
Utah State University Utah State University 

DigitalCommons@USU DigitalCommons@USU 

All Graduate Theses and Dissertations Graduate Studies 

5-2014 

Improving Reuse and Maintainability of Communication Software Improving Reuse and Maintainability of Communication Software 

With Conversation-Aware Aspects With Conversation-Aware Aspects 

Ali Raza 
Utah State University 

Follow this and additional works at: https://digitalcommons.usu.edu/etd 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Raza, Ali, "Improving Reuse and Maintainability of Communication Software With Conversation-Aware 
Aspects" (2014). All Graduate Theses and Dissertations. 3700. 
https://digitalcommons.usu.edu/etd/3700 

This Dissertation is brought to you for free and open 
access by the Graduate Studies at 
DigitalCommons@USU. It has been accepted for 
inclusion in All Graduate Theses and Dissertations by an 
authorized administrator of DigitalCommons@USU. For 
more information, please contact 
digitalcommons@usu.edu. 

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F3700&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.usu.edu%2Fetd%2F3700&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/3700?utm_source=digitalcommons.usu.edu%2Fetd%2F3700&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/


 

 

IMPROVING REUSE AND MAINTAINABILITY OF COMMUNICATION 

SOFTWARE WITH CONVERSATION-AWARE ASPECTS 

 
 

by 
 
 
  Ali Raza 

 
A dissertation submitted in partial fulfillment 

of the requirements for the degree 
 

of 

DOCTOR OF PHILOSOPHY 

  in 

Computer Science 

 

Approved: 

 
_______________________    _______________________ 

 Dr. Stephen W. Clyde     Dr. Curtis Dyreson 
Major Professor      Committee Member 
 
 

 _______________________    _______________________ 
Dr. Xiaojun Qi       Dr. Nicholas Flann 
Committee Member                                               Committee Member 
 
 

 _______________________     _______________________ 
Dr. Karl White       Dr. Mark R. McLellan 
External Committee Member                                 Vice President for Research and  
       Dean of the School of Graduate Studies 

    
    

UTAH STATE UNIVERSITY 
Logan, Utah 

 
2014  



ii 
	  

	  
	  

 

 

 

 

  

 

 

 

 

 

 

Copyright © Ali Raza  2014 
All Rights Reserved 

  



iii 
	  

	  
	  

ABSTRACT 

Improving Reuse and Maintainability of Communication  

Software with Conversation-aware Aspects 

by 

 
Ali Raza, Doctor of Philosophy 

 
Utah State University, 2014 

  
 

Major Professor: Dr. Stephen W. Clyde 
Department: Computer Science 
 

Implementing crosscutting concerns for message-based inter-process 

communications (IPC) is difficult, even using Aspect-oriented Programming Languages 

(AOPL) such as AspectJ.  Many of these challenges are because the context of 

communication-related crosscutting concerns is often a conversation consisting of 

message sends and receives.  Current AOPL do not provide pointcuts for weaving of 

advice into high-level IPC abstractions, like conversations.  Other challenges stem from 

the wide variety of IPC mechanisms, their inherent characteristics, and the many ways in 

which they can be implemented, even using a common communication framework. This 

dissertation describes an extension to AspectJ, called CommJ, with which developers can 

implement communication-related concerns in cohesive and loosely coupled aspects. It 

also presents preliminary, but encouraging results from a subsequent study that shows 

seven different ways in which CommJ can improve the reusability and maintainability of 

applications requiring network communications. 

(162 pages) 



iv 
	  

	  
	  

PUBLIC ABSTRACT 

Improving Reuse and Maintainability of Communication  

Software with Conversation-aware Aspects 

 
Inter-process communications (IPC) are ubiquitous in today’s software systems, 

yet they are rarely treated as first-class programming concepts. Implementing 

crosscutting concerns for message-based IPC are difficult, even using aspect-oriented 

programming languages (AOPL) such as AspectJ.  Many of these challenges are because 

the context of a communication-related crosscutting concern is often a conversation 

consisting of message sends and receives. Hence, developers typically have to implement 

communication protocols manually using primitive operations, such 

as connect, send, receive, and close. This dissertation describes an extension to AspectJ, 

called CommJ, with which developers can implement communication-related concerns in 

cohesive and loosely coupled aspects. It then presents preliminary, but encouraging 

results from a subsequent study that begin by defining a reuse and maintenance quality 

model. Subsequently the results show seven different ways in which CommJ can improve 

the reusability and maintainability of applications requiring network communications. 

 

 

Ali Raza 

 

	    



v 
	  

	  
	  

ACKNOWLEDGMENTS 

To my father and mother who filled my life with light, love and hope. May God 

rest their souls in eternal peace. 

To Dr. Clyde who guided my steps in this cumulative process.  I would like to 

thank him for his invaluable assistance and support throughout my graduate career.  

To Dr. Xiaojun Qi, Dr. Curtis Dyreson, Dr. Nicholar Flann and Dr. Karl White for all 

their help and suggestions on this dissertation. 

Ali Raza 

  



vi 
	  

	  
	  

CONTENTS 

PAGE 

ABSTRACT ....................................................................................................................... iii 

PUBLIC ABSTRACT ....................................................................................................... iv 

ACKNOWLEDGMENTS .................................................................................................. v	  

CONTENTS ....................................................................................................................... vi	  

LIST OF TABLES .............................................................................................................. x	  

LIST OF FIGURES ........................................................................................................... xi 

CHAPTER 

1 INTRODUCTION ........................................................................................................... 1	  

2 BACKGROUND ............................................................................................................. 6	  

2.1.	   Aspect-oriented Programming Languages, Toolkits, and Framework .................. 7	  
2.2.	   Communications .................................................................................................... 7	  
2.3.	   Crosscutting concerns in Communication ........................................................... 10	  

3 COMMJ ARCHITECTURE .......................................................................................... 12	  

3.1.	   Application-level Aspects. .................................................................................. 13	  
3.2.	   Reusable Aspects. ................................................................................................ 13	  
3.3.	   Core CommJ Infrastructure. ................................................................................ 14	  
3.4.	   Universe Model of Communication (UMC). ...................................................... 14	  

3.4.1.	   Events ............................................................................................................ 14	  
3.4.2.	   Conversations ................................................................................................ 16	  
3.4.3.	   Channel ......................................................................................................... 17	  
3.4.4.	   Message ......................................................................................................... 18	  
3.4.5.	   Connections ................................................................................................... 19 

	  
3.5.	   AspectJ’s Role ..................................................................................................... 19	  
3.6.	   A design perspective on CommJ with reference to AspectJ and OOD ............... 20 

	  
3.6.1. Better Abstractions for Communications ...................................................... 20 
3.6.2. Improved Modularity and Obliviousness ...................................................... 20 
3.6.3. Joinpoint Model Formalizaes Communication Joinpoints ........................... 20 
 



vii 
	  

	  
	  

