authorship but three months revision by

four editors left a toll. Second, we added GPS coordinates to the descriptions because the

coordinates were hardcoded into the mobile unit tour game. The document identifies a

	
	

133	

new “Non-takable Items/Objects” class and identifies two additional Horse Barn objects

in the new class: Horses and Hay.

We altered the water bucket entry between February and April. The flippant

reflection was not changed but the Examine text used in the game was changed

significantly.

Water Bucket for Horse
Description – (Phase 1) There isn’t much to say about a bucket of water.
In phase 1, the bucket of water must be taken from the barn to outside of
the farmhouse. The neighbor’s horse will drink without any prompting.

Examine – This bucket holds about THREE gallons of water. Usually the
horses will drink about FOUR buckets worth of water in a single day.

Take/Use – The player can take the bucket and use it on a horse. The
bucket will disappear from inventory and reappear at the pick-up location.
The player can use the bucket to give the daughter a drink.
Other Wherigo Functions – Water the horse

Reusable – The player can return to water horses as much as the player
wants.

The radical transformation of the Examine text is evidence that the tour game evolved a

great deal between February and April. The Examine text became key to a mathematical

puzzle added to the Horse Barn scene; this puzzle did not exist at the time of the original

document.

Peer expectations and traditional documentation I asked each of my three peers:

“What did you think design documentation was, before you took this class?” At the time,

I was still seeking a contemporary development practice in which traditional

documentation standards would work. Insofar as I thought the tour game was that

practice, I thought my peers could confirm my belief that we did not write standard

documentation. I intended the question to highlight my peers’ expectations. On one hand,

	
	

134	

the question highlighted the disparate experience levels of the team. On the other hand,

the question demonstrated that students with enormous variance in documentation

experience still fixated on a document’s purpose and organization.

• Alpha: It is a document that shows the design of the product.

• Bravo: A layout of our learning objectives, our story I guess, an outline of the

story…there is the predevelopment design document and the post-development

but the final I guess would have the story in detail and every scene in the game

and every object just broken down with enough detail for someone else to recreate

virtually the same thing without having to fabricate responses, interactions,

objects, things like that…with notes about what we changed and why we changed

it. Also, probably a break down of hours that were spent…the purpose of the

design document is two things is one is to understand the existing project so that

if there is things you want to change or debug or workout you easily how

everything works when you go in to fix it and the other is someone I think it

should be good enough to recreate…as well as a list of all the resources we used

to create everything for instance our graphics the Wherigo program, Visionaire,

Photoshop, Illustrator, those kinds of things.

• Charlie: A general design document is a document with general design…I would

choose to give the answer out of the name.

Bravo was the team member who asked for dialogues and object descriptions; he

was the team member I directed to the documentation. Even though Bravo was the team

member who used the documentation the least, he was apparently the team member who

	
	

135	

knew the most about documentation. Whereas, both Alpha and Charlie knew very little

but still quickly caught on to the purpose of the documentation.

The locations and objects document showcases the rudimentary concept of

documentation. Consequently, the traditional document seemed to work in the American

West Heritage Center project. My peers understood documentation at that traditional

level. The next sample showcases how documents should work in a contemporary

development project.

Sample Full of Collaboration and Meaning

The four teams of graduate students developed the tour game for two different

platforms. In order to train the class on the software design tool for each respective

platform, Dr. Shelton required a team assignment for each design tool. This involved

making a first prototype of the game—a crude, working version of the game. We had a

set of files necessary for the prototype to work. Insofar as we were students working

independently and asynchronously, we made plans to trade the game files between us as

we took turns developing. I suggested we track our time and document our work so that

we could control versioning, the trade-offs could be easier to manage, and the progress

could be more unified.

I chose the Source Control Log document for my sample because I wanted to

show how a document could organize a team and guide a team. The document would be a

living document and would be maintained by the team all throughout the course of

development. It was in fact that kind of document. We were updating it with our activity.

	
	

136	

Therefore, the document showcases how the document was a site of collaboration by

which the team stabilized the meaning of the project.

Project problems without collaboration and meaning. With four asynchronous,

remote developers sharing the same set of files, the potential for disaster was inevitable.

Invariably, someone would write over someone else’s work, move a file, misspell a word

in the code or spend a day developing something that was already completed by someone

else. In addition, there was nothing to prevent all four of us making changes to the files at

the same time so that there were four different versions of the same set of files.

To illustrate how easily four student developers could have broken the prototype,

I want to highlight that the errors do not even need to be big. As long as a file is not

where the code says it should be then the program is broken.

Image 9

The File Tree Used in the Code.

	
	

137	

Image 9 portrays the program’s file architecture as a file tree. Each file is nested

in a folder. That folder may or may not be nested in another folder. As soon as one file is

out of place then the code cannot find the file path. The same is true if the filename is

changed or misspelled.

The computer code looks for a specific asset along a specific file path. If the

specified file is not at the coded location then the program produces an error report. At

that point, the program would leave us scrambling to identify some obscure error when

we could be making progress.

Image 10

The KitcheBg.jpg had a Unique in the File Structure.

	
	

138	

Image 10 shows the KitchenBg.jpg image file. The interface in the background is

how we set the instructions for how the program utilized the KitchenBg.jpg image.

Fortunately, the design program did not completely necessitate comprehensive coding

skills; the design program did all the hard stuff. The interface directs the program where

to put the file, when to use the file, under what conditions it should not use the file, etc.

Of note, is the file path: Scenes\kitchen\kitchenBg.jp. The Kitchen is only one among

many scenes in the game and kitchenBg.jpg is one of many assets important to the

kitchen scene. Any code that depended on the image or even depended on a condition

that required the image, would break if kitchenBg.jpg was moved or misspelled.

If we planned to email a package of files back and forth to one another then we

were going to break our program. We stood to make all kinds of mistakes, to overlap our

work, to unnecessarily redo work, developing work that was already obsolete, saving

over each other’s work and losing track of the most current version. We needed a solution

to improve collaboration and stabilize the meaning of our efforts together.

The source control log and collaboration and meaning. I created a procedure by

which we would transfer the files (retaining a version history), track changes made to the

files, and signal that the files were “checked out” for the use of a team member. The

document outlined the standards, along with instructions.

	
	

139	

Image 11

The Documented Procedure for Versioning Control.

Image 11 presents the documented procedure. The actual document was four

pages in length. After that first assignment, we adopted pretty specific roles and

maintaining the log was no longer necessary. However, the first assignment necessitated

the procedure.

The document included a log in which the team would write progress notes. There

were four parts of the log: the name of one of the four teammates, the time started,

	
	

140	

articulation of changes made to the files and the time a person checked the files back in

for the next person.

We shared the document online via the Google Docs service. Any changes any

one of us made to the document were immediately available to any other member of the

team. In this way, we had real-time updates on the status of the file. I could literally log

in to Google, review the log, and know that the files were currently checked out or not.

I wrote the first entry in to the log at the time I presented it to my teammates. The

following is a subsequent log entry I made. The entry is a good example of the Source

Control Log’s utility. I was running into problems with my coding competence and

wanted to research “offline” so that I did not interfere with progress:

Name: Jason

Time you started: 10:57 am 02FEB

What you completed: I've run into 184.9 problems. So I'm going to log out

of the document and let someone else in while I problem solve. I'll just

update the document with my stuff later, once I've figured out what I'm

doing. So I'm done for now.

When you logged out: 1:29pm 02FEB

The log entry identifies that I had the document for only three hours in the

afternoon. Another team member, without the need for explanatory handoffs, checked out

the files merely 71 minutes later. In fact, the files were checked out twice before I

checked them out again at 11:43pm that night. I was able to read up on the changes that

had been made since I checked the files out earlier in the day; consequently, I knew my

revision work had not already been done and that the revisions were still necessary. This

	
	

141	

method of communication orchestrated three revisions by three different people within 12

hours. Four remote graduate student developers could not have had near that efficiency

without a communication tool like the Source Control Log.

While the collaborative benefits of the document are evident, the Source Control

Log also stabilized the meaning of the project. In other words, the prototype was the

byproduct of the team collaboration so that the prototype ended up being pretty close to

what we expected. However, when the meaning is not stable, any chain of mistakes

determines the final result. Consequently, unstable meaning is not the result of

collaboration; an unstable project is whatever it ends up being, without any decision-

driven direction. Fortunately, the Source Control Log is also an example of how

documentation stabilizes meaning.

The source control document showcases collaboration and meaning. The

Source Control Log was a successful document because it was a shared space where

remote student developers could track ownership of project files and record progress

notes. However, the document did much more for the project because the prototype

meant the same for each of the four student developers throughout the prototyping phase.

There is a situation when the meaning of the project could have splintered into

four distorted directions. Incredibly, the single situation involved two incidents within 24

hours of the other so that without the Source Control Log the prototype would have been

crippled. Responsive communication and adherence to the procedure saved the project.

Charlie checked out the files twice in five hours but uploaded neither changed

files nor new assets. Charlie made significant additions to the prototype that Charlie

detailed in the Source Control Log. Consequently, the omission of the actual files meant

	
	

142	

that on the first day of development the team could have had two versions with

significant changes.

Name: Charlie

Time you started:5:30 pm 30JAN

What you completed: created characters (girl, grandpa, mother), and

scenes

When you logged out: 6:00 30JAN

Name: Charlie

Time you started:8:50 pm 30JAN

What you completed: I worked a little bit on the "sheep place" scene,

created the path ways, tried to adjust the girl's size. I tried to follow the

tutorial, creating the inventories before creating, and placing the items. For

some reason, they don't show up when I run the game. I wanted to finish

that scene today, but I think I have to give my brain a break and recharge

the neurons.

When you logged out: 10:30 pm 30JAN

Charlie logged significant changes that would have gone unnoticed without the

files Charlie developed. Charlie’s work was completely invisible to the other three

student developers, without the Source Control Log. In addition, the logs suggest another

problem, even if Charlie had uploaded the files. Charlie experimented a great deal and

after five hours of development work Charlie checked in a broken prototype; Charlie

created and replaced files until the prototype no longer worked.

	
	

143	

I recorded an entry identifying the omission just over two hours later. Bravo

recorded an entry identifying the files were still missing 15 hours later. Both Bravo and I

could have proceeded with 15 hours of development progress but we would have created

a version control failure. We did not proceed with development because we were able to

track progress with the document. One hour after Bravo’s entry, Charlie uploaded the

files.

Bravo checked out the files for another five hours, once the files were updated.

Bravo logged progress notes:

Name: Bravo

Login: 1Feb - 3:40pm

Read the [design program’s] readme file.....

sorry I reorganized files and renamed them also.

Logout: 1Feb - 8:12pm

Bravo both moved all the files and changed all the names of the files. Bravo

effected this change throughout the prototype’s entire file architecture—as to conform to

the design program’s standards. Changes to file names can have drastic consequences

without proper communication. Without proper versioning and collaboration, the

prototype would have been hopelessly broken.

Peer expectations and collaborative documents. Of Alpha, Bravo, and Charlie, I

asked: “Can you describe for me the role of a GDD in a development process?” In the

previous question, I wanted to know what my peers thought of documentation before our

development experience together. This question was meant to prompt my peer-students to

articulate the purpose of documentation. My head was full of genre theory so that I was

	
	

144	

very interested in how my peers would define documentation, without all the theory.

Alpha: It gives us something to follow by it gives everyone allow everyone to be

on the same page to know where we are where we need to go and why we need to be

there. It gives clarity. Also prevents confusion…Mapped it out and created a blueprint to

follow. It is necessary because otherwise you’re just shooting in the dark.

Bravo: I mean I think that until we had the design document at least had all those

ideas solidified in the document we as a group were disorganized.

Charlie: Well, I guess that before put all the information the narrative our game

every information concerning the what we were going to do every step every scene every

face the face is very important the faces were detailed in the design document as well as

the every addition we made because I remember we never deleted anything we just added

the new information and took the other to the appendix. So everything is in there.

The peer responses clearly show the peer-students understood the importance of

documentation in transmitting design information. More importantly, whereas Alpha and

Bravo were able to merely identify the collaborative aspect of that transmission, Charlie

described the documentation as a detailed record of design decisions. Charlie refers to

decisions and changes as “additions”; whenever we added something we documented the

addition and moved out-of-date information to the appendix. Consequently, we were very

consistent and stable in our collaborations.

While the Source Control Log structured collaborative activities, the document

also managed the development of meaning. In other words, the prototype was the

byproduct of development and that byproduct could have altered significantly depending

on the design choices the four student developers made during the project. Whether

	
	

145	

collaborative decisions that stabilized meaning or a string of communication failures that

splintered meaning, the Source Control Log impacted the meaning of the prototype.

A Dynamic Documentation Sample

Every Monday morning at 8:00 AM, the various teams showcased their weekly

prototype. According to contemporary development methods, a team needs to demo a

working-prototype every development cycle. The reporting keeps teams accountable, the

regular cycle keeps teams productive, the shortness of the cycle ensures a very organic

development process and the working-prototype means progress. The teams would all

collaborate together and try to agree on standards and the teams would receive direction

for the next week of development. The teams would break up and make more specific

assignments. My team would work out the big decisions together and then we would

disperse until the following Monday.

We were four graduate students whose lives only crossed during that Monday

morning at 8:00 AM. Unless we planned to meet at some other random time, we worked

remotely with whatever computer resources we could find. Whether from university

computer labs or from home computers, we developed alone for 7 days. However, after

seven days, we would showcase our working-prototype—evidence of how well we

worked together. In the absence of a common workspace and daily interaction, we had an

online document sharing solution. That hub of communication was a library of

documents hosted by Google. The Google Docs were where we recorded our progress,

posted our questions, looked for updates, compared effort, and documented our unified

direction. By Monday morning, our team’s working-prototype had been through a

	
	

146	

development process about as organic as some professional development teams.

I chose the Dynamic Documentation Sample from the most collaborative of our

documentation. When we were developing the tour game’s narrative, we had accessory

documents and a larger, central document into which we all contributed our efforts. Even

more important than the fact that we actively documented is the fact that we all revised

together. Consequently, any page in the documentation was the result of multiple edits

from multiple authors. We were a dynamic community that literally shaped the

documentation, even while it helped keep us unified and on course. I chose this sample

because it shows a dynamic, relevant document sustains a morphing team, even while the

team morphs and reforms the development goals and standards.

Dynamic Hub of Communication. If not for common documentation, I was one

of four graduate students who would have splintered far from any common path. We

needed a hub of communication so that we could keep posted on the tour game’s

evolution. Before I did anything, I would log in to the Google document and check for

the most current decisions. We could not make those course-altering decisions together

but we could watch the development of those decisions in the document changes. I would

describe some aspect of the design and within hours text highlights would mark changes

made by another developer.

	
	

147	

Image 12

Sample Section Revised by Team Members.

Image 12 has three colors, representing the contributions of each graduate student

on my team. The colors distinguish contributions so that words are highlighted and

phrases are highlighted. In some cases, there are breaks in a highlight, indicating another

contribution made on top of the first contribution.

Image 12 showcases the first draft of the story. The American West Heritage

Center Tour game was split into three storylines; I was on the team responsible for the

1917 interpretation of the historic farm. Beth is the main character of our tour game;

	
	

148	

however, we really wanted to have a trickster in the story so that the tour becomes more

of a game. We selected the Grandfather as the trickster that would pop up throughout the

tour; the grandfather would interfere with player progress.

Dynamic, without doubling or diverging. The role of the grandfather altered

significantly over the course of development. Consequently, developing a tour game

around the morphing role of the grandfather was a challenge. There was a version on the

story in which the grandfather was in every scene. There was a version of the story in

which the grandfather was the antagonist through which narrative progress was possible.

There was a version where Beth was a co-conspirator who had to report back to the

grandfather. There was a version where the grandfather stayed at the farmhouse and

provided misinformation. There was a version of the story where the grandfather hid

from Beth’s mother in the horse barn. There was even a version of the story where we

gave up on the grandfather and had him sleep in the kitchen for the entire farm tour. The

final version of the story is where the grandfather simply hangs out in the kitchen and

slips Beth clues; the clues help Beth make her own birthday cake surprise.

In fact, one version of the story involved an entire section of the American West

Heritage Center that was not part of the 1917 historic farm interpretation. At that time,

the student development teams had not yet decided to restrict each of the three storylines

to their specific area of the Heritage Center properties. Consequently, the grandfather’s

role was useful in bridging to other parts of the farm.

The character seeks out her Grandfather at the WINDMILL. Grandpa

hangs out there because keeping the thing functional is an all-day job.

Grandpa is also a clever old fool that Beth trusts. She helps her Grandpa

	
	

149	

make some repairs at the WINDMILL and they take some grain or flour

(isn't that what they produce at windmill's?) to the FARMHOUSE (for the

cake) and then hatch a devious plan. They pick some wild flowers at the

SMALL BRIDGE, go to the OPERA HOUSE, and sell the wild flowers to

house for the evening's performances. Now that they have some capital,

they head off to the NATIVE AMERICAN CAMP to get their hands on a

bone and to the SMITHY (a smith is not on the list but I'm positive there

is one) to forge a bone knife. Beth leaves her Grandpa at the FARM

EQUIPMENT SHED before Grandpa can return to the WINDMILL.

 With the exception of the Farmhouse, the locations (in all caps) were not on the

1917 historic farm interpretation, even if they were still on the Heritage Center property.

For instance, the Opera House was on the far side of the Heritage Center and was more

appropriately part of the Center’s Utah Pioneer historic interpretation. Regardless, the

example showcases the extent to which we revised the role of the grandfather in the tour

game.

 Dynamic and real-time—not simply multiple authors. The grandfather posed

specific problems to four remote graduate students who were making prototypes on a

weekly basis. Even while we were each building our respective parts of the tour game,

we were also rewriting the grandfather’s role in the design document. Insofar as the

grandfather, at one time or another, touched every scene of the tour game, it is a miracle

that we were working on the same conception of the grandfather at the same time; yet,

that is the case. If we were simply four authors writing in the same document we would

have had a mess; however, the writing and development happened simultaneously so the

	
	

150	

document sustained the meaning of the project.

 Even while Alpha would be coding the grandfather, I would make a change to the

grandfather in the design document. Meanwhile, Charlie would have discovered some

anomaly in the historical interpretation and changed the grandpa yet again. Yet, Alpha

attended to the design document so that grandfather was coded accordingly. In addition,

Bravo was coding the same tour game on another platform. Perhaps there was an element

of the grandfather’s role that did not work in Bravo’s platform; Bravo might mention the

constraint in an email. In such a case, Alpha and Charlie would have feedback. The

consequent decision would be copied from the email string into the design document. In

the end, Bravo’s presentation of the grandfather was identical to that coded by Alpha.

Come every Monday morning, we would stand in front of the class and showcase unified

prototypes for each platform.

The tour game design document is 47 single-spaced pages. The grandfather’s role

was a work in progress that touched items, scenes, characters, and the code itself. The

fact that four remote, student developers used a hub of communication to make dynamic,

real-time, coordinated changes is an example of how a dynamic, relevant document

sustains a morphing team, even while the team morphs and reforms the development

goals and standards.

