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ABSTRACT

Network Applications and the

Utah Homeless Network

by

Michael Snyder, Master of Science

Utah State University, 2014

Major Professor: Dr. David E. Brown
Department: Mathematics and Statistics

Graph theory is the foundation on which social network analysis (SNA) is built.

With the flood of “big data,” graph theoretic concepts and their linear algebraic coun-

terparts are essential tools for analysis in the burgeoning field of network data analysis,

in which SNA is a subset. Here we begin with an overview of SNA. We then discuss the

common descriptive measures taken on network data including centrality, density, and

connectivity. We also define a new data structure which we call the location sequence ma-

trix (LSM). This structure has many combinatorial applications to the homeless network

in Utah, including enumeration of 2-cycles, determining graph structures via intersec-

tion of chronological data, and the identification of path combinations which may lead

to certain behaviors in subjects from physical data. The LSM also makes construction

of dynamic graph adjacency matrices, which depict multiple location transitions, par-

ticularly easy. Finally we apply Pulse Processes, a marriage between graph theory and

linear algebra, to the Utah homeless network in a new way. Of particular interest is an

eigen-analysis of the the homeless network, where if |λi| < 1 for all eigenvalues λi in

the network adjacency matrix, then the network is “stable.” By stable, we shall mean

that we do not expect the possibility of the population at any particular service to grow

without bound. We believe the LSM and pulse processes, when used for analysis of the
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Utah homeless network, may be useful in forming policy decisions regarding homeless

services. In particular, changes in population may be tested by “removing” or “adding”

vertices in the network, and then testing the resultant stability through the use of pulse

processes.

(62 pages)



v

PUBLIC ABSTRACT

Network Applications and the

Utah Homeless Network

by

Michael Snyder, Master of Science

Utah State University, 2014

Major Professor: Dr. David E. Brown
Department: Mathematics and Statistics

Graph theory is the foundation on which social network analysis (SNA) is built.

With the flood of “big data,” graph theoretic concepts and their linear algebraic coun-

terparts are essential tools for analysis in the burgeoning field of network data analysis,

in which SNA is a subset. Here we begin with an overview of SNA. We then discuss

the common descriptive measures taken on network data as well as proposing new mea-

sures specific to homeless networks. We also define a new data structure which we call

the location sequence matrix. This data structure makes certain computational network

analyses particularly easy. Finally we apply Pulse Processes in a new way to the home-

less network in Utah. We believe the new data structure and pulse processes, when used

for analysis of the Utah homeless network, may be useful in forming policy decisions

regarding homeless services. In particular, pulse processes, first introduced by Brown,

Roberts, and Spencer [14], to analyze energy demand, form a dynamic population model

that can provide a measure of the stability in a network and the patterns of action of

individuals experiencing homelessness.

(62 pages)
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CHAPTER 1

INTRODUCTION AND BASIC DEFINITIONS

1.1 Introduction

Social network theory (SNA) has developed as a natural evolution in the observa-

tion of how people, groups of people, and organizations are connected. While pseudo-

mathematical constructions of social networks began appearing in the late 1800’s, it

was Moreno’s sociometry that began to inspire more formal systems in the 1930’s [13].

Enjoying some success prior to the 1970’s, SNA was then criticized in favor of tradi-

tional linear models. These attitudes were due in large part to a misunderstanding in

fundamental differences between the two methods. Linear modeling relies on the idea

of independent observations, while dependence is built in to SNA as a result of the net-

work paradigm [11]. It is the dependence in the system that every SNA researcher hopes

to exploit. As a result it is considered standard practice to analyze local interactions

within a network in an attempt to describe its global properties. It should be noted

that traditional linear analysis should not be abandoned, but that a marriage of the two

methods may help to more fully describe the attributes of a particular social dilemma.

Ironically, Frank Harary published what was at the time considered the definitive

textbook on graph theory in 1969, but due to the continuing absence of networking

between mathematics and the social sciences SNA still suffered a lack of support until

more recently. Graph theory is the mathematical basis for SNA, and it is this theoretical

basis that is at times neglected resulting in the apt adage, “Applying graph theoretic

structures to sociological problems wholesale can sometimes lead to the mathematical

tail wagging the sociological dog” [13]. Much research has been conducted in graph the-

ory in the last 30 or 40 years, which, along with the ubiquity of network data, could be

conjectured as the basis for the popularity that SNA has enjoyed most recently. Among

the innovations currently taking place is the idea of dynamical social network theory.
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That is, networks which change over time. After presenting some basic definitions, we

will explore some recent research that applies both static and dynamic methods.

1.2 Chapter 1 - Basic Definitions

We now define the elements from Graph Theory that are used in the construction

of social network systems. An actor in a social network is represented as a vertex or node

in a graph. When there is an interaction between two actors in a network we say there

is a tie between them. In a graph we say the two vertices are adjacent. In a drawing

this is represented by a line segment, or edge, that connects the two vertices. These

interactions are often referred to as a dyad, with an interaction between three vertices

called a triad.

1.2.1 Graph

A graph G is an ordered triple, (V (G), E(G),Ψ), with V (G) the vertex set, and Ψ

a relation between vertices such that if u, v ∈ V (G) and uΨv, then uv ∈ E(G). When

uΨv, we say that u is adjacent to v. A graph may be conveniently represented by its

adjacency matrix, which is a (0,1)-matrix, A, where a one in the ijth entry means

that vertices i and j are adjacent in its graph representation, and a zero means they are

not. A directed graph is a graph whose edges, which we will call arcs, have been given

an orientation. Its adjacency matrix, denoted D, differs from A in that it only has a 1

in the ijth entry when there is an edge directed from i to j.

1.2.2 Graph Attributes

Graphs may contain many attributes. We name here some of the most common

beginning with vertex degrees. The degree of a vertex v ∈ V (G), denoted d(v), is

an integer equal to the number of edges incident to v. Directed graphs have both an

indegree and an outdegree. The indegree of a vertex v in a digraph D is denoted d−(v).

In D’s adjacency matrix, d−(v) =
∑

iDij . The outdegree of a vertex v in a digraph D

is denoted d+(v). In D’s adjacency matrix, d−(v) =
∑

j Dij .

Graph attributes may also apply to a graph H formed from a graph G with V (H) ⊆

V (G). We call H a subgraph of G, provided E(H) ⊆ E(G). A clique in a graph G is

a subgraph of G, in which every pair of vertices in the subgraph are adjacent.

There are a variety of ways to describe the idea of traversing a graph. A walk in

a graph G is a sequence of vertices and edges, (v0, e1, v1, e2, . . . , vl−1, el, vl). Note that
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vi = vj , i 6= j is possible, and ei = ej , i 6= j is also possible in a walk. In G’s adjacency

matrix, Ar
ij gives the number of walks with r edges between vertices i and j, where Ar

is the rth power of the matrix A. We give here a proof of this fact.

Theorem 1.1 ([10]). If D is a digraph with adjacency matrix A = (aij, then the ij

entry of Ar gives the number of paths of length r in D which lead from i to j.

Proof. Let D be a digraph with i, j, k,∈ A(D). We argue by induction on r. If r = 1,

the result is obvious. Assuming it for r, let us prove it for r + 1. Let ar+1
ij represent

the umber of paths of length r + 1 from i to j. Similarly, let arkj represent the number

of paths of length r from k to j. To go from i to j in r + 1 steps, one must go for i

to some K directly and then form k to j in r steps. The number of ways to go from i

to j in r + 1 steps with the first step going through k is aika
r
kj . For this term is arkj if

(i, k) ∈ A(D) and it is 0 if (i, k) 6∈ A(D). To obtain arij , we simply sum the terms aika
r
kj

fro all k. Thus

a
(r+1)
ij =

n∑
k=1

aika
r
kj .

By the inductive assumption, arkj is the kj entry of Ar. Hence, a
(r+1)
ij is the ij entry of

AAr = Ar+1.

A trail in a graph is a walk with no repeated edges. A path in a graph is a walk

with no repeated vertices. A k-path, or a path containing k vertices, is denoted Pk. A

cycle in a graph is a path with the “last” vertex equal to the “first” vertex. A k-cycle,

or cycle containing k vertices, is denoted Ck. A circuit in a graph is a trail with initial

and final vertex equal. If we want to describe how many vertices are reachable from

a vertex u, then we consider the reachability of u. That is, v is reachable from u if

and only if there is a walk from u to v. This definition assists in describing the idea of

connectedness in a graph.

A graph G is connected if for u, v ∈ V (G), u is reachable from v. A component

is a maximally connected subgraph of G. Digraphs may have the additional attribute

of being either weakly or strongly connected. A digraph D is weakly connected if it is

connected by considering it an undirected graph, and it is strongly connected if for

every pair of vertices u, v ∈ V (D), v is reachable from u by a directed path.

A geodesic in a graph G is the path with the fewest number of edges between two

vertices u, v ∈ V (G). Distance in a graph G is measured by the shortest path(s), or
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geodesic, between u and v, for u, v ∈ V (G). If G has two components A and B, then the

distance between two vertices a ∈ A and b ∈ B is defined to be infinite. The diameter

in a graph G is the longest distance in a graph. These ideas may be extended to graphs

whose edges have weights.

If the graph has a function w that assigns a number other than 1 or 0 to each

edge in G, then we consider G to be a weighted graph. Many graph attributes can

be generalized to the case of a weighted graph. For example, the length of paths, walks,

and circuits are measured by the sum of the weights on the edges transversed. Hence,

distance and diameter generalize to the smallest sum and greatest sum respectively.

1.2.3 Graph Classes

Let G be the set of all graphs. If a subset Ξ of G can be completely characterized

by a set of true statements, then we call Ξ a class of graphs. Some of the most common

classes of graphs include complete graphs, regular graphs, trees, and bipartite graphs.

A complete graph, is a graph G such that for every u, v ∈ V (G), uv ∈ E(G). A

regular graph is a graph such that for every u, v ∈ V (G), we have d(u) = d(v).

Trees are often used to represent data structures like folders on a computer. A tree

is a connected graph with no cycles. A forest is a disjoint union of trees. If we add an

orientation to the vertices in a graph G, where G contains at least one cycle, and the

resulting orientation contains no directed cycles, then we have a directed acyclic graph,

or DAG.