3.6.4. Better Ways to Detangle Communication Constructs 
 from Core Application .................................................................................. 21 
3.6.5. Easy to Code Concerns ................................................................................. 21 
3.6.6. Better Encapsulations and Localized Design Decisions ............................... 21 
3.6.7. Conceptual Model Matches Program Flow Model ....................................... 21 
3.6.8. More Structured Concerns for Communications .......................................... 22 

4 DESIGN AND IMPLEMENTATION OF A COMMJ TOOL SET ............................. 23	  

4.1.	   Communication Joinpoints .................................................................................. 23 
	  

4.1.1.	   Message Event Joinpoints ............................................................................. 23	  
4.1.2.	   Registry for Message Joinpoints ................................................................... 25	  
4.1.3.	   Connection Joinpoints ................................................................................... 25	  
4.1.4.	   Registry for Connection Joinpoints .............................................................. 26 

	  
4.2.	   Joinpoint Trackers ............................................................................................... 26	  

4.2.1.	   Message Joinpoint Tracker ........................................................................... 27	  
4.2.2.	   Connection Joinpoint trackers ....................................................................... 28 

	  
4.3.	   Base Aspects ........................................................................................................ 31 

	  
4.3.1.	   MessageAspect ............................................................................................. 31	  
4.3.2.	   Connection Aspects ...................................................................................... 36	  
4.3.3.	   Complete connection Conversation. ............................................................. 36	  
4.3.4.	   CommJ Initialization Aspect ......................................................................... 38 

	  
4.4.	   Reusable Aspects Library (RAL) and Turn-around Time Aspect in RAL ......... 38	  

5 APPLICATION-LEVEL ASPECTS ............................................................................. 41	  

5.1.	   Measuring Performance in Multistep Conversation Processes ........................... 41	  
5.2.	   Version Control Aspect ....................................................................................... 43	  
5.3.	   Managing Quality of Service in Weather Station Data Collection ..................... 45	  
5.4.	   Logging Listener and Initiator Connection Times for FTP ................................. 51	  

6 MEASURING REUSABILITY AND MAINTENANCE ............................................. 54	  

6.1.	   Qualities ............................................................................................................... 54	  
6.2.	   Factors ................................................................................................................. 55	  
6.3.	   Internal Attributes ................................................................................................ 56	  
6.4.	   Measurement Metrics .......................................................................................... 57 

	  
6.4.1.	   SoC/Scattering Metrics ................................................................................. 57	  
6.4.2.	   Coupling Metrics .......................................................................................... 58	  
6.4.3.	   Cohesion/Tangling Metrics ........................................................................... 58	  
6.4.4.	   Size Metric .................................................................................................... 59	  



viii 
	  

	  
	  

6.4.5.	   Complexity Metric ........................................................................................ 60	  
6.4.6.	   Obliviousness Metric .................................................................................... 61	  

7 HYPOTHESES .............................................................................................................. 62	  

8 EXPERIMENTAL METHOD ....................................................................................... 67	  

8.1.	   Selection of Sample Applications ....................................................................... 69	  
8.2.	   Selection of crosscutting concerns from sample applications ............................. 70	  
8.3.	   Recruitment of Developers .................................................................................. 71 

	  
8.3.1.	   Criteria for Selection of Developer ............................................................... 71	  
8.3.2.	   No Personal-Identifying Information ............................................................ 71	  
8.3.3.	   Survey to assess their skill-levels ................................................................. 71 

	  
8.4.	   Training of Developers ........................................................................................ 71	  
8.5.	   Develop crosscutting concerns using initial set of requirements and collect 

artifacts ................................................................................................................ 72	  
8.6.	   Enhance concerns using extended set of requirements and collect artifacts ....... 73	  
8.7.	   Measure Dependent Variables using Reuse/Maintainability Metrics ................. 73	  
8.8.	   Independent and Dependent Variables ................................................................ 74	  
8.9.	   Extraneous variables and mitigation of threats to validity .................................. 74	  

9 RESULTS AND INTERPRETATIONS ....................................................................... 76	  

9.1.	   Separation of Concerns ....................................................................................... 76	  
9.2.	   Coupling .............................................................................................................. 77	  
9.3.	   Cohesion .............................................................................................................. 79	  
9.4.	   Size ...................................................................................................................... 80	  
9.5.	   Complexity .......................................................................................................... 83	  
9.6.	   Obliviousness ...................................................................................................... 84	  
9.7.	   Reuse and Maintenance of Concern .................................................................... 85	  
9.8.	   Other useful observations .................................................................................... 89	  

10 RELATED WORK ...................................................................................................... 91	  

10.1.	  Works on Communications and Composability with reference to CommJ ........ 91	  
10.2.	  Works Related to CommJ’s Joinpoint Model ..................................................... 94	  
10.3.	  Works on interesting literature with reference to CommJ .................................. 95	  
10.4.	  Works on measurement metrics with reference to EQM .................................... 96 

	  

11 SUMMARY AND FUTURE WORK ......................................................................... 98	  

11.1.	   Summary ............................................................................................................. 98	  
11.2.	   Future Work ........................................................................................................ 99	  

REFERENCES ............................................................................................................... 100	  



ix 
	  

	  
	  

APPENDICES ................................................................................................................ 104	  

 APPENDIX A: SELECTED SAMPLE APPLICATIONS ................................ 105	  

 APPENDIX B: SELECTED INTER-PROCESS EXTENSIONS ...................... 113	  

 APPENDIX C: SKILL ASSESSMENT SURVEY ............................................ 117	  

 APPENDIX D: QUESTIONNAIRE FOR PHASE 1 IMPLEMENTATION .... 120	  

 APPENDIX E: EXTENDED APPLICATION DESCRIPTIONS  

      REQUIREMENTS FOR PHASE II .............................................................. 129	  

 APPENDIX F: EXTENDED EXTENSIONS FOR PHASE II .......................... 134	  

 APPENDIX G: QUESTIONNAIRE FOR PHASE II IMPLEMENTATION .... 135	  

 APPENDIX H: DATA ASSESSMENT FROM THE SURVEYS ..................... 141	  

APPENDIX I: DOCUMENTS FOR THE RESEARCH EXPERIMENT      

      APPROVAL ....................................................................................................... 145  
 

  



x 
	  	  

	  
	  

LIST OF TABLES 

Table                                                                                                                             Page 

1. Sample reusable crosscutting concerns in IPC ..............................................................10 

2. Selected sample applications .........................................................................................70 

3. Selected sample crosscutting concerns ..........................................................................70 

	  

 

  



xi 
	  

	  
	  

LIST OF FIGURES 

Figure                                                                                                                             Page 

1-1: PassiveFTP Interaction Diagram ..................................................................................1 

3-1: CommJ Architectural Block Diagram ........................................................................12 

3-2: UMC for Events .........................................................................................................16 

3-3: Conversations in UMC ...............................................................................................16 

3-4: UMC for Conversations .............................................................................................17 

3-5: UMC for Messages .....................................................................................................18 