 Peer expectations of dynamic documentation. I was excited about the team’s

dynamic hub of communication. I was full of genre theory but I wanted to know if my

peers felt the same way. I asked Alpha, Bravo, and Charlie: “Now that we are 9 weeks

into development, what do you think [documentation] is now?” The first question I had

asked prompted my peers to reflect back on their original reaction to the design

	
	

151	

documentation I wanted to maintain. The second question I had asked was simply to see

how my peers defined documentation. I saw this third and last question as their

opportunity to articulate the differences they saw. The responses to the question are not

surprising for Alpha and Charlie; I knew they were impressed simply because I had been

working so closely with them. However, while Bravo’s actual response is not long,

Bravo’s story highlights the central problem of developing and documenting at the same

time.

Alpha: I was like wow. So that is a design document that is nice.

Bravo: I guess I got a lot of respect of it before you start developing a product

whereas before in other classes I did it because I was told to.

Charlie: Well, I looked at it a couple of days ago and I thought oh my gosh there

are many things in here because I know that the first section is the most recent

information and I side scrolled and saw all the old stuff I said these guys have done a

lot…We changed a lot of things…All of us had access to it we all had options to

edit…[Charlie can see version histories in the Google doc design document] I think it is

very useful.

Alpha was simply impressed by all the work. Charlie saw the 47 pages of

collaborative design and writing; Charlie’s insight is exciting because I’m not the only

one who noticed how the hub of communication sustained the meaning of the project.

However, Bravo had the most rewarding insight; Bravo had confided in me that

documentation was a chore and Bravo preferred to simply develop in isolation. In other

words, despite Bravo’s familiarity with documentation, Bravo resisted documenting his

	
	

152	

work. Yet, Bravo was the one who did not know what was going on when it was time to

fit consistent, current information about the Grandfather into the code.

DISCUSSION ABOUT AMERICAN WEST GAME

From the beginning of American West Heritage Center tour game development, I

knew I had an opportunity to conduct documentation practices as close to the textbook as

possible. I was armed with genre theory and had clear expectations for what I knew I

should see. The Model of Expectations translates the meta-language of genre theory into

the industry parlance that describes my expectations. I expected dynamic, relevant

documentation that would sustain a morphing team, even while the team morphs and

reforms the development goals and standards. I sought to show how the tour game

development documentation met my expectations—how it matches the prediction of

genre theory

American West and Development Expectations

Bravo’s story highlights a developer’s need to stay in constant connection with a

strong, reliable hub of communication. However, before the American West Heritage

Center project, I was unsure whether the hub of communications I expected was even

possible in contemporary development practices. By the end of Spring 2009, I felt the

project did meet my expectations.

Model of expectations. The following discussion breaks the model of

expectations into the five component parts. Of the three documentation samples, the third

	
	

153	

sample is an example of dynamic documentation and is the most relevant. Consequently,

the following discussion focuses on that specific example.

Dynamism
● Genres are developed from actors’ responses to

recurrent situations.	
● Genres serve to stabilize experience and give it

coherence and meaning.
● Genres change over time in response to their

users’ sociocognitive needs.

Dynamism for Practitioners
● The document forms as the team uses it

and responds to it.	
● The document is a common resource for

teams and is a foundation for the
innovative solutions teams require.

● The document changes with team
decisions so that it is a decision making
tool.

I was on a team of only four graduate students. We were remote and relied on the

documentation to organize ourselves and guide ourselves. The sample showcases how the

role of the Grandfather was the result of collaboration and the documentation was the

sole medium of communication. At the same time, while we were constantly adhering to

the document, we were also writing and rewriting the document. Therefore, the actors’

responses were core to the recurrent situation every Monday morning.

 Alpha, Charlie, and I actively worked to keep the documentation current and

relevant. More often than not, the document was the only source of the project’s current

status and the only expression of what the project’s deliverable would look like. Even

Bravo had to seek out the document for meaning when Bravo required essential details

about the game’s development.

 Whether I was responding to emails or attending an independently scheduled

team meeting, I relied on the document to control the scope of discussion, the assignment

of tasks and the resolution of differences. Often, disputes would simply resolve because

the most recent revision to the document offered the solution. Consequently, the

document was core to the decision-making, meaning-making, and problem solving we

would work on together.

	
	

154	

Situatedness
● Genre knowledge is derived from and embedded

in our participation in the communicative
activities.	

● Genre knowledge is a form of “situated
cognition.”

● Genre knowledge continues to develop as we
participate in the activities of the ambient
culture.

Situatedness for Practitioners
● If it isn’t documented then it didn’t

happen. The act of documentation is the
formation of common knowledge.	

● Project productivity and long-term goals
originate from documented knowledge.

● Documents become more comprehensive
and typified as the community
collaborates and tests the document’s
relevance.

Without the core hub of communication, our team would have had no anchor. We

were remote students who developed a software program for a single class that met for

three hours on Monday morning. We had that common anchor from which we drew our

knowledge about the project and it was to that common source that we would add value.

Simply by needing information from the document, we participated in the document’s

relevance to the project.

Anything I knew about the Grandfather or the farm was either from the document

or added to the document. Therefore, while the document was not the fount of all

knowledge, the document was the only place for community-knowledge; the team’s

knowledge of the project was literally situated within the documentation.

Form and Content
● Genre knowledge embraces both form and

content.	
● Genre knowledge is a sense of what content is

appropriate to a particular purpose, situation,
and time.

Form and Content for Practitioners
● Form and Content conform to

documented knowledge.	
● Document-based knowledge prompts

decisions about relevant rhetorical
content.

 One interesting detail about the narrative documentation sample was the

formatting. In the beginning, the narrative documentation was in story paragraphs with

dialog quotations. However, the format of the documentation was changed in the process

of development. The paragraph form was not conducive to a dialog-driven game and the

	
	

155	

paragraph transitions were too prosaic for computer code. Consequently, we changed the

formatting of the narrative to match our development needs. There was no rule about

appropriate formatting but we decided to map out the dialogs as close as we could to the

tree structure of computer code. We identified what served us best for our particular

purpose, situation, and time.

 We even tried storyboarding the Grandfather’s narrative at one point. Image 13 is

just one of the many storyboard panels we used. The sketches are horrible by artistic

standards but they conveyed the narrative for the particular purpose, situation, and time.

We ultimately discontinued the use of storyboards but the storyboards illustrate that Form

and Content are not static values outlined by industry guidebooks.

Image 13

A Storyboard Panel Depicting the Grandfather.

	
	

156	

Duality of Structure
● Genre rules inform activities that constitute

social structures	
● Genre rules inform activities that

simultaneously reproduce these structures.

Duality of Structure for Practitioners
● Project planning, roles, and

responsibilities match procedures
established in the documentation.	

● The documented rules guide procedural
and organizational decision-making.

 Our team gradually specialized in various aspects of the development.

Consequently, while the document ultimately determined what kinds of roles our little

development project required, our roles inevitably changed the document. After all,

Alpha was exclusively dedicated to development for the mobile platform and Alpha’s

software-specific needs would necessarily inform the information Alpha added to the

document; consequently, the document contained information prepared for Alpha’s roles

and procedures.

 Against what might seem logic or wisdom, we were always following and

rewriting our own guidelines. Our situatedness was simply so comprehensive that we

needed the document until we decided to change the document—at which point we

needed the document again. For instance, even though Bravo was disconnected from the

documentation in the beginning, he still needed it to remain cohesive with the rest of the

team; yet, his demands might still alter the project’s meaning, even if the cohesiveness

and stability are not broken.

	
	

157	

Community Ownership
● Genre conventions signal a discourse

community’s norms, epistemology, ideology,
and social ontology.	

Community Ownership for Practitioners
● Philosophy of development methodology

expressed through documentation and
practice. 	

 The greatest strength of our project was our community ownership. Our team of

four remote student developers was completely invested in a hub of communication that

worked well for us. While encouraging community ownership was something I wanted to

instill from the beginning of the project, I did not expect I would not need to do much for

the group to own the documentation. With the exception of a few face-to-face meetings,

all our communication was written and our project knowledge was maintained in the

documentation.

American West and Replicating the Results

 North American Genre Theory can describe the success of the American West

Heritage Center development project’s documentation. The documents had a dynamic,

integrated role. The documents were the situated repository of the team’s project

knowledge. The documents had flexible form and content that evolved to meet the team’s

needs. The documents demonstrated a duality of structure; they straddled the fine line

between imposing structure and reproducing structure. Finally, the community ownership

of the team made the documentation a hub of communication.

 Yet, the project documentation was not a comprehensive success. Not so apparent

at the time was the project’s reliance on written communication alone. In addition, I

wanted to match my model of expectations in yet another project.

	
	

158	

What is wrong with the american west project’s results? I have emphasized the

remote nature of the team’s development situation. We had a classroom in which we met

both together and with the other two student development teams. However, any

development work was done remotely. Research, documentation, collaboration, coding,

and graphic design all happened while four graduate students worked separately at home,

at the library, at Dr. Shelton’s IMRC lab or at campus computer labs. Because of the

remote nature of development, any communication was necessarily written.

Consequently, even while the hub of communication produced an impressive amount of

documentation and matched my Model of Expectations, the hub of communication was

also a function of remote teamwork.

When I look back, I realize the project easily matches the Model of Expectations

because of the project’s reliance on written communication. There was no verbal

communication through the course of a development cycle. The only verbal

communication occurred on Monday morning. At that time, I would collaborate with my

co-developers and we would align our project with any new directions from Dr. Shelton.

We would invariably change the role of the Grandfather after open discussion with the

other student teams. We would split up responsibilities and identify our deliverables for

the following Monday. We would troubleshoot any coding barriers and plan any

necessary code fixes.

None of that Monday morning work was written communication; interestingly,

none of those “off-stage” decisions were actually documented.

Can I replicate remote documentation with a centralized team? I was given the

challenge to replicate the documentation in another project. I had seen duality of structure

	
	

159	

work in practice and was excited to go beyond the theory yet again. Dr. Hailey already

had a project lined up. There would not be any software or games; however, the project

involved web development and the generation of Flash videos for online learning

modules.	

	
	

160	

CHAPTER V

POSTMORTEMS: ENGINEERING MODULE SUPPLEMENT PROJECT

CONTEXT FOR THE ENGINEERING PROJECT POSTMORTEM

The software design documentation is for a developer to write up sufficient

elaborations so that a team of developers can understand design details. The problem is

that contemporary software developers do not frequently abide by the genre rules. For

example, in a 2006 email, a Salt Lake City, Utah software manager told me: “[Design

documents] are not exhaustive or exacting blueprints that we slavishly execute through to

completion...I say this because I suspect that some of the literature regarding the creation

of design documentation...errs in describing them.” This software manager did not rely

on industry conventions or guidebook recommendations; he adapted and employed his

own rules and rhetorical forms.

This chapter is a postmortem for a Utah State University Department of

Engineering course module development project. The project’s student developers would

abide by genre rules and produce the documentation I expect to find among professionals.

We would replicate the success of the American West Heritage Center documentation.

However, just like industry professionals, the student developers did not abide by the

genre rules. At the same time, I was able to observe other rhetorical forms that

constituted “documentation activities” on the project and matched genre rules.

	
	

161	

The Project’s Origin

While I became increasingly interested in the specific oral communication

practices of the student developers, I was also aware of other rhetorical forms. This

chapter toes a fine line between identifying the documents that should have been

delivered and how the research team identified oral communication in the first place.

Leadership of the project. In the summer of 2009, I was invited to coordinate

supplementary course modules for the Department of Engineering. The project’s funding

came from the State of Utah Engineering and Computer Science Initiative. The principal

investigator was Senior Associate Dean Dr. Wynn Walker and the project’s development

manager was Dr. David Hailey. Dr. Walker and Dr. Hailey selected professors to present

supplementary content and manage live classes. In addition, they already had funding for

interns who would film and edit the modules. However, until they brought me onboard

they did not have someone to coordinate the various activities of the project. I

coordinated both the film sessions and faculty schedules; in addition I intended to

simulate a workplace situation and use Genre Theory to describe the documentation.

Exigency of the project. The Engineering Module Project set out to create four

modular courses for the satellite campuses of Utah State University. Utah State

University is located in the northernmost part of Utah. In fact, the university is only 30-

miles from Idaho. Utah State University has 30 remote campuses dotting Utah. The

students who attend those remote campuses would never set foot in an engineering class

on the Utah State University campus in Logan, Utah. This means that while any student

can major in Engineering, not every student can take a course from a professor of

Engineering. For instance, students who attend the remote campus in Kanab, Utah will

	
	

162	

never likely drive 393 miles 2 or 3 times a week to attend classes on the Logan, Utah

campus proper.

The Engineering department obtained funding to resolve this problem with the

distribution of course modules that can supplement classes taught at remote campuses.

There is a film studio in the engineering building and they planned to film the instruction

there. The team filmed almost 150 hours of Engineering courses and used Camtasia

software to capture instructional actions on the professor’s computer screen; all told, they

converted almost 300 hours of footage. The team threaded the instructor footage with the

screen capture footage to create the supplementary modules. As a result of this project,

remote students can watch master teachers present lectures.

Scope of Engineering Modules Project

I expected my project coordination with the Utah State University engineering

department would help me generate documentation samples and therefore understand the

socially dynamic actions of development teams, while developers break from the genre

rules. I planned to play participant observer on a development team all summer. I had

also wanted to imbed myself in a long-term development process. The greatest advantage

of the project was any documentation we generated would not be protected by industry

copyright and would not involve intellectual property. There is simply too much

intellectual copyright to access proprietary documentation, never mind the software itself,

for industry practitioners to trust a university researcher. Therefore, while I was pleased I

did not have any problem accessing and sampling student project documentation for my

research, the students did not actually write their documentation. I did not expect a failure

	
	

163	

to either generate documentation or draw useful research conclusions from that failure.

However, I still observed how the student developers succeeded without proper

documentation practices. I learned that contemporary development methodologies

include rhetorical forms for working face to face—including speech acts.

Since I began researching software documentation in 2006, I have observed,

interviewed and reviewed samples of professional developers but had not observed the

social recursions of the software design documentation genre. The problem I had was

finite document samples merely gave a peek at frozen moments isolated from the

development cycle. Those peeks might showcase form and content but they did not

showcase dynamism, situatedness, duality of structure, or community ownership. For

instance, one professional developer gave me the table of contents alone when I asked for

a general design document sample. Unless I had access to the social recursions and

meaning-making then I could not understand the genre of software documentation.

I wanted to experience meaning-making decisions; I wanted to generate the

documents; I wanted to have insider access to the developer community; I wanted to

develop my own practitioner’s perspective; I wanted to have documentation

responsibilities and be accountable to a team of developers. The Engineering Modules

Project with the Utah State University Department of Engineering gave me those

opportunities.

Opportunities to imbed myself in the cycles of documentation helped me

understand the impact of human agency in genre cycles. In their video game design

manual (2007), Ernest Adams and Andrew Rollings claim “the key part of game design is

transmitting the design to other members of the team” (p. 62). Adams and Rollings

	
	

164	

identify documentation as that key part. In other words, rather than isolated developers

unaware of elements under development in another cubicle, the transmission of design

permits communication, collaboration, and a general awareness. In fact, Cooper (1999)

argues that software development documents are blueprints, rather than suggestions (p.

237); Cooper even goes so far as to argue that the developers should not have the

authority to change the blueprint. Despite Cooper’s suggestion, the best practice suggests

rather than waste time verbally repeating elaborations at every inquiry throughout a week

(Clements et al., 2002), teams should be able to access any of several central documents

without necessitating the verbal repeat of elaborations, reflections, and solutions.

As the coordinator for the Engineering Modules project, I set out to research

genre practices in software development. I expected to follow this plan:

1. Familiarize myself with the web broadcast course and the team of developers.

2. Review their documentation practices.

3. Train the developers in appropriate documentation practices.

4. Observe the paradigm shifts as some of the developers see the significance of

ongoing, living documentation.

5. Interview my developers to understand their old and new perspectives

6. Manage the cycles of socially sustained written patterns that coincide with the

rapid prototyping methodology of the software developers. In fact, based on

previous observational experience, I know that documentation is a standard part

of that cycle.

7. Interview my developers to discover how they conceive their agency as genre

agents.

	
	

165	

8. At the end of the summer term I can conduct one more round of interviews.

9. Fall semester will begin another cycle and I will have my field research data.

Research Context for Engineering Modules Project

 The Engineering Modules project involved a mixed team of faculty and students,

would feature modules grounded on strong research and would yield documentation.

 Engineering modules development team. The development team consisted of

myself as the coordinator, Dr. Hailey as the development manager, an Engineering

Master’s student intern, and three undergraduate English student interns. The student

interns were split into two teams; each team had a camera operator and a video editor.

The teams were not static so that any one intern could work with any other intern.

However, the roles of camera operator and video editor were locked.

 While the student interns worked with the filming and video editing, Dr. Hailey

built the module interface using Adobe Flash. The original intent was the student interns

would build the interface; however, the demands of filming and video editing were

sufficient to warrant a change in plans.

 As the coordinator, my job was to maintain contact with the Engineering faculty.

While two of the course modules were filmed during a live class, the three other course

modules were filmed in the studio. Therefore, while I did not need to schedule the live

classes, I did need to schedule with the professors involved in the three other courses. In

addition, there were three occasions where an error with the video processing

necessitated an additional film session to record the lecture a second time; I had to

schedule these extra sessions.

	
	

166	

Modules as media or genre. Professors David E. Hailey, Jr. and Christine E.

Hailey (1998; 2002; 2002) have researched teaching pedagogy in engineering

classrooms. Particularly, they took interest in the efficiency of supplementary learning

modules. They measured for the speed with which students use modules. They have

researched both the considerations and genre choices, as opposed to media choices, in

considering the inclusion of digital pedagogies. Their concern with digital media has to

do with the genre and media choices teachers must make when incorporating digital

media in the classroom. These modules are media meant to supplement the lecture genre;

the face-to-face lecture is a medium that is not replaced by flash modules. In addition, the

interface of these flash modules makes a quantitative difference in the comprehension of

students.

Documentation. Genre theory researchers approach genre differently than

traditional genre because they seek to understand who made the rules—the form, content,

and purpose. Insofar as genres are not spontaneously formed from midair, researchers

tend to look at genres as socially sustained writing. Thomas Kent (1986) writes of the

significant difference: “In one sense, a genre is a system of codifiable conventions, and in

another sense, it is a continually changing cultural artifact” (p. 15). By codifiable, Kent

breaks down genre and suggests that as people interpret the very words and sentences

they form the genre from their interpretation. In fact, he argues: “that our ability to

recognize these formal, rule-bound conventions influences our response to different kinds

of texts” (p. 39). In other words, even as genre is a continually changing cultural artifact,

the most basic level of interpretation works to influence how the text is read.

	
	

167	

Important qualifications. With all the emphasis on rhetorical forms, oral

communication and the failure to produce documentation, I do not want to forget the

importance of traditional software documentation and why it is still adds value to

professional development projects.

The purpose of the internal software documentation of traditional development is

to record the design, decisions, direction, and implementation plan for large teams. This

purpose is still useful for contemporary developers. Oral communication cannot replace

documentation because documentation is supposed to be a safeguard against untraceable

speech in the first place. From this safeguard, I can identify three reasons why

contemporary development teams cannot replace documentation with oral

communication.

• Poor Memory. Three developers might have a great solution for a major

problem found in the code; however, when they each go to their three

respective teams one of the developers might not relay the solution in the

same way as the other two do. However, if the three developers document

their solution then everyone can rely on the documented solution.

• Repetitious Elaborations. One document can save the time of everyone. One

programmer does not need to repeat a solution for every team, every day,

every time someone wants to clarify the implementation of the solution.

After all, a dozen different teams do not have to hound one team for various

details if those details are recorded in clear documentation.

