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ABSTRACT 

Optimization of Wastewater Microalgae Pretreatment for Acetone, Butanol, 

and Ethanol Fermentation  

by 

Yessica Castro, Master of Science 

Utah State University, 2014 

Major Professor: Dr. Ronald C. Sims 

Department: Biological Engineering 

The biological production of acetone, butanol, and ethanol (ABE), using wastewater 

microalgae from the Logan City Wastewater Lagoon System (LCWLS) as the carbon source, 

is an environmentally sustainable process that addresses the demand for liquid fuel. The 

fermentation of wastewater requires algal-fermentable sugars to be bioavailable and 

fermentable media to be enriched for proficient sugar digestion and cellular growth.  The 

evaluation of 54 combinations of the acid concentration, retention time, and temperature in 

the acid hydrolysis defined the best conditions of the process parameters to increase ABE 

production while considering operational costs. Sulfuric acid concentrations ranging from 0-

1.5 M, retention times of 40-120 min, and temperatures from 23°C- 90°C were combined to 

form a full factorial experiment. Additionally, the use of cheese whey as co-substrate and 

nutrient supplement of the medium reduces the costs of the pretreatment process by 

eliminating the need for some nutrients (i.e. potassium phosphate, magnesium sulfate, and 
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ferrous sulfate) and increases the concentration of solvents. The results of the project show a 

production of 11.4 g/L of ABE and 8.5 g/L of butanol with a cost reduction of USD$0.33/gal 

of butanol produced. The optimization of wastewater microalgae pretreatment impacts 

positively the development and scale-up of ABE fermentation by enhancing yield and 

reducing costs of the process.  
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PUBLIC ABSTRACT 

Optimization of Wastewater Microalgae Pretreatment for Acetone, Butanol, 

and Ethanol Fermentation  

Yessica Castro 

Acetone-butanol-ethanol (ABE) fermentation from wastewater microalgae by 

Clostridium saccharoperbutylacetonicum N1-4 is a novel bioprocess that utilizes waste substrate 

to generate valuable solvents. Butanol, the most abundant product resulting from ABE 

fermentation, is an environmentally safe and high performing fuel that can be utilized as a 

drop-in-fuel; however, high operational costs and low ABE yield present challenge in scale-

up of the process. The utilization of algae as a substrate requires pretreatment prior to 

fermentation to increase the bioavailability of the algal fermentable sugars and to improve 

the conditions of the pre-fermentation medium.  The purpose of this thesis was to optimize 

wastewater microalgae pretreatment through (1) the optimization of microalgae 

saccharification, and (2) the use of cheese whey as co-substrate and supplement. 

Optimal conditions for sugar liberation from wastewater algae through acid 

hydrolysis were determined for subsequent fermentation to acetone, butanol, and ethanol 

(ABE). Acid concentration, retention time, and temperature were evaluated to define optimal 

hydrolysis conditions by assessing sugar and ABE concentrations, and the associated costs. 

Additionally, the effect of cheese whey as a supplement and substrate was determined for 

acetone, butanol, and ethanol (ABE) fermentation from wastewater microalgae. Three media 
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constituents, potassium phosphate, magnesium sulfate, and ferrous sulfate, were evaluated 

to assess their need as supplements in the medium to be inoculated, when 50 g/L of cheese 

whey was present.  The optimization of wastewater microalgae pretreatment results in 

increasing ABE production and decreasing process costs. 
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CHAPTER 1 

 INTRODUCTION 

There is no certainty regarding fossil fuel life expectancy, however global 

consumption of energy keeps increasing.  Renewable engineering technologies based on 

solar, wind, hydro, and thermal sources have been successfully developed to address some 

of the electricity demand; conversely, approaches to cover the liquid fuel consumption still 

present problems. One limitation concerning the industrial production of alternative fuels 

such as biodiesel and bioethanol is the economic and environmental impact caused by the 

feedstock.  The use of grains and oilseeds as feedstock biomass to produce biodiesel and 

bioethanol causes a decrease in world food supply and has a significant impact on food 

commodities prices (Timilsina et al., 2012; Zilberman et al., 2012). Additionally, pesticides 

connected with biofuel production are reported to contaminate water resources, give rise to 

health problems, and contribute to the shortage of a limiting nutrient (i.e. phosphorus) (Eide, 

2008; UPI, 2013). The production of corn and soybean to generate biodiesel and bioethanol is 

expensive due to the use of supplies such as fertilizers, pesticides, and seeds (Tiffany, 2009).  

Therefore, studies to develop alternative and sustainable biofuels are important. 

The production of butanol using wastewater algae as the carbon source may be an 

environmentally and economically competitive process. The removal of algae from 

wastewater municipal facilities helps to mitigate the environmental pollution of the water to 

be disposed into the natural reservoirs and stimulates domestic economic growth.  The 

harvesting of algae from wastewater municipal systems would result in a reduction of total 
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dissolved phosphorus (TDP) and total dissolved nitrogen (TDN)  in discharges from these 

systems (Christenson and Sims, 2012).  According to Jones and Woods (1986), 60% of the 

overall ABE production costs were due to the costs of substrates in the 20th century. The 

microalgae harvested from wastewater systems is a low cost substrate for biobutanol 

fermentation. Furthermore, butanol is environmentally competitive with biodiesel, and safer 

to transport and combust than gasoline and ethanol. Low vapor pressure point, high flash 

point, and low corrosive properties make butanol feasible to transport in pipelines (Jin et al., 

2011; Ramey, 2007).  Studies have shown greenhouse emissions of n-butanol blends to be 

lower than emissions of pure diesel (Durre, 2007; Rakopoulos et al., 2010). Butanol can be 

used effectively alone or blended in diesel fuel in commercial vehicle engines without engine 

modification (Rakopoulos et al., 2010; Ramey, 2007). Furthermore, butanol has a competitive 

performance as liquid fuel. Some advantages of butanol over ethanol are the higher energy 

content, lower water adsorption, and better blending ability (Dürre, 2007).   Therefore, 

butanol from wastewater algae may be a suitable sustainable fuel in transportation. 

Solvents obtained from ABE fermentation can be commercially used to manufacture 

several products.  Butanol not only is useful as liquid fuel for transportation, but also as 

auxiliary material in the production of goods. In 1919 butanol began to be used as solvent for 

nitrocellulose lacquer of low viscosity (Jones and Woods, 1986). Butanol can be used to 

produce butyl acetate, which is a substitute of amyl acetate for the automotive industry 

(Dürre, 2007). Similarly, acetone has been used for military, cosmetic, and food industries.  In 

the last century, the large scale production of ABE was triggered by the demand of cordite, 

which was a material used in World War I as a substitute for gunpowder. The production of 

cordite required the use of acetone (Dürre, 2007; Jones and Woods, 1986). Acetone is also 
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widely used as an ingredient in cosmetics such as nail polishes and polish remover, hair 

tonics, and tanning lotions and oils. Also, acetone is classified as GRAS grade “generally 

recognized as safe,” and is present in beverages, baked food, and desserts in a concentration 

range of 5-8 mg/L (Hernandez, 1999). Thus, ABE fermentation from wastewater algae 

represents an alternative for sustainable and valuable solvents such as acetone and butanol. 

The fermentation of butanol was first achieved by Louis Pasteur in 1861. Since then, 

the anaerobic process had been modified to obtain not only butanol, but also acetone and 

ethanol (Jones and Woods, 1986). As a result, the production of these solvents by biological 

means is well known as acetone-butanol-ethanol (ABE) fermentation. The ABE fermentation 

is accomplished by a bacterial strain, generally of the Clostridium species, which commonly 

use hexoses as the carbon source.  However, studies show that ABE can be produced using 

pentose as either the sole carbon source or co-substrate (Raganati et al., 2012; Yoshida et al., 

2012; Zheng et al., 2013). When the substrates are raw materials (i.e. non-monosaccharides), 

pretreatment is required. The general ABE production process is performed in three main 

stages: (1) pretreatment of biomass, (2) fermentation, and (3) recovery (see Figure 1-1). The 

pretreatment main objectives are to lyse the cells to make the sugars bioavailable and to 

hydrolyze polysaccharides into monosaccharides (Hemming, 2011).   As a result, the 

pretreatment stage is of most interest for researchers due to the pretreatment effect on the 

system outcome.   

Parameters used in algae pretreatment affect the economic success and performance 

of the ABE production.  Activities related to biomass pretreatment including hydrolysis, and 

nourishment have an impact on the total production cost of ABE. Kumar et al. (2012) stated 

that ABE capital cost increases by about 37% of the due to pretreatment steps when raw 
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materials instead of sugars are used as the substrate.  In addition, the fermentation medium 

must meet certain conditions prior to inoculation, such as supplementation and sterilization.  

The supplementation of the pre-fermentation medium for ABE depends on the substrate 

used. When ABE was industrially produced at the beginning of the 20th century, the use of 

molasses as substrate required the addition of nutrients at industrial scale. However, the use 

of maize mash as a carbon source required minimal supplementation (see Table A-1, 

Appendix A). The determination of optimal parameters for hydrolysis, nourishment, and 

sterilization phases is necessary for improvements in the yield and total production cost of 

ABE.  Thus, studies to achieve both optimization of the saccharification of the algae and 

supplementation of the medium in the pretreatment process must be conducted prior to the 

ABE scale-up.  

 

 

Figure 1-1. Flow of Acetone-Butanol-Ethanol (ABE) production. Figure modified from 

Hemming (2011). 

file:///F:/Proposal/abe flow.vsd
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CHAPTER 2 

 WASTEWATER MICROALGAE SACCHARIFICATION USING ACID 

HYDROLYSIS FOR ACETONE, BUTANOL, AND ETHANOL 

(ABE) FERMENTATION1 

 

2.1. Abstract  

Exploring and developing sustainable and efficient technologies for biofuel 

production are crucial for averting global consequences associated with fuel shortages and 

climate change. Optimization of sugar liberation from wastewater algae through acid 

hydrolysis was determined for subsequent fermentation to acetone, butanol, and ethanol 

(ABE) by Clostridium saccharoperbutylacetonicum N1-4. Acid concentration, retention time, and 

temperature were evaluated to determine optimal hydrolysis conditions by assessing the 

sugar and ABE yield as well as the associated costs. Sulfuric acid concentrations ranging 

from 0-1.5 M, retention times of 40-120 min, and temperatures from 23°C- 90°C were 

combined to form a full factorial experiment. Acid hydrolysis pretreatment of 10% dried 

wastewater microalgae using 1.0 M sulfuric acid for 120 min at 80-90°C was found to be the 

optimal parameters, with a sugar yield of 166.1 g for kg of dry algae, concentrations of 5.23 

g/L of total ABE, and 3.74 g/L of butanol at a rate of USD $12.54 per kg of butanol.  