3-6: UMC for Connections ................................................................................................19 

4-1: Communication Joinpoint and Registry .....................................................................24 

4-2: Connection Joinpoint and Registry ............................................................................26 

4-3: CommJ Message Event Join Points and Reusable Aspects ........................................27 

4-4: A code snippet of MessageJointPointTracker ............................................................28 

4-5: Listener Joinpoint and Base Aspects ..........................................................................29 

4-6: A Code Snippet of ListenerJoinPointTracker .............................................................29 

4-7: Connection Joinpoint and Base Aspects .....................................................................30 

4-8: A Code snippet of InitiatorJoinPointTracker .............................................................31 

4-9: A Code Snippet of Message Aspect ...........................................................................32 

4-10: A Code Snippet of OneWaySendAspect ..................................................................32 

4-11: A Code Snippet of OneWayReceiveAspect .............................................................33 

4-12: A Code Snippet of RRConversationAspect .............................................................33 

4-13: A Code Snippet of MultistepConversationAspect ...................................................34 

4-14: Design of Multi-step State Machine .........................................................................35 



xii 
	  

	  
	  

4-15: A Code Snippet of Connection Aspect .....................................................................36 

4-16: A Code Snippet of Complete Connection Aspect ....................................................37 

4-17: A Code Snippet of CommJ Initialization Aspect .....................................................38 

4-18: A Code Snippet of TurnAroundTimeMonitor ..........................................................40 

5-1: State Machine for the A ProcessRole .........................................................................41 

5-2: State Machine for the B ProcessRole .........................................................................41 

5-3: State Machine for the C ProcessRole .........................................................................42 

5-4: State Machine Configuration for ProcessRoleA ........................................................42 

5-5: Performance Measure Corsscutting Concern .............................................................44 

5-6: Version Control Aspect for Messages Sent ................................................................45 

5-7: Version Control Aspect for Messages Received ........................................................45 

5-8: Communication of Messages between AWS-Receiver and AWS-Transmitter .........47 

5-9: Protocol Messages for Weather Station Simulator .....................................................48 

5-10: Architecture for QoS Extension ...............................................................................49 

5-11: First Code Snippet of TurnAroundTimeAspect .......................................................50 

5-12: Second Code Snippet of TurnAroundTimeAspect ...................................................51 

5-13: Sequence Diagram for FTP ......................................................................................51 

5-14: Third Code Snippet of TurnAroundTimeAspect ......................................................53 

5-15: Fourth Code Snippet of TurnAroundTimeAspect ....................................................53 

6-1: Extended Quality Model (EQM) ................................................................................54 

6-2: Measurement Metrics in EQM ...................................................................................57 

9-1: CDA Coverage over Phases .......................................................................................76 

9-2: CDO Coverage over Phases .......................................................................................77 



xiii 
	  

	  
	  

9-3: CBC Coverage over Phases ........................................................................................78 

9-4: DIT Coverage over Phases .........................................................................................78 

9-5: NOC Coverage over Phases .......................................................................................78 

9-6: LCO Coverage over Phases ........................................................................................79 

9-7: Average LoC Coverage over Phases ..........................................................................80 

9-8: Average MLoC over Phases .......................................................................................81 

9-9: Average NP over Phases ............................................................................................81 

9-10: Average NO over Phases ..........................................................................................81 

9-11: Average WOC over Phases ......................................................................................82 

9-12: Average VA over Phases ..........................................................................................82 

9-13: Average CC over Phases ..........................................................................................83 

9-14: Average NITD over Phases ......................................................................................84 

9-15:  Average ASC over Phases .......................................................................................84 

9-16: Average ASCO over Phases .....................................................................................85 

9-17: CR over Extensions ..................................................................................................85 

9-18: ASC and ASCO over Phases in AspectJ and CommJ ..............................................86 

9-19: CM over Phases ........................................................................................................87 

9-20: CDA, CDO and NITD in AspectJ and CommJ ........................................................88 

A-1: Architecture Diagram of Levenshtein Edit-Distance Calculator .............................106 

A-2: Interaction Diagram between Client and Edit-Distance Calculator ........................106 

A-3: Architecture Diagram for FTP .................................................................................107 

A-4: Interaction Diagram between FTPClient and FTPServer ........................................108 

A-5: Data Structures for Weather Station Simulator Example ........................................110 



xiv 
	  

	  
	  

A-6: Weather Station Simulator .......................................................................................111 

A-7: Interaction Diagram between Transmitter and Receiver .........................................112 

B-1: Data Structures for Symmetric-Key Encryption ......................................................116 

B-2: Process of Exchanging Shared Keys .......................................................................116 

E-1: Architecture Diagram of Levenshtein Edit-Distance Calculator .............................130 

E-2: Interaction Diagram between Client and Edit-Distance Calculator .........................130 

E-3: Architecture Diagram for FTP .................................................................................131 

E-4: Interaction Diagram between FTPClient and FTPServer ........................................132 

E-5: Interaction Diagram between Transmitter  (Two Threads) and Two Receivers ......133 

H-1: Language Preferences of the Selected Participants .................................................141 

H-2: Programming Experience of the Selected Participants ............................................142 

H-3: Previous Projects LoC of the Selected Participants .................................................142 

H-4: Specific Skills Set of the Selected Participants .......................................................144 

I-1: CITI Passing Report ..................................................................................................145 

I-2: IRB Approval Letter .................................................................................................148 



CHAPTER 1 

INTRODUCTION 

Inter-process communications (IPC) are ubiquitous in today’s software systems, 

yet they are rarely treated as first-class programming concepts.  Instead, developers 

typically have to implement communication protocols manually using primitive 

operations, such as connect, send, receive, and close.  For many standard communication 

protocols, the sequencing and timing of these primitive operations can be relatively 

complex.  For example, consider a distributed system that uses the Passive File Transfer 

Protocol (Passive FTP) to move large datasets from a client to a server.  In this system, 

the server would enable communications by listening for connections requests on a 

published port, usually port 21.  A client would then initiate a conversation, i.e., an 

instance of the Passive FTP protocol, via a connect request to the server on that port. The 

detailed sequences of actions are described in the Figure 1-1.   

Neither the client’s nor the server’s side of the conversation is trivial.  In fact, to 

preserve responsiveness to the multiple simultaneous clients and to end users, both the 

client and server usually execute parts of the conversation on different threads, making 

	  

 

Figure 1-1: PassiveFTP Interaction Diagram 



2 
	  

	  
	  

them even harder to flow during execution.  An FTP system could be further complicated 

by other communication-related requirements, such as: 

• logging, 

• detecting network or system failures, 

• monitoring congestion and 

• balancing load across redundant servers. 

From a communications perspective, these concerns (and many others not listed 

above) are what the Aspect-oriented Software Development (AOSD) paradigm refers to 

as crosscutting concerns, because they pertain to or cut through multiple parts of a core 

or base system.  Directly implementing one or more of these concerns in a typical FTP 

system can cause a scattering and tangling1 of code (see Section 6.3 for details). 