• The guidebooks indicate that documentation sets the project vision by

which developers can direct their actions throughout the duration of the

	
	

168	

project. Guidebooks also indicate that documents are for planning; in this

way, teams can direct their actions and coordinate their work, even if they

are developing different aspects of the same project.

These qualifications are important to signal where the Engineering Modules

development team failed to follow good practice and where good practice became

too traditional to work for the team. Rhetorical forms seem to support

contemporary practice but not at the expense of the clear advantages of

documentation.

	
	

169	

TRADITIONAL SAMPLE FROM THE ENGINEERING MODULES PROJECT

There are three samples of traditional documentation from among the few

available. The Engineering Modules project simply did not yield a significant quantity of

documentation. The objective of this section is to showcase the traditional document

samples I did gather and juxtapose them against the samples of contemporary rhetorical

forms I eventually identified. In addition, the purpose of traditional documents did not

meet the situation or community of the Engineering Modules project.

Sample: Standard Operating Procedure

Images 14 and 15 are the two pages of a traditional Standard Operating Procedure

document. The team used Adobe Premiere to overlay video and this Standard Operation

Procedure document outlined the steps. The document uses screenshots (Image 15) to

illustrate some key steps in an important development procedure. The team had two video

feeds: a video camera recorded the lecture and the notepad laptop was loaded with

Camtasia (a screen recording software) to record the notes the Engineering professor

wrote for the overhead projection. There were also two audio feeds: one audio for the

camera and another audio for the Camtasia recording. After the student interns uploaded

all that digital data to the editing computer, the student interns would splice the elements

together. The objective was to switch back and forth between the notes view and the

lecture view; however, the primary view was a small box for the lecture video floating

over the primary view of the notes. Consequently, the team needed a Standard Operation

	
	

170	

Procedure (SOP) document to standardize the overlaying process. At the time the

document was written, much of the video editing process was still undiscovered. While

overlaying video was a pretty elementary action by the end of the summer, getting one

video to layer on top of another video was a major achievement in the beginning.

Image 14

Page One of Overlaying Document.

Image 15

Page Two of Overlaying Document.

This document is incredibly useful for a new person coming onto the team and for

a veteran to remember any formulaic steps applicable for a specific project. However, the

document is only a resource—rather than a meaning-making tool. For instance, no design

decisions rely on the overview (Image 14) or three-step procedure (Image 15); yet, the

team made an undocumented decision to present the modules by overlaying video feeds.

	
	

171	

Sample: Procedure Memo

Image 16 is a procedural memo document details the actual recording procedure

and recommends the software that best fits the process. This is another kind of

preplanning document. While a procedure document usually does not reside in a

recommendation memo, the recording procedure was organized, tested, and ready for

implementation.

Image 16

Procedural Memo Details Footage Management.

	
	

172	

An intern wrote the memo at the very beginning of the Engineering Modules

project. At the time, the team had not yet selected Adobe Premier and was researching

the best digital video editing software tool. The memo recommended the software tools

that fit the recording procedures. The memo outlines the recording procedure to identify

the kind of tool needed to match development needs.

Unfortunately, the recommendation memo is the only document that details the

recording procedures. The student interns should have documented something as

important as the actual recording procedure itself. Instead, the student interns happened to

document the recording procedure in a memo recommending video editing software. The

importance of the document and the singular nature of the document’s mismatched

purpose only highlights the weak documentation practices of the Engineering Modules

project.

Sample: Design Document

I created a Google Doc I could share with the interns. Images 17 and 18 are two

pages taken from the document. I wanted the student developers to document as they

went so that we could organize our efforts in a guided, traditional manner. Consequently,

I created a list of potential features as placeholders until we knew more about what to

document in those sections. At the time I started the document, I wanted to get going on

understanding the interface development but I did not update the document. Part of the

reason I did not update the document was because there was a conspicuous absence of

documentation activity from the team. They were filming and editing; they were not

	
	

173	

developing the web interface. In fact, they showed no signs of taking up the interface

through which students would use the modules.

Image 17

Page One of the Traditional Design Document.

When I set up the document, I had listed features that were specific to an interface

developed for the same purpose in 1998; the modulated design of that 1998 set of

modules was supported by research (Hailey & Hailey, 1998). In addition, I listed

functions that operationalize capabilities mentioned by Engineering Faculty as we

	
	

174	

introduced the project to a wider range of teachers. I felt that the team could be

elaborating the various sections as we worked out a draft of the interface. These

elaborations would be messy; many of the elaborations would be moved to an appendix

(a location for archived development drafts).

Image 18

Page Two of the Traditional Design Document.

Unfortunately, the general design document had two problems: (1) the document

was meant to be general but actually favored only one of the classes we were

	
	

175	

developing—we should have had a document for each of the four courses, as well as an

overview document—and (2) the document sought to plan the project before we even

knew what the project was. The general design document I started in Google Docs was

clearly a pre-planning document that would serve the traditional method of software

programming, rather than the contemporary methodology I was trying to study.

EVOLUTION OF SAMPLES FROM THE ENGINEERING MODULES PROJECT

The Engineering Modules Project was a troublesome project because from the

beginning there was no documentation. Insofar as my objective was to obtain

documentation, the absence of documents made me nervous. Based upon request, I was

able to secure samples of one document or another but the student interns were clearly

busy with 28 hours of editing each week. While the student interns did not seem any

busier than my team during the American West Heritage Center tour game development,

the situations, and community were both different nonetheless.

I expected to find the documentation solution all summer but I had to shift my

expectations on numerous occasions. By the end of the summer, I was on the look out for

any rhetorical forms, as opposed to traditional documentation.

High Stakes for No Documentation

Documentation plays a key role in development, even if I shifted my expectations

in regards to the documentation samples I expected to find. The purpose of traditional

	
	

176	

documentation still serves contemporary developers, even if the form and content of the

rhetorical form varies more than traditional development.

The following two stories showcase a great need for traditional documents on

development projects like the Engineering Modules. Where the team produced a

document in Story One, the team did not produce a document in the Story Two. The

failure to document can generate problems on a project because professional teams would

rely solely on verbal recollections and explanations. A written document would insure

that there would be no need for verbal explanations. At the same time, the verbal

explanations are the reason nothing catastrophic happened on the Engineering Modules

project; the student interns team was small enough and worked close enough that oral

communication stabilized the community.

• Story One. I asked one intern directly to produce a specific document for

HTML tagging standards and the reflection on why the team chose the

standardization. One set of interns innovated the process and standard; the

other set needed the document for the transmission of a new procedure and

for establishing consistent both direction and reliable performance.

• Story Two. One set of interns worked most of the morning finding the right

way to export and import a string of files, while retaining the most

performance and quality. Their decision was important for the project. The

other set of interns was scheduled to work that afternoon and needed to read

the decision, as well as the relevant procedures for the file conversion. If the

file type and new procedure were not transmitted then one of the two teams

would have to redo the editing.

	
	

177	

The two stories illustrate near catastrophic moments during development. Close

proximity and rapid cycles of development made all the difference for the student interns.

While the student interns did not write documentation in both cases, the oral

communication still managed to transmit design decisions to the team.

No community ownership. I had hoped to focus my research and observations on

the written design documentation I could describe with the meta-language—the grammar

of genre theory. In fact, I had hoped the Engineering Modules project would have given

me another example I could match with the fantastic success of the American West

Heritage Center tour game project.

Unfortunately, the project landscape changed. The interns were not writing

documents about either filming or editing. More significant to my project expectations,

the team would never write the web interface documentation. In fact, my advisor took the

role of lead designer for the interface and completed the interface design over the

weekend. He simply did not need the whole summer and four interns to create a Flash

interface. While this was a welcome change, insofar as the four students filming and

editing would not ever have had the time to design any interfaces, this also limited how

much design documentation I could gather. My response to the absence of documentation

characterized the way my document expectations continued to shift throughout the

summer months: I expected traditional, comprehensive documentation; then I expected

on-assignment documents—like a procedural memo; then I expected a wall full of user

stories on index cards; then I expected to find handwritten artifacts that supported the

project’s stability and meaning-making.

	
	

178	

Some professional teams simply do not document. One valid explanation of this

perspective is the rapid change of design. After all, if the design changes so rapidly why

have documentation in the first place? In this case, the rhetorical forms were pieces of

communication. The scraps of paper, checklists, emails, meeting notes, and sticky notes

all worked together simultaneously to sustain the meaning-making community.

Consequently, the pieces of communication were not the rhetorical form responsible for

the project’s dynamism.

After the loss of traditional documents, the absence of contemporary index card

stories, and the scarce pieces of communication, I was left wondering how the interns:

a. Sustained dynamically recursive activities

b. Cultivated situated knowledge

c. Adapted the form/content of their rhetorical forms

d. Sustained and reconstituted their project structure

e. Maintained community ownership of common rules and values

I needed to alter what samples I expected to gather, insofar as the interface was

complete and the lead designer did not need a formalized document to do it. The project

had so many parts and there was still time to expect documentation from some other

component of the project plan. When there was no documentation, I looked for

statements of work on index cards (Beck, 2000). When there were not any statements of

work, I started scanning scraps of paper and sticky notes. As I demonstrate later, the

rhetorical form I could describe with genre theory was oral communication.

	
	

179	

IMMINENT CATASTROPHE FOR THE ENGINEERING MODULES PROJECT

From the perspective of traditional documentation values, the Engineering

Modules project was a failure. I was coordinating a project meant to replicate the

successful American West Heritage Center tour game documentation practices; I could

not get the participants to write in the same collaborative fashion—no community

ownership. In fact, I tried to train the interns with the Google Doc method I used for the

tour game development project.

A Need for Project Documentation

After working with the editing software together all morning, I met with the

interns about the development of the course interface documentation. I explained my plan

to detail the general design document and showed them the initial skeleton. I wanted to

start with identifying the things students would need to do with the interface—the

features; the interns would elaborate as the team built a greater understanding of the

project requirements. I expected many requirements would be deleted and others would

be added. While I did not expect any work on an interface until the end of the summer, I

saw no reason why the team could not record insight into the interface’s projected

requirements. Even as development of the interface began, I expected the interns would

find the document as the best place to find the next development needs and the current

development trajectory. Therefore, I wanted a messy space of communication and

collaboration; reliance on the document would stabilize meaning-making, even while

restructuring with individual contributions and innovation.

	
	

180	

Different situations. While I was disappointed the corpus of documents paled in

comparison to the American West Heritage Center tour game project, I realized they were

two different situations (the genre triad of purpose, situation, and community). In one

situation, the community of student developers was remote, without any common

workspace; in the other situation, the community of student interns shared schedules and

workspace—in fact, they shared the same computer. According to the purpose, situation,

and community of genre theory, the rhetorical forms would necessarily be different;

however, I was thinking too traditionally to look for anything but written documents.

Engineering Modules were Not a Catastrophe

It still remained to be seen if the difference was a new rhetorical form or simply a

communication failure. At the time it seemed the latter, but the way the team avoided

catastrophic failure suggested otherwise. The project could not be a communication

failure if there was so much communication, even if none of it was written. There was

something else that stabilized the situated knowledge and bound the community together.

The Engineering Modules project kicked off the moorings of traditional documentation,

had no known rhetorical forms to stabilize the project’s meaning-making and there was

still a complex situation at stake.

Industry guides might be clear about how to write documentation but developers

do not follow the genre rules the guides outline. Consequently, I wondered what

happened to contemporary development projects when developers abandoned the

industry guidebook recommendations. So what did I do about it? Without traditional

	
	

181	

documentation practices, was the Engineering Modules project a catastrophic disaster

waiting to happen?

Complex Situation

I facilitated a very complex situation that required enormous communication and

coordination, without the necessary written documents to stabilize the Engineering

Modules project. The avoidance of catastrophe was evidence alone that there was another

rhetorical form that I was overlooking. Image 19 represents all the project components;

much like Clay Spinuzi’s genre ecologies, image 19 traces activities and their products

and highlights the chaos that was stabilized by rhetorical forms I could not describe.

Image 19

The Chaotic Project Dependencies that Ended up Successful.

	
	

182	

The project involved recordings for four Engineering courses. There were four-

core faculty (an additional two faculty to share recording time), two live courses, two

faculty to oversee the project, one graduate intern, two undergraduate interns, and myself

as facilitator. As the facilitator on the project, my responsibility was to schedule

recording sessions and rerecording sessions. The interns divided their team between

filming the courses and editing the courses they filmed. Each filming session required the

following equipment: notebook laptops, software (Camtasia) to record all activity on the

laptop, a DV camera, up to two cassette tapes per lecture, and two wireless microphones

to record audio for both the Camtasia software and the DV camera.

When the students returned to the office to edit they had to first import the DV

footage to a computer in real time, use another computer to convert the Camtasia footage

in real time and continue editing previously recorded lectures on yet another computer.

External hard drives were used to transfer converted footage files to the editing computer,

as well as to back up the courses. There was a 250 gig external drive for each of the four

courses, as well as an internal drive for each of the courses. There was also the hard drive

for each of the three computers, in addition to two other laptops rotated among the faculty

for the live courses. Finally, there was an additional 1 terabyte external drive. In all, there

were 15 drives to manage information on the project.

Example of a static development task. The interns needed protocols in order to

transfer DV footage before reusing cassettes. Any one cassette could pass between both

teams; when a team grabbed available tapes, a protocol would assure the student interns

would not grab a cassette not yet uploaded to the computer. Without commonly

understood protocols, the team could record over critical footage:

	
	

183	

1. All footage needed to be converted and transferred immediately upon return to the

office after a recording session;

2. Cassettes were stacked next to the importing computer;

3. Cassettes were stacked near the editing computer after importing;

4. The students needed to verify that the footage from both Camtasia and the DV

camera were successfully recorded;

5. The interns needed to track the status of any footage: importing, converting,

transferring, editing, imported, converted, transferred or edited.

Protocols and tracking were necessary because at the midpoint of the project the team

was filming at least 14 hours a week. Consequently, 28 hours of footage (Camtasia and

DV film combined) were being converted per week. Finally, interns had to be editing as

fast and efficiently as possible to stay on top of the incoming recordings. The fact that we

rarely refilmed was a miracle considering 28 hours of filming, 28 hours of processing and

28 hours of editing had to be managed every week by four intern students.

 Despite all the activity and potential for human error, the student interns avoided

catastrophe because they were in fact communicating with contemporary rhetorical

forms.

	
	

184	

RHETORICAL FORM SAMPLES IN THE ENGINEERING MODULES PROJECT

The project was not necessarily a catastrophic disaster waiting to happen because,

rather than a failure of communication there was in fact a team of students who

communicated really well together. The communication all happened at once because the

tightly knit team worked in such close proximity—rapidly implementing changes, even

while they made the respective decision. Simultaneous documentation is a significant

change because all the documentation is done in nontraditional scraps, rather than an

enormous governing document generated before development even begins. The pieces of

communication were rhetorical forms that stabilized the project simply because the

community was so small and worked in such small cycles of development.

The following are five samples of the rhetorical forms in the Engineering

Modules project:

• Email and Calendar Updates

• Meta Data Documents

• Scrap Paper Notes

• Sticky Notes

• Oral Communication

They are each samples of the simultaneous communication that sustained the entire

project.

	
	

185	

Email and Calendar Updates

I sent emails like image 20 every week to update all faculty and student interns of

weekly schedule changes. I altered calendar images in Photoshop to organize the team’s

filming schedule. This was a necessary step because the schedule changed every week.

Image 20

An Email with a Weekly Calendar.

We started with a general calendar but that quickly became useless. Not only did

schedules frequently change but I had to reschedule film sessions where there were

conflicts. Consequently, one general schedule for the summer was not feasible. The team

moved to a standard schedule oriented around the development team and the availability

	
	

186	

of equipment—a schedule for student intern shifts and to whom is assigned what

equipment at any one time. However, we soon streamlined the process so that even the

standard schedule was useless; the student interns had allotted specific time in their day

for their internship so that their availability was reliable throughout the summer.

The only thing that was needed was a weekly schedule that connected filming

sessions with student interns; the project needed a more flexible way to adapt the

schedule for so many parties.

Meta Data Documents

Image 21 showcases a meta data sample is notation about another edit that had a

version control issue. The student interns retained film files on cameras but did not

always have the laptop used by the professors. This is because once the screen capture

was obtained from a laptop, the screen capture file was stored on the appropriate drive—

inside the appropriate course folder—inside the class time and date folder—inside the

footage folder—inside the Camtasia folder.

Image 21

Meta Data File Tracks a Versioning Error.

	
	

187	

In this case, the Camtasia folder for a particular lecture had two Camtasia files

and this meta data document explained a versioning conflict and how it was resolved.

The versioning was resolved so there was no enduring value to this document sample but

it was still a rhetorical form, even if it had a very temporary purpose, situation, and

community.

Pieces of communication like this meta data sample were located where they were

needed when they were needed. However, there were not enough files like this to argue

that there was an official protocol for writing meta data; rather, this was just one file that

explained an atypical arrangement of files in that one single folder.

Scrap Paper Notes

 There were several scraps of paper like image 22. Mostly, the scraps were piled

behind the monitor of the editing computer. The scraps of paper were often “note to self”

in nature. The interns needed to communicate asynchronously, while they shared the one

editing computer. These pieces of communication facilitated the coordination of the

editing process. This sample in particular dates back to when the team was still working

out an organization plan for the same lecture footage from the different recording

devices.

	
	

188	

Image 22

Scrap of Paper for the Use of a Single Editor.

Both the camera cassette tapes and the laptop had digital footage. We figured out

a protocol for managing the footage before the heavy filming began. In addition, we

developed digital file organization and expanded our storage capacity by increasing

external hard drives. This scrap of paper predated all that organizational decision-making

and signals the documentation that should have been available. Those organizational

solutions might have been something to document, if not for increasing demand for

altering the organizational and storage solutions. Once heavy filming began we had more

devices and more storage needs; consequently, the solution was reformulated to meet the

resource needs of each new week.

Scraps of paper like image 22 were the rhetorical form the student interns needed

while they met project needs. That said, there were not many scraps of paper like image

22 because the student interns used another rhetorical form to stabilize their recursive

	
	

189	

situation—every time they came back to the editing computer they would have to manage

another filming session of film cassettes, laptop footage, and more storage needs.

Sticky Notes

Sticky notes were affixed to the actual cassette tapes. We were recycling 14

digital videocassette tapes and it was absolutely important that footage was processed

before the cassette tape was reused. Image 23 showcases sticky notes identified tapes that

were not ready for reuse.

Image 23

Four Sticky Note Samples.

The “chapter 5 module 3” sticky note—the lower left sticky note—is a great

example of how pieces of communication stabilized the situation, and community.

Towards the end of the summer, the department replaced glass windows throughout the

	
	

190	

entire building. The office in which we worked was temporarily unavailable while the

workers did their jobs. However, we still had to take the equipment to keep up with our

ongoing filming project. After all, some of the engineering classes were live and could

not stop for the replacement of windows in the Department of English building.

Consequently, we had a stack of original footage that was not backed up, while windows

were replaced in the room where the team’s editing computer was located. We were able

to return to processing and editing tapes once the windows were replaced.

This sticky note kept a tally of the tapes that were not reusable so that no one

inadvertently grabbed one for a film session. The other sticky notes are also examples

where interns wanted to mark the status of their footage.