 

 

 

1 Co-authors:  Joshua Ellis, Charles Miller, and Ronald Sims 
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2.2. Introduction 

While the global consumption of petroleum based products keeps increasing, the 

demand for alternative, renewable, and efficient energy technologies gains interest.  

Renewable energy technologies such as solar, wind, hydro, and thermal sources have been 

successfully developed to mitigate the energy demand; however, renewable approaches to 

cover liquid fuel consumption, such as biodiesel and bioethanol production, have economic 

and environmental impacts due to the feedstocks used. The use of corn and soybeans as 

feedstocks for biofuel production requires fertilizers, pesticides, and seeds, which increases 

the final cost of the bioproducts (Tiffany, 2009). Growing these crops for biofuel production 

not only affects food prices, but also triggers the contamination of water by the 

indiscriminate use of pesticides and fertilizers (Eide, 2008; Timilsina et al., 2012; Zilberman et 

al., 2012). As a result, studies to find alternative, low cost, and environmentally friendly 

feedstocks for the production of biofuels are being widely established.   

The biological production of acetone, butanol, and ethanol (ABE) using wastewater 

algae as the carbon source is an environmentally sustainable process that could mitigate the 

demand for petroleum fuel. Butanol, the most abundant solvent produced in ABE 

fermentation, is an environmentally friendly and competitive drop-in-fuel that can be 

directly used in vehicles and has a comparable energy density to gasoline (Dürre, 2007; Jin et 

al., 2011; Rakopoulos et al., 2010). In addition, n-butanol is a superior transportation fuel 

over ethanol because of its higher energy content, immiscible properties, lower volatility, 

lower corrodibility, and lower hygroscopicity (Srirangan et al., 2012). The production of ABE 

from wastewater algae takes advantage of the substrate source to minimize derived costs of 

production. Some of the advantages of wastewater algae over other terrestrial biomass 
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include lower nutrient requirements for growth, higher growth rate, higher yield per 

cultivation area, less land area requirement, non-fresh water required for growth, and non-

competition with food crop demand (Pate et al., 2011; Rawat et al., 2013; Sayadi et al., 2011; 

Vasudevan and Briggs, 2008).  In addition, microalgae harvested from municipal wastewater 

lagoons are considered a bioremediation technique for removing phosphorus and nitrogen 

to prevent downstream eutrophication (Christenson and Sims, 2012; 2011). Similarly, 

concentrated CO2 emissions from industrial sources can be redirected to municipal 

wastewater lagoons to be used as supplemental CO2 for algae growth; thus, mitigating CO2 

emissions (Pate et al., 2011). ABE fermentation using microalgae from the Logan City 

Wastewater Lagoon System (LCWLS) by C. saccharoperbutylacetonicum was previously 

demonstrated (Ellis et al., 2012).  

The production of ABE from a raw material such as wastewater algae requires 

pretreatment prior to fermentation to make the sugars bioavailable. The sugar content in 

algae is reported to be up to 50% dry weight (Chen et al., 2013).  According to preliminary 

studies (Figure B-1 and B-2, Appendix B), wastewater microalgae yields xylan, maltose, 

glucose, and xylose after thermal and dilute acid hydrolysis. Glucose, maltose, and xylose 

have been reported to be fermentable sugars by using various strain of C. 

saccharoperbutylacetonicum (Al-Shorgani et al., 2011; Ferchichi et al., 2005; Jones and Woods, 

1986; Kumar and Gayen, 2011; Yoshida et al., 2012).  Methods used to achieve 

saccharification of recalcitrant feedstocks are enzyme digestion, thermolysis, dilute acid 

hydrolysis, and concentrated acid hydrolysis (Harrison et al., 2003; Kang et al., 2012).  Ellis et 

al. (2012) conducted experiments to compare different pretreatment conditions used to 

produce ABE from wastewater algae.  The ABE fermentation using dilute acid hydrolysis for 
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wastewater microalgae pretreatment produced the lowest ABE yield, 2.74 g/L. The highest 

ABE yield (9.74 g/L) was obtained with the combination of acid hydrolysis and enzymatic 

digestion. However, enzymatic digestion is an expensive method that increases the cost of 

ABE production (Kumar and Murthy, 2013). In general, the costs associated to pretreatment 

process of feedstock for biofuel production range from 40 to 70% of the selling prices of 

biofuel (Srirangan et al., 2012). Thus, the selection of methods for wastewater microalgae 

saccharification needs to take into account the cost involved.  

Acid hydrolysis of wastewater algae as pretreatment for ABE fermentation by 

Clostridium spp. is a potentially effective and low cost method. The negligible content of 

lignin into microalgae reduces the costs, time, and difficulty of the conversion process 

(Harun et al., 2014).  Similarly, because C. saccharoperbutylacetonicum is an amylolytic 

microorganism, the enzymatic hydrolysis step for the conversion of starch into fermentable 

sugars is not required (Thang et al., 2010). Studies focused on acid hydrolysis as 

pretreatment process to digest cellulose and hemicellulose in algae have been already 

conducted (Kang et al., 2012; Khambhaty et al., 2012; Setyaningsih et al., 2012; Wang et al., 

2011; Yazdani et al., 2011). However, there are no studies to date regarding the optimization 

of wastewater microalgae for ABE fermentation using acid hydrolysis as a saccharification 

method. The optimization of algae saccharification through acid hydrolysis will result in 

increased fermentable sugar yields from microalgae while accounting for the cost of the 

process. Kinetic studies on the dilute acid hydrolysis of cellulosic materials indicate that the 

acid hydrolysis efficiency depends on substrate, acid concentration, temperature, and 

retention time (Wang et al., 2011). The optimization of microalgae acid hydrolysis through 

evaluation of these parameters will result in an increased yield of fermentable sugars in the 
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medium. Currently, there are no statistically detailed studies that describes the cost analysis 

associated with the evaluated parameters for acid saccharification of wastewater microalgae. 

The aim of this study was to optimize acid hydrolysis using wastewater microalgae for 

subsequent ABE fermentation by determining the conditions that yields the highest ABE 

concentration while controlling the costs of the process.  

2.3. Materials and methods 

Algae biomass 

Mixed microalgae biomass from the LCWLS was grown in SE media containing 850 

mg NaNO3, 350 mg KH2PO4, 150 mg MgSO4·7H2O, 150 mg K2HPO4, 50 mg CaCl2·2H2O, 50 

mg NaCl, and 15 mg C6H8O7•Fe•NH3 per liter of ddH20. The biomass was freeze dried 

through sublimation for 48 hours.  The dry biomass was maintained at 4°C prior to 

pretreatment. The mixed microalgae feedstock was primary dominated by Scenedesmus, 

Chlorella, Ankistrosdemus, Micromonas, and Chlamydomonas, as previously described (Ellis et 

al., 2012).  

Reagents 

Reagent grade chemicals were purchased from Sigma Aldrich (St. Louis, MO, USA) 

unless otherwise specified.   

Acid hydrolysis 

Algae (3.5 gdw) diluted in 35 mL of ddH20 was placed in 100 mL serum  vials with 

crimp top, 52 mm diameter, and 95mm height. The ranges of temperature (25-30°C, 45-55°C, 

and 80-90°C) were achieved by the use of different hotplates. For room temperature, a 

magnetic stirrer at stirring level 7 was used; for 45 -55°C, a Fisher Scientific Isotemp Basic 
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stirring hotplate  (Cat. 11-100-100SH) at 1200 RPM, and for 80-90°C a Fisher scientific stirring 

hotplate (Cat. 11-520-49SH). Stirring bars of 1 inch were used through the experiment. The 

temperature was monitored using a thermometer and controlled to be maintained within the 

desired temperature range. The acid concentrations used were 0.0 M, 0.35 M, 0.50 M, 0.70M, 

1.00 M, and 1.50 M. Retention times were 40 min, 80 min, and 120 min.  Ca (OH)2 was used 

to neutralize the hydrolyzed medium. The medium was clarified by means of centrifugation 

(1500 g for 20 min) before and after neutralization. Samples were filtered (0.2 µg) prior to 

carbohydrate analysis. The experiment was conducted in duplicates. Figure 2-1 illustrates 

the steps of the acid hydrolysis experiment.  

ABE fermentation  

Batch fermentations were performed in 10 ml serum vials. The pH of the media was 

adjusted to 6.5±0.5 prior to fermentation. The head space of the serum vials was flushed with 

nitrogen gas prior to the start of fermentation. The fermentation was initiated by inoculating 

with a 10% (v/v) actively proliferating (mid-log phase or 24 h vegetative growth) culture of 

cells in RCM media. All experiments were conducted at a constant temperature of 30 °C. 

Analytical methods  

Sugars were quantified by use of High-performance liquid chromatography (HPLC, 

LC-10AT Shimazdu) along with a  CTO-10A Shimazdu column oven equipped with a 

carbohydrate guard column 802G BP-100H+ and an analytical column 802 BP-100H+, both 

manufactured by Benson Polymeric. The mobile phase used was 100% ddH20. The samples 

were injected at a flow rate of 0.4 mL/min by SIL-10A auto injector and detected by an 

Evaporative Light Scattering Detector (ELSD-LT II), both manufactured by Shimazdu. 
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Hydrolysis
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t= 10 minutes
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Figure 2-1. Flow diagram for dilute acid hydrolysis. The factors for the experiment are: acid concentration (i), temperature of reaction (j), 

and retention time (k). A) Operations for algae hydrolysis prior to sugar determination using HPLC.  B) Operations required for fermenting 

the hydrolyzed algae medium before ABE determination using GC. 
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Standard curves for maltose, glucose, and xylose were generated with R2 >0.99. The peak 

elution time for maltose was 14.3 min, for glucose was 17.1 min, and for xylose was 18.3 min. 