A bipartite graph is a graph G consisting of the union of two sets of vertices X

and Y , called partite sets, with x ∈ X and y ∈ Y adjacent if and only if xy ∈ E(G),

and no adjacencies existing within the partite sets. We may extend the definition of

bipartite to include more than one partition of a a set, this results in a multi-partite

graph. There can be many alternative characterizations for any class of graphs. For

example, bipartite graphs may also be characterized as all graphs containing no odd

cycles.

1.2.4 Graph Matrices

In addition to the adjacency matrix of a graph, we include three other linear al-

gebraic graph objects. The incidence matrix B of a graph G is a |V |×|E| matrix with
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Bij =


1 if vertex i is incident to edge j

0 otherwise

The degree matrix of a graph G is the matrix D = diag[(di)i∈V ]. Finally, Let G

be a graph and B̃ be its signed incidence matrix where each 1 is given a sign indicating

an arbitrarily assigned orientation. Then the Laplacian of G is

L = B̃B̃T = D −A

where D is the degree matrix of G and A is G’s adjacency matrix.



6

CHAPTER 2

NETWORK ANALYSIS AND SOCIAL NETWORK ANALYSIS

2.1 Network Measures and Social Network Analysis

In applications we will be most interested in network analysis applied to homeless

populations. A host of different tools and measures have been used to analyze a variety

of social networks in recent literature. Data on homeless networks is difficult to obtain,

and “big” homeless network data is only now available due to policies requiring service

providers to collect and store a minimum amount of data using a Homeless Manage-

ment Information System (HMIS). As a result, not much analysis has been done on

these populations, and the most commonly studied measures are centrality and density.

Throughout this chapter, we present common network measures, and where literature

is available, we give examples of these measures applied to homeless networks. The

development of these measures follows that found in Kolaczyk [6].

2.2 Centrality

Centrality measures come in many different forms. In general, the idea is to de-

scribe with one number, the idea of a particular vertex as being central to a graph. As

one might imagine, this idea may be drastically different depending on what question

is being answered. Since many notions of centrality fall closer to the statistical side of

graph theory, it is important to mention the idea of normalization of a measure. Nor-

malization is simply rescaling the range of a measure to lie within a specified interval.

Most graph measures are normalized to lie within the interval [0,1] on the real line.

Before defining the most common centrality measure in SNA, we state some defi-

nitions, as in West [15], that lead to a definition of the center of a graph. Recall that

distance in a graph between two vertices u, v ∈ V (G), denoted d(u, v) is the geodesic

from u to v.

Definition 2.1. The diameter of a graph G is maxu,v∈V (G) d(u, v).



7

Definition 2.2. The eccentricity of a vertex u, denoted ε(u), is maxv∈V (G) d(u, v)

Definition 2.3. The center of a graph G is the subgraph induced by the vertices of

minimum eccentricity.

By these definitions, the center of a graph is a subgraph whose vertices have a

minimum distance from every other vertex in the graph. If we consider this from a

network perspective, we might consider the actors these vertices represent as the most

influential vertices in the graph, since they can reach every other vertex within minimal

distance. We now turn our attention to statistical centrality measures.

2.2.1 Degree Centrality

Possibly the simplest centrality measure to compute is the degree centrality. Let

G = (V,E) be a graph. Then the degree centrality of a vertex v ∈ V is given by

Cd(v) =
d(v)

n− 1
.

2.2.2 Closeness

Closeness is a measure of distance from a specified vertex in a graph to every other

vertex in the graph. Closeness is a very basic and straightforward measure of centrality,

however, the problem with the closeness centrality measure, is that it tells us nothing

about disconnected graphs. Since the distance between u, v ∈ V (G) with u and v in

distinct components of G is defined to be infinite, if G is disconnected ccl(v) = 0. Here

we describe the measure due to Sabidussi [12]. Let u, v ∈ V (G). If dist(v, u) is the

geodesic distance between v and u, then the closeness centrality of v is

cCl(v) =
1∑

u∈V dist(v, u)
.

This measure may be normalized for comparison by multiplying by a factor of |V | − 1.

2.2.3 Betweeness

Betweeness is a measure of “the extent to which a vertex is located ‘between’ other

pairs of vertices.” Applications often involve finding the importance of a vertex in terms

of its access to other vertices in the graph via paths. The measure we describe is due to

Freeman [3]. Let v, s, t ∈ V (G), σ(s, t|v) be the total number of shortest paths between
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s and t that pass through v, and σ(s, t) =
∑

v σ(s, t|v). Then the betweeness centrality

is

cB(v) =
∑

s 6=t6=v∈V

σ(s, t|v)

σ(s, t)
.

In this case, normalization is obtained by division of the maximum possible value for

cB(v), which is (|V |−1)(|V |−2)
2 , which was proved by Freeman. This is the number of pairs

of vertices other than v in the graph.

2.2.4 Eigenvector

Eigenvector closeness measures the closeness of the neighbors of vertex v. Then if

the neighbors of v are close, it is implied that v is also close. The measure presented

here is due to Bonacich [1]. Let cEi = (cEi(1), . . . , cEi(|V |))T be the solution vector to

the equation AcEi = α−1cEi , where A is the adjacency matrix of a graph G. Then the

eigenvector corresponding to the largest eigenvalue contains a measure of the centrality

of each vertex in the graph. In practice, α−1 is the largest eigenvalue of the adjacency

matrix, though any of the eigenvectors would work.

2.2.5 Centralization Index

If c(v) is the centrality of a vertex v ∈ G, and c∗ is the maximum of the c(v) over

G, then the centrality index is given by

c =

∑
v∈V [c∗ − c(v)]

max
∑

v∈V [c∗ − c(v)]
.

This may not be easily computed depending on the graph.

From a social network perspective, Kezar [5] notes that centrality is a measure

of how central a vertex is relative to some social interaction. In social networks, we

may rank vertices by their degree centrality. This may lead to an understanding of

relationships within the graph based upon the ranking. The research of Fleury et al.

[2], showed that members of the Montreal social services network with higher degree

centrality tended to be more effective in providing their specific service. In particular,

the centrality measures of this study described interactions between service members

measured by volume, or degree centrality, and density. Density will be discussed later.

Volume of intercommunication was then directly related to collaboration between ser-

vice providers. Thus, the implication was that more collaborative service providers were

more effective in assisting their users.
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Centrality appears often in the SNA of business, politics, and education. An ex-

ample of such analysis is that of social capital. An individual or group within a network

is considered to have the greatest social capital if the degree centrality is highest. This

information is useful in predicting how information or behavior will travel through a

network. Predictions may also be made with respect to the minimum number of ac-

tors of highest degree, which must enact a particular behavior such that it will spread

throughout the network [5].

In a study by Rice et al. [9], which analyzed how centrality and density in social

networks of homeless youth may be used to disseminate information for HIV preven-

tion, it was found that centrality played an important role in the effectiveness of online

dissemination of this information. The peer leaders who had large online networks, or

were more central, had better results than those who were less central. In addition,

homophily, or the diverseness of a network, was also an important indicator in the ac-

ceptability of the messenger for information transfer, with less diverse networks being

more effective than their more diverse counterparts. In particular, age and gender were

the most important attributes with respect to diversity in the network. This was espe-

cially true for face-to-face interaction. Such relationships between networks and their

diversity are not always so linear. In many cases a more diverse network results in posi-

tive correlations to a desired network behavior. Yet in other cases, too much diversity in

a network may result in the inadvertent split of the network [5]. For example, suppose

you have a diverse leadership team in a company. If the team is too diverse, subsets

of employees may become loyal to the leader who best fits their philosophy which may

cause an undesired rift in the team. Too little diversity may result in certain team mem-

bers becoming alienated by having no one who shares their interests. It is important to

note that while this study measured the acceptability of the HIV information, it says

nothing about the effectiveness of it [9].

2.3 Other Network Analysis Tools

Beyond centrality lie a host of other analytical tools, many of which have not yet

been applied to homeless networks. We state both those which have not yet been applied,

as well as those which have been applied to homeless networks, giving examples where

appropriate.
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2.3.1 Density

A measure of the densness of a graph G = (V,E) is given by

den(G) =
2|E|

|V |(|V | − 1)
= (|V | − 1)d̄(G).

where d̄(G) is the average degree of G. This may be applied to graphs H ⊂ G by

considering |VH | and |EH | of the subgraph, which provides a measure of how close H is

to being a clique in G. If we take H = Hv, that is the graph inclusive of the neighbors

of v ∈ V , then we may define the clustering coefficient to be the average of den(Hv)

over all v.

Alternatively, we may define the clustering coefficient of G, to be the density of

triangles among connected triples. This is given by

clT (G) =
3τ∆(G)

τ3(G)
,

where τ∆(G) = (1/3)
∑

v∈V τ∆(v) is the number of triangles in the graph, and τ3(G)

is the number of connected triples, and τ∆(v) is the number of triangles to which the

vertex v is connected. This clustering coefficient is known as the transitivity of the

graph, or the “fraction of transitive triples.”

According to Robins [11], density in a network is a measure of adjacency in a graph.

The most commonly used measurement is the following: In a graph on n vertices with L

arcs/edges, the density is often computed with the formulas L
n(n−1) for directed graphs

and 2L
n(n−1) for undirected graphs. The formula for directed graphs accounts for the out-

degree of each vertex. This is why there is a factor of 2 in the formula for undirected

graphs.

Again, the work of Fleury et al. [2] made use of this measure of connectedness

in the homeless network of Montreal. In this case, density in the network described

the global rate of adjacency between vertices. This information was then compared to

local rates of density. In this way a metric was designed to discuss the effectiveness of

particular members of the network with respect to the amount of collaboration in which

the member was engaged. In general it was found that higher densities among members

of the network related to greater collaboration, and thus an increase in effectiveness of

the services provided.
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2.3.2 Connectivity

Connectivity considers the level of connectedness in a graph. Of particular interest

is the so called ‘small world’ property, which is related to the idea of six degrees of

separation. Usually this analysis is done on the largest connected component of the

graph by way of the the average distance. This is computed using

l̄ =
2

|V |(|V |+ 1)

∑
u6=v∈V

dist(u, v).

Cuts and flows are an important characteristic of a network, but before addressing

this idea, we define a few connectivity ideas which are useful in describing a network. In

particular we address the idea of removing arbitrary vertices (edges) while maintaining

a connected graph.

Definition 2.4. Let G = (V,E) be a graph. Then G is k-vertex-connected, if |V | > k

and X ⊆ V with cardinality |X| < k is deleted, leaving G−X still connected.

Definition 2.5. Let G = (V,E) be a graph. Then G is k-edge-connected, if |V | ≥ 2

and Y ⊆ V with cardinality |Y | < k is deleted, leaving G− Y still connected.