Oral Communication

The fifth sample is not something that we expected. We did not expect

conversations to be so important to our development project. Oral communication is

perhaps natural enough that it is overlooked in development practices. Our oral

communication occurred on the telephone, while walking to a film session or while

transferring footage to the appropriate hard drives. We made decisions at those times and

implemented those decisions as soon as an hour later at the next film session.

Unfortunately, there were no logs of this communication. Clay Spinuzzi experienced the

same problem and did not include oral data in his research because oral data is not easy to

capture or examine (2002). Consequently, I would have had to record, transcribe, and

code the transcripts for both the Engineering Modules development team and interactions

with the faculty with whom I coordinated film sessions. Even if we had anticipated oral

	
	

191	

communication, we would have had to record a full day of conversation, every day, for

the entire summer—on top of the aggressive film schedule.

Before any Engineering Module filming began, Dr. Hailey, the four interns and I

were testing equipment and identifying needs. For instance, we discovered the film booth

camera was not designed to convert Adobe Flash file types, without degrading the

quality. In addition to picture quality, we needed new equipment and modded recording

devices. None of this could have been mapped out from the beginning. Rather, we

figured out the solutions as we uncovered the problems; we spent so much time walking

back and forth across the campus there was no time to write what we had already decided

en route anyway.

I cannot help but consider the possibility that the student interns simply did not

document like they ought to and that I failed to set the right community ownership from

the very beginning. However, the simple fact is that the rhetorical situation necessarily

involved a considerable amount of decision-making while walking across the campus.

Once the students were back at the office the team had to break down the equipment and

connect the cameras to various computers and the instructor-laptop to the appropriate

external drive. Once the equipment was all set to process the film footage, the community

would immediately divide up for off-campus jobs or summer courses; the student interns

would exchange any necessary information with speech acts before leaving.

	
	

192	

SUCCESS OF THE ENGINEERING MODULES PROJECT

When I started the Engineering Modules project, I wanted to simulate a

development workplace and obtain samples of the documentation. While I did succeed in

simulating a development workplace, the team did not write the documentation. In fact,

other than sticky notes and standard operation procedure documents, the team did not

produce much documentation at all. The explanation is that the team did not use a

traditional process to develop the modules for the department of Engineering. Instead, the

team used contemporary development methods and that means there was no major design

documentation. All the writing was in simultaneous pieces of communication; in some

cases, our documents were literally scraps of paper. However, the reason that our project

was a monumental success, rather than a catastrophe, was because of our face-to-face

communication. Our close proximity in our small workspace afforded a lot of oral

communication. Speech acts were a compelling addition to the rhetorical forms

developers use in their documentation activities; I was struck by the importance of oral

communication in contemporary development practices. I had found the missing

rhetorical form with which contemporary development teams stabilize meaning-making

knowledge and activity in their communities.

Engineering Modules Repercussions

Yet, there is a limit to oral communication as the missing rhetorical form I can

describe with genre theory. Those repercussions are worth acknowledging because they

lend significance to the rhetorical forms I observed in the English Modules project. Even

	
	

193	

then, the meta-language bucks up against some of its own limitations in describing oral

communication.

Scope of oral communication. For instance, the concept of oral communication is

as vague as the concept of written communication. Oral communication constitutes

multiple genres and is almost nearly too generalizeable to be considered a research

conclusion. However, I specifically refer to a concept of oral communication

distinguished by genre theory. I refer to a rhetorical form that has specific repercussions

beyond the scope of this dissertation.

Verbal vs. nonverbal. The term “written” refers to pens, pencils, and paper. Once

graphics became a reliable and accessible form of communication, scholars started

distinguishing between verbal and nonverbal communication. Verbal refers to written

communication that requires words; nonverbal refers to written communication that does

not require words.

The researchers publishing in Technical Communication refer to verbal

communication they refer to written documents, as opposed to graphics or art. They limit

the meta-language to written communication because researchers of written

communication research are really keen on written communication. While written

communication researchers are no longer limited by the ink of a printing press, they

should also use the meta-language to formulate more precise references to “non-verbal”

rhetorical forms.

Contemporary communication. In the world of English research, the concept of

text is very interesting. Text is not just the written word on paper or a computer screen.

Rather, text is an array of patterns that authors and readers use to generate meaning

	
	

194	

together. This kind of definition might provoke many English researchers. For instance,

the use of the word patterns is a problem because researchers might prefer to use the

word “symbols.” The use of the word “meaning” itself would cause debate about the

source of meaning in a text and who (author or reader) is actually responsible for

meaning. In fact, some researchers might even be troubled that I suggest the author is

involved at all. After all, meaning does not reside in a text as a clear transmission from an

author because the text does not mean anything until a reader reads the text. That is why I

use the phrase “generate together” instead of “transmission.” At the same time, I

unfortunately already imply the word “read” because there are many kinds of texts that

are not read.

The result is that just about anything is a text—is rhetorical. A movie is a text.

The script is a text and the film reel is a text—full of disjointed frames for which the

viewer is responsible to form together as an illusion of movement. A radio broadcast is a

text. A news report, blog, Facebook page, chat log, course lecture, and an annotated

schematic of an engine are all texts. A painting, a landscape photo, and a slideshow are

texts. Even more, the actions players perform in a computer game, the patches on a

family quilt, the pink flamingos decorating a lawn, and a child’s crayon scribbles are all

texts.

Yet, even though the word choice is debatable, a text is an array of patterns that

authors and readers use to generate meaning together. Why is all this so important? With

all these kinds of texts, a meta-language is necessary to sift through them all. Finally, in a

research world where everything is a text, the meaning-making oral communications in

contemporary development are the new text.

	
	

195	

MODEL OF EXPECTATIONS IN THE ENGINEERING MODULES PROJECT

While I expected written documentation, I ended up with several rhetorical forms

and a strong component of oral communication. Consequently, the decision I have is

whether to apply the model of expectations to the documentation I expected or the oral

communication I received. Ultimately, the Model of Expectations is meant for analyzing

the rhetorical form that carried the project. Much like the narrative documentation in the

American West Heritage Center tour game, the oral communication carried development

for the Engineering modules. The following Model of Expectations and discussion relates

to the oral communication that supported the project’s success. In each of the

expectations, I try to identify where the documentation failed and where the oral

communication filled the void left in the community.

Model of Expectations

 Much of the communication happened walking between the Department of

Engineering building and the Department of English building. We collaborated while

setting up equipment and the interns worked in pairs on the video they filmed together.

The next time we would cross the campus there would be new problems; in addition,

decisions from the previous day had already evolved into new obstacles. Every activity

was so intimate and every conversation was so relevant that oral communication was the

rhetorical form that stabilized the Engineering Modules project.

	
	

196	

Dynamism
● Genres are developed from actors’ responses to

recurrent situations.	
● Genres serve to stabilize experience and give it

coherence and meaning.
● Genres change over time in response to their

users’ sociocognitive needs.

Dynamism for Practitioners
● The document forms as the team uses it

and responds to it.	
● The document is a common resource for

teams and is a foundation for the
innovative solutions teams require.

● The document changes with team
decisions so that it is a decision making
tool.

Unlike the American West Heritage Center project, the Engineering Modules

project did not have sufficient documentation. The Flash interface was developed without

any legacy information. The HTML tags were documented for consistency at my request

but that legacy document did not impact tagging procedures. Each week I released a new

calendar because the film schedule would accommodate at least one faculty member’s

schedule change. Therefore, the documentation did not stabilize what was sometimes

nothing more than chaos. In addition, while the team had plenty of sociocognitive needs,

the documentation was not live and did not adapt to those needs.

There were written rhetorical forms the team found useful while they developed.

For instance, the sticky notes served as documentation. However, rhetorical forms were

limited to temporary information relevant to a specific edit on a specific day. After that

context-sensitive situation was passed, there was no recursion because the rhetorical

situation was vastly different the next day.

 Rather than write about tagging standards, the team simply worked close enough

that they knew the standards. Instead of preplanning recording procedures, the team

discussed improvement each day on the walk back to the computer room, after filming.

When the team selected media file types to preserve the best quality, they talked through

their decision together and did not write up any spec documents. The common rhetorical

	
	

197	

form that brought stability and meaning-making to the project was the oral

communication.

Situatedness
● Genre knowledge is derived from and embedded

in our participation in the communicative
activities.	

● Genre knowledge is a form of “situated
cognition.”

● Genre knowledge continues to develop as we
participate in the activities of the ambient
culture.

Situatedness for Practitioners
● If it isn’t documented then it didn’t

happen. The act of documentation is the
formation of common knowledge.	

● Project productivity and long-term goals
originate from documented knowledge.

● Documents become more comprehensive
and typified as the community
collaborates and tests the document’s
relevance.

I tell all my developer friends that bus drivers have a bad rap. Professionals,

without fail, reference the importance of documentation by accusing bus drivers: “I have

to document because what if I got hit by a bus on the way to work.” Insofar as a bus

could have hit any one of the interns on the way to the campus for a day of filming, it

seems to have been a mistake to go without documentation for an entire summer.

However, the interns were embedded so closely together that their proximity was the

location of the team’s situated knowledge. They had acculturated each other into their

knowledge system.

In other words, the interns were always talking and collaborating so that they all

knew the project’s procedures based upon their active participation in such a small

community of six individuals. Even when one intern was absent, the other members of

the team knew how to fill the role because knowledge of the role was stored in the

closeness and agility of the team.

The sticky notes and other pieces of communication might have all stored project

knowledge but the sticky notes typically served only one member of the team.

	
	

198	

Consequently, the one singular activity represented by the sticky note might have

misdirected the entire team—the collateral damage of a bus accident—but the community

knew enough together to adapt.

Form and Content
● Genre knowledge embraces both form and

content.	
● Genre knowledge is a sense of what content is

appropriate to a particular purpose, situation,
and time.

Form and Content for Practitioners
● Form and Content conform to

documented knowledge.	
● Document-based knowledge prompts

decisions about relevant rhetorical
content.

 Rather than point out there was no form and content because there was not any

documentation, I want to emphasize that the importance of form and content to a genre is

not because of paragraph content and the structure of headings. Rather, form and content

is the rhetorical form in which the genre knowledge resides. In the case of the

Engineering Modules project’s oral communication, the student interns morphed the

“documentation” activity to the needs of their on-the-run community.

 In contrast, the general design document I tried to create was initially built as a

space for written communication and active, ongoing collaboration. I wanted situated

knowledge in a written document because that was what developers should do. However,

the team’s situated knowledge was already based on oral communication and my general

design document was already inappropriate for the purpose, situation, and community. A

written document was a lumbering monolith in an extremely contemporary community

that shifted their community knowledge every week—sometimes every day.

	
	

199	

Duality of Structure
● Genre rules inform activities that constitute

social structures	
● Genre rules inform activities that

simultaneously reproduce these structures.

Duality of Structure for Practitioners
● Project planning, roles, and

responsibilities match procedures
established in the documentation.	

● The documented rules guide procedural
and organizational decision-making.

 Every morning the team would work through the checklist of equipment required

for a film session. In time, the team did not need the checklist document. That was not

necessarily because any one member had memorized the list; rather, the team did not

need the list because they had roles and those roles required specific equipment. The

interns would know what equipment to take based on the activities they expected to do.

They knew what activities they were expected to do because they negotiated those roles

as they entered the computer room. They would reconstitute the “film crew” every time

they had to configure the session’s team, based upon a brief discussion about who was

doing what with which equipment.

 The team did not update a “roles and responsibilities” document every morning

and they did not maintain a log to track all the possible roles for any one intern based

upon varying configurations of “film crew.” Such documentation would have been

superfluous to the orally communicative activities that already sustained and

reconstituted the team’s structure.

Community Ownership
● Genre conventions signal a discourse

community’s norms, epistemology, ideology,
and social ontology.	

Community Ownership for Practitioners
● Philosophy of development methodology

expressed through documentation and
practice. 	

 I began to despair when there was not traction for the general design document I

created in Google docs. I knew there would not be community ownership and that I was

	
	

200	

on a team destined for documentation failure, as opposed to successfully replicating the

documentation of my previous project.

 Yet, I was the one with the wrong norms, epistemology, ideology, and social

ontology. If genre = purpose + situation + community then I was in the wrong

community until I could understand what rhetorical forms the Engineering Modules

project actually required. I tried to impose my values and train the interns to my

documentation mindset but the project had unique norms and epistemology. I simply

needed to adapt myself and become an owner of a different set of rhetorical forms.

Discussion from Dated Blog Posts

I recorded project progress in a Wordpress blog (iseethecode.wordpress.com). I

wanted to keep a research journal to which I could look back and find original reflections.

My blog entries are dated reflections on development practices. More particularly, they

are an evolving insight into development practices. Over the course of three months, I

went from traditional documents to messy collaboration documents to oral

communication. I find that these blog entries are the best way to discuss the results of the

Engineering Modules project.

A discussion entry. On August 29, 2009, I blogged about the data I acquired from

the Engineering Module project. I have edited the blog entry so that it is matches the tone

of this chapter. I have incorporated the meta-language; for instance, I change “verbal

communication” to “oral communication” so that the blog entry is more consistent with

the meta-language of genre theory.

	
	

201	

I have samples of weekly reports and massive amounts of email; I

have scanned sticky notes, scraps of paper, and pages of notes scribbled on

the back of random recycled paper. The thing that is really interesting

about the absence of documentation was the oral communication that

transpired in that void. The purpose of design documentation is supposed

to facilitate meaning-making and leave a record with which teams can

negotiate progress. The Engineering Modules project did not falter

because the project cycles were so rapid and the team worked so close

together (sharing the same equipment) that oral communication was all the

team needed—seeing how the interns worked shoulder to shoulder. There

was no need for a hub of communication similar to the American West

Heritage Center tour game project.

I’m nervous about this argument because professional technical

writers around the world will lament the advocacy of a technical writing

vision that highlights the conspicuous omission of writing. I don’t even

entirely agree with the argument; I have too many questions. For instance,

I wonder what kind of criteria or rules I can identify to describe a genre of

oral software design conversations? I also wonder, if purpose is so

important to a genre, how can oral communication that serves none of the

purposes of design documentation replace design documentation? Perhaps

I just need to back down from oral communication as an overlooked genre

in contemporary software development. However, developers don’t walk

	
	

202	

around mute and carry excerpts from the design document to hold up

when they need to communicate. Rather, they do a lot of talking.

More specifically, the sticky notes, memos, scraps of paper,

weekly reports, and design documents all make up communication on a

contemporary development team, along with the oral communication.

Reflection of original thinking. On June 3, 2009 I posted to my blog about

progress on planning for the design of the web interface. I had set up the Google Doc

general design document for the Engineering Modules project and anticipated an exciting

collaboration. I reflected that my conception of software design documentation was very

different than either guidebooks or practitioners. I envisioned a messy space of

collaboration. I did not think of development documents as finite, presentable packages

because the collaboration is ongoing until the software is deployed; development

documents are sites of live communication. In fact, I wrote about how my vision of

documentation is a paralogic hermeneutic (Kent, 1993) process that casts off codifiable

trimmings and reduces documentation to an ongoing negotiation with changing

stakeholders in a rhetorical situation. I commented that a messy space of collaboration

actually limits the multiple strands of chaotic independent development because the

document is the source from which individuals identify potential innovations.

On June 5, 2009 I blogged about how the American West Heritage Center tour

game documentation was that paralogic hermeneutic process. On June 5, I listed the six

negotiations that made the project paralogic:

	
	

203	

1. We were developing and designing at the same time; our team was more

productive and effective than other teams because we all could track a unified

development effort

2. We worked remotely and uploaded our work so that everyone else could develop

at the same speed

3. We were remotely developing with the most updated assets and elaborations so

that we easily kept up with the one-week contemporary sprints

4. The team was full of motivated graduate students in a demanding course that

assessed development participation so that my team felt pressured to deliver every

Tuesday

5. We could count on updated elaborations as we divided up development

responsibilities and relied on the progress of others in order to complete our own

responsibilities

6. The absence of communication clearly impacted progress on the project and

always increased pressure on one or another team member.

Five	 months	 later. On November 18, 2009 I wrote a blog entry about rereading

the June entries five months later. I was struck by how much my beliefs had changed in

merely five months. I did not realize that I had imposed traditional documentation rules

on contemporary development methodology—whether or not it was a messy space of

collaboration.

My entire account of the first documentation blunder [referencing

the general design document and Dr. Hailey’s critique of it] assumes that

documentation still has a prescribed role that we can fulfill if I had simply

	
	

204	

been clear about the purpose of the document. After all, I have seen

documents that clearly identify their purpose, audience, and scope in

sections respectively named at the beginning of the document. In addition,

if documenting before the project begins is a mistake then documenting

after the project is complete is an even greater mistake. Consequently, the

documentation needs to happen during the project. However, as I stated, I

assumed that the documentation served a prescribed role.

We have since identified that communication on the project did not

happen through the medium of a document; rather, communication

happened at a much faster rate so that the medium of the document was

inefficient. Instead, we [employed oral communication]. This is of course

a no-brainer; [developers] talk to each other. However, a research field

about writing is keener on the documents that a development team

produces. In other words, I was looking to generate governing documents

that articulated design plans, protocols, and detailed elaborations.

However, we did not generate anything of the sort. Researchers in my

field have built models of communication that are conspicuously deficient

when it comes to oral communication. The benefit of oral communication

was that we didn’t use up development time to write elaborations we were

already implementing.

I guess the moral of the story is that while I thought that clear

writing was the solution on June 3, I had no idea that the solution ended up

being oral communication.

	
	

205	

 Checking	 student	 practice	 against	 professional	 practice. As I have often

suggested, it is possible that the student interns simply needed to document. It is possible

that the “documentation” activities of professional developers require written documents

and are best practice. Consequently, there is really no reason why the student interns

should have jeopardized the Engineering Modules project. On the other hand,

professional developers jeopardize their own development projects all the time and the

meta-language of genre theory does not describe how they still manage to stabilize their

meaning-making communities.

The rhetorical forms I identified during the Engineering Modules project

demonstrate what contemporary professional developers do to manage their purpose,

situation, and community. The following chapter seeks to verify whether the student

interns were poor documenters or if they were showcasing a rhetorical form overlooked

by the field of professional communication. The chapter features seven interviews that

capture the insight of contemporary developers who seek to incorporate documentation

standards into their practice. While they do not have the meta-language to reference

rhetorical forms, as opposed to referencing documentation alone, they still relay the

importance of oral communication.

	

	
	

206	

CHAPTER VI

PREDICTING GENRES: PROFESSIONAL DEVELOPER INTERVIEWS

SPECIFICS ABOUT THE INTERVIEW

 Contemporary developers employ many activities in an ongoing cycle of

development; the activity of “documentation” is just one of those stages. They are the

subject matter experts on their documentation activities but they necessarily speak of

written communication whenever they speak of “documentation” activities. As Nietzsche

suggests, their knowledge is set in a situation bound by language. I drew on the meta-

language of genre theory to interview senior developers who could describe what was

wrong with documentation and describe the rhetorical forms they used to document. I

took seven professional developers to lunch in April of 2012. Over the course of seven

scheduled lunch appointments, I produced nearly five hours of interview recordings. I

talked with the developers about both their development methods and their

documentation. In questioning them about documentation, I expected they would admit

poor documentation practices; I expected they would advocate best practice, all the same;

I expected they would relate what they do in the absence of documentation. However,

where I expected to learn about oral communication practices, I also learned about other

rhetorical forms they employ.