Other peaks of interest were: galactose, 18.3 min; mannose, 18.2 min; maltotriose, 12.3 min; 

xylan, 10.5 min; formic acid, 10.4 min; and sulfates 10.6 min. Mannose, galactose, and xylose 

were essentially inseparable, as well as xylan, formic acid, and sulfates. 

ABE concentration was evaluated using gas chromatography (7890B GC-System, 

Agilent Technologies, USA) equipped with a FID detector along with a Restek Stabiwax-DA, 

30 m, 0.32 mmID, 0.25 μm df column. The inlet had an initial temperature of 30 °C for 1 min, 

ramped up at 5 °C/min up to 100 °C, and had a final ramp of 10 °C/min up to 250 °C. The 

column had a flow of 4 ml/min, pressure 15 psi, average velocity 54 cm/s, and holdup time 

0.93 min. The initial oven temperature was 30 °C for 1 min, and then ramped up 5 °C/min up 

to 100 °C (no hold time), then ramped up to 20 °C/min up to 225 °C (no hold time), with a 

final ramp of ramp 120 °C/min up to 250 °C and hold for 2 min. All samples were clarified 

by centrifugation prior to analysis. Volumetric productivity was calculated as the 

concentration of solvents produced per hour (g/Lh). 

Energy calculations 

Energy calculations are based on a 10,000 L batch system at 50% capacity. The heat 

energy and the power of the mixing/stirring were calculated using the equations 2.1 and 2.2, 

respectively (see Table 2-1).  The specific heat (cp) of the algae slurry is estimate to be 3.86 kJ 

kg-1 °C-1, calculations based on equation for cp estimations at temperatures above freezing 

from Earle (1983). The 10,000 L bioreactor used for the calculations is assumed to have a 

diameter of 75 inches and 135 inches height, based on the height to diameter ratio (H/D≈1.8) 

at bench scale experiment. Similarly, the impeller diameter used for calculations is 40 inches, 
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in order to keep the Dimpeller to Dtank proportion used in bench scale (i.e. 

Dtank/Dimpeller≈0.5).  

The rotational impeller speed was calculated using the rotational centrifugal force 

(RCF) from the bench scale experiment at 70% efficiency of stirring plates, obtaining 

RCF≈10g. The power number (Np) of impeller is based on the Reynolds number 

(Nre≈1.5x105), where the viscosity of the hydrolyzed slurry of 100 kg/m3 mixed microalgae is 

assumed to be equal to Chlorella vulgaris at 80kg/m3 (i.e. 0.016 Pa.s) (Coker, 2011). The 

estimation of Np is attained through the Power number-Reynolds number correlation graph, 

assuming 3-blade hydrofoil impeller with wide blades is used (Smith, 2011).  Calculations on 

the specific gravity of the algal slurry resulted in 1.16 when the acid portion is assumed to be 

the average molarity of 1.25M sulfuric acid. Previous calculations of specific gravity on 

Chlorella, with a moisture content of 75% (w/w), resulted in 1.1, which is similar to the value 

obtained in our study for the hydrolyzed mixed culture algae slurry (Boersma et al., 1978). 

Cost analysis 

Estimates of pretreatment costs were calculated to determine the cost effects of the 

factors including acid concentration, retention time, and temperature.  The cost of the energy 

is assumed to be USD $0.12/kWh, which is equivalent to USD $0.03/MJ based on the US 

Energy Information Administrator website (www.eia.gov).Costs of sulfuric acid and calcium 

hydroxide were assumed to be USD $0.26/kg and USD $0.20/kg respectively, based on the 

costs shown at Alibaba global trader website (www.alibaba.com). For details on costs 

calculations see sections C-3 and C-4 from Appendix C. 

 

 

http://www.eia.gov/
http://www.alibaba.com/
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Table 2-1. Equations for cost analysis of wastewater microalgae acid hydrolysis. Equation 2.1 

quantifies the cost due to temperature of reaction (°C) while equation 2.2 accounts for the 

cost due to retention time (min) by quantifying the power required for mixing. 

Eq. 2.1 

𝑄 = 𝑚 𝑐𝑝 ∆𝑇 

Q 

Energy (kJ) need to raise the temperature of 

algae slurry from room temperature (25°C) to 

optimal temperature.  

m Mass of algae slurry (kg) 

cp  Specific heat capacity of slurry= 3.86 kJ/kg°C 

∆T Rise in temperature of the algae slurry  (°C) 

Eq. 2.2 a 

𝑆𝐻𝑃 =
𝑁𝑝 𝑁3𝐷5 𝑆. 𝐺

1.53𝑥1013
 

 

SHP  Shaft horsepower (HP) 

Npb 
Power number of impeller. For a 3-blade 

hydrofoil impeller, wide blades, Np=0.60 

N Impeller speed (RPM). N=130 RPM  

D Diameter of the impeller (in). D=40 

S.G Specific gravity of solution. S.G=1.16  

1.53x1013 Conversion factor 

a Equation based on Principles of fluid mixing by Brawn mixer, Inc. (2003).  

b Based on Reynold’s number (Nre=ND2ρ/μ), Nre≈1.5x105; and estimated from Nre- Np correlation 

graph (Smith, 2011). 
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Statistical analysis 

The sugar yields of the 54 treatment combinations in duplicates (resulting from 6 

levels of acid concentration, 3 levels of retention time, and 3 levels of temperature) were 

analyzed as a complete factorial design (α=0.05) using the Statistical Analysis Software 

(SAS).  Similarly, the concentrations of butanol (g/L) were analyzed as unreplicated full 

factorial structure, which only accounts for the effect of acid concentration and retention 

time on butanol. Butanol concentration is an indicator of the parameters combination success 

regarding ABE fermentation. The assumptions of the analysis are normality and 

independence of variance. The comparison between the butanol costs was performed using 

t-test statistics from Graphpad website (http://www.graphpad.com/quickcalcs/).  

 

2.4. Results and discussions 

Effect of temperature, retention time, and 

acid concentration on sugar yield 

The sugar yield of pretreated samples at a temperature range of 80-90°C is 

significantly higher than the samples pretreated at lower ranges (p-value<0.05). The 

interaction plot of the factors time and temperature is shown in Figure 2-2.  According to 

these results, the optimal temperature range to be used in the pretreatment of wastewater 

algae biomass is 80-90°C. In contrast, room temperature is associated to the lowest sugar 

yield.  Previous studies on acid hydrolysis used temperatures ranging from 110-130°C 

(Setyaningsih et al., 2012; Wang et al., 2011; Yazdani et al., 2011). However, calculations (see 

Eq. 2.1) show that the use of temperatures from 120-130°C instead of 80-90°C results in a heat 

energy cost increase of 46-90%.  On a 10,000L batch system at 50% capacity, heating costs for 

temperature pretreatment at 45-55°C, 80-90°C, and 120-130°C are USD$18.6, USD$44.3, and 

http://www.graphpad.com/quickcalcs/
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USD$73.9, respectively. Studies have been conducted to evaluate high thermal pretreatment 

(i.e. 170°C) at retention times from 5-40 min revealing an increase of cellulose when the 

substrate (i.e. poplar) was pretreated from 20-30 min (Ma et al., 2014). Since the sterilization 

is a required process that occurs at 120°C (see Figure 2-1), the evaluation of high thermal 

pretreatment of wastewater algae at 170°C for 20-30min might be useful to eliminate the 

need of acid pretreatment and to reduce the operations of the pretreatment process by 

merging the saccharification and sterilization of the substrate medium. 

The analysis of variance (ANOVA) indicates that the effect of reaction time on sugar 

yield is not significant (p-value > 0.05). Table 2-2 demonstrates that there is not significant 

effect of retention time at each level of acid concentration on sugar yields.  For sulfuric acid 

concentrations 0.0 M, 0.35 M, 0.50 M, 0.70 M, and 1.50 M there is no significant difference 

between the retention time levels (40 min, 80 min, and 120 min). However, when 1.0 M of 

H2SO4 is used, 120 min of retention time (group A) is significantly higher than 40 and 80 

min (group B), with a sugar yield of 166.1 g/Kg of dry algae at retention time 120 min and 

65.2 -71.16 g/Kg at a retention time of 40 min and 80 min. The results obtained in this study 

are similar to those obtained by Yazdani et al. (2011), where the effect of retention time 

depended on the acid concentration. Acid hydrolysis concentrations from 0.05M to 0.70 M 

were evaluated, resulting in an increasing of glucose at 0.35M and 0.70M H2SO4 

respectively. However, other sugars analyzed behaved differently, for instance, xylose 

showed positive correlation with retention time at 0.70M H2SO4, and galactose showed no 

correlation with retention time at any of the acid concentrations analyzed (Yazdani et al., 

2011). Thus, the effect of retention time on the sugar yield not only depends on acid 

concentration, but also in the type of sugar. 
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The effect of sulfuric acid concentration on sugar yield is significant. The results 

presented in Table 2-2 show that the amount of sugar obtained after acid hydrolysis 

increases with the acid concentration. Group A yields the highest sugar concentration with 

values from 118.4-182.1 g of sugars/kg of dry algae hydrolyzed. Group A is associated with 

the highest concentration of sulfuric acid (1.5 M and 1.0 M) while group C is associated with 

concentrations of H2SO4 ranging from 0.0 M to 1.0 M, with sugar concentrations of 15.7-84.5 

g/Kg.  
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Figure 2-2. Interaction plot of sugar yield in terms of temperature (°C) and retention time 

(min).  Y axis is the transformation of sugar yield for statistical analysis, T_sugars= (Sugar)^0.5, 

measured in g/Kg of dry algae. At 80-90 °C, the sugar yield is significantly higher than 23-30°C 

and 45-55°C. The effect of retention time is not significant.  Figure extracted from SAS results 

with R-squared of the model equal to 0.92. 
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Table 2-2. Comparison of sugar yield for combinations of acid concentration and retention 

time at 80-90°C. Groups with the same letters are not significantly different. The highest 

sugar yield (group A) occurs when the substrate is pretreated with sulfuric acid is 1.5 M for 

40 to 120 min and at 1.0 M for120 min. The lowest sugar concentration is obtained when no 

acid is added. Sugar values are grams of total sugar per kilogram of dry algae (g/kg). Table 

based on SAS results with R square of 0.94. 