Thus, the connectivity of a graph G is the largest k, such that G is k-vertex (edge)-

connected, usually denoted κ(G) (κ′(G)), respectively. Clearly these are both bounded

by dmin(G) since removing all edges from a vertex of minimum degree, or all neighbors

of such a vertex, will disconnect the graph, and in fact, Whitney [16] showed that

κ(G) ≤ κ′(G) ≤ dmin(G).

Menger’s Theorem gives us a way to find the minimum size of an x, y-separating

set by considering the maximum number of pairwise internally disjoint x, y-paths, where

two such paths are paths from x to y who share no edges and no vertices, save x and

y. Before introducing Menger’s Theorem, however, we need some technology, namely

the König-Egerváry Theorem. Rather than prove this theorem, we have chosen to prove

the equivalent statement of König’s Theorem. These two theorems are related via a

bipartite graph and its adjacency matrix. König’s Theorem proves that the term rank

of a bipartite graph’s adjacency matrix is equal to its minimum line cover. The König-

Egerváry Theorem replaces term rank with a maximum matching in the bipartite graph,

and minimum line cover with a minimum vertex cover. Thus we define these two terms.
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Definition 2.6. A line cover of an adjacency matrix, A, is a covering of the rows and

columns of A such that every 1 in the matrix is covered.

Definition 2.7. The term rank of an adjacency matrix, denoted t(A), is a set of 1’s

from the rows and columns of A such that no 1 shares a row or column with any other

1.

We now state and prove König’s Theorem, after which we state the König-Egerváry

Theorem for reference.

Theorem 2.8 (König). The term rank of a bipartite graph’s adjacency matrix, A, is

equal to its minimum line cover, that is t(A) = β(A).

Proof. To prove Königs’s Theorem we show that the term rank, t(A), is less than or

equal to the minimum line cover, β(A), and that t(A) ≥ β(A) for any matrix A. This

will implies that t(A) = β(A).

t(A) ≤ β(A) Let A be any mxn matrix. Then without loss of generality, we can say

that there are r + c = β(A) rows and columns which contain all nonzero entries

of A. Thus there are at most r + c = β(A) independent entries in A. Therefore

t(A) ≤ β(A).

t(A) ≥ β(A) Let A be anmxnmatrix. Throw out rows or columns which contain all zero

entries. Call this new pxq matrix A′. Let S = A1, A2, . . . , Aj with j = min{p, q}

and each Ai is a row or column of A′. By Hall’s Theorem there is an SDR X ⊆ S

withX = {x1, x2, . . . , xj} of size |j|, where each xi can be viewed as an independent

nonzero entry in A. If we take X to be of maximal size, then |j| = t(A). Now since

X accounts for all rows and columns in A which have nonzero entries we have that

|j| = β(A) = t(A).

Therefore t(A) = β(A) which proves Königs’s Theorem using Hall’s Theorem.

Theorem 2.9 (König-Egerváry). If G is a bipartite graph, then the maximum size of a

matching in G equals the minimum size of a vertex cover of G.

We now state and prove Menger’s Theorem. The version presented is that found

in West [15].
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Theorem 2.10. Let G be a graph. If x, y ∈ V (G) and xy 6∈ E(G), then the minimum

size of an xy-cut equals the maximum number of pairwise internally disjoint xy-paths.

Proof. Let κ(x, y) be the minimum size of a separating set and let λ(x, y) be the max-

imum size of a set of internally disjoint paths in G. Showing that κ(x, y) ≥ λ(x, y) is

“obvious,” since each pairwise internally disjoint path must contain at least one vertex

from a separating set. Each of these vertices must be distinct.

To prove equality, we use induction on n, the number of vertices in G. Base case:

n = 2. Here xy 6∈ E(G) yields κ(x, y) = λ(x, y) = 0. Induction step: n > 2. Let

k = κG(x, y). We construct k pairwise internally disjoint x, y-paths. Note that since

N(x) and N(y) are x, y-cuts, no minimum cut properly contains N(x) or N(y).

Case 1: G has a minimum x, y-cut S other than N(x) or N(y). To obtain k desired

paths, we combine x, S-paths and S, y-paths obtained from the induction hypoth-

esis. Let V1 be the set of vertices on x, S-paths, and let V2 be the set of vertices on

S, y-paths. We claim that S = V1 ∩V2. Since S is a minimal x, y-cut, every vertex

of S lies on an x, y-path, and hence S ⊆ V1 ∩ V2. If v ∈ (V1 ∩ V2)−S, then follow-

ing the x, v-portion of some x, S-path and then the v, y-portion of some S, y-path

yields an x, y-path that avoids the x, y-cut S. This is impossible, so S = V1 ∩ V2.

By the same argument, V1 omits N(y)− S and V2 omits N(x)− S.

Form H1 by adding to the subgraph induced by V1 a vertex y′ with edges from S.

Form H2 by adding to the subgraph induced by V2 a vertex x′ with edges to S.

Every x, y-path in G starts with an κH1(x, y′) = k, and similarly κH2(x′, y) = k.

Since V1 omits N(y) − S and V2 omits N(x) − S, both H1 and H2 are smaller

than G. Hence the induction hypothesis yields λH1(x, y′) = k = λH2(x′, y). Since

V1 ∩ V2 = S, deleting y′ from the k paths in H1 and x′ from the k paths in H2

yields the desired x, S-paths and S, y-paths in G that combine to from k pairwise

internally disjoint x, y-paths in G.

Case 2: Every minimum x, y-cut is N(x) or N(y). Again we construct the k desired

paths. In this case, every vertex outsied {x}∪N(x)∪N(y)∪{y} is in no minimum

x, y-cut. If G has such a vertex v, then κG−v(x, y) = k, and applying the inductin

hypothesis to G − v yields the desired x, y-paths in G. Also if there exists u ∈

N(x) ∩ N(y), then u appears in every x, y-cut, and κG−u(x, y) = k − 1. Now

applying the induction hypothesis to G−u yields k− 1 paths to combine with the
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path x, u, y.

We may thus assume that N(x) and N(y) partition V (G)− {x, y}. Let G′ be the

bipartite graph with bipartition N(x), N(y) and edge set [N(x), N(y)]. Every x, y-

path in G uses some edge from N(x) to N(y), so the x, y-cuts in G are precisely the

vertex covers of G′. Hence β(G′) = k. By the König-Egervàry Theorem, G′ has a

matching of size k. These k edges yield k pairwise internally disjoint x, y-paths of

length 3.

In light of Menger’s theorem, we define the idea of cut sets. Given a graph G =

(V,E) and S, S̄,W ⊆ V , a vertex-cut (edge-cut) is a set W of vertices (edges) which

separate G into sets S and S̄. We call this a u, v-cut if u ∈ S and v ∈ S̄. A common

question related to networks and cut sets, is that of finding a minimum u, v-cut. If

the graph G is weighted, then the u.v-cut is considered a minimum when the
∑

iwi is

minimized, for wi ∈ W . Note that for an unweighted graph (i.e. edge weights equal

one), the minimum u, v-cut is |W |.

The theorem of Ford and Fulkerson [7], called the Max-Flow Min-Cut theorem,

amounts to maximizing a measure of the ‘flow’ on the edges of a network to find the

minimum u, v-cut.

Theorem 2.11 (Ford, Fulkerson (1962)). In any network, the value of max flow equals

the capacity of min cut.

The ideas of connectivity for undirected graphs carry over easily to the case of di-

graphs. Recall that a digraph, D, is strongly connected if every vertex in D is reachable

by every other vertex in D via a directed path. Thus connectivity can be described in

terms of strongly connected subgraphs of D, and cut-sets follow by considering a set W

which creates separate strongly connected subgraphs, say S and S̄. In directed graphs,

these are commonly called the source and the sink, where the flow in the graph originates

at the source and terminates at the sink.

In general, directed graphs have the structure that a central strongly connected

component (SCC) is flanked by an in component and an out component that are dis-

connected from each other. Remaining edges can flow from the in component to the

out component through vertices not in the SCC, these are called tubes. Tendrils are
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edges which terminate after leaving the in component or the out component. Disjoint

subgraphs may exist which will follow the same structure. The following figure shows

the bow tie structure of directed graphs.

Figure 2.1: The bowtie structure of directed graphs.

2.3.3 Graph Partitioning

Since every graph can be described by its constituent sets, it makes sense to describe

the partitioning of a graph in the parlance of sets. A partition C = {C1, C2, . . . , CN} of

a set S is a decomposition of S into N finite subsets such that
⋃N

i=1Ci = S. Unless the

graph G to be partitioned is the empty graph, we will require the Ci’s to be nonempty,

and Ci ∩ Cj to be empty. In general, partitions of graphs are sought which maximize

the connectedness of the partition sets and minimize the number of edges which are

adjacent to each partition set.

Hierarchical clustering, as its name suggests, refers to a partitioning of the

vertices in a graph based upon a rule, or dis-similarity measure (sometimes referred

to as the cost function). The dissimilarity measure, denoted xij , measures the dis-

similarity between vi, vj ∈ V , and may be defined in a number of ways depending on

the desired outcome. An Hierarchical clustering algorithm is usually implemented by

iteratively searching all possible partitions and then either merging partitions or splitting

partitions that meet the defined partition rule. The result of the algorithm may be

displayed in a tree diagram, called a dendrogram, which shows the successive partitions

due to the iterative process. There are two common algorithms for partitioning a graph

based upon a hierarchical clustering.
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Agglomerative: An agglomerative partitioning algorithm is one that merges parti-

tions.

Divisive: A divisive algorithm is one that splits partitions.

The following are common methods for identifying clusters in a graph that may

result in a partition.

Spectral partitioning The spectrum of a graph is the set of eigenvalues of either the

adjacency matrix or the laplacian of a graph. Spectral partitioning refers to the

partitioning of a graph based upon an analysis of the spectrum and the associate

eigenvectors of a graph. While this can be done on any graph or partition of a

graph, it has been shown that, in general, the more regular a partition is, the more

accurate the spectral analysis will be when considering a physical network.

Many spectral measures exist, but the isoperimetric number of a graph is par-

ticularly relevant to clustering problems. This number is defined as

φ(G) = min
S⊂V :|S|≤|V |/2

φ(S, S̄),

where φ(S, S̄) = |E(S, S̄)|/|S| is called the ratio of the cut defined by (S, S̄).