 The American West Heritage Center project demonstrated what could have been a

best practice example of documentation in a contemporary workplace. However,

community ownership became really significant when the Engineer Modules project

	
	

207	

failed to replicate documentation in that way. There was not compliance to

documentation requirements; yet, it was evident the project was not an imminent

catastrophe. I observed pieces of communication, including oral communication, which

successfully stabilized the community and their productivity. Much like the Engineering

Modules project, the Lunch Interviews showcased a lot of pieces of communication too.

 Forecasting interview results. I interviewed the professional developers to verify

that they employed oral communication as their rhetorical form. More specifically, I

expected that contemporary developers sustained their community knowledge by an oral

communication practice that was unsupportable in traditional development methods;

however, I did not expect there would be additional rhetorical forms on top of oral and

written communication—pieces of communication scrawled on white boards and sticky

notes. This was an important verification, insofar as I might have discovered that the

American West Heritage Center project was the example of best practice after all. If that

were the case, then the Engineering Modules project was a randomly successful

aberration and traditional documentation really does work for contemporary developers.

 The interviews in fact verify contemporary developers’ “documentation”

activities employ numerous rhetorical forms that are unaccepted by traditional methods

that privilege written communication. In addition, those contemporary rhetorical forms

are valuable when I use genre theory to predict the rhetorical forms I expect to find both

stabilizing recursive situations and restructuring the rhetorical meaning-making of

development communities.

	
	

208	

 Organization of the developers interviews. Rather than recount five hours of

conversation, I draw the most relevant statements from the recordings. I take the lead

from ethnographic researchers like Emerson et al. (1995) who empower the voice of their

subjects; consequently, I rely on extensive block quoting to fill out each of the 11 points

in the model of expectations. I also match the rhetorical form of oral communication to

the EUPARS model; I want to measure and verify the appropriateness of oral

communication in contemporary development practices.

 Table 9 presents the Model of Expectations. In the case of the two postmortems,

the Model of Expectations was a framework through which I could describe

documentation with a meta-language. I matched each interview question to a bullet point

from the Model of Expectations. Consequently, the subjects’ answers to my questions are

directly related to each expectation. In other words, whatever the subjects said about oral

communication would directly inform each of my expectations.

	
	

209	

Table 9

Model of Expectations Matched to Practitioner Wording

Model of Expectations	 Worded for Practitioners 	
Dynamism

● Genres are developed from actors’ responses
to recurrent situations.	

● Genres serve to stabilize experience and give
it coherence and meaning.

● Genres change over time in response to their
users’ sociocognitive needs.

Dynamism
● The document forms as the team uses it and

responds to it.	
● The document is a common resource for

teams and is a foundation for the innovative
solutions teams require.

● The document changes with team decisions
so that it is a decision making tool.

Situatedness
● Genre knowledge is derived from and

embedded in our participation in the
communicative activities.	

● Genre knowledge is a form of “situated
cognition.”

● Genre knowledge continues to develop as we
participate in the activities of the ambient
culture.

Situatedness
● If it isn’t documented then it didn’t happen.

The act of documentation is the formation
of common knowledge.	

● Project productivity and long-term goals
originate from documented knowledge.

● Documents become more comprehensive
and typified as the community collaborates
and tests the document’s relevance.

Form and Content
● Genre knowledge embraces both form and

content.	
● Genre knowledge is a sense of what content is

appropriate to a particular purpose, situation,
and time.

Form and Content
● Form and Content conform to documented

knowledge.	
● Document-based knowledge prompts

decisions about relevant rhetorical content.

Duality of Structure
● Genre rules inform activities that constitute

social structures	
● Genre rules inform activities that

simultaneously reproduce these structures.

Duality of Structure
● Project planning, roles, and responsibilities

match procedures established in the
documentation.	

● The documented rules guide procedural and
organizational decision-making.

Community Ownership
● Genre conventions signal a discourse

community’s norms, epistemology, ideology,
and social ontology.	

Community Ownership
● Philosophy of development methodology

expressed through documentation and
practice. 	

Interview Subject Profile

 The seven professional developers have a cumulative 74 years of experience.

They are each senior developers and many of them have worked together as a team for

	
	

210	

many years; two of them have worked together for nine years. I asked the developers to

identify their own alias during the interview; the following list presents the profile of

each developer—by alias. In addition, I asked the developers to share their key

development philosophy; they work well together so it is no wonder that their

philosophies follow a single theme.

Bob. Senior Developer. 12 years experience.

Interview Duration: 56 Minutes

Development Philosophy: Code must be easy to read and maintain. Must be

simple enough that it doesn’t need a document.

Joe. Senior Database Developer. 13 years experience.

Interview Duration: 43 Minutes

Development Philosophy: The reason for a report must be clearly understood.

Rebecca. Web Subject Matter Expert. 3 years experience.

Interview Duration: 51 Minutes

Development Philosophy: Build it right, even if it takes longer. Build what is

needed—not what is desired.

Leaf. Senior Database Developer. 11 years experience.

Interview Duration: 32 Minutes

Development Philosophy: Get it out—quick and quality code—don’t

overcomplicate.

Judy. Senior Database Developer. 7 years experience.

Interview Duration: 36 Minutes

Development Philosophy: Flexibility. Optimization. Usability.

	
	

211	

Hudson. Senior Software Engineer. 12 years experience.

Interview Duration: 44 Minutes

Development Philosophy: KIS method (Keep It Simple). There were too many

times getting bit by overcomplicating the solution.

Brad. Senior Software Developer. 16 years experience.

Interview Duration: 34 Minutes

Development Philosophy: KIS method (Keep It Simple). Agile	 is	 only	 doing	

what	 we	 clearly	 know	 at	 the	 moment.

Interview Questions

The interview questions were each taken from a respective expectation in my Model of

Expectations. With that 1:1 relationship, I was able to connect the reflections of the

subject matter experts directly to my Model of Expectations. In addition to the 1:1

questions, I started with icebreaker questions. I wanted my subjects to have the

opportunity to easily feel their strength as a subject matter expert. The icebreakers were

philosophical by nature and set the mood for a contemplative interview experience, from

the start. I expected that when I asked them about documentation that they would confess

their poor documentation practices and explain what they do instead. However, the

interviewees did not often explain what they would do instead; most often, they simply

spoke about what the activity of “documentation” ought to be. Bob, Brent, and Hudson

were the three that were the most contemporary with their documentation and therefore

had the most useful things to say about rhetorical forms, outside of written

	
	

212	

communication. Table 10 showcases questions matched to each of the 11 expectations in

the Model of Expectations.

Table 10

The Interview Questions Organized According to Genre Principles.

Interview Questions	
Ice Breakers

1. How long have you been operating? Can you explain how you are agile and why you choose agile
methods?

2. What is your development philosophy? What development standards do you value most?
3. What does a typical day look like for your own role and responsibilities?
4. If it is not documented it didn’t happen. The absence of documentation is a failure to

communicate. What kind of response do you have for these two statements?

Dynamism

5. I’m looking at these two documents. Describe how they fit into your workflow--both writing and
using them.

6. Describe a situation in which you needed the documentation to resolve the team’s confusion about
the design.

7. Some professionals refer to live documents or organic documents. Describe a situation in which
an organic document a) evolved with the development cycle and b) informed the development
cycle?

Situatedness
8. What changes when design concepts are written down, rather than merely “known” by the team.
9. Industry writers suggest documentation is a bible or blueprint or governing document. Vision

documents. Guiding documents. What kind of governance does documentation have in your shop?
10. Aggregation. Compounding. Synthesis. These are all words that suggest a whole is formed by the

sum of its parts. Can you explain how a document is the sum of development activities?
Form and Content

11. Books have recommended outlines and there are templates available online. What kind of
adaptations do you make when you measure your work against industry samples? Describe an
experience when the recommendations didn’t fit right.

12. In addition to standards, there are other things that don’t fit right. You make decisions about
direction, design, procedure, and operational details that don’t always fit right. I’m looking at this
document sample; can you tell me some tough decisions that involved this document?

Duality of Structure
13. I've observed that your workplace is organized to meet specific needs. In what way did you use

documentation to identify those needs and record your business solutions? Can you tell me how
well the documented business solution works for everyone else in the company?

14. How much do you draw on documented business solutions when you have a meeting? Can you
describe what that would/should look like in a perfect world?

Community Ownership

15. You told me about your development philosophy. Now that we have discussed documentation so
much I wonder how you connect your documentation to your philosophy.

	
	

213	

Most Surprising Interview Question

My biggest surprise was the fourth Ice Breaker question. I used two popular

idioms from professionals that advocate traditional documentation standards. I expected

my subjects would be quick to admit problems with documentation but quickly recover

as the subject matter experts who know how things really work. I did not expect the

subjects to disagree with the first idiom, while also agreeing with the second. They felt

that “If it is not documented it didn’t happen” degraded their work, insofar as they do not

document. Brad’s response to the question was simply: “It did [happen] though.” On the

other hand, Bob disagreed because the computer code is the best documentation.

Even while they disagreed with the traditional implications of no documentation,

they still agreed they were a failure of communication. However, what they meant by

agreeing was not what I originally meant by the questions. When they explained their

agreement it was always insofar as the documentation left for those that come after. They

failed to communicate to other developers or they failed to leave the appropriate details

so they could pick up where they left off. What they did not say was that they failed to

communicate while they were working together. That underscores the importance of the

degradation of the first idiom; they were contemporary communicators who met their

common software philosophies; they were agile, responsive, accurate, and productive.

Brad puts the seeming contradiction in perspective:

“Failure to document is failure to communicate” is only true in a world

where no one can communicate outside of written forms. There are all

kinds of ways to communicate. Meetings where I show [the customer]

how it works. Walk over and tell me—whatever you just did it sucks make

	
	

214	

it better. No [developer or customer] knows up front what they want.

There is never a situation where someone has crystal clear vision of

building something; even if there were [such a situation], a developer

would not know how exactly to build something. Sometimes the effort to

document is a failure of communication.

Brad argues his team communicates really well and that documentation is not as

important as the efficient communication that gets the job done right.

	
	

215	

RESULTS: MODEL OF EXPECTATIONS

The Model of Expectations is well adapted for describing postmortems with a

meta-language and is the foundation for the interview questions. I translated each

expectation into a more industry-based expectation of traditional documentation. Those

practical descriptions are worded for practitioners and faithful to the documentation rules

recorded in industry guides. Each interview question directs the developers to those

“Worded for Practitioners” expectations; however, the developers’ answers do not match

the expectations because they do not use traditional documentation. Consequently, I use

the meta-language of genre theory to describe the rhetorical forms the developers use.

I have 4 hours and 55 minutes of interview recordings. The subjects I selected

carefully articulated 11 exciting answers, based on their senior-level industry experience.

I wish I could simply use a transcription of the interviews for the chapter and let the

developers speak for themselves and their profession. Unfortunately, I can only sum up

their positions and highlight some of the most significant responses. When I highlight

those significant responses, I will provide extensive block quoting to let the subject

matter expert explain the rhetorical form for me.

Unfortunately, answers to these questions were not definitive about either written

or oral communication. There were all kinds of rhetorical forms—use cases, white

boarding, index cards, meeting notes, etc. The mistake I made was to let the developers

answer my questions with how documentation ought to work in such situations; I think I

should have challenged them with a single, game stopping exception: “But you don’t

	
	

216	

document.” They would have responded more along the lines of my expectations; they

would have talked specifically about the other rhetorical forms they use. However, the

answers I did receive do in fact point to the value of oral communication; yet, they also

point to the ongoing importance of written communication and the large array of other

rhetorical forms they use during “documentation” activities.

Results of Dynamism

Actors’ responses to recurrent situations. Interview Question: “Describe how

[documents] fit into your workflow--both writing and using them.”

For the most part, the seven developers tried hard to write traditional documents.

Often, there documentation involved groups outside their team. In those cases, an outside

group’s documentation submission would be requirements that may not have met the

needs of the recursive situation. The developers would seek out and engage the outside

group to build the document that meets the needs. However, Bob and Hudson described

more contemporary experiences with documentation that identify different rhetorical

forms—oral communication, whiteboards, and diagrams.

Joe suggests a good document requires less follow up; Joe builds business

intelligence reports for colleagues and must follow up on poorly documented

requirements. Judy depends on the requirement documents submitted by colleagues; she

expects a specific format and specific information; she always reads the documentation

before she begins development so that she knows she has all the information she needs.

Rebecca documents release notes every time she rolls out web tools or tool

enhancements; however, there are some tools in which the audience is so close to the

	
	

217	

actual development that she does not document the release. Much like Rebecca, Leaf also

documents release notes. However, Leaf works on a system that impacts much more of

the organization so Leaf must review communication documents from other teams and

release his own notes as well. Brad writes guides, charts, and diagrams for other

developers; he does not typically write rationale, unless the “normal way” did not work.

Bob said contemporary methods seem to require less documentation because the

team works so closely with so many iterations—suggesting strong oral communication.

I think we tend to have…whether agile has pushed this way or not I’m not

very sure because I didn’t do a lot of waterfall type design or

documentation in the past. I see that we tend to require less documentation

to convey ideas between developers because we are working so close and

such fast iterations and on the same code at the same time that there

almost seems to be less of a need for documentation.

Hudson remarked that he worked both traditional and contemporary development

methods; he suggested written documentation is weak in both methodologies.

When I was doing waterfall companies would say they were waterfall but

they wouldn’t give you the time or resources to do waterfall. So they

would force you to pretend waterfall…The thing about agile is it is an

honest contract. You and the business owner agree to build things

iteratively and to rapidly prototype and to have versions and revisions and

iterations. Push stuff out roughly and revisit and change it over time. In

the same amount of time it took to flush that out in the waterfall model

you are further along, better product, more quality, using the agile

	
	

218	

methodologies…documenting the process documenting the software

documenting the roll out the access the security none of that is important

enough to stop development on the next thing.

Stabilize experience and give it coherence and meaning Interview Question:

“Describe a situation in which you needed the documentation to resolve the team’s

confusion about the design.”

Bob described the problem with both stabilization and meaning-making in his

own practices—the usefulness of written communication and how it should be done:

Here is how we should architect the app. There is a piece over here that

does blah and a piece over her that does blah and a piece over here that

needs to talk to these two. And you go through this discussion and

everyone in the room is in [agreement]…where you start having problems

is when someone is building their piece and you start building your piece

and you can’t remember how they are supposed to interact. And what you

end up with is two pieces that don’t work together.

Leaf and Rebecca both related different situations in which the absence of a

document seriously impacted the stabilization of the community. There were numerous

high management stakeholders, competing interests, and no documentation to unify

everyone. Leaf remarked on the levels of confusion, as well as the frequency in which

components were built incorrectly. Rebecca expressed frustration that the project was

actually six projects merged together in one single nebulous intersection. The overlap

was not defined and destabilized expectations. Further still, Rebecca described how

departments did not work well because in the absence of a defined, documented

	
	

219	

intersection, managers would not agree on prioritization; they all felt their needs were

priority one in a project where each group was left to conduct meaning-making on their

own. In contrast to Bob’s example where oral communication was enough, Leaf and

Rebecca both describe situations in which the community of agents is too diverse to

warrant anything but an official, written document.

Brad also described a situation that highlighted written communication; in this

case he did write documentation. The code he developed at the time deviated from the

expected deliverable and clearly brought coherence and meaning to the situation:

“Documentation actually helped on our current project. The workflow was itself a hack

to get around the implementations so documenting if, when and where brought a lot of

clarity to everyone in the process.”

 Response to users’ sociocognitive needs. Interview Question: “Some

professionals refer to live documents or organic documents. Describe a situation in which

an organic document a) evolved with the development cycle and b) informed the

development cycle?”

The developers clearly outlined the need for documentation but did not identify

written rhetorical forms as their particular sociocognitive need. In fact, Bob frequently

abandons written documents.

Good intentions—when you make changes log it. But when you run

against timeline or you forget [it is] difficult to be accurate and make it

worthwhile. Where we have failed with live documentation is we did not

have someone with us who had the primary goal was to keep the

documentation up. Usually left to developers who are too interested in the

	
	

220	

code to make it worth while…It needs to be iteratively at the same

time…you have to be this all encompassing team that all have their fingers

in the stew and working on it a little bit at a time.

Bob’s sociocognitive need is either an deeply immersed writer or a team that relies on an

organic document that morphs to community knowledge.

 Hudson declared that organic documentation is the only way but admits there is

only one organic document the team maintains:

The organic document we have is the one that talks about our coding

policies and coding procedures. That document has been a living

document that we keep that helps us all develop in a way that we can read

and understand. But I think that living documents is the only way to go. A

living document is kind of a necessity in a fast paced environment…there

is no procedure to update it. In the past we periodically come back

together as a team and say we should get our standards together.

Results of Situatedness

 Participation in the communicative activities. Interview Question: “What

changes when design concepts are written down, rather than merely “known” by the

team.”

The developers did not all take a clearly traditional position. Bob, Joe, Leaf, and

Judy each agreed that a written document was the best way to transmit information to the

team and retain the team’s situated knowledge. Rebecca complained about all the phone

calls when things are just “known”; she also pointed out that agreement in meetings was

	
	

221	

difficult because no one could remember previous decisions in the same way. Hudson

suggested that reliance on undocumented “knowledge” encouraged knowledge experts to

silo themselves.

 Brad strongly opposed that documentation was the source of situated knowledge.

Brad felt a healthy, traditional document interfered with good communication.

Pro side: greater consistency, people are building the same vision. On the

con-side, if anything causes that vision the need to change. You end up

getting more confusion. Because some people will be working off known

data and some people will be working off current documentation. And

some people will be working off old documentation. So the challenge is to

recognize when to either [abandon] a document or how to [operate]

changes to everybody. In case of the giant waterfall project so many

people made the changes in so many places so often across so much of the

project. That keeping the document version was impossible. And even if

every update had been made to the document. You basically would have

re-read a novel multiple times to keep up with the project. The document

was so large it was unusable. It got to the point where it got so

cumbersome that we wouldn’t even work off of the document. We would

just go back and tell them so it would get added to the document. Which

they would diligently do. But then no one would read what we’d added to

it, because no one was working off of it. So in the end the document was

schizophrenic use of words. It was pretty interesting. If you wrote five

	
	

222	

chapters of a book being written by five different authors, and those

authors weren’t allowed to talk to each other. It was literally 1000 pages.

A form of situated cognition. Interview Question: “Industry writers suggest

documentation is a bible or blueprint or governing document. Vision documents. Guiding

documents. What kind of governance does documentation have in your shop?”

Bob relies on diagrams, mockups, and screenshots. Joe obtains documents but if

the colleague deviates he insists on elaboration so he only needs to code one time based

on precise requirements. Rebecca does not think docs are governing docs; they are

clarifying docs. She does not want to be stagnant just because some 16-page document

governs the only way to do something; a document should clarify requirements and it is

up to her how she does it. Leaf prefers to think of documentation as more of a blueprint

than a guiding document; Leaf wants overall rules but no dictation.

 Judy describes documentation as sort of sharing but it is not a contract either.

It’s a knowledge sharing, and it’s a key to enter to something that you

need to involve but you are not aware of. It can save you a lot of time.

Documentation is important and I will always request documentation if

possible. But I also understand it’s not a contract. Meaning that you have

to there are some errors in the documentation—not 100 percent accurate.

 Hudson admits he has not experienced a governing document that creates a

situated knowledge. To illustrate the document with which he has experience, he

described a long two-hour meeting in which he developed the user stories. He speculated

that a collection of user stories might be acceptable for the “documentation” activity.