AOSD, which first started to appear in the literature in 1997 [1], [2], reduces 

scattering and tangling of code by encapsulating crosscutting concerns in first-class 

programming constructions, called aspects [3].  An aspect is an Abstract Data Type 

(ADT), just like classes in strongly typed, class-based object-oriented programming 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
	  

	  

	  

1	  Scattering occurs when the same or very similar logic exist in multiple places in the 
software. Tangling occurs when a single software component is complicated by with 
logic for supporting or secondary concerns.  Scattering and tangling often occur together.	  



3 
	  

	  
	  

languages.  However, an aspect can also contain advice methods that encapsulate logic 

for addressing crosscutting concerns and pointcuts for describing where and when the 

advice needs to be executed.  A pointcut identifies a set of joinpoints – temporal intervals 

in the execution of the system where and when weaving of advice takes place.  Each 

joinpoint begins and ends relative to static places in the source code, called shadows [3]. 

AspectJ is a programming language that extends to Java for aspects, and like 

many other AOPLs and Aspect-oriented Frameworks (AOF) [3], [4], [5], [6], it allows 

programmers to weave advice for crosscutting concerns into joinpoints that correspond to 

constructor calls/executions, methods calls/executions, class attribute references, and 

exceptions.  For a more detailed description of AspectJ, see [3]. 

Since aspects are special ADTs that encapsulate certain kinds of design concerns, 

it is possible for skilled software developers to create reusable object-oriented 

implementation that do basically the same thing.  The real difference between AOP and 

Object Orientation OO is that AOP offers a convenient mechanism for separating 

crosscutting concerns from core functionality and obliviousness [7].  Although poorly 

named, obliviousness is the idea that core functionality should not have to know about 

crosscutting concerns [8].  Ideally with obliviousness, the crosscutting concerns 

encapsulated in aspects can be simply added to or removed from a system at build time 

with no changes to the source code. 

The problem is that AspectJ, like other AOPs, does not support the weaving of 

advice into core high-level functional concepts, as does IPC.  This research extends 

AspectJ so developers can weave crosscutting concern into IPC in a modular and 

reusable way, while keeping the core functionality oblivious to those concerns.   



4 
	  

	  
	  

Once we identified the weakness in AOP for weaving advice into IPC, we 

elaborated on the problem from different dimensions (see Chapter 2) and reviewed the 

related literature (see Chapter 10).  We then pursued the innovation, refinement, and 

formalization of communication-related joinpoints (see Chapters 3 and 4). This provided 

a foundation for developing an extension to AspectJ, called CommJ that allows 

application programmers to weave aspect behaviors for communication-related 

crosscutting concerns into such joinpoints.  In the next step of our research, we 

demonstrated the feasibility and utility of CommJ by creating a library of reusable 

communication aspects for common communication-related crosscutting concerns and a 

suite of non-trivial sample applications that use CommJ (see Chapter 5).   

Then, we defined an extended quality model, followed up with experiments 

(Chapters 7 through 9) that investigated the potential implications to the reuse and 

maintenance to software when developers use CommJ. It does so by evaluating certain 

desirable characteristics through our model (Chapter 6) that can be measured by 

computable metrics. Based on initial theoretic notions, we hypothesized that developers 

should see reuse and maintenance improvements relative to seven desired qualities 

(Chapter 7) defined by the model. Chapter 8 discusses our experiment methodology, 

which required formal approval from Institutional Review Board (IRB) [9], selection of 

the sample software application, and identifying interesting crosscutting concerns that 

would give us good coverage. The methodology also typically included supporting 

activities such as recruitment and training of the developers. After the experiment, we 

collected data from the code, surveys, hourly journals, and questionnaires. 



5 
	  

	  
	  

From the results (Chapter 10) of the study, we concluded that IPC software 

components developed with CommJ were more cohesive and oblivious. They were also 

less scattered, and were coupled, complex and smaller in size than similar components 

programmed in AspectJ. 

Finally, in Chapter 11 we summarize our research work, contributions and list 

some avenues for possible future research pursuits.  Our first contribution was to define a 

universe model for communications (UMC) that is rich enough to describe any kind of 

IPC, supported by the sockets or channels API in a standard JDK. Second, we 

implemented a library called CommJ, including an implementation of UMC that provides 

the ability to weave advice into program execution before, after, or around complete 

conversions or individual communication operations. Third, we also developed a reusable 

aspect library for common communication-related crosscutting concern, which verifies 

the correctness of UMC. Fourth, we demonstrated the feasibility and utility of CommJ 

and the reusable aspect library through the implementation of application and 

communication aspects for those applications. Fifth, to measure the effectiveness of 

CommJ in comparison with AspectJ, we defined an enhanced version of the Comparison 

Quality Metrics [10] that measures reusability and maintainability in aspect-oriented 

programs. Finally, we performed a preliminary experiment to discover whether CommJ 

can help achieve improved reuse and maintainability when a system has involved 

communication-related crosscutting concerns. These preliminary results lead us to 

believe that further experimentation with CommJ and refinement of its framework could 

prove to be very beneficial to a wide range of software systems.   



6 
	  

	  
	  

CHAPTER 2 

BACKGROUND  

In general, a skilled programmer can do anything in an OO language that could be 

done in AOP language by making careful design decisions that encapsulate crosscutting 

concerns in well-modularized classes and hook those features into the base application.  

To do this, programmers can use a variety of techniques, such as delegates or callbacks, 

events, the application of a strategy, decorator or template method pattern [11].  

However, the developer may end up struggling with code tangling and scattering, 

unnecessary coupling (i.e., lack of obliviousness), and compromised flexibility. AOP 

provides a more elegant way of weaving new behaviors into existing code, such that the 

new functionality is less scattered, tangled, and decoupled from the base application, 

without compromising functionality.  

In AOP, a programmer should only need a modular reasoning to discover the 

code and structure of the crosscutting concerns; whereas she would most likely need 

global reasoning when using traditional OO techniques [12]. Additionally, when using 

only OO techniques, separating out tangled code from core functionality can cause 

problems, such as inheritance anomaly [13].  However, in AOP, such tangled code can be 

refactored and defined into separate aspects as crosscutting concerns. Hence, the 

attraction of AOP is not that a developer can do more, but that a developer can do some 

things better, in terms of modularizations with less scattering, less tangling. 

	    



7 
	  

	  
	  

2.1. Aspect-oriented Programming Languages, Toolkits, and Framework 

Other techniques addressing the same problems emerged at the same time or 

before aspect-orientation, including monads [14], subject-oriented programming [15], 

16], reflection [17, [18], mixins [19], and composition filters [17]. However, the AOP 

approach seems to have risen to the top as the most influential because it allows better 

support, better modularity of crosscutting concerns and is consistent with the OO 

paradigm. 