Pretreatment conditions 
Sugars 

(g/Kg) a 

Sulfuric 

acid (M) 

Retention 

time (min) 
Maltose Glucose 

Xylose/ 

galactose 
Total  

Statistical 

Grouping 

1.50 80 10.2 103.1 68.8 182.1 A  

1.50 120 ND 99.6 74.4 174.0 A  

1.00 120 20.9 81.5 63.7 166.1 A  

1.50 40 10.9 54.4 53.1 118.4 A B 

0.70 120 9.5 34.0 41.0 84.5 C B 

1.00 40 14.8 19.3 37.1 71.2 C B 

1.00 80 6.8 22.6 35.8 65.2 C B 

0.70 40 11.5 16.7 34.7 62.9 C B 

0.70 80 7.8 16.1 32.6 56.5 C B 

0.50 120 6.3 14.4 30.6 51.3 C B 

0.50 80 3.8 13.8 31.6 49.2 C B 

0.35 80 4.1 11.9 30.2 46.2 C  

0.50 40 ND 11.9 28.8 40.7 C  

0.35 40 ND 9.9 26.5 36.4 C  

0.35 120 ND 10.5 24.9 35.4 C  

0 40 13.6 12.2 ND 25.8 C  

0 80 11.0 8.5 ND 19.5 C  

0 120 11.8 3.9 ND 15.7 C  

a Tukey grouping of sugar estimates based on least squares means (α=0.05). 
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Table 2-3. ABE fermentation of optimal pretreated algae. ABE fermentation of algae pretreated by acid hydrolysis at a temperature range 

of 80-90 °C using the combinations of acid concentration and retention time associated with significantly higher sugar yields. 

 

Sulfuric 

acid 

(M) 

Retention 

time 

(min) 

Sugar 

(g/kg)  a 

Acetone 

(g/L) 

Butanol 

(g/L) 

Ethanol 

(g/L) b 

ABE 

Concentration 

(g/L) c 

ABE 

Volumetric 

productivity  

(g/Lh) d 

Estimates costs per batche 

Acid/base 

(USD$/L) 

Energy 

(USD$/L) f 

Total Cost 

(USD$/L) g 

Butanol  

rate     

(USD$/kg) h 

1.00 40 71.2 0.72 2.86 0.43 4.01 0.024 0.037 0.0097 0.0467 16.32 

1.00 80 65.2 0.84 3.28 0.42 4.54 0.022 0.037 0.0098 0.0468 14.27 

1.00 120 166.1 0.96 3.74 0.53 5.23 0.021 0.037 0.0099 0.0469 12.54 

1.50 40 118.4 0.83 3.05 ND 3.88 0.024 0.055 0.0097 0.0647 21.21 

1.50 80 182.1 1.33 3.85 0.46 5.64 0.027 0.055 0.0098 0.0648 16.88 

1.50 120 174.0 1.01 3.17 ND 4.18 0.017 0.055 0.0099 0.0649 20.47 

Control i - 0.12 0.59 0.10 0.81      

a Sugar yield estimates are measured in grams of sugars per kilogram of dry algae hydrolyzed. 

b Ethanol concentrations with values out of the method detection limit are expressed as ND. 
c Total solvents (ABE) concentration is measured in grams of solvent per liter of wet algae (10% W/V). 
d The productivity is calculated assuming the pretreatment and fermentation times as total time. 

e Calculations based on a 10,000 L batch pretreatment system at 50% of its capacity. Values are in USD$ per liter of wet algae (10% W/V). 
f Energy based on heating from room temperature to 90°C and mixing (see eq. 2.7.1 and eq. 2.7.2). 
g Total cost of batch per liter of wet algae (10% W/V) based on the acid /base and energy costs. 

h Rate of the pretreatment cost in USD per estimate kg of butanol produced. 
I Inoculation of c. saccharoperbutylacetonicum in T-6 medium without sugar added. 
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Acetone-butanol-ethanol from wastewater algae 

The results of the fermentation of sugars by C. saccharoperbutylacetonicum using 

parameter combinations associated with high sugar yield are shown in Table 2-3. There is no 

significant difference (p value < 0.05) between the butanol concentrations obtained from all 

the factorial combinations of sulfuric acid (1.0 M and 1.5 M) and retention time (40 min, 80 

min, and 120 min), at 80-90°C in the acid hydrolysis of wastewater algae. Butanol 

concentrations at the optimal conditions range from 2.86 to 3.85 g/L, with a mean of 3.33 g/L.  

Even though there is no significant difference in the ABE concentration based on SAS 

analysis, the determination of the most suitable pretreatment combination requires taking 

into account the costs of the process in terms of acid, base, and energy consumed. The costs 

related to acid concentrations of 1.0 M and 1.5 M are 0.037 and 0.055 USD $/L respectively. 

The costs associated with retention time are due to the energy consumed by mixing and 

stirring (see Table 2-1, Eq. 2.2). The costs of energy consumed due to heating from room 

temperature to 80-90°C and stirring for 40, 80, and 120 min are $0.0092, $0.0093, and $0.0094  

dollars per liter of wet algae (10% w/v) pretreated, respectively. According to these results  

(Table 2-3), the costs associated with acid and base consumption are statistically higher than 

the costs related to energy due to temperature (80-90°C) and retention time (agitation), with 

a p-value<0.05 from t-test statistics. Pretreatment combinations where the acid concentration 

is lower would result in a more economical process.  

Acid hydrolysis of wastewater algae using 1.0 M of H2SO4 at 80-90°C per 120 min is 

the most suitable combination with a sugar yield of 166.1 g/Kg of dry algae, 5.23 g/L of ABE,  

and 3.74 g/L of butanol concentration at a rate of USD $12.54 per kg. The use of sterilization 

was considered when conducting these studies; however a previous report by our research 
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group revealed minimal sugar liberation when no pretreatment was conducted prior to 

sterilization in pH neutralized  medium (Ellis et al., 2012). Previous ABE studies using 

wastewater microalgae under similar conditions, 1.0 M of sulfuric acid at 90°C for 30 min 

and had a lower ABE concentration of 2.74 g/L (Ellis et al., 2012). However, ABE yield 

ranging from 10-20 g/L is generally attained when using enzyme digestion to pretreat 

wastewater algae as well as cassava starch and degermed corn (Ezeji et al., 2007; Thang et al., 

2010).  These data presented here create a baseline for evaluating the cost effectiveness of 

wastewater microalgae pretreatment for ABE fermentation. 

2.5. Conclusions 

Dilute acid hydrolysis of microalgae is affected by temperature, retention time, and 

acid concentration. The amount of sugars liberated after acid hydrolysis increases 

proportionately with the acid concentration. Similarly, the temperature range of 80-90°C was 

found to be associated with the highest sugar yields. The effect of retention time on sugar 

yield depends on the acid concentration used in the pretreatment process. The combination 

of acid concentration, retention time, and temperature that yields the highest ABE 

concentration while controlling the costs of the acid hydrolysis process were found to be 1.0 

M sulfuric acid for 120 min at 80-90°C.These parameters provided a sugar yield of 166.1 g/Kg 

dry algae, 5.23 g/L of ABE, and 3.74 g/L of butanol concentration at a rate of USD $12.54 per 

kg dry algae. 
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CHAPTER 3 

 CHEESE WHEY AS SUPPLEMENT AND CO-SUBSTRATE FOR ACETONE, 

BUTANOL, AND ETHANOL (ABE) FERMENTATION 

FROM WASTEWATER MICROALGAE 

 

3.1. Abstract  

The effect of cheese whey as a supplement and substrate was determined for 

acetone, butanol, and ethanol (ABE) fermentation from wastewater microalgae by 

Clostridium saccharoperbutylacetonicum N1-4.   Three media constituents, potassium 

phosphate, magnesium sulfate, and ferrous sulfate were evaluated to assess their need as 

supplements in the medium to be inoculated, when 50 g/L of cheese whey was present.  The 

use of cheese whey resulted in a 380% higher ABE production than under standard 

conditions. Mean values of 11.4 g/L of ABE and 8.5 g/L of butanol were obtained when 10% 

acid hydrolyzed wastewater algae and 50 g/L of cheese whey was fermented by C. 

saccharoperbutylacetonicum N1-4. A cost reduction of USD$0.33 per gallon of butanol 

generated was attained using TYA medium as an alternative to T6 medium, with no 

reduction in solvent concentrations from ABE fermentation.  

3.2. Introduction 

The production of ABE from wastewater algae is a novel approach that takes 

advantage of the domestic bioremediation of wastewater streams through the harvesting of 

algae in order to minimize derived costs of production due to substrate expenses.  The 

achievability of ABE fermentation by Clostridium saccharoperbutylacetonicum using 
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wastewater microalgae from the Logan City Wastewater Lagoon System (LCWLS) has been 

previously described (Ellis et al., 2012). Optimizations of wastewater microalgae 

saccharification has been studied resulting in increasing ABE concentration when acid 

hydrolysis is used for the release of sugars. These studies show concentrations of 5.23 g/L of 

total ABE, and 3.74 g/L of butanol obtained from wastewater algae hydrolyzed with sulfuric 

acid at a concentration of 1.0 M at 80-90°C for 120 min (see Chapter 2). The COST of the 

pretreatment process associated with this approach was $12.83 USD per kg of butanol, 

considering the costs related to substrate pretreatment (i.e. raw materials for acid hydrolysis 

and energy used prior to fermentation). Further improvement of the ABE fermentation 

process is needed in order to improve the economic performance of the process. 

The fermentation of wastewater microalgae for ABE production can be improved by 

increasing the solvent yield and by reducing production costs. Some reductions in costs to be 

considered for ABE improvement are those associated with supplementation of the 

hydrolyzed wastewater algae medium prior to microbial inoculation. Wastewater algae does 

not provided all the nutrients for C. saccharoperbutylacetonicum to grow efficiently. Previous 

studies describe supplementation of extraneous sugars or enzymes to T6 medium for 

proficient cellular growth (Ellis et al., 2012).  Finding ways to reduce the medium nutrients 

in terms of either quantity or composition while meeting the supplementation objectives 

would decrease the pretreatment costs and increase the feasibility of ABE fermentation from 

wastewater microalgae. 