	
	

223	

I think that would be something more like a user story…the user story

conflicts with something [or] the user story is the blueprint and the list of

user stories then could be an overall vision document but again that is

something that happens so rarely in our development. Often, we have to

assume the user story or know it; most of the time we don’t record our

user stories in documents. There may be a rough lists in a project request.

I had a two-hour meeting where they basically spit out all their

requirements verbally and maybe someone takes notes.

 Brad does not want the documentation to rule his life because documentation does

not rule his colleagues that identify their requirements. He stated that such colleagues are

not governed by the document when they change requirements halfway along the project

timeline.

Only if the requirements folks are willing to obey too. That’s the problem.

It’s always one sided. The people on the deciding end of things think they

can make whatever changes whenever they want and they just gotta

change the document. And we’re expected to live with that. But we can’t

make any changes to it. Doesn’t work that way. Go to an actual architect

contract them to build a skyscraper. And after they’ve got to the 26th floor

of 52 floors. Just go ahead to tell them you want to move where the

elevator would be located. And see what answer you will get. The answer

is no. Absolutely not! If it comes to me quitting—fine. But I’m not

moving the elevators. But software is all virtual so nobody holds to that.

So Documents can’t rule my life. Because they don’t’ rule the other side.

	
	

224	

Fortunately because we’re virtual we can do it. Often. But there has to be

a corresponding conversation. Timelines, effort, why are we moving it. Is

it worth it? And that will ultimately change whatever you document. So

the documentation would have to adapt if were trying to keep

pace….Documentation is so large and cumbersome, it started being a

deposit of information without anyone ever trying to withdraw

information from it, and document not being read is not a lot of value.

There are reasons in there, it was just too big and too irrelevant to any one

individual’s work task. It’s got to stay relevant.

 Participate in the activities of the ambient culture. Interview Question:

“Aggregation. Compounding. Synthesis. These are all words that suggest a whole is

formed by the sum of its parts. Can you explain how a document is the sum of

development activities?”

Bob suggests that the documents show the whole picture (what systems talk to

what systems) so when a developer sees how data is exposed in another part of the

system that necessarily changes the way the developer acts.

Documentation in the form of mock-ups [aren’t the sum of development

activities]. But documentation in the form of UML tag around and that

kind of thing. I think it helps solidify that because while you may be

working on this one piece over here that’s just the interaction with the data

base. When you see the whole picture. When you see the entire system

diagramed out. You really get to see what systems were talking about.

Systems and a lot of those things will influence how you develop your

	
	

225	

piece. If you know that your data is eventually going to be exposed over

here then you may develop the interactions with that data differently. So I

guess that’s backwards from what I’m trying to explain. Every little piece

in that system by itself should be …if it’s well factored code and that kind

of stuff…that data library should be able to stand on it’s own and be used

by multiple things. How it fits into that big picture is really important to

how you develop. So you take all these little pieces. Then that big picture

shows you what you built.

Brad expressed concern about a document that is an accumulation of a team’s

project knowledge. He cautions against the Frankenstein monster; he states that some

parts are not needed for some roles—do not need to see those parts. I edit out the

proprietary information with the following convention: “[…]”.

Yah, the whole is formed from the sum of it’s parts. That [question] has to

issue a warning that so too was Frankenstein. So in order for it to be the

good sum of it’s parts it should document as little as possible only what’s

relevant and [eventually] detailed decision making that doesn’t affect the

processes as a whole to the decision makers. And if they require a

separate document they would just reference it. So for instance on a web

site: I may develop a […] for my own use for the database. But the web

designer doesn’t care doesn’t needs to see it. They can ask for it if they

want. But they shouldn’t be involved in that document. And so if you have

the single responsibility philosophy around the documents that would

help. And then on the same note, as a […] developer I could care less

	
	

226	

what a CSS file says. Literally matters to me not one bit. (CSS document

the cascading style sheet)

Results of Form and Content

Embraces both form and content. Interview Question: “Books have

recommended outlines and there are templates available online. What kind of adaptations

do you make when you measure your work against industry samples? Describe an

experience when the recommendations didn’t fit right.”

Bob has searched the web forums for solutions but (assuming the online forum

answer is a kind of documentation) often the solution is the solution for a specific context

and does not fit into another context. Joe told a story of when he built an online help file;

he planned to base it off of Microsoft’s help file system but decided to adopt a “purely

screenshot vision” of the help file, where the screen is presented and people can click on

the parts that interest them to get context-sensitive help. In addition, Joe described an

unimplemented user demand with which he could adapt the form and content yet again.

The type of documentation that I’ve done in the past is like programming

standards. Also I did mention I did build a help file for that one system.

And I used, and looked at Microsoft’s help file, and I structured my help

file according to that standard…[but] instead of having them read through

a bunch of text I put a picture of my screen on the image and let them

hyper click. Click it on the screen Click the button and it pops out a

message, Saying what it’s doing. So it’s more of a visual…The problem

is the help file worked so well, that sometimes people would go to the help

	
	

227	

file, and be like “I can’t enter it in.” If I would have had time I would have

made it a little bit more noticeable that this is documentation as opposed to

the actual application itself. So you’d know which they were in because it

was so much alike.

Rebecca was once given a document that detailed every feature of three different

sites so that one single new site could do everything the other three sites did; this

distressed her at the time because the consequent documentation did not highlight any

distinguishing details.

Hudson does not want circus—lots of content that should be separated or deleted;

he will “grow down or grow up” the document, based on what he needs. Brad advocates

very specialized documents; Brad fills out general documents if he is required but general

documentation does not add lot of value to his process. The documents that he finds

helpful are the ones that are specific to some very separate piece of detailed information.

Appropriate content for a particular purpose, situation, and time. Interview

Question: “In addition to standards, there are other things that do not fit right. You make

decisions about direction, design, procedure, and operational details that do not always fit

right. I’m looking at this document sample; can you tell me some tough decisions that

involved this document?”

Bob describes being empowered to change documentation a little; if he did not

understand it or it did not feel right they did it the best way they could. Leaf was pretty

clear about his position—just change the document.

 Brad shared a story demonstrating that the document could not have kept pace

with decisions on a project.

	
	

228	

The actual project had to be re-engineered 6 times and it was all because

we had made assumptions about minimum functionality on an underlying

system and it all proved false. The system was far less functional than we

ever expected. So the hard part is that if we had documented that

project—which we didn’t—but if we had we likely would have said, “well

we’re going to build this so that we can send this to that.” So what would

happen is because of the fact of the end destination of that couldn’t handle

the traffic we had to add multiple interceding pieces to manage the slow

flow or feed that data into the underlying systems. You know that initial

design document would not have captured what it looks like at the end and

it would have been updated to keep pace with it. Really the document

would not have driven most decisions.

Results of Duality of Structure

Inform activities that constitute social structures. Interview Question: “I've

observed that your workplace is organized to meet specific needs. In what way did you

use documentation to identify those needs and record your business solutions? Can you

tell me how well the documented business solution works for everyone else in the

company?”

Bob states they are lacking on this and are working on it; a document would head

off questions to the developers; Bob highlights they are happy to help but they do not

remember all the time.

	
	

229	

Joe uses email and the knowledgebase system as his documentation; these

methods let the users write documentation.

Rebecca does not feel like she impacts the structure because while she

consistently issues release notes, she knows that no one reads her release notes. Brad

relates a similar problem; very few of his documents broadcast outside.

Hudson spent several hours documenting recently and they had a great document

up front; however, smaller projects involve just telling or email.

We spent several hours in several meetings on what we were going to

build and how we were going to build it, with several people in the room.

[One colleague] recorded what we wrote and said and drew on the boards

and we have now a real nice document. Which is a really good guide to

what we should develop and how it should work. We spent that time up

front on that project to do it because it was such a big complicated

important project for the company. That would never happen on smaller

projects that may be just as impactive. That worked out pretty well. But it

was kind of a throw-back towards waterfall development. (To record

business decisions on smaller projects is different.) Mainly it’s by telling

through user testing and acceptance and just telling them how to use the

new system the new process. And email those out to them, that sort of

thing. There’s no documentation. There’s no formal way to describe a

process there.

	
	

230	

Simultaneously reproduce these structures. Interview Question: “How much do

you draw on documented business solutions when you have a meeting? Can you describe

what that would/should look like in a perfect world?”

Bob identifies that documentation is very important for meetings because the

group has already discussed and the documentation is the findings of that discussion—the

Kamban board is their record of previous meetings. Bob argues that if anything were

remembered incorrectly then anything developed from that is flawed. Leaf agrees with

Bob because he states the document is the baseline for each meeting; without that

baseline it is like starting from scratch.

 Joe wants to walk through a screenshot during a meeting and Rebecca likes how

one of the company’s business analysts takes minutes that are project up on the wall.

Judy looks for email because she works with a lot of legacy, potentially obsolete,

documentation.

Hudson says they do not have the utopian documentation; they have little “blurbs”

and lists of requirements.

This sounds like that would be a utopia right. That would be great if we

could do that. I’ve never had a document like that. That describes it too

much. We do have blurbs which could be sort of. So in our IT projects

request system. We for this element system recorded a list of

requirements so we used that list of requirements as clocking points in

several meetings. Where we’d look at them and say this is what the

requirements are and that helped us to solve the problem, build the system,

build pieces of the system to support the requirements there. So it was a

	
	

231	

glimpse of what it could be. Because even in agile it would be good to

have documented user stories and a list of requirements at the beginning of

a project. Even the smallest project. So I think the big thing that I notice

that when we have those we get to the solution quicker than if we do not.

 Brad states that living documents have no governance. He confirms that simply

by rewriting or updating a document, the document has no governance. On the other

hand, Brad suggests that even if the document did govern, the stakeholders would just

scratch out X and write in Y, even if the documentation said X.

Back then [when I used traditional Waterfall methods] sure they’d always

bring the document. And we’d point out they were four versions behind

and they’d point out that the newest version even if they were worried

about it didn’t include what they were talking about. And the few times we

were able to say the documentation clearly states this, they were able to

say, “well let me change the documentation”. So the fact that it was

written down was meaningless in the face of new requirements. [At my

current employer] we’d all write it down but I think that it’s still true. If

the business came to us and said well we needed to do X now and we said

“but you wrote down Y” then they would say “well, here hand me that”

scratch scratch scratch, do X. There! Happy? So we don’t even bother to

write it down. See. That’s the thing about living documents; it’s great if

you ever would want to refer to them later. Which isn’t usually done.

Because if their living, then there not. They have no governance.

	
	

232	

Community Ownership and Results

Norms, epistemology, ideology, and social ontology..Interview Question: “You

told me about your development philosophy. Now that we have discussed documentation

so much I wonder how you connect your documentation to your philosophy.”

Unfortunately, the developers interpreted this question as an opportunity to draw a

conclusion so that I did not always feel they were helping me understand community

ownership.

Bob’s documentation is in his code; however, code is so granular that it should

not need a code comment and the less granular the more documentation is required. Brad

is very similar because he talks about documents that only fulfill one highly isolated,

detailed, finite purpose; he likes his documentation to be specific and as granular as

necessary.

Rebecca says documentation is important for disconnected departments because

the documentation enables communication for people not in the same room. For instance,

both Joe and Leaf are remote employees; both Joe and Leaf take requirements from

colleagues so they want fully detailed documents and do what they can to obtain full

documents

With disconnected departments or people, either by land or by time,

documentation is extremely beneficial in the process because customer

involvement and feedback is crucial in agile development. Documentation

enables communication between people that are in the room at the same

time or people that are dislocated. For example, I don’t want to have to

call people every 10 minutes. So I have to take notes when I’m on the

	
	

233	

phone with [with a colleague]. To note how I’m going to do something.

Versus Derek I don’t usually take notes because he’s just right there. If I

have a question I just turn around and say “Hey [colleague], did we think

about this.” So that’s where Documentation is particularly beneficial.

Hudson’s KIS applies to code and should apply to his documentation. He wants

simple docs that tie into his code 100%. He does not want “circus”; he does not want to

jump through hoops and follow all kinds of rules.

Ya if I was to be able to make all the decisions on what amount of

documentation and how we documented in our process. Those

philosophies would tie into it 100%. So the “keep it simple”. I would

apply that to code. I would also apply that to my documentation. I would

make the documentation useful, to the point, but simple. Right.

So…some of these rules of something like that as far as you have to do

these 12 steps and all the circus in my documentation. I’d keep it simple in

my documentation. Something I coined I hate circus I don’t like jumping

through hoops. Or pretending just for somebody’s ego. Our boss says you

need to do this. It doesn’t help the process. Right? So you have to go

move the card on a board, you have to tell me an estimate even though we

know that estimates don’t work. Cause were not up front documenting,

were not upfront estimating. An architect our stuff, we’re very agile. We

jump in, we spit something out, we reiterate. We spit something out

again—we reiterate. That comes very contrary to “tell me when it’s going

	
	

234	

to be ready” philosophy, but we have people above us who are pretty old

school that don’t understand that or don’t want to accept that. So they still

ask for deadlines.

INTERVIEWS WITH THE EUPARS FRAMEWORK

David E. Hailey created the EUPARS model to identify the appropriateness of

text for various sites. While Hailey (2013) uses the word “text,” in his book, I substitute

“rhetorical forms” so I can stay consistent with the rest of this dissertation. Yet, Hailey

goes to great lengths to define “text” very loosely in his book. Hailey believes everything

is a text because, “any pattern that can be separated from other patterns is by definition

text” (unpublished, p. 70)—much like Derrida and Roland Barthes. For instance, Barthes

(1975) pushes text further than “words on a page” by distinguishing work from text: "a

'work' is a closed, finite product of traditional canonical literature; a 'text' is an open

process with which one can interact creatively" (p. 517). In this way, a traditional text is

actually a work, whereas Barthe’s text is an interactive object that draws on the creative

attention of an audience. In other words, text is not a single dormant unit; text can be a

host of rhetorical forms.

Hailey argues that not all rhetorical forms belong in all genres. For instance, he

demonstrates his point with a website that places the company’s “About the Company”

statement on the front page. According to the EUPARS assessment model, the front page

is an inappropriate place for that specific text. As reason, Hailey suggests the rhetorical

stance and the structure are inappropriate for a front page. After all, the visitor does not

	
	

235	

want to read through an “About the Company” statement; rather, the visitor wants to see

content. In addition, the structure is poor because an “About the Company” text is written

with a narrative style. The visitor does not likely wish to examine dense text; rather, front

page visitors want to see bullets, numbered lists and chunked information.

Table 11

Hailey’s Demonstration of His EUPARs model.

 Evaluation Appropriate?
If not, why not?

Exigency Someone in a decision-making position feared that potential
customers coming to the page would not know who the company is
and how inexpensive their products are.

YES

Urgency It is probably important that some information be here. YES
Purpose Immediately inform the user. YES

Audience They accurately describe their audiences in the paragraph: various
portions of the public and construction community interested in
solar power. The audience will range between people completely
uninformed on the subject (wanting to learn about it) to people with
certification on the subject and simply wanting a less expensive
resource.

YES

Rhetoric The rhetorical breakdown is subtle. The copy is clearly designed to
persuade the audience that Wholesale Solar is a good place to buy
solar products, and it assumes that audience is open to persuasion.
The audience comes to the page and will find it useful to
immediately know they are in a right place, as it is useful for the
company to be able to pitch itself to the audience.

NO: The audience
will need to
immediately know
where they are. The
paragraphs do not
meet that need.
Instead, they force
the audience to read
unnecessarily dense
blocks of text.

Appropriate Narrative NO: The
appropriate
structure for this
kind of content is
bulleted or
numbered lists.

	
	

236	

 The above table presents the assessment data for the “About my Company”

rhetorical form. The rhetorical form meets the requirements of several EUPARS terms;

however, Hailey describes his evaluation of what kind of structure the rhetorical form has

and then describes why the rhetorical form is appropriate or not.

The Interviews Presented in the UEPARS Table

The following is my own evaluation of the rhetorical form I have overlooked with

genre theory—oral communication. According to the developers I interviewed, while oral

communication is a new rhetorical form, it is not the only new rhetorical form. As Hailey

(2013) suggests, a web page is the location of several genres. Similarly, Clay Spinuzzi

(Spinuzzi, 2003) suggests genres make up a genre ecology in which one single rhetorical

form connects to all the others. In similar way, software documentation is several

rhetorical forms--pieces of simultaneous communication. However, while oral

communication is not appropriate for contemporary developers, neither is traditional

documentation. In the end, the developers used multiple rhetorical forms.

	
	

237	

Table 12

Application of EUPARs to the Lunchtime Interviews.

 Evaluation Appropriate?
Exigency They don’t have resources or business buy-in to

deliver as many documented deliverables as
undocumented deliverables so they need faster ways
to communicate.

Yes

Urgency Business wants solutions now. The developers need
to communicate now. Takes longer to document than
it does to develop sometimes.

Yes

Audience Talk to each other. Whoever needs to be involved
can be involved; if you are not involved then do not
engage. But they admit failing transmitting outside
group, whether written or not

No.
Inappropriate if it
replaces written
rhetorical forms. But is
appropriate if it is one
among an ecology of
rhetorical forms.

Purpose Can’t replace documents but oral communication is
fast.

Yes

Rhetorical Stance Team is persuaded and it works for developers great.
outside don’t actually read it so how can they be
disappointed at the lack of transmission.

No.
Written is inappropriate
and so is oral.

Structure Written is inappropriate. They talk and collaborate in
tight cycles and close proximity. However, their
remote colleagues still require written documents.

Yes.

The Interviews and Appropriate EUPARS

 Oral communication seems appropriate for the exigency, urgency, audience, and

structure of contemporary developers. In other words, oral communication seems to do a

better job than traditional documentation for these senior developers because it meets the

need of contemporary developers who need quick and agile responsiveness to business

needs. Much like the student interns of the Engineering Modules project, the lunchtime

interview participants did not write documentation, as recommended by the software

industry. They talk a great deal at their cubicles, in five-minute “stand up” meetings and

at the white board. They had artifacts for many of those oral communications (temporary

	
	

238	

content on a white board, diagrams, user stories, etc.) but their reliance on their six-foot

proximity was clear. They move between cubicles, talk over cubicle walls, share screens,

and stand together talking between all their cubicle desks. During the interviews, they

described how documentation is supposed to look but they were quite clear that they did

not work that way.

Joe and Leaf expend lots of energy making sure they have all their traditional

documentation; yet, they are the remote colleagues on the team and may necessarily need

written communication. Judy is in the middle; she wants traditional documentation, does

not like working with outdated legacy documentation and recognizes that the business

will likely change before she can develop the alteration—never mind document the

alteration too. Brad is on the other side of the spectrum embracing oral communication

and thinking beyond the constraints of traditional documentation. In fact, Brad relayed

the story about 1000-page document; he said the company frequently distributed printed

volumes but the subsequent software “sucked.”

The Interviews and Inappropriate EUPARS

On the other hand, oral communication is not appropriate for either the audience

or the rhetorical stance. Simply put, traditional documentation might suit the audience

and rhetorical stance the best. Yet, that is not a game changer because the developers

were always quick to (1) identify they did not actually document in that way and (2)

outline the flaws in that kind of documentation. Most importantly, they mentioned the

array of rhetorical forms they used to substitute the clunky documents they did not write.