Minimizing φ(G) is an NP -Hard problem, but a bound on φ(G) is given by

λ2/2 ≤ φ(G) ≤
√
λ2(2dmax − λ2),

where λ2 is the second smallest eigenvalue of G’s Laplacian, and dmax is the max-

imum vertex degree of G. If φ(G) is ‘small,’ meaning near zero, then it is likely

that we can create a ‘good’ bisection of G.

Related to the idea of a bisection of G, a formal result in spectral graph theory

states that G will consist of K connected components if and only if λ1(L) = · · · =

λK(L) and λK+1(L) > 0, where L is the Laplacian of G.

Assortativity and Mixing In social network literature, correlation between vertex

characteristics is called assortative mixing. On a variation of the correlation

coefficient in statistics, there is an assortativity coefficient which measures the

correlation between vertex attributes. Let G = (V,E) be a graph in which each

vertex has been labeled to belong to one of M ≤ |V | categories. Let fij be
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the fraction of edges connecting vertices in category i to vertices in category j.

Denote the ith marginal row and column sums by fi+ and f+i, respectively. The

the assortativity coefficient is defined to be the quantity

ra =

∑
i fii −

∑
i fi+f+i

1−
∑

i fi+f+i
.

This quantity is equal to one when there there is perfect assortative mixing, that is,

vertices are only adjacent to other vertices belonging to the same category. Since

ra lies on the interval (−1, 1] we define a minimum rmin
a such that when ra is near

rmin
a , we have strong dissasortative mixing. This refers to vertices only connecting

to other vertices which lie in a different category.

The above Assortativity coefficient applies to categorical data. We may also com-

pute the coefficient for ordinal or continuous data. For example, the Pearson

correlation coefficient may be used in the case of continuous data.

Non-Shared Neighbors: Let G = (V,E) be a graph. The define Nv to be the set

of neighbors of v, ∆ the symmetric difference of two sets, and di the ith smallest

element in the degree sequence of G. Then the dis-similarity measure between

vi, vj ∈ V is defined to be

xij =
|Nvi ∆ Nvj |
d|V | + d|V |−1

,

which is normalized to the interval [0, 1], where 0 and 1 indicate perfect similarity

and dis-similarity, receptively.

Euclidean Distance: Let A be the adjacency matrix of a graph. Then the Euclidean

distance dissimilarity measure is defined by

xij =

√∑
k 6=i,j

(Aik −Ajk)2.

Modularity: Let C = {C1, . . . , Cn} be a given partition of a graph G. Define fij =

fij(C) to be the fraction of edges in G which connect vertices in Ci to vertices in

Cj . Then the modularity of C is the number

mod (C) =
K∑
k=1

[fkk(C)− f∗kk]2,
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where f∗kk is the expected value of fkk under some model of random edge assign-

ment. Most commonly, f∗kk is defined to be fk+f+k, where fk+ and f+k are the

k-th row and column sums of f, the K ×K matrix formed by the entries fij .

2.3.4 Concentration

In another study by Rice et al. [8] a high concentration of drug users in a homeless

youth’s social network increased the likelihood that the youth would engage in drug use.

The same study attempted to find an association between the density and concentra-

tion of the individual’s network. In this case, there was no statistical significance. This

provides an example of the failure of a network measurement to provide an explanation

of network behavior.

In addition, this study compared the networks of individuals with high concentra-

tions of drug use to those with low concentrations. As noted, this method was successful

in predicting drug use among the participants. Given a set of data describing attributes

of an individual social network, this method could be readily applied to predict a variety

of social behaviors.

2.3.5 Cliques

Perhaps third in the list of most commonly applied analytic techniques is that of

clique analysis. Though clique analysis usually separates a graph so that centrality and

density analysis may be performed on the smaller, perhaps more manageable, subgraph,

it is instructive to consider cliques in their own right. Before this discussion, however,

we note that a rigorous mathematical definition of a clique requires the subgraph to be

complete. In the case of SNA, we have no such requirement. We may define “quasi-

cliques” with a certain level of connectedness that fits the situation that the graph is

modeling. For example, we look for all subgraphs in the supergraph that are one edge

away from being complete. In the case of homeless service providers, it may be useful to

consider how housing services interact with each other when compared to services that

provide food. in this case, we apply the looser definition of a clique by requiring that the

services provide food, but not require that they all communicate with each other. Such

analysis was done in Fleury et al. [2] when comparing the global properties of density

in the overall network with particular cliques embedded within the network.
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2.3.6 Paths and Cycles

A k-path in a graph is a series of adjacent vertices of length k, while a k-Cycle in

a graph is a path whose first and last vertex is the same [11]. These can be important

in determining the path of an actor through a graph over time. For example, one may

wish to see how a person experiencing homelessness moves through the homeless services

network over a specified time period, say over a year. In this way, patterns may develop

that show seasonal shifts in service usage throughout a state.

2.3.7 Dynamic versus Static Networks

Robins [11] describes dynamic systems in terms of the data that is collected to an-

alyze them. Thus longitudinal, or panel, data is associated with dynamic systems where

the network is fixed and data is collected over time. Diffusion is a measure associated

with this type of analysis. This is the measure of how information or products travel

through a network, and which actors are instrumental in the information transfer. For

example, one may wish to know how drug use spreads through the homeless network by

analyzing the proportion of drug users within the network over a given time period.

Static systems are associated with cross-sectional studies like that of the collabora-

tion between homeless service organizations in Montreal [2]. Here we take a snapshot of

a network and study attributes within the network at that particular time. Such studies

are useful in describing networks that do not experience sudden changes over time. For

example, organizations are far more unlikely to change over relatively short period of

time when compared to individuals experiencing homelessness. It should be clear that

static systems can easily be studied as dynamic systems by simply extending the data

collection over time.

2.3.8 Formal versus Informal Networks

The description of formal versus informal networks seems to be closely related to

the idea of organic versus artificial networks. Formal networks are usually those who

have a hierarchical system with top down transfer of information, or at the very least

they contain a specific set of governing properties which control their actions. These

types of systems rarely happen organically, or naturally, of the participants own accord.

Thus we may also refer to formal networks as artificial networks. In contrast, informal

networks tend to happen organically with members being naturally connected as a result

of mutual interests [5].
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Kezar [5] has suggested that informal networks tend to be stronger networks, which

are more easily able to transfer complex information. On the other hand, formal net-

works are well suited for the transfer of simple information, or to be consulted for

information. This makes identifying the type of network you are analyzing important

to the goals of the research being conducted.

2.3.9 Conclusion

Historically, in contrast to traditional statistical analysis, relatively little research

has been done using social network theory, though this field of research is growing and

expanding rapidly. Further, virtually no research has been done using social network

analysis on homeless populations and the organizations that serve them. There is a rich

repository of traditional analysis, which if combined with SNA may provide a more com-

plete picture of social systems by addressing the naturally occurring interdependencies

that exist. Of particular interest are graph theoretic constructs that have yet to be in-

troduced to the social sciences, or are rarely used due to their mathematical complexity.

It appears that in some cases, these may be necessary to solve problems in networks

that are just now ripening with data that was heretofore nonexistent.
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CHAPTER 3

PULSE PROCESSES

3.1 Pulse Processes

Pulse processes were first introduced by Roberts to analyze energy demand. The

generalization of this mathematical structure, however, makes it applicable to a host of

different problems involving flows in graphs or networks. In particular, pulse processes

allow us to analyze how a flow in a network may result in instability of values at the

vertices in the network. By instability, we will mean that values assigned to the vertices

of a graph may become unbounded in the pulse process. In terms of applications, If

we consider the chocolate factory in which Lucille Ball worked, in the popular series

I Love Lucy, we may consider chocolate packers as vertices, and the conveyor belts to

be edges in the graph. If you have seen the show, then you know that Lucy is the

unbounded vertex. Since each vertex of the chocolate packing process is dependent on

a previous vertex, it would be desirable to have no vertex reach a state of instability.

Pulses are the means by which stability may be introduced into the system. One may

add a countervailing pulse, in the form of Ethel, or another vertex to compensate for

the buildup at Lucy’s vertex. Here we introduce the generalized mathematical idea of

a pulse process, and then we show how these processes may be applied to a network of

individuals experiencing homelessness.

Signed digraphs were first used to model pulse processes, since the asymmetric

relation is well suited for modeling flow in a network and the signing of edges can

describe the positive or negative flow to a vertex. This idea is easily generalized to

weighted digraphs, in case more specific systems must be analyzed. We begin in this

order, that is, we start with signed digraphs, and then generalize to weighted digraphs,

as was done in Roberts [10].

Let D be a digraph with vertex set v1, . . . vn. Suppose the ith vertex attains a

value at discrete times t = 0, 1, 2, . . . . We find the value vi(t+ 1) from vi(t), an outside
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pulse poi (t+ 1) applied to vertex vi at time t+ 1, and from adjacency information in the

digraph. The following rule defines this relationship:

vi(t+ 1) = vi(t) + poi (t+ 1) +
∑
j

sgn(vj , vi)pj(t), (3.1)

where

sgn(vj , vi) =


+1 if vjvi ∈ E(D) is +

−1 if vjvi ∈ E(D) is −

0 if vjvi 6∈ E(D)

and

pj(t) =


vj(t)− vj(t− 1) if t > 0

poj(0) if t = 0.

Generalization to real weighted digraphs is accomplished by replacing sgn(vjvi) with a

real number w(vjvi) in (3.1) giving us

vi(t+ 1) = vi(t) + poi (t+ 1) +
∑
j

w(vj , vi)pj(t), (3.2)

with

w(vj , vi) =


w if vjvi ∈ E(D) and w ∈ R

0 if vjvi 6∈ E(D).

We call pj a pulse at vertex j at time t. With these definitions in mind, we define a

pulse process by equation (3.1), along with two vectors, ~po(t) = (po1(t), po2(t), . . . , pon(t))

and ~v(0) = (v1(0), v2(0), . . . , vn(0)). The vector ~po(t) is the outside pulse to be applied

to each vertex at each time step t, and v(0) is the initial value of each vertex at time

t = 0. We also define the pulse vector ~p(t) = (p1(t), p2(t), . . . , pn(t)) whose ith entry

has been defined above as the change in value from time t−1 to time t at the ith vertex.

Two “special” cases of pulse processes arise in the discussion of stability in weighted

digraphs. A pulse process is autonomous when ~p(0) = 0 for t > 0. A pulse process is

simple when ~v(0) = 0 and ~p(0) has a 1 in the ith entry and a 0 in every other entry.