There are different implementations of AOP languages and frameworks, such as 

AspectJ [3], AspectWorkz [4], Spring AOP [6] and JBoss AOP [5]. Though they are 

semantically similar in terms of their aspect invocation, initialization, access and 

exception handling routines, their mechanisms differ in programming constructs, syntax, 

binding, expressiveness (verbosity or compactness), approaches to advise weaving 

(compile time, load time, or run time), static or dynamic analysis, and their overall 

acceptance and advancement in academia and industry. Currently, AspectJ (now powered 

by IBM) is considered the de facto standard and the most widely used AOP framework 

for modeling crosscutting concerns due to its Java-like structure, powerful 

expressiveness, and debugging abilities, even though it has some overhead in terms of 

memory usage and time. In this dissertation, we limit our scope to AspectJ for defining 

the communication-related crosscutting concerns. 

2.2. Communications 

In general, communications and the mechanisms that implements them, such as 

channels or sockets, are either connection-oriented or connection-less. Connection-

oriented communications require two processes to establish a communication link, 



8 
	  

	  
	  

sometimes referred to as a session, before exchanging data. This style of communication 

is very much like a person-to-person telephone call.  With connectionless 

communications, one process can send another process a message without knowing 

whether that process is ready to receive the message or whether it even exists yet.  This 

style of communication is like traditional postal mail. 

We call one or more messages that are logically part of an exchange or 

collaboration between processes a conversation.   Conversations can take place with 

either connection or connectionless communications and can last for just a millisecond or 

go on for very long periods of time.  Like formal interactions between diplomats, 

electronic conversations between processes follow protocols that govern the expected 

behavior of the participants.  

Some protocols are symmetrical, meanings that all participants follow the same 

rules.  However, it is more common for the protocols to be asymmetrical, meaning that 

each participant acts according to one of several roles.  The most common protocols 

typically consist of two roles: the conversation initiator and a listener.  Sometimes, in the 

literature, these roles are referred to as client and server, but these terms often imply 

other software architectural issues that are not relevant here.  Furthermore, it is common 

for a single process (or even a single thread) in distributed systems to initiate some 

conversations, while listening for others.  So, to avoid confusion with other architectural 

design choices and focus on the nature of communication, we refer to conversation roles 

in terms of their essential or distinguishing functions, such as listener, initiator, sender, or 

receiver. 



9 
	  

	  
	  

Implementation details can vary with respect to IPC abstractions, but in general 

their capabilities are similar.  One abstraction may provide more flexibility over another 

in handling a particular situation, but these differences only impact the implementation of 

the ideas in this dissertation and not the core contributions.  

Although IPC abstractions share some common concepts such as listeners, initiators 

and sessions (see Section 4.1.), they may exhibit various types of well-known 

communication heterogeneities, such as: 

• Synchronous vs. Asynchronous Communications: Blocking (sockets) and non-

blocking communication (channels) APIs in JDK are examples of synchronous 

and asynchronous communications respectively. 

• Unidirectional versus Bi-directional Communications: Acknowledgment is not 

required in unidirectional communications but it is either required or inherent in 

bi-directional communications. 

• Connection-oriented versus Connection-less Communications: User Datagram 

Protocol (UDP) and Transport Control Protocol (TCP) are examples of 

connection-oriented and connection-less communications respectively. 

• Local versus Global Communications: Unicast is an example of local 

communications wherein a broadcast is an example of global communication. 

• Structured versus Unstructured Communications: Structured style forces objects 

to send messages to a predefined set of object; however in unstructured 

communication, an object can exchange messages with any other object. 



10 
	  

	  
	  

• Static versus Dynamic Communications: With static communications, process 

identification does not change, whereas with dynamic communications, the 

process identification may change at run-time. 

• Symmetric versus Asymmetric: In symmetric communications, the unit or size of 

message remains fixed but in asymmetric it can vary. 

2.3. Crosscutting Concerns in Communication 

Despite AspectJ’s rich set of pointcut designators, there is still a weakness relative 

to weaving crosscutting concerns into communication.  Specifically, programmers cannot 

weave aspects into an individual conversation.  Since AspectJ’s pointcut designators only 

deal with code constructs, programmers would only be able to weave concerns into the 

underlying IPC operations, such as connect, send, and receive.  Also, the programmers 

will have to explicitly code mechanisms for tracking individual conversation contexts. 

Consider the sample communication-related crosscutting concerns listed in Table 

1.  If a programmer wants to implement the first one directly in AspectJ, he or she would 

Table 1. Sample reusable crosscutting concerns in IPC 

Aspect	  Name	   Description	  

TotalTurnAroundTimeMonitor	   Provides	  virtual	  helper	  methods	  for	  conversations	  which	  help	  
programmers	  to	  override	  RAL	  aspects	  in	  their	  applications	  	  

MessageLoggingByConversation	   Log	  messages	  by	  conversations	  in	  a	  developer-‐defined	  format	  and	  
repository	  

MessageEncryption	   Add	  session-‐level	  encryption/decryption	  to	  communication	  protocols	  

NetworkNoiseSimulator	   Allows	  developers	  to	  add	  noise,	  message	  log,	  and	  message	  duplication	  
to	  network	  communications,	  which	  is	  useful	  for	  system	  testing	  

NetworkLoadBalancer	   Helps	  programmers	  balance	  message	  loads	  across	  two	  more	  
communication	  channels	  

VersionControlAspect	   Helps	  programmers	  manage	  multiple	  version	  of	  messages	  structures	  
for	  their	  applications	  

Authenticator	   Tracks	  consistent	  and	  secure	  multi-‐step	  conversations	  or	  handing	  
authentication	  permission	  in	  banking	  domain	  

QoSTracker	   Detects	  lost,	  corrupt	  or	  out-‐of-‐order	  messages	  and	  controlling	  q	  

 

	  



11 
	  

	  
	  

have to implement some advice for the initiating process that would capture the time at 

which a message was sent and other advice the would capture the time at which the 

corresponding reply message was received and then compare the two times.  However, 

send and receive logic for the conversation may be in separate modules, may be separated 

in the execution flow by an undetermined amount of time, and may even be handled on 

separate execution threads.  Furthermore, the initiating process may start many 

conversations at the same time, and the advice would have to manually correlate the time 

of a message send with the receive time of the correct corresponding reply.  In a nutshell, 

the weakness of AspectJ is that its pointcut designators and joinpoint context are limited 

to standard programming constructs and do not handle high-level run-time abstractions, 

like conversation. 

To address this problem for communications, we developed an extension to 

AspectJ framework, called CommJ, that allows developers to define pointcuts in terms of 

IPC abstractions and that automatically keeps track of context information for individual 

conversations.  The next chapter provides a high-level overview of CommJ’s architecture, 

and Chapter 4 describes its design and implementation. 