	
	

239	

Inappropriate for the audience. In most cases, oral communication worked well

but the audience was not limited to only the development team. In other words, if the

team was the only audience then oral communication worked well for them. However,

the documentation they did write was used by different departments in the company so

that the audience was not simply the developers. Consequently, oral communication was

not the best way to transmit information outside the small, tightly unified, contemporary

development team; they did not share cubicle walls with every department.

Inappropriate for the rhetorical stance. Traditional documentation assumes that

large groups need a center of meaning from which they can find unity and direction. By

their own admission, the developers each relayed reservations that oral communication

creates either unity or clear direction. Yet, the developers were also clear that traditional

documentation does not actually unify or direct either. For instance, Brad adamantly

stated that the effort to document was often a failure of communication in and of itself.

Hudson was frank about the weaknesses of traditional documentation. He remarked that

even his experience with traditional development workplaces did not have the resources

to document according to best practice.

The conclusion here is a different kind of rhetorical stance evidenced in the

interviews. The developers extended their agile, contemporary values to “documentation”

so that they employed many rhetorical forms to transmit the center of meaning to relevant

stakeholders. They did not simply write or talk; they scribbled on white boards, tacked

index cards on the wall, and traced out diagrams. Their transmission strategy was pieces

of communication like the sticky notes and meta data files I gathered during the

Engineering Modules project.

	
	

240	

DISCUSSION OF RESULTS

 There is more to contemporary “documentation” activities than simply written

documentation. Documentation also includes an array of rhetorical forms. However, as

long as developers and researchers speak the language of written documentation, those

additional rhetorical forms remain outside detection. By breaking the recursive activities

into purpose, situation, and community, I have highlighted both the oral communication

and pieces of communication that constitute the rhetorical forms of contemporary

developers.

Shifts to contemporary situation, community, purpose. The Situation of

development shifted from traditional to contemporary practices to accommodate smaller,

short-term projects. The contemporary practices also acknowledged that users had a

stronger voice that could improve the quality of software production.

The Community of developers adjusted their mindsets to value the speed and

flexibility they needed to meet development schedules and client needs. The community

altered decision-making processes to support projects that changed so quickly; decision-

making needed on-the-spot spontaneity, rather than ponderous decision-making policies.

The Purpose of documentation activities had to change with the development

practices, even if contemporary developers still tried to make traditional documents work.

The simple fact was that traditional, preplanned documents served a different situation

and community. Contemporary developers need documentation that both supports and

matches the speed of development. They need a record of the most recent decisions,

without spending half the day updating the written documentation every time.

	
	

241	

Contemporary developers need rhetorical forms like oral communication. Even a

snapshot of action items listed on the whiteboard is a rhetorical form that supports

development and records key decisions.

 Answers to the research problem. I wanted to know why developers were not

documenting like I thought they should be. I knew industry recommendations for

documentation and I knew how genre theory described the documentation I expected.

However, contemporary developers simply did not document as I expected or did not

document at all. I set out to answer three research questions:

1. What do they use instead?

2. Are current approaches appropriate?

3. If they are not appropriate, what should the developers be doing?

Instead of written documentation, developers use a variety of rhetorical forms. According

to the EUPARS model, those pieces of communication are the appropriate rhetorical

forms for the purpose, situation, and community.

The Impact Rhetorical Forms on Genre Theory Research

Rhetorical forms. Both professional communication researchers and genre theory

researchers seem to focus on written communication. Researchers of written

communication naturally look for written communication when they observe written

communication practices. This fixation limits the predictive power of genre theory in

cases like contemporary software development when written communication is not the

rhetorical form on which they rely. With the addition of a rhetorical form like oral

communication, genre theory researchers have a complete meta-language to go beyond

	
	

242	

the language of written communication and describe rhetorical forms with a meta-

language like genre theory.

Verbal precision. Researchers need more precise terminology than verbal and

non-verbal text—particularly because neither really references speech acts. Even in cases

when researchers refer to verbal communication, they typically suggest written

communication that has words—as opposed to the wordless non-verbal communication

(i.e. illustrations). The primary implication is that verbal communication should be

reserved for speech acts alone and more descriptive terminology should account for other

rhetorical forms.

Genre ecology of oral communication. Oral communication is a blanket term.

There are many genres of oral communication employed by public speakers, actors, and

singers. In fact, when my family members having kitchen table arguments about politics

they are deploying a genre of oral communication. Developers utilize a large range of

oral communication genres. Much like Clay Spinuzzi’s genre ecologies, researchers need

to understand the web of genres that sustain contemporary development communities.

The Impact of Rhetorical Forms on Software Development

Oral communication as a value. While contemporary development methods are

not brand new, they are not mature practices that have entirely replaced traditional

methods—there are plenty of traditional developers still. For instance, government

developers often use traditional methods for the federal software systems that services

thousands of users. Consequently, this dissertation supports oral communication as a

supportable value in contemporary development methodologies, even if traditional

	
	

243	

developers do not count oral communication as a “documentation” activity. After all,

when traditional developers even have cycles, those cycles are measured in months, and

formalized documentation is a necessary solution for something everyone on the team

likely forgot months ago. However, contemporary developers measure their cycles in

days and their oral communication carries their tightly coupled iterations.

Developer guilt. When developers meet me, they often confess their

documentation weaknesses. After all, I am the software documentation researcher and I

would know just how bad they really are. To a certain extent that is true; at the same

time, as a software documentation researcher, I have wondered at the distinction between

the documentation I expect and the documentation I actually find. Developers should stop

feeling so guilty about weak documentation practices because they judge their

contemporary practice by traditional values. The addition of new rhetorical forms means

the development of more community ownership in areas they had not yet seen; after all,

they were very busy trying to write the traditional documents they knew they should

write.

Pieces of communication. Developers surround themselves with communication

that they do not recognize—rhetorical forms not acknowledged by traditional, industry

authorities. Consequently, they have a lost rhetorical opportunity to build a strong

communication practice because they do not acknowledge the pieces of communication

in their development ecosystem. Once they see their pieces of communication, they can

formulate a plan to transmit meaning through those rhetorical forms that clearly work for

the team. They can develop community ownership for those pieces of communication

	
	

244	

and develop dynamic ways to formalize them as they adapt their form and content again

and again.

Natural fit of documentation. Finally, developers should stop trying to fit

traditional documentation into contemporary development practices. Without a meta-

language, I was unable to separate documentation from the “documentation activities”

too. However, the meta-language outlines the pieces of communication that stabilize

purpose, situation, and community. Contemporary developers have oral communication,

along with other rhetorical forms, with which they already have a natural fit.

Opportunities for Ongoing Research

Three future adaptations of a similar study.

• Use one specific document to which all interviewees can refer. While I planned

questions that would refer to a specific document, the lunchtime interviews

were not conducive to the acquisition of samples. However, future work would

need to secure common documentation samples on which various questions are

based—that way the interviews control for that variable.

• Contemporary development is an enormous umbrella for a very diverse range of

methods. There are many specific titles with very specific differences. Those

differences impact the community ownership of developers because their choice

of methodology is a choice that reflects customized development principles. In

short, Scrum, Agile, Kanban, Object-Oriented, etc are a few names among

many possibilities. In addition, the responsibilities of different developers in a

team makes a difference in how their chosen methodology functions. My

	
	

245	

interviews included software engineers, database engineers, and web engineers;

future study should narrow the interview pool to one specific kind of software

developer.

• What are the rules for an oral communication genre in development? When

there is a purpose, rhetorical situation and meaning-making community there is

also a set of parameters to isolate community knowledge, determine the

standards for enculturation and clear criteria for a structure that must be both

stabilized and reconstituted. The meta-language needs to break up the genre

ecology and outline how the various rhetorical forms are used and what oral

communication does or does not count as a “documentation” activity.

Three important issues to resolve with future research. I do not think the

interview questions prompted enough discussion of oral documentation practices and I do

not think I was aggressive enough countering noble industry sentiments with “That is a

well stated documentation principle but you do not document. So what do you do instead

if you don’t document?” I did not want to tell them to tell me that oral communication

was a new rhetorical form; however, I should have done more to get the interviewees

talking about oral communication.

With the documentation success of the American West Heritage Center Tour

project and the documentation failure of the Engineering Modules project, I wonder how

much more remote developers might rely on documentation than onsite developers.

Remoteness can be a barrier that traditional documentation resolves. However, if the

interviewees are under such pressure to complete development projects for the

	
	

246	

departments they serve, then how come the remote employees still managed to produce

documentation?

I need to verify oral communication is not simply a poor substitute for what

should be a best practice. Even if I’m verifying that professional developers do in fact

employ oral communication as a valid rhetorical form, is it simply the company will not

commit resources to support healthy documentation practices? I might be simply

justifying a poor solution. Perhaps developers should just document and stop making

excuses.

	
	

247	

REFERENCES

Adams, E., & Rollings, A. (2003). Andrew Rollings and Ernest Adams on game design.
 Berkeley, CA: New Riders Games.

Adams, E., & Rollings, A. (2007). Fundamentals of game design. Upper Saddle River,
 NJ: Pearson Prentice Hall.

Antoine, V. (1985). The software documenter: A new specialist. Technical
 communication, 32(3), 16-18.

Askehave, I., & Nielsen, A.E. (2005). What are the characteristics of digital genres? -
 Genre theory from a multi-modal perspective. Paper presented at the System
 Sciences, 2005. HICSS '05. Proceedings of the 38th Annual Hawaii International
 Conference.

Bakhtin, M.M. (Ed.). (2007). Speech genres and other late essays (11th ed.). Austin, TX:
 University of Texas Press.

Barker, T.T. (1998). Writing software documentation: A task-oriented approach. Boston,
 MA: Allyn and Bacon.

Barker, T.T. (2003). Writing software documentation: A task-oriented approach. Boston,
 MA: Allyn and Bacon.

Barrett, K.H., John; Hilmer, R.; Posner, D.; Snyder, G.; Wu, D. (2003). Pseudo
 interactive's cel damage. In A. Grossman (Ed.), Postmortems from game
 developer. San Francisco, CA: CMP Books.

Barthes, R. (1975). The pleasures of the text. New York, NY: Hill and Wang.

Beck, K. (2000). Extreme programming explained: Embrace change. Reading, MA:
 Addison-Wesley.

Berkenkotter, C., & Huckin, T.N. (1995). Genre knowledge in disciplinary
 communication: Cognition, culture, power. Hillsdale, NJ: L. Earlbaum
 Associates.

Berkun, S. (2005). The art of project management. Sebastopol, CA: O'Reilly.

Blyler, N.R., & Thralls, C. (1992). The social perspective and professional
 communication: Diversity and directions in research. In N. R. Blyler &
 C. Thralls (Ed.), Professional communication: The social perspective (pp. 3-34).
 Newbury Park, CA: Sage.

Brown, D.M. (2007). Communicating design: Developing web site documentation for
 design and planning. Berkeley, CA: Peachpit Press : New Riders.

	
	

248	

Bruffee, K. (1986). Social construction, language, and the authority of knowledge: A
 bibliographical essay. College english, 48, 773-790.

Brumberger, E.R. (2003). The rhetoric of typography: The awareness and impact of
 typeface appropriateness. Technical communication, 50(2), 224-231.

Brumberger, E.R. (2004). The rhetoric of typography: Effects on reading time, reading
 comprehension, and perceptions of ethos. Technical communication, 51(1), 13-
 24.

Burke, K. (1945). A grammar of motives. New York, NY: Prentice-Hall, inc.

Burke, K. (1950). A rhetoric of motives ([1st ed.). New York, NY: Prentice-Hall.

Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R. (2002).
 Documenting software architectures: Views and beyond. Upper Saddle River,
 NJ: Addison-Wesley.

Cooper, A. (1999). The inmates are running the asylum. Indianapolis, IN: Sams.

Denton, L., & Kelly, J. (1993). Designing, writing, and producing computer
 documentation. New York: McGraw-Hill.

Doumont, J.-l. (2002). Verbal versus visual: A word Is worth a thousand pictures, too.
 Technical communication, 49(2), 219-224.

Dragga, S., & Voss, D. (2003). Hiding humanity: Verbal and visual ethics in accident
 reports. Technical communication, 50(1), 61-82.

Emerson, R.M., Fretz, R.I., & Shaw, L.L. (1995). Writing ethnographic fieldnotes.
 Chicago, IL: University of Chicago Press.

Foss, K.A., Foss, S.K., & Trapp, R. (Eds.). (2003). Contemporary perspectives on
 rhetoric (3rd ed.). Prospect Heights, IL: Waveland Press.

Freedman, A., & Medway, P. (1994). Locating genre studies: Antecedents and
 prospects. In A. Freedman & P. Medway (Eds.), Genre and the new rhetoric (pp.
 1-20). Bristol, PA: Taylor & Francis.

Grant-Davie, K. (1997). Rhetorical situations and their constituents. Rhetorical review,
 15(2), 264-279.

Grossman, A. (2003). Postmortems from game developer. San Francisco, CA: CMP
 Books.

Hailey, C.E., & Hailey, D.E. (1998). Hypermedia, multimedia, and reader cognition:
 An empirical study. Technical communication, 45(3), 330-342.

	
	

249	

Hailey, D. (2014). Reader centric writing for digital media—Theory and practice.
 Amityville, NY: Baywood Press (in press).

Hailey, D.E., & Hailey, C.E. (2002a). Genre theory, technology, and knowledge
 distribution. Paper presented at the Professional Communication Conference,
 2002. IPCC 2002. Proceedings. IEEE International.

Hailey, D.E., Jr., & Hailey, C.E. (2002b). Genre theory, engineering education, and
 circumventing internet bandwidth problems. Paper presented at the Frontiers in
 Education, 2002. FIE 2002. 32nd Annual.

Harmon, W., & Holman, C.H. (1996). A handbook to literature (7th ed.). Upper Saddle
 River, NJ: Prentice Hall.

Johnson-Sheehan, R., & Baehr, C. (2001). Visual-spatial thinking in hypertexts.
 Technical communication, 48(1), 22-30.

Kent, T. (1986). Interpretation and genre: The role of generic perception in the study of
 narrative texts. Lewisburg [PA.] London: Bucknell University Press; Associated
 University Presses.

Kent, T. (1993). Parologic rhetoric. Lewisburg, PA: Bucknell University Press.

Larman, C. (2003). Agile and iterative development: A manager's guide. Boston, MA:
 Addison-Wesley Professional.

Markel, M. (1998). Testing visual-based modules for teaching writing. Technical
 communication, 45(1), 47-76.

McAllister, K.S. (2004). Game work: Language, power, and computer game culture.
 Tuscaloosa, AL.: University of Alabama Press.

Miller, C.R. (1979). A humanistic rationale for technical writing. College english,
 40(6), 610-617.

Miller, C.R. (1994). Genre as social action. In A. Freedman & P. Medway (Eds.), Genre
 and the new rhetoric (pp. 23-42). Bristol, PA: Taylor & Francis.

Nietzsche, F. (1914). The will to power: An attempted transvaluation of all values (A.
 M. Ludovici, Trans.). London, UK: T. N. Foulis.

Qiuye, W. (2000). A cross-cultural comparison of the use of graphics in scientific and
 technical communication. Technical communication, 47(4), 553-560.

Ragaini, T. (2003). Turbine's asheron's call. In A. Grossman (Ed.), Postmortems from
 game developer. San Francisco, CA: CMP Books.

Robinson, P.A., & Etter, R. (2000). Writing and designing manuals. Boca Raton, FL:
 CRC Press.

	
	

250	

Rüping, A. (2003). Agile documentation: A pattern guide to producing lightweight
 documents for software projects. Chichester, England; Hoboken, NJ: Wiley.

Rutter, R. (1991). History, rhetoric, and humanism. Journal of technical writing and
 communication, 21(2), 133-153.

Schultz, C., Bryant, R., & Langdell, T. (2005). Game testing all in one. Boston, MA:
 Thomson Course Technology and Premier Press.

Spector, W. (2003). Ion storm's deus ex. In A. Grossman (Ed.), Postmortems from
 game developer. San Francisco, CA: CMP Books.

Spinuzzi, C. (2001). Software development as mediated activity: Applying three
 analytical frameworks for studying compound mediation. Paper presented at the
 19th annual international conference on computer documentation, Sante Fe,
 NM, USA.

Spinuzzi, C. (2002). Modeling genre ecologies. Paper presented at the 20th annual
 international conference on computer documentation, Toronto, Ontario,
 Canada.

Spinuzzi, C. (2003). Tracing genres through organizations: A sociocultural approach
 to information design. Cambridge, MA: MIT Press.

Spinuzzi, C. (2004). Four ways to investigate assemblages of texts: Genre sets, systems,
 repertoires, and ecologies. Paper presented at the 22nd annual international
 conference on design of communication: The engineering of quality
 documentation, Memphis, TN, USA.

Spinuzzi, C., Hart-Davidson, W., & Zachry, M. (2006). Chains and ecologies:
 Methodological notes toward a communicative-mediational model of
 technologically mediated writing. Paper presented at the 24th annual ACM
 international conference on design of communication, Myrtle Beach, SC, USA.

Thomas, J.B. (1987). Honoring the farm: identifty and meaning in personal narratives.
 (M.S.), Utah State University, Logan, UT.

Upton, B. (2003). Red storm entertainment's rainbow six. In A. Grossman (Ed.),
 Postmortems from game developer. San Francisco, CA: CMP Books.

Williams, A. (2003a). Assessing genre as rhetorical performance in software design.
 Paper presented at the IEEE international professional communication
 conference, Orlando, FL, USA.

Williams, A. (2003b). Examining the use case as genre in software development and
 documentation. Paper presented at the 21st annual international conference on
 Documentation, San Francisco, CA, USA.

	
	

251	

Winsor, D.A. (1990). Engineering writing/writing engineering. College composition
 and communication, 41(1), 58-70.

Winsor, D.A. (1999). Genre and activity systems: The role of documentation in
 maintaining and changing engineering activity systems. Written
 communication, 16(2), 200-224. doi: 10.1177/0741088399016002003

Yates, J., & Orlikowski, W. (2002). Genre systems: Structuring interaction through
 communicative norms. Journal of business communication, 39(1), 13-35.

Zachry, M. (2005). Paralogy and online pedagogy. In K. Cargile Cook & K. Grant-Davie
 (Eds.), Online education (pp. 177-192). Amityville, NY: Baywood Publishing.

	
	

252	

APPENDIX

APPENDIX 1: IRB APPROVAL

Institutional Review Board
USU Assurance: FWA#00003308

Exemption #2

Certificate of Exemption

FROM: Richard D. Gordin, Acting IRB Chair
True M. Rubal, IRB Administrator

To: David Hailey, Jason Cootey
Date: March 29, 2012
Protocol #: 4331
Title: Agile Documentation Practices

 The Institutional Review Board has determined that the above-referenced study is
exempt from review under federal guidelines 45 CFR Part 46.101(b) category #2:

Research involving the use of educational tests (cognitive, diagnostic,
aptitude, achievement), survey procedures, interview procedures or
observation of public behavior, unless: (a) information obtained is
recorded in such a manner that human subjects can be identified, directly
or through the identifiers linked to the subjects: and (b) any disclosure of
human subjects' responses outside the research could reasonably place the
subjects at risk of criminal or civil liability or be damaging to the subjects'
financial standing, employability, or reputation.

 This exemption is valid for three years from the date of this correspondence, after
which the study will be closed. If the research will extend beyond three years, it is your
responsibility as the Principal Investigator to notify the IRB before the study’s expiration
date and submit a new application to continue the research. Research activities that
continue beyond the expiration date without new certification of exempt status will be in
violation of those federal guidelines which permit the exempt status.