Obviously a simple pulse process is also autonomous.

If we define pt(vjvi) as the pulse from vertex j to vertex i at time t, and vt(vjvi)

as the value given to vertex i from vertex j at time t, then the following theorem arises
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from the fact that

vi(t+ 1) = vi(t) +
∑
j

w(vjvi)pj(t)

= vi(t) +
∑
j

w(vjvi)(vj(t)− vj(t− 1)).

Theorem 3.1. The quantities pt(vjvi) and vt(vjvi) are given by the weighted number

of walks from vertex vi to vj of length t and length less than or equal to t, respectively.

We define the adjacency matrix of the weighted digraph by A = [aij ] with entry

aij =


w(vivj) if vjvi ∈ E(D)

0 if vjvi 6∈ E(D)

Recall that At
ij gives the number of walks of length t between vertices i and j, where At

is the tth power of the matrix A. From this fact and Theorem 3.1 we have the following

theorem:

Theorem 3.2. pt(xixj) is given by the i, j entry of At, while vt(xixj) is given by the

i, j entry of A+A2 + · · ·+At.

Computationally we want to consider the the adjacency matrix of our weighted

digraphs to apply pulse processes. As a result we now develop some results in terms of

matrix theory and linear operators. In light of the explanation of Theorem 3.2, and the

theorem itself, for an autonomous pulse process, we have the following theorem:

Theorem 3.3. In an autonomous pulse process on a weighted digraph with ~v(0) = ~0,

~p(t) = ~p(0)At

As a corollary to this theorem, we have:

Corollary 3.4. Under autonomous pulse processes, if 0 ≤ T ≤ t, then

~p(t) = ~p(T )At−T .
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As noted in the case of the chocolate factory, we are interested in notions of stability

in pulse processes. Given the quantities of vertex value and pulse value it seems natural

to define stability in terms of these values. Let B and M be finite real numbers. Then

we say that vertex vj is pulse stable if |pj(t)| < B and value stable if |vj(t)| < M .

We also note that a graph is pulse or value stable if each entry is pulse of value stable,

respectively.

Remark 3.5. Value stability implies pulse stability.

Proof.

|pj(t)| = |vj(t)− vj(t− 1)| ≤ |vj(t)|+ |vj(t− 1)| ≤M +M = 2M

For an example where pulse stability does not imply value stability, consider a

simple pulse process on a directed two cycle with two vertices having w(vivj) > 1 and

w(vjvi) > 1. Since this pulse process is simple every pulse is zero, save the first, and

each vertex’s value will grow without bound. Thus, we have a pulse process with pulse

stability, but not value stability.

We would like to know when we can expect pulse stability and value stability.

Eigenvalue analysis gives us a few theorems that help begin to form a picture of stability

in pulse processes.

Pulse stability in autonomous pulse processes amounts to asking when powers of the

adjacency matrix of a digraph converge, since if At, as t grows without bound, converges

to some bounded matrix L and ~p(0) is a finite valued vector, then ~p(t) = ~p(0)At ≤ ~p(0)L

will be bounded. We will use the following theorem to prove when this may occur.

Theorem 3.6 ([4]). Let A be an n× n matrix with complex entries. Then limm→∞A
m

exists if and only if both of the following conditions hold.

1. Every eigenvalue of A is contained in S = {λ ∈ C : |λ| < 1 or λ = 1}.

2. If 1 is an eigenvalue of A, then the dimension of the eigenspace corresponding to

1 equals the multiplicity of 1 as an eigenvalue of A.
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Proof. Let J ∈Mn×n(C) be a Jordan block. Then The matrix N = (J−λI) is an upper

triangular square matrix with ones off the diagonal. By definition N is nilpotent, since

by computation we can show that multiplying N · N will move the 1 in the ijth entry

to the i(j + 1)st entry, and in general for m ≥ n, Nm = O the zero matrix.

Now suppose |λ| < 1. Then as m→∞ each λi → 0 and by the previous argument

the off diagonal entries also approach zero. Thus limm→∞A
m = O.

Now suppose that λ = 1. Then limm→∞A
m = In since each λ is multiplied by

itself m times, and the off diagonals once again approach zero.

Conversely, suppose that λ > 1. Then limm→∞A
m will diverge, since each λ will

diverge. Again the off diagonal entries approach zero. Also, if 1 is an eigenvalue of A

with multiplicity greater than 1, then A will diverge since entry a1n will diverge.

Now let A be any square matrix such that its eigenvalues are members of S. Since

A is square, it has a Jordan form. Hence by corollary 3 we have

A = Q−1JQ

lim
m→∞

Am = lim
m→∞

Q−1JmQ

= Q−1 lim
m→∞

JmQ

= Q−1LQ

In the case that each eigenvalue is distinct, J will be a diagonal matrix. The above

arguments may easily be modified. Proof is left to the reader.

Theorem (3.6) implies that we are looking for adjacency matrices with eigenvalues

that are less then one in magnitude.

Theorem 3.7. Let D be a weighted digraph, M a real valued matrix, and S = {λ ∈ C :

|λ| < 1 or λ = 1}. D is pulse stable under all autonomous pulse processes if and only

if every eigenvalue of D is at most unity.

Proof. Let A be the adjacency matrix of a weighted digraph D with eigenvalues λi.

Suppose first that D is pulse stable under all autonomous pulse processes. Then

limt→∞A
t < M . By Theorem (3.6), every eigenvalue of A is contained in the set

S.
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Now suppose that every eigenvalue of A is contained in the set S. Then, again by

Theorem (3.6), D is pulse stable since λi ∈ S implies limt→∞A
t < M .

Remark 3.8. Let D be a weighted digraph. Then D is pulse stable under all simple pulse

processes if and only if every eigenvalue of D is at most 1 in magnitude. This is true

since all simple pulse processes are autonomous pulse processes.

Our final stability proof gives a characterization of value stability in autonomous

pulse processes.

Theorem 3.9. Let D be a weighted digraph. Then D is value stable under all au-

tonomous pulse processes if and only if D is pulse stable under all autonomous pulse

processes and 1 is not an eigenvalue of D.

Proof. Let A be the adjacency matrix of a digraph D. Since A is square, it has Jordan

form J = QAQ−1, whose diagonal entries are the eigenvalues, possibly repeated, of A.

As in the proof of Theorem (3.6), J is an upper triangular matrix. Since vi(t+1) = vi(t)+

the i, j entry of A+A2 + · · ·+At, we need to show that the Jordan Block corresponding

to λi converges in
∑
J t
i , where Ji is the corresponding Jordan block. By Theorem (3.6),

every Jordan block is nilpotent, so for t large, the matrix J t
i will contain the eigenvalues

of A on the diagonal and 0’s off the diagonal. This implies that limt→∞
∑
J t
ij converges

for −1 < λi < 1. Therefore D will be pulse stable for −1 < λi < 1. Since these

conditions also hold for pulse stability, we conclude that D will be value stable if and

only if D is pulse stable, and −1 < λi < 1.

As we will see in the next chapter, real data results in a right stochastic adjacency

matrix. The following theorem has some implications with respect to pulse and value

stability with this information in mind. Recall that the outdegree of a vertex vi ∈ V (D)

is given by the sum of the ith column of the adjacency matrix A of D, and the indegree

is given by the corresponding column sum. In the following definition, ρ(A) is the vertex

of maximum outdegree, and ν(A) is the vertex of maximum indegree.

Definition 3.10. [4] Let A ∈Mn×n(C). For 1 ≤ i, j ≤ n, define ρi(A) to the be sum of

the absolute values of the entries of row i of A, and define νj(A) to be equal to the sum
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of the absolute values of the entries of column j of A. Thus

ρi(A) =

n∑
j=1

|Aij | for i = 1, 2, . . . , n

and

νj(A) =

n∑
i=1

|Aij | for j = 1, 2, . . . , n

We denote the maximum row (column) sum of A by ρ(A)(ν(A)). That is,

ρ(A) = max{ρi(A) : 1 ≤ i ≤ n} and ν(A) = max{νj(A) : 1 ≤ j ≤ n}.

The following proof gives an interesting way to find the maximum value that any

eigenvalue of a matrix A might achieve. The proof uses Gerschgorin disks, which are

disks centered at the values of the diagonal entries aii of the matrix A. These disks have

radius Ri equal to the sum of the entries along the ith row, excluding the number aii.

The algebraic portion of the proof contains a few nuances which will be explained after

the proof to avoid cluttering its elegance.

Theorem 3.11. [4] Let A ∈ Mnxn(C). Then every eigenvalue of A is contained in a

Gerschgorin disk.

Proof. Let λ be an eigenvalue of A with the corresponding eigenvector

v =


v1

v2

...

vn


Then v satisfies the matrix equation Av = λv, which can be written

n∑
j=1

Aijvj = λvi (i = 1, 2, . . . , n). (1)

Suppose that vk is the coordinate of v having the largest absolute value; note that vk 6= 0

because v is an eigenvector of A.
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We show that λ lies in Ck, that is, |λ−Akk| ≤ rk. For i = k, it follows from (1) that

|λvk −Akkvk| =
∣∣ n∑
j=1

Akjvj −Akkvk
∣∣ (2)

=
∣∣∑
j 6=k

Akjvj
∣∣ (3)

≤
∑
j 6=k

|Akj ||vj | (4)

≤
∑
j 6=k

|Akj ||vk| (5)

= |vk|
∑
j 6=k

|Akj | (6)

= |vk|rk. (7)

Thus

|vk||λ−Akk| ≤ |vk|rk;

so

|λ| ≤ rk

because |vk| > 0.

As promised we now explain some of the assumptions that were made during the

algebraic portion of the above proof. In step (3) to (4) we used the triangle inequality.

Then from step (4) to (5) we changed the index on v by using the maximality of vk.

Finally, from step (6) to (7) we used the definition of the radius of a Gerschgorin disk

to write
∑

j 6=k |Akj | as rk.

Corollary 3.12. [4] Let λ be any eigenvalue of A ∈Mnxn(C). Then |λ| ≤ ρ(A).

Corollary 3.13. [4] Let λ be any eigenvalue of A ∈Mnxn(C). Then |λ| ≤ min{ρ(A), ν(A)}.

Corollary 3.13, taken with theorem 3.7 and 3.9, will be the most important for

our work analyzing stability in the homeless network. We will see that analyzing the

homeless network as given in empirical data results naturally in both stable and unstable

systems, depending upon which aspect one is considering. Thus, some interpretation

will be necessary to come up with a “new” idea of stability in these types of networks.