The use of cheese way in the fermentation medium would increase the ABE yield 

and decrease the environmental impact due to this waste.  The use of cheese whey to 

produce biofuels mitigates the environmental problems caused by the high organic matter 
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content (i.e. BOD= 30,000-50,000 ppm) when released to the environment (Ellis et al., 2014; 

Gonzalez, 1996). Cheese whey serves as a nutrient supplement and also as a co-substrate. 

Cheese whey contains 70% carbohydrates (i.e. primary lactose), which makes it a suitable 

substrate for ABE fermentation. Concentrations of cheese whey from 33 to 70 g/L have been 

used to produce ABE (Foda et al., 2010; Raganati et al., 2013). The composition of cheese 

whey powder includes nutrients (i.e. potassium, magnesium, iron, and chloride) that are 

needed for the growth of C. saccharoperbutylacetonicum N1-4 and fermentation (De Witt, 

2001). Similarly, the neutralization process generates sulfates that, combined with the right 

concentration of cheese whey, would provide some of the compounds contained in the 

supplementary media T6. See Figures D-1 and D-2, Appendix D, for details regarding the 

composition of cheese whey. When the mineral content of cheese whey powder is compared 

with the nutrient requirements for wastewater microalgae medium prior to inoculation of 

the Clostridia spp, a medium containing 50 g of cheese whey as co-substrate would 

theoretically meet the need of 0.5 g potassium phosphate, 0.3 g magnesium sulfate, and 0.01 

g ferrous sulfate per liter.  

Furthermore, non-supplemented cheese whey has been reported to be used as a 

substrate producing butanol concentrations of 4.93 g/L (Raganati et al., 2013).  Through the 

use of cheese whey, conservative expectations are the replacement of T-6 medium with TYA 

medium for ABE fermentation (see supplementation, section 3.3 for details on T-6 and TYA 

media). The implementation of cheese whey as supplement and co-substrate in the ABE 

production from wastewater algae is expected to be an economically and operationally 

beneficial approach. Reduction on the toxic effect of butanol has been reported when using 

cheese whey as substrate for ABE fermentation. As a result, the inhibition of sugar 
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consumption by the strain is reduced and the generation of butanol is enhanced over the 

generation of acetone (Jones and Woods, 1986; Qureshi and Maddox, 2005; Qureshi et al., 

2013). The integration of wastewater microalgae and cheese whey powder as substrate for 

ABE production, which is a novel process that has not been described in the refereed 

literature, will reduce the costs rates and increase the yield of solvents.  The purposes of this 

study was to demonstrate the feasibility of ABE production from wastewater microalgae and 

cheese whey through the evaluation of costs associated with supplementation and ABE 

productivity.  

 

3.3. Materials and methods 

Algae biomass 

Mixed microalgae biomass from the LCWLS was grown in SE media containing 850 

mg NaNO3, 350 mg KH2PO4, 150 mg MgSO4·7H2O, 150 mg K2HPO4, 50 mg CaCl2·2H2O, 50 

mg NaCl, and 15 mg C6H8O7•Fe•NH3 per liter of ddH20. The biomass was freeze dried 

through sublimation for 48 hours.  The dry biomass was maintained at 4 °C prior to 

pretreatment.  

Cheese whey powder 

Swiss whey powder was supplied by Gossner Foods (http://www.gossner.com). The 

mineral content in 100 g of cheese whey are 650 mg of sodium, 450 mg of calcium, 100 mg of 

magnesium, 2100 mg of potassium, 650 mg of phosphorus, and 1500 mg of chloride. See 

Figure D-2, Appendix D, for the specification sheet of the cheese whey powder we used in 

this study.  
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Hydrolysis

10% algae

t= 10 min

1200 RPM

Acid Hydrolysis

1 M H2SO4

T=90 ºC; t=120 min 

1200 RPM

Separation

1500 x g 

t=20 min

Neutralization

Ca (OH)2  pH=7

T=45ºC, t=30 min 

1200 RPM

Separation

1500 x g 

t=20 min

Supplementation

Cheese whey, T-6 (*)

Sterilization

120 ºC

t=15 min

Anaerobic 
Inoculation

5% Clostridium sp.

Incubation

T= 30 °C

t= 96 hours

Filtration

0.2 µm

Figure 3-1. Flow diagram of ABE production from wastewater microalgae and cheese whey. * The process to be analyzed for determining 

the effect of cheese whey on the ABE generation is “supplementation”.  Also, the effect of some T6 compounds on the wastewater 

microalgae and cheese whey medium was analyzed. 
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Acid hydrolysis of wastewater microalgae 

Figure 3-1 illustrates the steps of the ABE production from wastewater algae and 

cheese whey.  Wastewater microalgae was diluted in ddH20 to reach 10% (w/v). Acid 

hydrolysis was performed by heating to a temperature range of 80-90 °C, adding sulfuric 

acid to a final working concentration of 1.00 M, and stirring for 120 min.  Ca (OH)2 was used 

to neutralize the hydrolyzed medium. The medium was clarified by means of centrifugation 

(1500 g for 20 min) before and after neutralization.  

Supplementation  

The hydrolyzed algae medium was supplemented by cheese whey and T6 according 

to statistical experiment designed. The media were stirred at 1200 RPM and heated at 80-

90°C until the nutrients were dissolved. After the addition of cheese whey, the media were 

autoclaved at 120 °C for 15 min. The factorial experiment is based on T6 and TYA as 

supplementary media.  TYA stands for tryptone, yeast, and ammonium acetate with 

concentrations of 6.0 g/L, 2.0 g/L, and 3.0 g/L respectively. T6 contains: 0.5 g/L potassium 

phosphate, 0.3 g/L magnesium sulfate, 0.01 g/L ferrous sulfate, and TYA ingredients. All 

media were supplemented with 0.5 g/L of cysteine hydrochloride (Ellis et al., 2012). 

Fermentation  

Batch fermentations were performed in 10 ml serum vials. The pH of the media was 

adjusted to 6.5±0.5 prior to fermentation. The head space of the serum vials was flushed with 

nitrogen gas prior to the start of fermentation. The fermentation was initiated by inoculating 

10% (v/v) of actively proliferating (mid-log phase or 24 h vegetative growth) cells in RCM 

media. All experiments were conducted at a constant temperature of 30 °C. 



28 

 

 
 

Analytical methods  

ABE concentration was evaluated using gas chromatography (7890B GC-System, 

Agilent Technologies, USA) equipped with a FID detector along with a Restek Stabiwax-DA, 

30 m, 0.32 mmID, 0.25 μm df column. The inlet had an initial temperature of 30 °C for 1 min, 

ramped up at 5 °C/min up to 100 °C, and had a final ramp of 10 °C/min up to 250 °C. The 

column had a flow of 4 ml/min, pressure 15 psi, average velocity 54 cm/s, and holdup time 

0.93 min. The initial oven temperature was 30 °C for 1 min, and then ramped up 5 °C/min up 

to 100 °C (no hold time), then ramped up to 20 °C/min up to 225 °C (no hold time), with a 

final ramp of ramp 120 °C/min up to 250 °C and hold for 2 min. All samples were clarified 

by centrifugation prior to analysis. Volumetric productivity was calculated as the 

concentration of solvents produced per hour (g/Lh). 

Cost analysis 

Estimates of supplementation costs were calculated to determine the effects of the 

factors including cheese whey, potassium phosphate, magnesium sulfate, and ferrous sulfate 

on costs. The cost of cheese whey powder is assumed to be negligible since it is considered as 

waste by local factories.  The costs of other nutrients were assumed to be USD $1.8/kg for 

potassium phosphate, USD $0.10/kg for magnesium sulfate, and USD $0.20/kg for ferrous 

sulfate.  All the costs are according to Alibaba global trader website (www.alibaba.com).  For 

the cost analysis, the concentration of butanol is 8.5 g/L when cheese whey is present and 1.9 

g/L when cheese whey is absent. 

 

 

http://www.alibaba.com/
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Experimental design  

The experimental design for the supplementation process is a factorial structure 

consisting of four factors with two levels each, with a total of 16 measurement units. The 

factors and levels of the experiment are: (1) cheese whey, at 50 g/L and 0 g/L, (2) potassium 

phosphate, at 0.5 g/L and 0 g/L; (3) magnesium sulfate, at 0.3 g/L and 0 g/L; and (4) ferrous 

sulfate, at 0.01 g/L and 0 g/L.  The concentration of ABE obtained at the end of the 

fermentation is the response of the experimental design analyzed using the Statistical 

Analysis Software (SAS) with α=0.05.  The assumptions of the analysis are normality and 

independence of variance. Some comparisons between values were performed using t-test 

statistics from Graphpad website (http://www.graphpad.com/quickcalcs/). 

 

3.4. Results and discussions 

Effect of nutrients on ABE production 

The evaluation of the three compounds that differentiates T6 from TYA determines 

the reduction cost viability. The analysis of variance associated with the effects of the factors 

on the response are illustrated in Figure F-2, Appendix F.  The effect of ferrous sulfate 

(FeSO4) on ABE from wastewater algae is not significant, with p >0.05. Consequently, adding 

0.01g/L of FeSO4 does not improve the ABE concentrations in the fermentation. Based on this 

result, we can state that the bacterial requirement for FeSO4 is met in the hydrolyzed 

wastewater microalgae medium. Ferrous sulfate is used as a reducing iron powder for 

Clostridia spp. This material removes oxygen from the system by forming FeO2 (rust) 

(Demain et al., 2006). The addition of 0.5 g/L cysteine hydrochloride to the media might have 

covered the need for FeSO4.  The exclusion of this compound would only reduce the 

http://www.graphpad.com/quickcalcs/
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production costs in a rate of USD$0.0007 per gallon of butanol when cheese whey is used as 

supplement and co-substrate. Consequently, omitting FeSO4 is not really effective for cost 

reductions.  