	    



12 
	  

	  
	  

CHAPTER 3 

COMMJ ARCHITECTURE 

Figure 3-1 shows an architectural block diagram [20] of CommJ, in which the 

colored blocks represent layers of software or modules, and arrows depict dependencies 

among these layers. This top-down presentation of the CommJ follows a layered-style 

architectural design [21], wherein each layer provides services to the layer above it and 

uses the services of the layer below it. In general, the Core CommJ Infrastructure layer 

enables communications to be treated as first-class concepts for which developers can 

define crosscutting concerns in a modular way, i.e., communication aspects.   This can 

help developers manage software complexity while achieving greater reuse and 

maintainability. Section 3.6 discusses the hoped-for benefits of CommJ in more detail, 

but first Sections 3.1 through 3.5 provide some necessary details about each of the layers, 

in a top-down order, setting the stage for evaluating whether the hoped-for benefits are 

achieved. 

 

Figure 3-1: CommJ Architectural Block Diagram 



13 
	  

	  
	  

3.1. Application-level Aspects. 

 We can write application-level aspects either by using the reusable aspects or base 

aspects in CommJ. For example, an FTP system can have a number of application-level 

aspects, such as measuring performance, logging, detecting network system failures, load 

balancing and more. Among them, measuring performance for a multistep crosscutting 

concern process can be written using the base aspect MultStepConversation (Section 

4.3.1).  We defined each process’s role in a multistep conversation using a state machine 

that describes how the process is expected to act or react with respect to IPC operations. 

Our aim is for application-level aspects to be easy-to-code, more maintainable and 

understandable, flexible and modular than similar concerns, programmed in AspectJ or a 

traditional OO fashion. (See Chapter 5 for more details).   

3.2. Reusable Aspects. 

This layer includes a reusable set of CommJ aspects that can decrease the 

development time to program application-level aspects, and help make them more 

understandable, flexible and oblivious. The reusable aspects are inspired from the key 

conversation concepts defined in the Universe Model of Communication (UMC). They 

represent general crosscutting concerns commonly found in applications with significant 

communication requirements.  For example, the TotalTurnAroundTimeMonitor, 

Authenticator, and MessageLoggingByConversation aspects given in Table 1 are few 

examples of aspects in the RAL. Section 4.4 describes more about RAL.  

	    



14 
	  

	  
	  

3.3. Core CommJ Infrastructure. 

The CommJ Infrastructure is a library that introduces a communication joinpoint 

model on top of the AspectJ joinpoint model, consisting of components for tracking 

conversation contexts, base aspects that core communication concepts, and a collection of 

pointcuts for connection and communication operations.  Conversation trackers 

encapsulate hooks into the underlying communications subsystems, e.g., JDK sockets or 

channels.  If those change, one only needs to replace or extend these trackers.  The base 

aspects make use of the context information provided by these conversation trackers and 

allow RAL or application-level aspects specific to individual conversations.  The 

joinpoints defined in the CommJ Infrastructure give the RAL and application-level aspect 

convenience, reusable pointcuts for most kinds of communications. (See Section 4.1 

through 4.3 for more details). 

3.4. Universe Model of Communication (UMC).  

A universe model for communications (UMC) describes a common conceptual 

understanding about communications, specifically the notation of electronic 

conversations between multiple processes. In doing so, it models time-sensitive 

communications-related behavior of execution threads, their processes and the machines 

(nodes) that host them. 

3.4.1. Events 

An event can be described as the happening of something. The UMC contains 

three event types: communication event, connection event and exception event. A 

communication event is the happening of something (related to send or receive) in 



15 
	  

	  
	  

message-based communications, at a particular point in time. Communication Events are 

further divided in two types: Communication Send Event and Communication Receive 

Event, respectively. The UMC states that every receive event must have a corresponding 

send event. In other words, a send event can exist without a receive event but not 

conversely. Communication Events also exhibit one more special characteristic, namely 

they can relate to each other.  In other words, an event can contain or be associated with 

many other events.  For example, in a distributed application, a thread T1 can send a 

message which corresponds to a send event.  That message can then trigger a receive 

message event for some another thread T2.   

Connection Events are happenings related to the setting up of communication 

channels, and are specialized into four types: Connect, Accept, Listen and Close events:  

• Connect Event occurs when an initiator sends the connect request to a listener 

• Accept Event occurs when a listener accepts a connect request from an initiator 

• Listen Event occurs when a listener listens for incoming data 

• Close Event occurs when a listener or an initiator closes the connection 

CommJ does not add any exception events because AspectJ already defines a rich 

set of pointcuts for defining crosscutting concerns that involve exceptions.   

The Thread class in UMC can instantiate and encapsulates multiple send or 

receives events. A Communication Event can be associated with at most one thread. One 

process can have multiple threads, and a node can host multiple processes. In 

communication systems, an application may be using multiple nodes, each with several 

processes. See Figure 3-2. 



16 
	  

	  
	  

	  
Figure 3-3: Conversations in UMC 

  

3.4.2. Conversations 

In general, a conversation is a sequence of messages that follow communication 

rules. The UMC generalizes that basic definition to include any sub-sequence.  So, a 

conversation can be: 

•  an entire conversion from a process’s perspective (see A in Figure 3-3) 

• any sequence of message send or receive events in the conversation as seen by a 

process (see B in Figure 3-3)  

• a single send or receive event in a conversation (C in Figure 3-3)  

 

 

 

 

	  

Figure 3-2: UMC for Events 

 



17 
	  

	  
	  

In Figure 3-4, we see that each conversation in UMC can use a set of 

Communication Events on an underlying Communication Channel. Any Communication 

Event that happens on a Communication Channel is also associated with a particular 

Protocol.  A Conversation is also capable of keeping track of Communication Events that 

occur in a multithreaded application with multiple channels.  

Conversations can also happen during different stages of connection either on 

initiator or listener in UMC. Example of FTP (Section 5.4) also elaborates complete 

connection conversations on both initiator and listener sides respectively. 

3.4.3. Channel 

Every Conversation happens on a Channel (Figure 3-4). A Channel also acts as a 

way of connecting the Communication Events with the Connection Events. In addition, a 

Channel also abstracts the underlying network-specific components, e.g., Sockets, 

Channels, etc. into higher-level concepts that are more consistent across platforms. 

	  

Figure 3-4: UMC for Conversations 



18 
	  

	  
	  

3.4.4. Message 

A message is a class that encapsulates data exchanged during IPC. Processes or 

threads in communication systems exchange data through events invocations in UMC. 

Communication Events are strongly associated with Message instances in the model. 

Each Message can have at most one send and one receive event. Further, Messages and 

Communication Events follow similar specialization hierarchies; both are specialized into 

send and receive types. An instance of Message received keeps track of its 

ReceivedEvent, and a Message sent knows about its SentEvent.  

All CommJ applications derive their specific message classes from base Message 

class defined by the UMC and are implemented in the CommJ Infrastructure. The 

Message class realizes a IMessage interface that contains method signatures for returning 

Message Identifying Information (MIF).  MIF may include message identity, message 

type, conversation identity, protocol specification, and process role, as shown in Figure 3-

5. These five elements provide necessary information to identify any message from the 

registry in CommJ and to create and manage various types of conversations. 