We reserve this discussion for the next chapter, where we will develop the homeless

network model.
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CHAPTER 4

APPLICATIONS

4.1 Applications

As mentioned in the introduction, there are few applications of SNA to homeless

populations. The most notable case being that conducted on the homeless services net-

work in Montreal, Canada, wherein communication patterns between service providers

were the primary target of analysis. While this work, and much more that has been con-

ducted using linear and non-linear modeling, is helpful in understanding the homeless

network, information describing the homeless population and the inherent interdepen-

dencies is desired. This motivates our work using the network modeling techniques

outlined in the previous chapters. Below we describe, with example, some of the possi-

bilities of using these techniques.

4.1.1 The Homeless Network

By “The Homeless Network” (THN) we shall loosely mean individuals who have

used homeless services and the homeless services themselves, as well as the interaction

between these two entities. We define precisely what we mean in the next section. Here

we give a qualitative description of the entities which will make up the homeless net-

work. We also describe the empirical data that was procured via the Utah Homelessness

Management Information System (UHMIS) Steering Committee.

In march of 2014 we met with the UHMIS Steering Committee and proposed a

study of the patterns of action of individuals experiencing homelessness in the state of

Utah. By law those who receive funding for providing services to individuals experienc-

ing homelessness must collect data and store the data in a repository called a Homeless

Management Information System. The repository need not be centralized, however Utah

stands among few states who have had the foresight to collect data from each service in

the state, and then store it in one place. This centralized collection of data has only been
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occurring for the last three years, hence the timing of our request was optimal. As per

our request, we obtained deidentified data on approximately 43, 000 individuals over the

years 2011-2014, beginning and ending in March of those years. The data includes the

unique client id’s and the names of services to which each client was admitted. Entrance

and exit dates for each service are included, as are individuals characteristics including

age, sex, family status, etc. The UHMIS database contains further information which

would be useful to later analysis on specific subsets of clients.

The types of available homeless services vary widely. A nonexhaustive list of ex-

amples in Utah include emergency shelters such as The Road Home, soup kitchens such

as Saint Vincent dePaul’s Soup Kitchen, rehab centers such as Catholic Community

Services, refugee services such as The Asian Association of America, and services which

provide all or some of these services. Individuals experiencing homelessness are just as

varied, if not more varied than the list of services. In the course of this research the

authors had the opportunity to experience the intake process at The Road Home in Salt

Lake City, Utah. This is an urban emergency shelter for those in need of immediate

housing assistance. The process for getting admitted to The Road Home is not simple

and can be intimidating for someone who is newly homeless. One arrives at the area

around a rather large emergency housing complex, with no clear entrance. On our first

try, we ended up on the family side of the housing complex. Families and single women

are separated from the single males. Upon being directed to the correct intake desk,

we walked around the complex to find a large line of individuals winding down a ramp,

and then around a small gated playground. On our way past the children playing at the

playground we were asked to purchase illegal drugs three times. Then walking past the

array of individuals milling about in the unorganized line designated for intake, we en-

tered the shelter where we filled out the intake form and were told to wait in line outside

till 10pm for intake to begin. The inside of the shelter was reminiscent of prison, as was

the line outside. After waiting till 10pm, we were interviewed and found worthy of a bed

for the night. We do not know if this process is common among shelters. We found the

process to be inconvenient enough that we would consider sleeping outside rather than

going through the intake process. Thus, any analysis of the homeless network should be

considered with the perspective that data will not be available on all individuals who

experience homelessness, or at the very least, the data may be incomplete. To add to the

uncertainty, there is no requirement for an individual to disclose personal information

to receive services. Nor is there any incentive for an individual to tell the truth. Due to
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the inherent instability in the lives of individuals experiencing homelessness, we might

expect that one may not recall their birthday, or their last known address. Thus, again,

we must be cautious in the conclusions we draw from this type of research. Nevertheless,

given the large amounts of previously unavailable or unusable data, it will be useful to

describe, in part, the interaction between individuals experiencing homelessness and the

services they use.

4.1.2 Population Transition Model

Here we define, precisely, what we mean by the homeless network in the parlance

of graph theory.

Definition 4.1. Let G be a weighted multi-digraph (WMD) with loops possible (it

will turn out that loops are essential), where each vertex represents a homeless service.

Then let a real valued weighted arc from location i to location j, with i possibly equal

to j, represent the transition of individuals experiencing homelessness from service i to

service j. With vertices and arcs defined in this way, we call G the homeless network.

In what follows, the weightings on the edges will represent the proportion of indi-

viduals who move from service i to service j, with i = j representing the proportion of

individuals who remain at service i. Note that a loop i = j is necessary on each vertex,

otherwise we “send” population out of a location without ever accounting for the pop-

ulation that remains. Some loops may have weight 0, where all of the population at a

location actually does leave. This set-up leads directly to a simple population model. If

we know the population at each shelter x in the network at time 0, then after individuals

move according to the proportions on the weighted edges, we will know the population

at each location at time 1. Continuing this process we may find the population at any

shelter after t discrete time steps.

Computationally this is achieved through an application of linear algebra involving

the adjacency matrix of the WMD. Let A be the adjacency matrix for a WMD. Then

the ij entry of A contains the weight on the edge from location i to location j. As noted

in chapter 3, the ij entry of At is the number of weighted walks of length t from vertex

i to vertex j. In this application, the ij entry of At contains the proportion of people

who moved from location i to location j in t discrete time steps, or by paths of length

t in the WMD. Thus if we have an initial population vector P0 containing the initial

population of each location at time t = 0, then we can perform a multiplication to find
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the population at each vertex at time t = 1. We make two important notes with respect

to our set up so far. First, that the leftness or rightness of the multiplication makes a

big difference in whether we obtain the quantities we are looking for. Second, as stated

before, we will require that the diagonal entry i contains the proportions of individuals

who remain at location i. If we consider the weight on the arcs leaving location i, then

the diagonal entry will be

Aii = 1−
∑
{j:j 6=i}

Aij .

This makes A a right-stochastic matrix.

Theorem 4.2. Let A be the right-stochastic adjacency matrix for a WMD, with Aii =

1 −
∑
{j:j 6=i}Aij. Given an initial population vector P0, the population Pt at vertex i

at time t is given by the ith entry in the vector resulting from the left multiplication

P0A
t = Pt. We call this a proportion process.

Proof. Since the jth column of A gives the weighted arcs entering vertex j in the WMD

including the loop from j to j, left multiplication will give
∑n

i=1 PiAij , the sum of the

weighted population entering vertex j.

Right multiplication results in nonsense with respect to our application, since the

ith entry of the resultant vector contains the sum of populations from each location

scaled by the edges leaving vertex i.

The following three corollaries to Theorem (4.2) give us information about the

WMD that we might like to know in terms of the homeless network. In what follows,

note that Pt
x, for x ∈ {E,L}, refers to a population at time t, not an exponentiation of

P. We define E to be the set of individuals entering a locations, and L to be the set of

individuals leaving a location.

Corollary 4.3. The population change at vertex i from time t1 to t2 is given by Pt2−Pt1.

Corollary 4.4. If we ignore loops on the WMD, then we may compute the total popu-

lation entering a location at time t by

Pt
E = P0(A− ~dI)t,

where ~d is a vector containing the diagonal entries of A, that is, ~di = Aii = 1 −∑
{j:j 6=i}Aij.
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Corollary 4.5. Let Pi be a column vector whose entries are the population at the ith

location. If we ignore loops on the WMD, then we may compute the total population

leaving a location at time t by

Pt
L = (A− ~dI)ti · Pi,

where ~d is defined as in Corollary (4.4) and (A− ~dI)i signifies the ith row of A with 0’s

on the diagonal.

This population model is essentially a modified simple pulse process where the

initial value vector ~v(0) = 0 and the pulse vector ~p(0) = P0 instead of having a 1 in

entry i and 0’s in all other entries. As noted above, the weight, w(i, j), of the ij-entry in

At is the proportion of individuals who move from location i to location j along paths

of length t. In the context of the homeless network, we may use this information to

answer questions related to the probability that after t time steps, an individual enters

service j after having service i being their first admittance into the homeless network.

Now j may equal i, in this case an individual may complete a cycle or circuit in the

graph. In the case of loops, the individual completes a 1-cycle every time step. Since the

basic structure of our adjacency matrix has not changed from that of a pulse process, all

results revolving around pulse stability apply to our model. The question is, what does

pulse stability mean with respect to the homeless network? We will answer this question

momentarily.

Now we consider the idea of a simple pulse process on a WMD where the WMD

has been defined to represent the homeless network. Recall that a simple pulse process

is one in which vi(0) = 0, and ~p(0) = [0, · · · , 1, · · · , 0] (i.e. a 1 in the ith entry, and

0 else) and ~p(t) = ~0 for t > 0. Thus, for the homeless network, we have vi(0) = 0,

and P0 = [0, · · · , 1, · · · , 0] and Pt = ~0 for t > 0. From this point forward we will

call a simple pulse process applied to the homeless network, a simple proportion

process, so that we avoid confusion, and because this name better represents the process

we will implement. We also define an autonomous proportion process with the

same properties as and autonomous pulse process, that is Pt = ~0 for t > 0. With the

interpretation of the weighted entries we have given A, we gain two results for a simple

proportion process which follow directly from Theorem (4.2).
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Corollary 4.6. Consider a simple proportion process applied to an adjacency matrix A

representing the homeless network. Left and right multiplication by the vector P0 result

in the following two resultant vectors:

Left Multiplication: In a simple proportion process the left multiplication P0A
t re-

sults in a vector ~oi. The jth entry of this vector contains the probability that an

individual transitions from i to j in t time steps.

Right Multiplication: In a simple proportion process, the right multiplication AtP0

results in a vector ~ai. The jth entry of this vector contains the probability that an

individual transitions to i from location j in t time steps.

We now reinterpret Theorem (3.2) in terms of the homeless network. Recall that

for an adjacency matrix A, the ij-entry of A + A2 + · · · + At gives us the number of

walks from vertex i to vertex j of length less than or equal to t. Using the addition and

multiplication property, the ij-entry of A+A2 + · · ·+At contains the probability that an

individual transitions from location i to location j in less than or equal to t time steps.

Thus the ith-entry in the resultant vector from the left multiplication P0(A+A2+· · ·+At)

gives the population who moved from location i to location j in less than or equal to t

time steps, with i = j possible.