Similarly, the effect of magnesium sulfate (MgSO4) is not significant according to the 

statistical results, with p>0.05. Thus, MgSO4 is provided by hydrolyzed wastewater 

microalgae. The neutralization process after acid hydrolysis generates calcium sulfate 

(CaSO4) as a byproduct. Most of the CaSO4 is removed from the medium, but some of this 

supplement is expected to remain.  Calcium sulfate is a source of inorganic ions that 

stimulate bacterial growth. Therefore the use of MgSO4 is unnecessary whether or not cheese 

whey is present. This decision would reduce production costs in a significant rate 

ofUSD$0.01/gal butanol.  Conversely, the effect of potassium phosphate (KH2PO4) on the 

ABE production depends on cheese whey concentration. When cheese whey is used as a 

supplement, the effect of KH2PO4 on ABE production is not significant. However, in the 

absence of cheese whey, the concentration of solvents increase more than 45% (Figure 3-2).  

The use of cheese whey as a supplement and co-substrate covers the requirement of 0.5 g/L 

of KH2PO4.  Eliminating 0.5 g/L of KH2PO4 from media would reduce USD$0.32/gal of 

butanol produced if cheese whey is used as a supplement instead.  

 The results suggest the elimination of the three nutrients under study if cheese whey 

is used as supplement and co-substrate with a total costs reduction rate of USD$0.33/gal of 

butanol produced. When cheese whey is not present, potassium phosphate must be present, 

and as a result the reduction would only be USD$0.04/gal of butanol produced. The 

remaining ingredients of the T6 medium that were not analyzed in this study (i.e. tryptone, 

yeast extract, ammonium acetate, and cysteine hydrochloride) might also be studied to 
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determine if are needed when cheese whey is used as supplement and co-substrate. The 

elimination of T-6 as supplementary media could be evaluated in order to reduce costs. 

Fermentation of ABE from cheese whey by Clostridium acetobutylicum DSM 792 was reported 

to generate 4.93 g/L of butanol using un-supplemented cheese whey as feedstock (Raganati 

et al., 2013).  

 

 

Figure 3-2. Effect of potassium phosphate (KH2PO4) on butanol concentration. When cheese 

whey is absent, the effect of KH2PO4 is statistically significant. However, when cheese whey 

is present, there is no significant difference on butanol concentration whether KH2PO4 is 

used or not. Figure is based on data from gas chromatography with calibration curve 

R2=0.99 (Appendix E). Error bars are the standard deviation. 
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Cheese whey as a supplement and co-substrate 

The use of cheese whey as supplement for ABE fermentation eliminates the need for 

potassium phosphate, reducing USD$0.32/gal of butanol generated (Figure 3-2). However, 

the effect of magnesium sulfate and ferrous sulfate on ABE generation does not depend on 

cheese whey presence according to statistical analysis. Additionally, Figure 3-3 illustrates 

that there is no significant difference between T6 and TYA media within each cheese whey 

concentration (i.e. 0 g/L and 50 g/L), which confirms that using TYA medium (absence of the 

nutrients under study) instead of T6 medium would result in similar concentrations of ABE.  

In terms of ABE production, there is a significant statistical improvement on ABE 

concentration when cheese whey is present (p<0.05).  The Tukey-Kramer least square means 

estimates for butanol and ABE concentrations, when cheese whey is present, are 8.5 g/L and 

11.4 g/L, respectively (Table 3-1). In the absence of cheese whey, the results show 

concentrations of 1.9 g/L of butanol and 2.3g/L of total ABE (Table 3-1).  The use of cheese 

whey as a co-substrate increases the solvent concentrations more than 3 times their value 

when only wastewater algae is used. ABE concentrations obtained from the use of cheese 

whey are higher than previous results from wastewater microalgae pretreated with acid 

hydrolysis and enzymes (i.e. 9.74 g/L) (Ellis et al., 2012).  

ABE efficiency might be further augmented by decreasing cheese whey 

concentration from 50 g/L to 20 g/L. Studies have shown that cheese whey concentrations 

over 20 g/L do not generate higher ABE concentrations (Napoli et al., 2009). Since 

hydrolyzed wastewater microalgae has shown to meet some of the nutritional requirements, 

a concentration of 50 g/L of cheese whey is higher than is needed. The use of 20 g/L of cheese 
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whey as co-substrate for ABE fermentation from wastewater microalgae would meet the 

nutrient demand without reducing the concentrations of solvents.   

 

 

Figure 3-3. Comparison of ABE concentrations from cheese whey and supplementary media 

constituents. The highest amount of ABE is produced when 50 g/L of cheese whey is added as 

supplement and co-substrate (group A). The lowest ABE concentration is obtained when no 

cheese whey is added (Group B). ABE values are grams of total ABE per liter (g/L).  Least 

squares means (LSMEAN) with the same letters (Group A or Group B) are not significantly 

different (α=0.05) according to Tukey-Kramer grouping for cheese whey. Figure is based on 

SAS results with R2=0.88 (see Figure F-3, Appendix F). 
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 Table 3-1. Solvent concentrations for combinations of cheese whey, potassium phosphate, 

and magnesium sulfate. When cheese whey is present, butanol and ABE mean concentrations 

are 8.5 g/L and 11.4 g/L respectively. Table is based on SAS Tukey-Kramer least square means 

estimates for butanol and total ABE, with R2 values 0.88 (see Figure F-3, Appendix F). Data 

obtained from ABE measurements is detailed in Table E-1, Appendix E). 

 

The use of cheese whey as a supplement and co-substrate for ABE fermentation was 

expected to increase the butanol to acetone ratio. Figure 3-4 shows that the A:B:E ratio when 

no cheese whey is used as a supplement is 2:7.6:0.4, while the ratio in the presence of cheese 

whey is 2.4:7.1:0.5. Therefore, the ratio of butanol to acetone decreased with the addition of 

cheese whey by greater than 6%. These data contradict recent studies where lactose derived 

Algae   
(% w/v) 

Cheese 
whey 
(g/L) 

Potassium 
Phosphate 

(g/L) 

Magnesium 
sulfate (g/L) 

Butanol 
(g/L) a 

ABE (g/L)a 
ABE Volumetric 

productivity  

(g/Lh) b 

10 50 0 0.3 10.7 

8.5 

13.2 

11.4 

0.053 

10 50 0 0 9.8 12.9 0.051 

10 50 0.5 0.3 7.5 11.1 0.044 

10 50 0.5 0 6.1 8.2 0.033 

10 0 0.5 0.3 2.7 

1.9 

3.8 

2.3 

0.015 

10 0 0 0 1.8 2.5 0.010 

10 0 0 0.3 1.8 2.1 0.008 

10 0 0.5 0 1.3 1.7 0.007 

0 0 0.5 0.3 ND ND - 

a Butanol and total solvents (ABE) concentrations are the estimates values calculated by the Statistical Analysis 

Software (SAS) based on Table F-3, Appendix F.   

b The productivity of the solvents is calculated assuming the pretreatment and fermentation times as total time. 

(*) Bold values are not significantly different within their own category according to Tukey-Kramer grouping of least 

square means of cheese whey with alpha=0.05.  
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substrates increased butanol to acetone ratios by 16% and 36% when C. acetobutylicum and C. 

beijerinckii were used respectively (Ujor et al., 2014).  The use of cheese whey as a lactose 

derived feedstock for ABE fermentation by C. saccharoperbutylacetonicum did not increase the 

ratio of butanol to acetone in this study.  

 

ABE fermentation from wastewater microalgae  

and cheese whey 

 

Table 3-1 shows the results of ABE and butanol concentrations for cheese whey, 

potassium phosphate, and magnesium sulfate level combinations. The lower concentrations 

of solvents were obtained when wastewater microalgae was the sole substrate, with 

estimates as low as 1.3 g/L of butanol and 1.7 g/L of ABE.  The solvent concentrations when 

no cheese whey is added and T6 is the supplementary medium are 2.7 g/L of butanol and 3.8 

g/L of ABE.  In contrast, the maximum butanol and ABE concentration estimates are 10.7 g/L 

and 13.2 g/L respectively, when cheese whey is co-substrate (α=0.05).  The results obtained in 

the current study are higher than previous results obtained when xylanase and cellulase 

enzymes were supplemented to the acid pretreated wastewater algae media, with an ABE 

concentration of 9.74 g/L (Ellis et al., 2012). However, the maximum volumetric productivity 

of ABE in the current study is only 0.053 g/L·h, while in the former study the volumetric 

productivity is 0.102 g/L·h. Similarly, high productivity is obtained when enzymatic 

hydrolysis is used for the pretreatment of corncobs (0.54 g/L·h), with an ABE concentration 

of 19.4 g/L (Gao and Rehmann, 2014). According to Gao and Rehmann (2014), this high 

concentration of solvents is due to the enzymatic hydrolysis that generated fermentable 

substrates. Conversely, in our present study, values as high as 18.6 g/L of ABE were 
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measured when cheese whey was present and no enzymes were involved (see Table E-1, 

Appendix E, for data measured).  

The solvent concentrations obtained in this bench scale study are standard values 

when compared with the maximum amounts of ABE concentration produced from other 

substrates by Clostridia spp. within ‘batch reactors’, which is 20-30 g/L (Qureshi et al., 2013).  

In terms of productivity, enzymatic digestion of algae as opposed to acid hydrolysis might 

be considered, but additional optimization and reduction costs of that approach should be 

evaluated to be more cost competitive. Other alternatives must be studied in order to further 

increase the productivity of ABE fermentation, such as genetically engineering bacteria to 

produce ABE continuously while collecting ABE to avoid toxicity to the bacterial strain 

(Qureshi et al., 2013).   