 As part of the IRB’s quality assurance procedures, this research may be randomly
selected for continuing review during the three year period of exemption. If so, you will

	
	

253	

receive a request for completion of a Protocol Status Report during the month of the
anniversary date of this certification.

 In all cases, it is your responsibility to notify the IRB prior to making any changes
to the study by submitting an Amendment/Modification request. This will document
whether or not the study still meets the requirements for exempt status under federal
regulations.

 Upon receipt of this memo, you may begin your research. If you have questions,
please call the IRB office at (435) 797-1821 or email to irb@usu.edu.

The IRB wishes you success with your research.

4460 Old
Main Hill

Logan, UT
84322- 4460

PH: (435)
797-1821

Fax: (435)
797-3769

WEB:
irb.usu.edu

EMAIL:
irb@usu.edu

	

	
	

254	

APPENDIX 2: LETTER OF INFORMATION

Department

of English
3200 Old Main Hill
Logan UT 84321
Telephone: (435) 797-2733
	

	

LETTER	 OF	 INFORMATION
	

Agile	 Documentation	 Practices	
	
Introduction/	 Purpose	 	 Dr.	 David	 Hailey	 in	 the	 Department	 of	 English:	 Theory	 and	
Practice	 of	 Professional	 Communication	 at	 Utah	 State	 University	 is	 faculty	 advisor	
for	 a	 research	 study	 to	 find	 out	 more	 about	 internal	 Agile	 software	 documentation	
practices.	 Jason	 Cootey	 is	 a	 PhD	 student	 conducting	 this	 research	 study	 for	 his	
dissertation	 project.	 You	 have	 been	 asked	 to	 take	 part	 because	 your	 organization	
has	 been	 identified	 as	 an	 Agile	 developer	 who	 maintains	 internal	 software	
documentation.	 There	 will	 be	 approximately	 five	 total	 participants	 in	 this	 research.	
	
Procedures	 	 If	 you	 agree	 to	 be	 in	 this	 research	 study,	 you	 will	 need	 sit	 for	 an	
interview.	 You	 are	 not	 required	 to	 answer	 all	 the	 questions	 in	 the	 interview	 but	
answers	 to	 all	 questions	 will	 return	 the	 most	 value	 for	 the	 time	 taken.	 The	 interview	
will	 be	 a	 verbal	 conversation,	 with	 close	 to	 a	 dozen	 talking	 points,	 which	 will	 last	
between	 30-‐50	 minutes.	 	
	
One	 consideration	 that	 will	 improve	 the	 quality	 of	 the	 interview	 is	 the	 inclusion	 of	
proprietary	 documentation.	 While	 documentation	 is	 not	 required,	 a	 reference	 will	
facilitate	 discussion	 and	 make	 answering	 questions	 easier.	 You	 can	 provide	
documentation	 for	 the	 duration	 of	 the	 interview	 in	 print	 form	 or	 on	 a	 computer.	
After	 the	 interview,	 you	 may	 withdraw	 the	 proprietary	 documentation.	 However,	
Jason	 Cootey	 would	 like	 to	 negotiate	 the	 usage	 of	 sample	 documentation,	 if	 at	 all	
possible.	
	
Risks	 	 Participation	 in	 this	 research	 study	 may	 involve	 some	 added	 risks	 or	
discomforts.	 These	 are	 limited	 to	 the	 management	 of	 intellectual	 property	 and	
proprietary	 operations	 documentation.	 It	 is	 not	 the	 intention	 of	 either	 Jason	 Cootey	
or	 Dr.	 David	 Hailey	 to	 disclose	 proprietary	 data	 to	 either	 your	 competitors	 or	 other	
professional	 communication	 researchers.	 Due	 to	 the	 elicited	 nature	 of	 the	 interview	
procedure,	 conditions	 for	 the	 use	 of	 this	 information	 will	 be	 negotiated	 at	 the	

	
	

255	

conclusion	 of	 the	 interview.	 Strict	 adherence	 to	 those	 conditions	 will	 be	 maintained	
in	 the	 publication	 of	 research	 data.	 Any	 ongoing	 usage	 of	 the	 research	 study	 data	
will	 be	 included	 in	 the	 conditions.	
	
Benefits	 	 No	 direct	 or	 possible	 benefits,	 major	 or	 minor,	 to	 the	 research	 participants	
or	 to	 others	 that	 may	 be	 reasonably	 involved	 in	 the	 proposed	 research,	 are	
expected,	 either	 now	 or	 in	 the	 future.	
	
Voluntary	 nature	 of	 participation	 and	 right	 to	 withdraw	 without	 consequence	
Participation	 in	 research	 is	 entirely	 voluntary.	 You	 may	 refuse	 to	 participate	 or	
withdraw	 at	 any	 time	 without	 consequence	 or	 loss	 of	 benefits.	 You	 may	 use	 the	
following	 two	 methods	 to	 register	 your	 intent	 to	 withdraw:	 send	 an	 email	 message	
to	 j.cootey@aggiemail.usu.edu.	 	
	
Confidentiality	 	 Research	 records	 will	 be	 kept	 confidential,	 consistent	 with	 federal	
and	 state	 regulations.	 Only	 Jason	 Cootey	 and	 Dr.	 David	 Hailey	 will	 have	 access	 to	 the	
data	 that	 will	 be	 kept	 in	 a	 password	 protected	 computer	 in	 a	 locked	 room.	 If	 you	
require	 access	 to	 the	 research	 data	 then	 you	 can	 request	 access	 during	 the	 interview	
visit;	 the	 interview	 data	 is	 recorded	 with	 proprietary	 technology	 that	 is	 accessible	
through	 a	 proprietary,	 password	 protected	 website	 for	 60	 days	 after	 the	 access	
request.	 To	 protect	 your	 privacy,	 no	 identifying	 information	 will	 be	 gathered	 for	 the	
purposes	 of	 this	 research	 study.	 The	 research	 data	 will	 remain	 in	 Jason	 Cootey’s	
possession	 for	 the	 duration	 of	 the	 research	 study	 for	 future	 reference.	
	
IRB	 Approval	 Statement	 The	 Institutional	 Review	 Board	 for	 the	 protection	 of	
human	 participants	 at	 Utah	 State	 University	 has	 approved	 this	 research	 study.	 	 	 If	
you	 have	 any	 questions	 or	 concerns	 about	 your	 rights	 or	 a	 research-‐related	 injury	
and	 would	 like	 to	 contact	 someone	 other	 than	 the	 research	 team,	 you	 may	 contact	
the	 IRB	 Administrator	 at	 (435)	 797-‐0567	 or	 email	 irb@usu.edu	 to	 obtain	
information	 or	 to	 offer	 input.	 	 	
	
Investigator	 Statement	 “I	 certify	 that	 the	 research	 study	 has	 been	 explained	 to	 the	
individual,	 by	 me	 or	 my	 research	 staff,	 and	 that	 the	 individual	 understands	 the	
nature	 and	 purpose,	 the	 possible	 risks	 and	 benefits	 associated	 with	 taking	 part	 in	
this	 research	 study.	 Any	 questions	 that	 have	 been	 raised	 have	 been	 answered.”	
	
Signature	 of	 	 Researcher(s)	
	
	
_______________________________	 	 ______________________________	
David	 Hailey,	 PhD	 	 	 	 	 Jason	 Cootey,	 M.S.	
Principal	 Investigator	 	 	 	 	 Student	 Researcher	

	
	

256	

VITA

Jason	 L.	 Cootey	

Education
2014 PhD, Theory and Practice of Professional Communication, Utah State University
 Logan, Utah

2006 Master of Science, Literature and Writing, Utah State University, Logan, Utah

2001 Honors Bachelors of Arts, English Literature, University of Utah, Salt Lake City,
Utah

2001 Bachelors of Arts, Psychology, University of Utah, Salt Lake City, Utah

2000 Shakespeare Summer Program, Cambridge University, Cambridge, England

Academic Achievement

Salt Lake Community College Technical Writing Program 2013

Utah Valley University Adjunct Faculty appointment 2011

Project Director Technical Communication student development projects 2009

 and 1010

Facilitator on Engineering Video Course development grant 2009

Graduate Student Stipend Enhancement Award 2009

Research Assistant on the Interdisciplinary Media Research Consortium grant

 2007-2008

Student Athlete Instructor Award Spring 2006

Research Assistant on the Creative Learning Environment grant 2006-2007

 The Marion D. and Maxine C. Hanks Foundation Grant 2004

 Utah State University Graduate Student Stipend for teaching

	
	

257	

Courses Taught

ONLINE COURSES
Utah State University Online Courses

Graduate Instructor, English 1010, Introduction to Writing, 1 section Fall 2009
Graduate Instructor, English 2010, Intermediate Writing, 1 section Spring 2008
Graduate Instructor, English 1010, Introduction to Writing, 1 section Spring 2008

Stevens-Henager College Graphic Design Software Online Courses
 Adjunct Faculty, 2 sections Summer 2010

CAMPUS COURSES
Salt Lake Community College, English 2100, Technical Writing
 Adjunct Faculty, 3 sections Spring 2014

Adjunct Faculty, 2 sections Fall 2013

Utah Valley University, English 1010, Introduction to Writing
 Adjunct Faculty, 2 sections Fall 2011

Utah State University English 3080 Technical Writing for Non-English Majors

Graduate Instructor, 2 sections Spring 2010
Graduate Instructor, 1 section Fall 2009

Utah State University English 2010 Intermediate Writing

Graduate Instructor, 2 sections Spring 2009
Graduate Instructor, 2 sections Fall 2008
Graduate Instructor, 1 section Fall 2007
Graduate Instructor, 2 sections Spring 2007
Graduate Instructor, 1 section Spring 2006
Graduate Instructor, 2 sections Fall 2005

Utah State University English 1010 Introduction to Writing

Graduate Instructor, 2 sections Fall 2006
Graduate Instructor, 2 sections Spring 2005
Graduate Instructor, 2 sections Fall 2004

Workshops

Spring 2006. Utah State University Learning Games Initiative. Neverwinter
Nights Design Tool Orientation. Objective: lead students in research discussion,
while also collaborating about design ideas.

Fall 2005. Utah State University Composition Program. Panel of second year
student graduate instructors for incoming graduate instructors. Objective:
familiarize new graduate instructors to teaching at the university level through

	
	

258	

interaction with second year peers.

Publications
Revised Submission Requested “Creating Community Narratives: Patterns
that form Narratives in Community MMORGs” as a web article for
Kairos.

Revised Submission Requested “From the Hive Mind: demonstrating the
loss of the writer’s personal space.” Invited to revise by Computers and
Composition.

	

“Usability Testing, User Goals, Engagement, and Aristotle’s Assassins.” Usability
of Complex Information Systems: Evaluation of User Interaction. Chapter 15.
Eds. Michael J. Albers and Brian Still. Boca Raton, FL: CRC press. 2011

 “Playing in Genre Fields: A Play Theory Perspective on Genre.” SIGDOC
 proceedings. Co-authored with Ryan M. Moeller and David M. Christensen.
 2007.

“‘The Peripatos could not have looked like that,’ and other educational

 outcomes from student game development,” Games and Simulations. Book
 chapter. Co-authored with Ryan M. Moeller and Ken S. MCallister. Eds. Brett
 E. Shelton and David A. Wiley. Rotterdam, The Netherlands: Sense Publishers.
 2007.

 “I’ve Looked Deep Into the Darkness.” Nebula: Generalist 3.4. November 2006.

 “Culpability and Transgression in the Monomania of Ahab.” Abstract pulished in
Leviathon.

“The Suppressed (or lifted) Version of Joseph Conrad’s Heart of Darkness.”
Myths of Self, Special Edition, Utah State University, 2005.

 “Walking off the Dover Cliff.” Journal of the Wooden “O” Symposium 2004.
 Editor in Chief Diana Major Spencer.

 “Analysis of Interchange in A Midsummer Night’s Dream.” Proceedings National
 Conference on Undergraduate Research NCUR 2003. (Abbreviated version)
 Editor in Chief Robert D. Yearout.

 “Analysis of Interchange in A Midsummer Night’s Dream,” Honors Senior Thesis
 2001 University of Utah Marriott Library

	
	

259	

 Advisor: Professor Morriss Partee
	
Conferences

Submission:	 “Innovative	 Software	 Documents	 and	 New	 Rhetorical	
Forms”	 Rocky	 Mountain	 Modern	 Language	 Association.	 Salt	 Lake	 City,	
UT.	 October	 2014.	

	
“User-‐generated	 Computer	 Game	 Manuals	 as	 a	 Force	 for	 Change	 on	
Professional	 Practice.”	 at	 the	 Rocky	 Mountain	 Modern	 Language	 Association.	
Salt	 Lake	 City,	 UT.	 October	 2009.	
	
“If This Isn't Real, Then What Is It? New Lexicon for Virtual Worlds and
MMORPGs” at the Virtual World Best Practices in Education VWBPE
Conference. Hosted in the Second Life MMORG world. March 2009

	
“Creating	 Community	 Narratives:	 Patterns	 that	 form	 Narratives	 in	

	 Community	 	 MMORGs”	 at	 the	 Southwest	 Popular	 Culture	 Association.	
	 Albuquerque,	 NM.	 February	 2009.	

	
“Classroom Interfaces, Access, and Second Life” at the Intermountain Graduate
Conference. Utah State University. April 2008.

“I Know What You Didn't Do Last Summer: Using Educational Game
Development to Motivate Students” at the Southwest Popular Culture
Association. Albuquerque, NM. February 2008.

“Turning Operators into Machines. Teaching the Relationship between Humans
and Technology” at the Popular Culture Association. Boston, MA. April 2007

“What Textbooks and Templates Don’t Teach about Design Documentation” at
the Southwest Popular Culture Association. Albuquerque, NM. February 2007.

“Multimodal Outcomes: Using Game Design to Meet WPA Goals for First-Year
Composition” at the Two Year Colleage Association West Conference. Park City:
October 2006

“Communication, Modality, and Interface in Online Video Games” at the
Intermountain Graduate Conference. Utah State University: April 2006.

“Derrida Purloins Poe’s Reader” at the Rocky Mountain Modern Language
Association. Coeur d’Alene, ID: October 2005.

 “Reminiscence: the Psychological Value of Natural Spaces After Wordsworth
 Leaves the Woods” at the Association for Studies in Literature and Environment.

	
	

260	

 University of Oregon in July 2005.

 “Culpability and Transgression in the Monomania of Ahab” at the American
 Literature Association in Boston, MA: May 2005.

Research Experience
 Primary Investigator—Interviewer—Software Developer Interviews
 • Spring 2013 Seven Interview Sessions
 • Planned 14 interview questions based on theoretical model
 • Used the North American Genre Theory model of document assessment

Research Assistant—facilitator—Engineering Video Course development
 • Summer 2009 project grant

• Cooperation with English and Engineering
 • Manage undergraduate filming and editing RAs
 • Facilitate weekly progress with film and editing
 • Develop production protocols
 • Coordinate faculty schedules, course schedules, and film crew schedules

Research Assistant—project manager—Interdisciplinary Media Research
 Consortium
 • Spring 2007, Summer 2007, and Fall 2007 project grant

• Research assistant cooperation with English, Instructional Technology,
 and Graphic Design

 • Manage undergraduate Graphic Design RAs
 • Report weekly progress to the local IMRC
 • Assign and follow up on tasks assigned to undergraduate RAs

Research Assistant—project manager—Creative Learning Environment
 • Spring 2006 semester project grant

• Research assistant cooperation with English and Instructional
 Technology

 • Manage undergraduate RAs
 • Report weekly progress to the national Learning Games Initiative
 • Update the “Design Document” for the project software
 • Organize design tasks for undergraduate RAs
 • Research publication venues for research

 Research Assistant for Librarians at the University of Utah Marriott Library
 • Train patrons on the usage of Library databases
 • Create research solutions with patrons

 Research for Honors Senior Thesis
 • Research work completed in both Marriott Library and Cambridge

	
	

261	

 University Library
 • Extensive class work in both Utah and England

Research Assistant in Psychology Sense and Perception Lab
 • Connect probes to skull for ERP experiments that test correlational
 relationship between cell phone usage behind the wheel and drunk driving
 • Carefully observe ERP screens to insure experiment succeeds
 • Research trials to test the efficiency of various interface formats for
 anesthesiology computer screens

Academic Committee Work
 Mentorship Committee for PhD English Students
 • Chair and founder
 • Community of advice and support
 • Incoming student welcome get-togethers

Reviewer for ITSE special issue.
 • International Journal of Interactive Technology and Smart Education
 • Recommended submissions for publication

 English Department Library Committee
 • Represent English Department during library policy changes

 English Department Travel Committee
 • Review English Department travel policy

 English Department University Studies/Breadth and Depth Humanities
 Committee
 • Review General Education requirements for the Composition Program

Student Association of Graduates of English (SAGE) Web Presence Committee

 • Distribute assignments for informational updates
 • Webmaster
 • Design and update SAGE website

 Special Activities Committee

• Generating the Intermountain Graduate Conference in cooperation with
Idaho State University

 • Promotion of the 2005 and 2007 conferences
 • Preparation for USU to host the Philological Conference next year

 Computer Action Committee
 • Work with colleagues to clarify computer problems before reporting to

	
	

262	

 the computer technicians
 • Negotiate with technician staff for timely service
 • Liaison of technician staff to office colleagues

 Pilot Assessment Program
 • The assessment is an instrument for the Writing Program’s
 accredidation

• Administer assessment prompt to English 1010 and 2010 students
 • University reader for assessment papers turned in by students

Service to/in the Community
 Volunteer Employment Councelor
 • American Fork, UT Employment Center Resume Assistance (2013)
 • Sandy, UT Employment Center Resume Assistance (2012)

• Logan, UT Employment Center Resume Assistance (2011)

 Student Community Writing Projects Coordination and Guidance
 • Disability Resource Center equipment/software technical descriptions
 (2010)

• Collaboration software instructions for campus computer services
 (2009)

 • Healthcare Reform Brief for Utah Senators (2009)
 • Instruction materials for PTA red-ribbon week (2009)
 • Pamphlet for local Animal Shelter (2009)
 • Simulation manual for local High School debate team (2009)
 • PTA red-ribbon week service presentations with school children (2008)
 • Graphical software file conversion instructions for grant project IMRC
 (2008)

 American West Heritage Center 2009
 • Programming an Educational Simulation
 • Design Documentation
 • Promotional Assessment and Materials

Utah State University Cycling Team (2006-2009)
 • Homecoming Parade organization
 • Fit 200 elementary school students with helmets at local school (2009)
 • Team fundraising

• Colleagiate racing in Colorado/Wyoming Circuit
 • Recruitment

 Epilepsy Awareness for Utah State University Undergraduates (2004-2005)
 • Surveys

	
	

263	

 • Awareness Lectures
 • Preparing to generate informational pamphlets for University faculty

 Poetry Workshop at residential facility for at-risk youth (2005)
 • Poetry presentation
 • Lead exercises for poetry groups
 • Judge Poetry talent show
 • Poetry reading

Board member of Epilepsy Association of Utah (2003-2004)
 • Organize fund raisers
 • Work out a budget and spending
 • Public Education
 • Run statewide support groups
 • Patient education for families with new diagnosis of epilepsy

	

	Oral Communication in Genre Theory and Software Development Workplaces
	Recommended Citation

	genre theory and oral communication in software documentation