Theorem 4.7. Let A be the adjacency matrix representing the homeless network. Then

the population accumulation at each location in at most t time steps is given by

P≤t = P0(A+A2 + · · ·+At).

This may further be interpreted as the probability that an individual is admitted to service

j from service i in less than or equal to t discrete time steps. We will call this a

cumulative proportion process.

Proof. The proof follows directly from Theorem (4.2) since P0 distributes across (A +

A2 + · · ·+At).

This theorem might be interpreted as the total traffic admitted to a location in

the homeless network, including those who remain at each location. If we remove the

diagonal entries in A, then we get the total traffic admitted to a location from every
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other location in the network for at most t time steps.

By rewriting Corollary (4.6) in terms of simple cumulative proportion processes,

we can pluck out a vector whose entries contain the probabilities of leaving or entering a

location via another in less than or equal to t times steps. Note that the modifier simple

still refers to P0 being a vector of only one 1, and every other entry a 0. We now make

these ideas precise.

Corollary 4.8. Consider a simple cumulative proportion process applied to the series

of adjacency matrices
∑t

i=1A
i. Left and right multiplication by the vector P0 gives the

following two resultant vectors:

Left Multiplication: In a simple cumulative proportion process the left multiplication

P0(A+A2 + · · ·+At) results in a vector ~oitot. The jth entry of this vector contains

the probability that an individual transitions from i to j in at most t time steps.

Right Multiplication: In a simple cumulative proportion process, the right multipli-

cation (A+A2 + · · ·+At)P0 results in a vector ~aitot. The jth entry of this vector

contains the probability that an individual transitions to i from location j in at

most t time steps.

Finally, before considering some examples, we reinterpret stability for the homeless

network. Since a proportion process is an accounting of the movements of individuals in

the homeless network, we should expect that stability in such a process refers to stability

in the populations in each location. This is true, with an exception for cumulative

proportion processes, in the sense that stability specifically measures the likelihood that

the population at a particular location is unlikely to increase without bound if the

system is “stable.” We will call this proportion stability, and make the idea precise

in Theorem (4.9). Note that an autonomous proportion process is only a renaming of an

autonomous pulse process, hence all properties are equivalent between the two. Recall

that ν(A) is the maximum column sum in a matrix A, and ρ(A) is the maximum row

sum.

Theorem 4.9. Let A be the adjacency matrix representing the homeless network. Then,

by Corollary (3.13), the homeless network is proportion stable if and only if ν(A) < 1.

Proof. By Corollary (3.13) the eigenvalues of A are bound by min{ν(A), ρ(A)}. By

Theorem (3.7) A is proportion stable under all autonomous proportion processes if and
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only if every eigenvalue of A is at most one. Since ρ(A) = 1 by the right stochasticity of

A we need only guarantee that ν(A) ≤ 1. Therefore the homeless network is proportion

stable if and only if ν(A) < 1.

We also note the exception for cumulative proportion processes and give the fol-

lowing reasons for the exception:

Remark 4.10. A cumulative proportion process is not guaranteed to be stable, since

by our construction, each adjacency matrix A is right stochastic. Hence, by Corollary

(3.13),
∑t

i=1A
i may fail the condition in Theorem (3.9), that 1 may not be an eigenvalue

of A.

Theorem (4.9) gives an easy way to check if the homeless network is proportion

stable. All one must do is check that there exists no column sum greater than or equal

to one. This concludes our development of the homeless network.

4.1.3 Examples and Data Structures

Let us consider a small example, following which we will give an example using

real data. Suppose we were interested in 4 homeless services in particular, The Road

Home (TRH), Saint Ann’s (SAS), Youth Crisis Center (YCC), and Volunteers of America

(VOA). The first three provide emergency housing and the last provides certain services.

In our example, we will let 0 represent that an individual is no longer using homeless

services, or has left the services network. Obviously, a person may not be using homeless

services or a shelter and still remain homeless. Thus, 0 may represent much more than

simply no longer using services. We may draw a graph representing the interaction

between these services, but in general data from the services is given and a graph is

constructed from the data. The table below shows a typical example of the type of data

from which we construct a graph. In real life, data from the Utah Homeless Network

over three years contains a list approximately 90, 000 client entries long. Of those, about

40, 000 are unique clients, so the example table below is small indeed.

In order to build a graph which represents a homeless network from this data, we

need a sequence of at least two locations for each client. As a result, we invented what

we call the location sequence matrix (LSM). We have designed an algorithm to convert

the data as given into this structure. Below is an example where entry (2, L2) = Y CC
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clientid locationid

1 TRH

1 TRH

1 VOA

2 VOA

2 YCC

3 TRH

4 YCC

4 STA

4 STA

4 VOA

4 TRH

5 TRH

5 TRH

5 VOA

5 YCC

Figure 4.1: This is an example of data representing the relationship between
clients and services. The data has already been cleaned and sorted in chronolog-
ical order so that entries from client one begin at their first service experience
and end at their last. Similarly for client 2, 3, and so on. A raw data set would
contain all relevant dates and every individuals basic descriptive information

(e.g. age, veteran status, family status, etc.)

means that Y CC is the second location that client 2 visited. Note that this is also the

last service that client 2 used, since every entry after Y CC in their location sequence is

a 0. In general the number of rows in an LSM is equal to the number of unique objects

who have a location sequence. Then the number of columns is equal to the longest

location sequence in a set of all location sequences.

Definition 4.11. Let I be a set of objects. Then the location sequence, li, for object i, or

client i in the case of the homeless network, is the sequence of locations, in chronological

order, with chronological overlap possible, to which the object has been admitted. The

length of any location sequence is max|lj | for any j ∈ I. Thus each location sequence

has the same length, with 0 filling the remaining coordinates after the last location to

which object i was admitted. We also note that though the locations in an LSM are in

chronological order spanning the rows, there may be overlap. That is, L1 may occur at

the same time as L2, but admittance to L2 may not occur prior to admittance to L1.

Definition 4.12. A location sequence matrix (LSM) is an |I|×|li| matrix such that

row i contains object i’s location sequence.
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clientid L1 L2 L3 L4 L5

1 TRH TRH VOA 0 0

2 VOA YCC 0 0 0

3 TRH 0 0 0 0

4 YCC STA STA VOA TRH

5 TRH TRH VOA YCC 0

Figure 4.2: An example of a location sequence data frame. Note that the 0’s
represent the fact that an individual did not “check in” to a homeless service.
Thus, client 1’s last known location was VOA. Depending on the last know
location, we might presume that the client is no longer homeless. For example,
it has been conjectured that most clients who visit AAU only use the service
to find permanent housing, then upon finding permanent housing, they do not

experience homelessness in Utah again.

Consider columns L1 and L2 in figure 4.2. From a graph theoretic perspective,

we may consider these to be ordered pairs that form an edge list for a graph G, where

entry (2, L1) is adjacent to entry (2, L2) forming a directed edge (L12, L22) ∈ E(G)

between vertices L1, L2 ∈ V (G). Consider row 1 and row 5 in figure 4.2. These reflect

client 1 and client 5’s location sequence. Note that (L11, L21) = (L15, L25). This will

correspond to an integer weighting of the edges in the graph G. In the case of the graph

representing an L1, L2 transition, the weighting on the loop from TRH to TRH would

have a weighting of 2. These clients also share the same L2, L3 transition. Thus the

edge from TRH to V OA will be weighted with a 2 as well. Now we wish to build a

graph representing the various transition. In general, we prefer to have real number

weightings between 0 and 1, but we will first form the adjacency matrix of the graphs

that will represent our data.



TRH V OA Y CC STA 0

TRH 2 0 0 0 1

V OA 0 0 1 0 0

Y CC 0 0 0 1 0

STA 0 0 0 0 0

0 0 0 0 0 0





TRH V OA Y CC STA 0

TRH 2 0 0 0 1

V OA 0 0 1 0 0

Y CC 0 0 0 1 0

STA 0 0 0 1 0

0 0 0 0 0 1


Figure 4.3: Left we have an example of an adjacency matrix representing the
transition from location 1 to location 2 in the LSM in figure 4.2 and right we
have a modified version so that the weighted adjacency matrix will meet the

criteria of theorem 4.2.

This adjacency matrix is rather sparse, given that we did not start with much data.
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TRH

VOA YCC

STA

0

 w < .1
.1 <= w < .2
.2 <= w < .3
.3 <= w < .4
.4 <= w < .5
.5 <= w < .6
.6 <= w < .7
.7 <= w < .8
.8 <= w < .9
.9 <= w <= 1

Figure 4.4: A graph representing the location 1 to location 2 transition as
given in the LSM in figure 4.2, with the modifications of appropriate loops as
noted in figure 4.3. Note that the ranges in the legend give the weightings on

each edge represented by the corresponding gray scale value.

Thus we expect the graph to be sparse as well, and we see that it is, in figure 4.4. To

obtain the graph in figure 4.4, we used the real number weighted adjacency matrix.

This is obtained by summing the row entries and then dividing each entry along the

corresponding row by its row sum.

Definition 4.13. A weighted location transition matrix, which we will call a T -matrix,

is the matrix whose ij entry is

Tij =
Wij∑
j Wij

,

where W is the integer weighted adjacency matrix resulting from a set of data. The

result of this operation makes a T -matrix right stochastic.



TRH V OA Y CC STA 0

TRH 2
3 0 0 0 1

3

V OA 0 0 1 0 0

Y CC 0 0 0 1 0

STA 0 0 0 1 0

0 0 0 0 0 1





TRH V OA Y CC STA 0

TRH .1333 .0333 .1667 .3333 .3333

V OA .0816 .2041 .3061 .1020 .3061

Y CC .0933 .4666 .0800 .0933 .2666

STA .5618 .1124 .0730 .1404 .1124

0 .0000 .0000 .0000 .0000 1.0000


Figure 4.5: The matrix on the left is the T -matrix for the graph in figure 4.4,
while the matrix on the right is the T -matrix for the graph in figure 4.6. Notice
that the sum of any row is equal to one making these right-stochastic matrices.
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Figure 4.5 shows the T -matrix for the graph in figure 4.4, as well as the T -matrix

for the graph in figure 4.6.

The graph in figure 4.6 contains edges and loops to and from every vertex in the

graph except 0. In the applications discussed here, this will be the rule since the data

only contains individuals who used a service. Any record prior to admittance to the

first service use is unavailable, therefore it makes sense not to consider a transition from

non-service use to service use. We might just as easily have given every individual a

zero in their L1 column signifying their transition from non-service use to service use.