The CommJ Infrastructure dynamically introduces MIF in its initialization aspect 

	  

Figure 3-5: UMC for Messages 



19 
	  

	  
	  

(Section 4.4). The interface IMessage is the only direct dependency between the core 

application and crosscutting concerns, programmed in CommJ.  

3.4.5. Connections 

A Process may be acting in the role of a sender or Receiver while handling 

communication events and as an initiator or a listener while handling Connection Events. 

An initiator can handle only connect and close events whereas a listener can handle 

Listen, Accept and Close events, respectively. Figure 3-6 illustrates the connection-

related concepts in UMC.   

3.5. AspectJ’s Role  

The CommJ infrastructure realizes the UMC for AspectJ.  A layer of 

communication and connection pointcuts in CommJ builds on standard AspectJ pointcut 

designators. In addition, the CommJ Infrastructure does not constrain the use of any 

standard AspectJ feature, such as programmer-defined pointcuts, advice, inter-type 

declarations, etc. 

 

	  

Figure 3-6: UMC for Connections 



20 
	  

	  
	  

3.6. A Design Perspective on CommJ with 
Reference to AspectJ and OOD 

The layers described above can provide software developers with a number of 

significant benefits when it comes to management the complexity of communications in 

applications. 

3.6.1. Better Abstractions for Communications  

 Both AspectJ and OOD weakly encapsulate and modularize IPC concerns and 

would require a multiplicity of pointcut definitions to overcome different types of 

communication heterogeneities. In comparison, CommJ provides better abstractions that 

unify communication heterogeneities. 

3.6.2. Improved Modularity and Obliviousness  

 In AspectJ, writing understandable aspect code for communications is difficult 

because programming abstractions vary with the underlying communication mechanisms. 

For example, some communications are connectionless and use datagram packets, while 

others are connection oriented and use streams. With CommJ, developers can program 

crosscutting concerns in terms of general send, receive, connect, accept and close 

joinpoints, regardless of the specific communication mechanism or its characteristics. 

Message data is also uniformly manipulated using a well-defined message interface. 

3.6.3. Joinpoint Model Formalizes Communication Joinpoints 

 AspectJ provides no specific vocabulary for defining communication-related 

pointcuts. However, in CommJ, a developer can define pointcuts using terms that are 

related directly to IPC concepts. 

 

 



21 
	  

	  
	  

3.6.4. Better Ways to Detangle Communication  
 Constructs from Core Application.  

 Java provides various communication abstractions to describe both connection-

less and connection-oriented communications. In CommJ, a layer of abstraction on top of 

AspectJ helps developers to code aspects in a uniform way, which makes them less 

tangled, more reusable and more flexible than similar crosscutting concerns, programmed 

in directly AspectJ. 

3.6.5. Easy to Code Communication Concerns  

 It becomes very easy to program communication concerns using pointcuts, such 

as send, receive, connect, accept and close in CommJ Infrastructure with fewer lines of 

code. In contrast, a developer only using AspectJ would need to define considerably more 

complex pointcuts.   

3.6.6. Better Encapsulations and Localized Design Decisions 

 CommJ provides a rich set of reusable aspects, which localize internal design 

decisions, and encapsulates many complex mechanisms such as linking of sent messages 

to received messages. With AspectJ only, developers would need complex data structures 

and explicit mechanisms in order to link these sent and received messages. 

3.6.7. Conceptual Model Matches Program Flow Model 

 In AspectJ, the language-to- program IPC concerns are different from the 

program-flow model, but in CommJ, due to a library of highly reusable aspects and 

communication joinpoint model, it matches both conceptual-model and program-flow 

model of developer.  

 



22 
	  

	  
	  

3.6.8. More Structured Concerns for Communications 

 In CommJ, the application-level code for crosscutting concerns appears to be 

more elegant and structured than the same concerns programmed in AspectJ. 

The experience described later in this dissertation provides some preliminary 

evidence that CommJ truly realizes these benefits.  

	    



23 
	  

	  
	  

CHAPTER 4 

DESIGN AND IMPLEMENTATION  

OF A COMMJ TOOL SET 

Chapter 3 describes the general architecture of CommJ along with some 

fundamental concepts. This chapter discusses the lower-level design and implementation. 

4.1. Communication Joinpoints 

The UMC serves as a foundation for formalizing communication joinpoints, 

which fall into two general categories: message-related joint points (Section 2.1) and 

connection-related joinpoints (Section 2.2), respectively. 

4.1.1. Message Event Joinpoints 

As mentioned earlier, joinpoints represent places and times where/when advice 

can be executed.  In AspectJ, they correspond to constructors, methods, attributes, and 

exceptions. Advice can be executed before, after, or around these various contexts.  

CommJ adds conversations to the list of possible contexts, but unlike the contexts in 

AspectJ, a conversation is not tied to a single programming construct but to a 

conversation.  Figure 4-1 represents different kinds of message related joinpoints in 

CommJ.  

SendEventJP. It is the region of code, where advice can be woven into, when a 

communication event related to sending of data, occurs in a process or thread.  

ReceiveEventJP. Is the region of code, where advice can be woven into, when a 

communication event related to receiving of data, occurs in the system.  

 



24 
	  

	  
	  

RequestReplyConversationJP. It represents joinpoints for complete conversations, 

but they follow basic request-reply protocols. It contains a SendEventJP and a 

ReceiveEventJP. SendEventJP keeps track of messageId whereas the RecieveEventJP 

records a responseId for a request-reply type of conversation. An initialization aspect 

dynamically introduces MIF information for all CommJ joinpoints. While sending a 

message, CommJ creates an instance of a SendEventJP and adds it to the communication 

registry (which contains communication joint points). Similarly on receiving a message, 

it creates an instance of a ReceiveEventJP and finds a SendEventJP from the registry 

where messageId of the former equals responseId of the later. 

MultiStepConversionJP. It represents joinpoints for entire conversations, as well 

as joints points for sequences of events. Multiple send and receive events are modeled 

using a state machine (Section 4.1.5) in a MultistepConversationJP.   

	    

	  

Figure 4-1: Communication Joinpoint and Registry 



25 
	  

	  
	  

4.1.2. Registry for Message Joinpoints 

When a MessageJoinPointTracker discovers a relevant communication event, it 

creates an instance of a joinpoint class, e.g., SendEventJP, correlates it with other events 

in the same conversation, and then adds it to a registry, namely, the MessageJPRegistry 

shown in Figure 4-2. Any communication aspect can access these joinpoint objects to 

obtain context information, like the conversation’s start time, channel, or the protocol. 

4.1.3. Connection Joinpoints 

As mentioned earlier, a connection can contain a sequence of Connect, Accept, 

Listen, and Close events. Connection joinpoints in CommJ are divided in two categories, 

i.e., joinpoints for initiator and listener respectively (See Figure 4-2 for more details). 

ConnectJP. Initiator creates a ConnectJP. It encapsulates the connection 

information related to underlying sockets and channels along with their local and remote 

addresses.  