 

Figure 3-4. Comparison of A:B:E ratios from fermentation with and without cheese whey 

presence. Butanol to acetone ratio is higher when there is not cheese whey present.  
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3.5. Conclusions 

ABE fermentation from wastewater microalgae by Clostridium 

saccharoperbutylacetonicum improves in terms of solvent concentration and reduction costs 

when cheese whey is added as supplement and co-substrate.  The use of cheese whey as 

supplement for ABE fermentation prevents the need for potassium phosphate.  Even though 

the effect of magnesium sulfate and ferrous sulfate on ABE generation does not depend on 

cheese whey, the need for these two nutrients is covered by the acid hydrolyzed wastewater 

microalgae. The total cost is reduced by USD$0.32 for one gallon of butanol generated when 

TYA medium supplements 10% of hydrolyzed  algae and 50 g/L of cheese whey for ABE 

fermentation with mean concentrations of 11.4 g/L of ABE  and 8.5 g/L of butanol. In the 

absence of cheese whey, mean values of 2.3g/L of ABE and 1.9 g/L of butanol were 

produced. 
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CHAPTER 4 

 ENGINEERING SIGNIFICANCE AND CONCLUSIONS 

Increasing global energy consumption has lead nations and research oriented 

institutions to focus on developing sustainable technologies in order to meet some of the 

energy demand worldwide.  Butanol is an environmentally safe and high performing fuel 

that can successfully mitigate the liquid fuel demand and compete with commercial fuels if 

production costs are reduced and ABE yields increased.  This thesis addressed the 

optimization of wastewater microalgae pretreatment, which is one of the costly processes 

that are needed for ABE fermentation, with the purpose of enhancing ABE productivity. The 

first part of the research covered the optimization of the substrate saccharification through 

acid hydrolysis. The second part addressed the use of a co-substrate to reduce the need for 

supplements and to increase ABE generation. 

The studies conducted regarding the acid hydrolysis of the wastewater microalgae 

determined the optimal conditions for sugar liberation for subsequent fermentation to 

acetone, butanol, and ethanol (ABE) by Clostridium saccharoperbutylacetonicum N1-4.  The best 

hydrolysis conditions were determined by evaluating the effect of acid concentration, 

retention time, and temperature on sugar and ABE yield, as well as the associated costs. The 

effect of temperature was directly proportional to solvent yield, obtaining the highest ABE 

concentrations at the highest temperature (i.e. 80-90°C). The effect of the acid concentrations 

on solvent yield was found to depend on the retention time. The acid hydrolysis conditions 

that yielded the highest ABE concentration, while controlling the costs of the process, were 
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found to be 1.0 M sulfuric acid for 120 min at 80-90°C. These parameters provided a sugar 

yield of 166.1 g/Kg dry algae, 5.23 g/L of ABE, and 3.74 g/L of butanol concentration at a cost 

of USD $12.83 per kg dry algae.  

In the second part of this research, an increase of solvent concentration and a 

reduction of pretreatment cost was attained through the implementation of cheese whey as a 

co-substrate for ABE fermentation from wastewater microalgae by C. 

saccharoperbutylacetonicum N1-4. The effect of 50 g/L cheese whey as a supplement was 

determined through evaluating the requirement of three media constituents, potassium 

phosphate, magnesium sulfate, and ferrous sulfate, in the presence of cheese whey.  The use 

of cheese whey as supplement for ABE fermentation eliminates the need for potassium 

phosphate.  The need for magnesium sulfate and ferrous sulfate on ABE generation was met 

by the medium formed by 50 g/L cheese whey and acid hydrolyzed wastewater microalgae. 

An ABE increase of more than 100% resulted from the use of 50 g/L of cheese whey when 

compared with the results obtained in the first part of the research. Concentrations of 11.4 

g/L of ABE and 8.5 g/L of butanol were obtained when 10% acid hydrolyzed wastewater 

algae and 50 g/L of butanol medium was fermented by C. saccharoperbutylacetonicum N1-4. 

Also, a cost reduction of USD$0.33/gal of butanol was achieved by using TYA medium as an 

alternative to T-6 medium, with no reduction on solvent concentrations from ABE 

fermentation. Figure 4-1 is the schematic of the large scale batch system that would result 

from the operations performed currently at bench scale. 

Further reduction of costs and increase in ABE generation need to be considered for 

improving the competitiveness of ABE using the processes studied. The integration of the 

acid hydrolysis and the sterilization processes might be an opportunity of improvement for  
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Figure 4-1. Schematic of a 5000-L batch system for ABE production from wastewater microalgae by C. saccharoperbutylacetonicum.  Based on 

bench scale operations performed for experiments in this thesis project.  
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ABE fermentation. Acid hydrolysis is expected to increase sugar yield if performed at the 

temperature used for sterilization (i.e. 120°C). However, investments would be need on 

keeping the medium sterile from the unit where sterilization would be performed to the unit 

where inoculation would occur. The increase of temperature for acid hydrolysis might 

trigger reductions on acid concentrations that would decrease associated costs. Another 

approach to be considered in future research would be to genetically engineer bacteria for 

continuous ABE production while collecting solvents in order to avoid toxicity to the 

bacterial strain. The concentrations of ABE produced by Clostridium spp. are limited due to 

the harmful effect of the solvents on the bacteria. Extracting ABE from the medium where 

the bacteria are present would eliminate the solvents threat and enhance the production of 

ABE.  
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APPENDIX A 

 PREVIOUS WORK ON ABE FERMENTATION 

Table A-1. Description of different approaches on ABE fermentation. 

Scale/ Mode 

Substrate 

Bacteria Strain 

Hydrolysis 
Sterilizati

on 
pH Nourishment 

ABE 
yield 
(g/L) 

Reference 
Material % Acid/Enzyme 

Thermo-
lysis 

Industrial Maize mash 
8.0-
10.0 

Clostridium 
acetobutylicum  

NA T= 130-135◦c , 60-90 min  NA NA 12-20 
Jones and Woods, 
1986 

Industrial Molasses  
5.0-
7.5 

Clostridium 
acetobutylicum  

NA T=107-120◦C , 15-60 min  NA 
Organic/inorganic 
nitrogen, phosphorus 
and buffer. 

18-22 
Jones and Woods, 
1986 

Lab/ Batch 
Wastewater 
microalgae 

10 
Clostridium 
saccharoperbutyl
acetonicum N1-4 

1 M H2SO4; 5 M 
NaOH.  10 U 
xylanase, 100 U  
cellulase  

T= 90◦C 60 
min  

120◦C ,  
15 min  

6.5 
T6 and  0.5 g/L cysteine 
hydrochloride 

10 Ellis et al., 2012 

Bench/ 
Batch 

Cassava 
starch 

4-7 
Clostridium 
saccharoperbutyl
acetonicum N1-4 

Amylasee (95°C 
2h) , Gluczym 
(58°C, 15 h) 

T= 80◦C 30 
min  

115◦C ,  
15 min  

6.2 T6 23 Thang et al., 2010 

Bench/ 
Continuous  

Degermed 
corn 

5.5-
6.0 

Clostridium 
beijerinckii BA101 

1M HCl, amylase 
glucoamylase;  

100 °C, 3 h 
121 ◦C, 
 15 min 

6.0 
Phosphate buffer and 
yeast extract 

14 Ezeji et al., 2007 

Lab/Batch 
Corn fiber 
and xylose 

7.5 
Clostridium 
acetobutylicum 
P260 

1 M 
NaOH/H2SO4 

70-90 °C 
121 °C, 
15 min. 

6.1 
Glucose, yeast extract, 
and stock solutions 

25 
Qureshi et al., 
2004 

Bench/ 
batch Gelatinized 

sago starch 
5 

Clostridium 
saccharobutylicu
m DSM 13864 

NA 70C° 
121 °C, 
20 min. 

6.0 

T6 Glycerol, 2HPO4, 
MnSO4.H2O, NaCl, 
resazurin, cysteine, P-
amino benzoic acid and 
biotin. 

16 

Liew et al., 2006 

Bench/ 
Continuous  

9 
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Table A-2. Comparison of algal saccharification through dilute acid hydrolysis on different 

algal species. 

Substrate 

Acid 

(Moles/L) 

Temperature 

(°C) 

Reaction 

time 

(min) 

Sugar yield 

Reference 
Compound g/Kg  

% 

(w/w) 

Invasive 

Macroalga 

0.1, 0.2, 

0.50, 1.0  

105, 115, 125, 

128 
30 glucose 4.3  - 

Wang et al., 

2011 

Marine 

Macroalga 

0.70, 0.35, 

0.05 
121 

30, 45, 

60 
Total sugars 30 - 

Yazdani et 

al., 2011 

Red 

Macroalga 

0.15, 0.30, 

0.45 
121 

15, 30, 

45, 60 

Reducing 

sugars 
- 32.8 

Setyaningsih 

et al., 2012 

Red algae 
0.45 130 15 Galactose - 26.2 

Khambhaty 

et al., 2012 

*The values in bold are optimal according to the author. 
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APPENDIX B 

 THERMOLYSIS OF WASTEWATER MICROALGAE 

 

Figure B-1. HPLC chromatograph of 10% pretreated algae (thermolysis: 120 min, 85°C).  A 

polysaccharide (xylan), is shown at 10.5 min; traces of a trisaccharide (maltotriose) at 12.3 

min; a disaccharide (maltose) at 14.2 min; and some monosaccharides (glucose at 17.6 min, 

xylose at 18.2 min, and galactose at 18.7 min). Vertical axis is mVolts. Data from 04/04/13. 
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Figure B-2. Chromatograph of 10% pretreated algae (thermolysis: 30 min, 85°C). Xylan, 

maltose, and glucose are shown at 10.6 min, 14.2 min, and 17.0 min, respectively. Data from 

04/04/13. Vertical axis is mVolts. 
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Figure B-3. HPLC chromatograph of 20g/L xylan standard at 10.5 min. Data from 6/22/13. 



54 

 

 
 

 

 

 

Minutes

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

m
V

ol
ts

0

100

200

300

400

500

600

700

800

m
V

ol
ts

0

100

200

300

400

500

600

700

800

1
2

.8
0

2

  8
2

7
1

6
1

2

ELSD2 - Analog Board 2

Maltotriose

Retention Time
Area

Minutes

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

m
V

o
lt
s

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

m
V

o
lt
s

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

1
4

.3
6

2

  

2
8

1
7

1
4

ELSD2 - Analog Board 2

M1

Retention Time
Area

Figure B-5. Chromatograph of maltose standard at 14.3 min. Vertical axis is mVolts. 