TRH

VOA YCC

STA

0

 w < .1
.1 <= w < .2
.2 <= w < .3
.3 <= w < .4
.4 <= w < .5
.5 <= w < .6
.6 <= w < .7
.7 <= w < .8
.8 <= w < .9
.9 <= w <= 1

Figure 4.6: A graph of the adjacency matrix on the right in figure 4.5 contain-
ing a transition from every possible location. Note that since there is not much
variation in the weightings, the gray scale scheme shows that there is no vertex
with a probability of “transitioning” more objects than any other vertex in the
graph (i.e. there is not much variation in the edge weightings. Eigen-analysis

will let us formally state this result.

Before we jump into an eigen-analysis of the graphs, we want to show some of the

possible analyses available via the LSM, as well as some analysis from the 3 year Utah

Homeless Management Information System (UHMIS) data set. In a question answered

for the state of Utah, we used the LSM to show the number of individuals in the Utah

prison population who experienced homelessness after termination from prison, or during

probation. This analysis could be extended to show rates of recidivism in the homeless

population, that is individuals transitioning from homelessness to prison then back to

homelessness. This may be represented by a two-cycle in a graph, but analysis would

need to be done via the adjacency matrix in this case. Instead we consider the LSM. A

person experiences recidivism, or a two-cycle, if the following conditions occur for the
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location subsequence, L(i− 1)k, Lik, L(i+ 1)k, in client k’s location sequence:

L(i− 1)k = L(i+ 1)k 6= Lik.

A simple loop in the programming language of your choice will count the number of

occurrences in an LSM given this condition.

By using an LSM, we might also consider the number of unique paths in a network.

Given more specific information about individuals in the homeless network, unique paths

may be analyzed to give some sort of measure of how successful an individual is in exiting

homelessness, or an idea of what types of services an individual experiencing chronic

homelessness uses. For example, one might wonder why a specific subset of individuals

have longer location sequences than others. Why is it that a subset of individuals have

only one non-zero entry in their location sequences? In at least one case this question

has been answered by considering the LSM corresponding to the three years of homeless

network data provided by UHMIS. The Asian Association of Utah (AAU) is a homeless

service specializing in assisting refugees. These individuals tend to visit the center only

once, and then never access any other homeless services in the state of Utah. It has

been suggested that housing options are immediately offered to these refugees, and that

these individuals have different motivations with respect to remaining homeless. Beyond

the scope of this paper, is an analysis into the factors that contribute to such a short

homeless experience.

Figure 4.8 shows a graph of the Utah homeless network using the three year data

set. The edges of the graph have been colored based upon the scheme in figure 4.7.

Blue 0 < w ≤ 10
Green 10 < w ≤ 100
Yellow 100 < w ≤ 1000

Red 1000 < w ≤ 5000

Figure 4.7: The color scheme for the graph in figure 4.7.

There are only 49 vertices in this graph, but there are approximately 200 edges,

given that for u, v ∈ V (G), the edges uv and vu appear as one edge with arrows on

both ends. The combination of these two numbers make the graph’s appearance like a

“bird’s nest,” thus we seek other analysis using the data structures that gave us this

graph, as in the above case of the LSM. Nevertheless, some information may be gleaned
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from staring at the graph for a time. We see that the most in-degree central vertices in

the graph are TRH, 0, V OA, and CCS, with some others we do not name also having

a relatively high in-degree. We leave the discussion of this analysis to the more precise

discussion using the in-degree and out-degree tables.

1SH

5CT

AAU

BRG

CAS

CCN

CCS

CHA

DBH

DCS

DHA

FAC

FAP

FCB

FCC

FSC

GSO
HAC

HAU

HCS

HVF

ICC

IPF

LAP

MCH

ODH

OHA

PAH

PHA

SAC

SCA

SCP

SEA

SWB

TAL

TCH

TCR

TRH

UBA

UIC

UNP

VMHVOA

WHA

WMH

WVH

YCC 0

Figure 4.8: A graph of the service 1 to service 2 transition for all clients in
the UHMIS 3 year data set. Note the large number of arrows pointing to 0,
TRH, CCS, VOA, and SAC. A degree centrality analysis will reveal what is so
obvious in the picture, that these services are the most degree central in the

homeless network.

A global analysis may also be helpful if these types of analyses are applied to other

homeless networks, thus giving us a comparison to measure. For example, we propose

a simple ratio of unique paths as a global measure in a network. Let U = the number

of unique location sequences in a T matrix, and Ptot = the total number of location

sequences in a T matrix. Then the path uniqueness measure is

Pu =
U

Ptot
,

where Pu is a number on the interval [0, 1], with Pu close to zero implying a network with

little variation in path types and Pu close to 1 implying a network of almost all unique

paths. For example, The Utah homeless network had 43, 662 client location sequences,

3, 297 of which were unique. Hence, the Utah homeless network has Pu = .0755, or
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about 8% of the paths through the homeless network were unique. This seems to be

a relatively small number, but without another homeless network to compare it to, we

are unsure. Without the comparison, we might ask questions such as, does Pu imply

a spread out network with high mobility among homeless individuals? Does it imply a

high variation in service needs among homeless individuals? These and other questions

should be answered.

As mentioned above, we might also be interested in a vertex degree analysis so

that we might know which locations receive the most traffic. Below are four charts, two

showing the in-degree and two showing the out-degree in the Utah homeless network.

Again, the three year data set was used to compute these numbers. Figures 4.9 and 4.10

represent the in-degree and out-degree of the transition from location 1 to location 2

graph, and do not account for weightings on the edges. Since the actual amount of traffic

traveling to or from a location will correspond to the weighted edges, we also show the

charts that include the degrees based upon the edge weightings in figures 4.11 and 4.12.

Some interesting results from these figures are that, as one might expect, locations who

send lots of individuals to other locations are also connected to many locations, simi-

larly for those receiving a large number of individuals. Further, we immediately see that,

since this is the location 1 to location 2 transition, a vast majority of individuals who

experienced homelessness over the three year period were only admitted to one service.

This seems to correlate with the fact that 10% of individuals use 90% of the services.

Thus, identifying patterns of the chronically homeless is critical to our understanding of

the homeless network. We also see that TRH is the highest service in both in-degree

and out-degree. This makes sense since TRH, or The Road Home, is the largest and

most urban shelter in the state of Utah. CCS, SAC, and CAS are also notable in the

graph, and we see that this carries over in the degree tables. What is not so obvious

from the graph, are the out-degree levels for each vertex. Not surprisingly, however, it

turns out that the services in the network that were the most out-degree central, also

happen to be the most in-degree central. It is suggested that, again, this is due to the

urban location of these services.

We now consider an eigen-analysis of the adjacency matrices of the graphs we have

shown so far. We want to know which graphs will be stable under an autonomous pro-

portion process. Thus we wish to know if there are any eigenvalues of the adjacency

matrices for the graphs whose magnitude is greater than 1. We used R to compute

the eigenvalues of the matrices, and then find the modulus for each value to account
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for complex values. We note that R normalizes the eigenvectors. Using R, we found

the eigenvalues of the adjacency matrices, which we label A1, A2, and A3 respectively,

as follows: (A1) The three year data set, (A2) the adjacency matrix for the graph in

figure 4.4, and (A3) the adjacency matrix for the graph in figure 4.6 all had maximum

eigenvalue 1. From this information we can conclude that each of A1, A2, and A3 are

proportion stable under all autonomous proportion processes.

We could have begun by applying Theorem (4.9) to check the column sums directly.

Recall that all column sums less than one imply proportion stability. Tables 4.1 and 4.2

show the maximum column sums and eigenvalues for each of the adjacency matrices.

Note that in all three cases analysis of the column sums are inconclusive. With three

examples, only one of which was computed with real data, we cannot make any conclu-

sions about whether we would expect this to happen a majority of the time.

The above analysis of stability in the graphs allows us to conclude that the pop-

ulation will not grow without bound at any service. This analysis also leaves us with

many questions. For example, we would like to know if the natural population limita-

tions of each service may be affecting the data on which this analysis was conducted.

This seems probable, thus further analysis might be conducted using data enumerating

the number of clients a particular service must turn away. A theoretical analysis might

also be conducted testing the effect of removing particular services based upon quali-

tative assumptions of alternative preferences of individuals experiencing homelessness.

Obviously data on other homeless networks are desired for comparison.
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Table 4.1: A table of the maximum column sums from each of the adjacency
matrices corresponding to the graphs presented in this chapter. Matrix A1, A2

and A3 correspond, respectively, to the UHMIS 3 year data set, the graph in
figure 4.4, and the graph in figure 4.6. Note that each maximum column sum
is greater than 1. Thus, we may not make any conclusion about stability in the

graphs from this analysis.

Adjacency Matrix Maximum Column Sum

A1 36.48935

A2 2

A3 2.018482

Table 4.2: A table of the maximum eigenvalues from each of the adjacency
matrices corresponding to the graphs presented in this chapter. Matrix A1, A2

and A3 correspond, respectively, to the UHMIS 3 year data set, the graph in
figure 4.4, and the graph in figure 4.6. Note that each eigenvalue is 1. Thus, we
conclude that each of the graphs are stable under all autonomous proportion

processes.

Adjacency Matrix Maximum Eigenvalue

A1 1

A2 1

A3 1
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Figure 4.9: The in-degree for the Utah homeless network over three years.
This graph does not account for edge weightings.
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Figure 4.10: The out-degree for the Utah homeless network over three years.
This graph does not account for edge weightings.



48

1S
H

5C
T

AA
U

BR
G

C
AS

C
C
N

C
C
S

C
H
A

D
BH

D
C
S

D
H
A

FA
C

FA
P

FC
B

FC
C

FS
C

G
SO H
AC H
AU

H
C
S

H
VF IC
C

IP
F

LA
P

M
C
H

O
D
H

O
H
A

PA
H

PH
A

SA
C

SC
A

SC
P

SE
A

SW
B

TA
L

TC
H

TC
R

TR
H

U
BA U
IC

U
N
P

VM
H

VO
A

W
H
A

W
M
H

W
VH

YC
C 0

In−degree

0

5000

10000

15000

20000

25000

30000

Figure 4.11: The in-degree for the Utah homeless network over three years.
This graph does account for edge weightings.
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Figure 4.12: The out-degree for the Utah homeless network over three years.
This graph does account for edge weightings.
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