Figure B-4. Chromatograph of maltotriose standard at 12.8 min. Data from 6/22/13.  
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Figure B-6. Chromatograph of glucose standard at 17.0 min. Vertical axis is 
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Figure B-7. Chromatograph of xylose standard at 18.3 min. Vertical axis is mVolts 
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Figure B-8. Chromatograph of galactose standard at 18.6 min. Vertical axis is mVolts. 
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APPENDIX C 

 CALCULATIONS  

C-1 Heat transfer calculations from Eq. 2.1 

Specific heat (Cp) of hydrolyzed algae  

Cp = 4.19p/100 + 0.84(100- p)/100 (kJ kg-1 °C-1 above freezing (Earle, 1983) 

p = percentage of water in the slurry =90% 

Cp = 4.19 (0.9) +0.84(0.1) kJ kg-1 °C-1 

Cp =3.86 kJ kg-1 °C-1 

 

Specific gravity (SG) of hydrolyzed algae (10%w/v) 

ρs = (ms/V) + ρl  

ρs = density of hydrolyzed algae slurry (kg/m^3) =? 

ms = mass of dried algae in slurry per liter of liquid (kg/L) = 0.1 Kg/L 

ρl = density of liquid portion- H2O and H2SO4- (kg/m3) = 1056 (1.25M H2SO4)  

V = volume conversion (m3/L) = 0.001  

ρs = (0.1/0.001)+ 1055  

ρs = 1155 kg/m3 

SG = Slurry density/ Water density 

SG = 1155/1000 

SG=1.16 

 

Heat energy (KJ/L) 

Temperature=50◦C 

𝑄 = 1.16(3.86)(50 − 25) 

𝑄 = 112.5 𝐾𝐽/𝐿 

Temperature=90◦C 

𝑄 = 1.16(3.86)(90 − 25) 

𝑄 = 291.0 𝐾𝐽/𝐿 

Temperature=120◦C 

𝑄 = 1.16(3.86)(90 − 25) 

𝑄 = 425.4 𝐾𝐽/𝐿 
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C-2 Energy from mixing 

𝑆𝐻𝑃 =
𝑁𝑝 𝑁3𝐷5 𝑆. 𝐺

1.53𝑥1013
 

 

SHP =Shaft horsepower (HP) 

Np= Power number of impeller. Np=0.60 

N= Impeller speed (RPM). N=130 RPM  

D= Diameter of the impeller (in). D=40 

S.G= Specific gravity of solution. S.G=1.16  

1.53x1013= Conversion factor 

 

Calculation of impeller speed from bench scale 

RCF=(1.118x10^-5) R (N)^2 

RCF= Relative centrifugal force (g) 

R= rotational radius (cm) 

N= rotational speed (RPM) 

 

Bench scale (assuming 70% efficiency) 

RCF= (1.118x10^-5) (1.27) (1200 (.7)) ^2 

RCF= 10 xg 

 

Large scale 

N=(RCF/R(1.118x10^-5))^0.5 

N=(10 /(50.8)( 1.118x10^-5))^0.5 

N= 130 rpm 

 

Power number (Np) 

Nre=(N (D^2) ρ)/μ 

Nre= Reynold number 

D= Impeller diameter (m)= 1.0 

N= rotational speed (rps)=130/60 

Ρ= density (kg/m^3)= 1100 

µ=fluid viscosity (Pa s)= 0.016 

 

 

Nre=(N D2 ρ)/μ 

Nre=[(130/60)(1.0)(1100)]/0.016 

Nre=148958 

Nre≈1.5x10^5, thus Np≈ 0.6  

(Smith, 2011).  

 

SHP= [(0.6) (130)3(40)5(1.16)]/1.53x1013 

SHP=10.2 hp 
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Stirring energy (Es) 

Es= [0.746 SHP (RT)]/V 

Es= Energy due to stirring (KJ/L) 

SHP =Shaft horsepower (HP) 

RT= Retention time (s) 

V= Batch volume (L) 

0.746= Conversion factor (kw/hp) 

RT=40 minutes 

Es= [0.746 (10.2) (40x60)]/(5000L) 

Es=3.6 KJ/L 

 

RT=80 minutes 

Es= [0.746 (10.2) (80x60)]/(5000L) 

Es=7.3 KJ/L 

 

RT=120 minutes 

Es= [0.746 (9.7) (120x60)]/(5000L) 

Es=10.4 KJ/L 

 

 

C-3 Costs from acid and base 

ABCost= (Va ρa Pa+ Mb Pb)/V 

ABCost= Cost of acid and base for pretreatment (USD$/L) 

Va=Volume of 18.5 M H2SO4 stock required for batch (L) 

ρa = Density of 18.5 M H2SO4 (Kg/L)=1.84 

Pa= Price of acid (USD$/kg)=0.26 

Mb=Mass of Ca(OH)2 (kg) 

Pb= Price of base (USD$/kg)=0.20 

V=Batch volume (L)=5000 

X mL of H2SO4 needed approximately X g of Ca(OH)2. Thus, Mb=Va 
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Mass of of Ca(OH)2 (kg) 

Mb=Va=C*V /Ca 

Va=Volume of stock required for batch (L)=? 

Ca= stock concentration of sulfuric acid (M) =18.5 

C=Required concentration in batch for pretreatment (M) 

V=Batch volume (L)=5000 

 

1.0M H2SO4 

Va= (1)(5000)/18.5 

Va= 270.3 L= 270 kg of Ca(OH)2  

ABCost= (270.3)[(1.84) (0.26)+ (0.20)]/5000 

ABCost=0.037 USD$/L 

 

1.5M H2SO4 

Va= (1.5)(5000)/18.5 

Va= 405.4 L= 405.4 kg of Ca(OH)2 

ABCost= (405.4) [(1.84) (0.26)+ (0.20)]/5000 

ABCost=0.055 USD$/L 

 

C-4 Energy costs 

QCost=(Qh+Qs) Pe 

QCost= Cost of energy for pretreatment (USD$/L) 

Qh=Energy due to heating to 90◦C (KJ/L) =291 

Qs=Energy due to stirring (KJ/L) 

Pe= Price of energy (USD$/KJ) 

Pe= (USD$0.12/kwh )(kwh/3600 kJ) 

Pe= 3.3x10^-5 USD$/KJ 

 

RT=40min 

QCost=(291+3.6) (3.3x10^-5) 

QCost= 0.0097 USD$/L 

 

RT=80min 

QCost=(291+7.3) (3.3x10^-5) 

QCost= 0.0098 USD$/L 

 

RT=120min 

QCost=(291+10.4) (3.3x10^-5) 

QCost= 0.0099 USD$/L 
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APPENDIX D 

 NUTRITIONAL CONTENT OF CHEESE WHEY POWDER 

 

 

Figure D-1. Cheese whey specifications sheet. Provided by Gossner Food (Logan, Utah). 
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Figure D-2. Approximate composition of cheese whey Gouda (extracted from De Witt, 2001). 
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APPENDIX E 

 DATA OF CHEESE WHEY AS SUPPLEMENT 

AND CO-SUBSTRATE EXPERIMENT 

 

Table E-1. Results obtained from ABE measurements using Gas Chromatography. 

Cheese 

Whey 

Potassium 

Phosphate 

Magnesium 

Sulfate 

Ferrous 

Sulfate 

Acetone 

(g/L) 

Ethanol 

(g/L) 

Butanol 

(g/L) 

ABE 

(g/L) 

No No No No 0.93 0.01 1.64 2.58 

No No No Yes 0.42 0.06 2.04 2.52 

No No Yes No ND 0.20 1.58 1.78 

No No Yes Yes 0.38 0.05 2.00 2.43 

No Yes No No ND 0.01 0.14 ND 

No Yes No Yes 0.72 0.13 2.80 3.65 

No Yes Yes No 1.18 0.04 2.75 3.97 

No Yes Yes Yes 0.84 0.20 2.72 3.75 

Yes No No No 2.30 1.52 4.50 8.32 

Yes No No Yes 2.86 0.52 15.17 18.55 

Yes No Yes No 2.59 0.34 5.86 8.79 

Yes No Yes Yes 2.34 0.74 15.50 18.58 

Yes Yes No No ND ND ND ND 

Yes Yes No Yes 1.96 0.35 7.62 9.93 

Yes Yes Yes No 3.49 0.28 8.99 12.76 

Yes Yes Yes Yes 3.56 ND 6.07 9.63 

No Yes Yes Yes ND ND ND ND 
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Figure E-1. Calibration curve of  butanol in gas chronmatography. Data 

from 7/20/2014. 
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APPENDIX F 

 STATISTICAL ANALYSIS RESULTS  

Table F-1. Results of GML procedure from SAS. T_sugars is in g/Kg of dried algae 

 

The SAS System

The GLM Procedure

Class Level Information

Class Levels Values

block (replicates) 2 1 2

acid 6

time 3 40 80 120

temperature 3

Number of Observations 

Read 108

Number of Observations 

Used 108

Source DF

Sum of 

Squares

Mean 

Square F Value Pr > F

Model 54 586.33 10.86 11.78 <.0001

Error 53 48.86 0.92

Corrected Total 107 635.19

R-Square Coeff Var Root MSE

T_Sugars 

Mean

0.9231 15.4769 0.9601 6.2037

Source DF Type III SS

Mean 

Square F Value Pr > F

block 1 0.63 0.63 0.68 0.4137

acid 5 251.24 50.25 54.51 <.0001

time 2 0.92 0.46 0.50 0.6091

acid*time 10 13.87 1.39 1.50 0.1638

temperature 2 189.66 94.83 102.87 <.0001

acid*temperature 10 89.72 8.97 9.73 <.0001

time*temperature 4 10.77 2.69 2.92 0.0294

acid*time*temperatur 20 29.52 1.48 1.60 0.0877

Dependent Variable: T_Sugars (sugar^0.5)

0 0.35 0.5 0.7 1 1.5

23-30 45-55 80-90
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Figure F-1. GLM procedure for analyzing the effect of acid and retention time at 80-90 ◦C on sugar 

yield. Sugar is measured in g/Kg of dried biomass  

.  
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Figure F-2. GLM procedure for T_butanol (butanol^-1) in Cheese whey experiment. 

Butanol is measured in g/L. Factors evaluated are ferrous sulfate (FS), cheese whey 

(CW), photasium phosphate (PP), and magnesium sulfate (MS). 

cheese whey (CW), photasium phosphate (PP), and magnesium sulfate (MS). 
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Figure F-3. GLM procedure for T_ABE (ABE^0.5). ABE is measured in g/L. 
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