AcceptJP. Listener creates an AcceptJP on receiving a connection request from 

the initiator.  

ChannelJP. It acts like a bridge between communication joinpoints and 

connection joinpoints.  

CloseJP. Both initiator and listener need to instantiate this joinpoint. It 

encapsulates the closing of connection for an underlying socket or a channel. A listener 

AcceptJP and initiator ConnectJP maintains an association with CloseJP using a 

ChannelJP.  

	    



26 
	  

	  
	  

4.1.4. Registry for Connection Joinpoints 

When an InitiatorJoinPointTracker or a ListenerJoinPointTracker discovers a 

relevant connection event, it creates an instance of a joinpoint class, e.g., ConnectJP, 

AcceptJP, ChannelJP or CloseJP; further it correlates with other events in the same 

connection-related conversation, and then adds it to a registry, namely the 

ConnectionJPRegistry shown in Figure 4-2. Any connection-related aspect can access 

these joinpoint objects to obtain context information, such as the connection underlying 

socket or channel information, connection state or connection start time. 

4.2. Joinpoint Trackers 

Behind the scenes, CommJ uses JoinpointTrackers, which are monitors [22] that 

perform pattern matching on communication events and connection events to track 

individual events and to organize them into high-level conversation contexts. Since the 

monitoring of communications is itself a crosscutting concern, JoinpointTrackers are 

implemented as aspects that weave the necessary monitoring logic into places where a 

	  

Figure 4-2: Connection Joinpoint and Registry 

 



27 
	  

	  
	  

	  

Figure 4-3: CommJ Message Event Join Points and Reusable Aspects 

	  

communication event may take place. In CommJ, there can be two types of event 

trackers, i.e., message joinpoint tracker and connection joinpoint tracker, respectively. 

4.2.1. Message Joinpoint Tracker 

The Message Event Tracker (Figure 4-3) in CommJ crosscuts the send and receive 

events for both reliable and unreliable communication in the core application and defines 

a set of pointcuts in the simple send and receive abstractions. In CommJ, 

MessageJoinpointTracker is an aspect that hides communication related abstractions in 

the core application. 

This aspect defines pointcuts in the send and receive abstractions (Figure 4-4) by 

overcoming the syntactic and semantic variations, defined in Java pre-built sockets and 

channels libraries. It provides simple and elegant communication pointcuts, which are 

rich enough to encapsulate abstractions for both connection-oriented and connectionless 

protocols. Hence, MessageJoinpointTracker creates two clean, well-encapsulated 



28 
	  

	  
	  

communications related abstractions for all types of read and write operations. 

• Communication pointcuts for reads: These pointcuts unify syntactic and semantic 

variations in Java communication libraries and crosscut sockets and channels 

read operations.  

• Communication pointcuts for writes: These pointcuts unify syntactic and semantic 

variations in Java communication libraries and crosscut sockets and channels 

write operations. 

4.2.2. Connection Joinpoint Trackers 

Connection Joinpoint trackers are categorized into Initiator Joinpoint Tracker and 

Listener Joinpoint Tracker, respectively. They crosscut the syntactic and semantic 

variations, exist in both reliable and unreliable communications and unify them into a set 

of pointcuts in the abstractions of channel, connect, accept and close, respectively. 

	  

Figure 4-4: A Code Snippet of MessageJointPointTracker 



29 
	  

	  
	  

Listener Joinpoint Tracker.  It defines two simple pointcuts, which manages all 

connection-related abstractions and styles related to the listener for connectionless and 

connection-oriented communications. It encapsulates AcceptJP, CloseJP and ChannelJP 

(Section 4.2). Figure 4-5 describes the general architecture about the Listener joinpoint 

Tracker, and Figure 4-6 presents its code snippets.  

 

 

	  

Figure 4-6: A Code Snippet of ListenerJoinPointTracker 

	  

Figure 4-5: Listener Joinpoint and Base Aspects 



30 
	  

	  
	  

• Accept pointcut: It crosscuts the accept operation for sockets and channels in Java 

API while trying to establish a connection request from the initiator. 

• Close pointcut: It crosscuts close operation for sockets and channels in Java API 

while closing connection on the listener. 

Initiator Joinpoint Tracker. The InitiatorJoinPointTracker defines three 

pointcuts, which manage all connection-related abstractions for an Initiator in both 

connectionless and connection-oriented communications. It encapsulates ConnectJP, 

CloseJP and ChannelJP (Section 4.2). Figure 4-7 describes the general architecture about 

the Initiator joinpoint Tracker and Figure 4-8 presents its code snippets. 

• Connect pointcut: It is a crosscut connect operation for sockets and channels in 

the Java API on the initiator side while requesting the listener to establish a 

connection. Additionally, Connect finish pointcut defines the finished operation 

on the initiator side when the listener has successfully established a connection. 

 

Figure 4-7: Connection Joinpoint and Base Aspects 

 



31 
	  

	  
	  

 

• Close pointcut: This pointcut defines close operation on initiator side Base 

Aspects. 

The CommJ Infrastructure contains two kinds of base aspects, Communication 

aspects and Connection aspects. They cut through their respective joinpoint trackers and 

provide pointcuts in the abstractions of high-level IPC methods. 

4.3. Base Aspects 

CommJ implements communication-related crosscutting concerns as aspects, 

derived from base conversation aspects (described below) using communication joinpoint 

trackers.  

4.3.1. MessageAspect 

All communication aspects are ultimately derived from the abstract 

MessageAspect class, which provides concrete pointcuts that dynamically track send and 

 
Figure 4-8: A Code Snippet of InitiatorJoinPointTracker 



32 
	  

	  
	  

receive events.  See Figure 4-9.  It is important to note that these pointcuts take joinpoint 

objects as parameters, because this is how advice woven into these pointcuts, can access 

conversation contexts. 

The four specializations of MessageAspect correspond to four different kinds of 

conversation contexts, as mentioned earlier, and extend MessageAspect with pointcut 

abstractions that are meaningful to those contexts. Developers can create their own 

application-level communication aspects that inherit from these aspects and include their 

own advice based on these pointcuts.  

One-way send (OWS). An OWS conversation involves only one send event on the 

initiator’s side. For the initiator, the conversation automatically ends after send event is 

finished (See Figure 4-10).One way receive (OWR). An OWR conversation for a listener 

involves only one receive event. The conversation automatically ends for the listener 

after a receive event (see Figure 4-11).  

 

 

 

 

 

	  

Figure 4-9: A Code Snippet of Message Aspect 

	  

Figure 4-10: A Code Snippet of OneWaySendAspect 



33 
	  

	  
	  

 

Bi-directional (Request/Reply style of Conversation). Bi-directional conversations 

require a successful round-trip of a send and receive events. An RRConversationAspect, 

which applies to bi-directional conversations, defines pointcuts StartConversation and 

EndConversation. The StartConversation creates a RequestReplyConversationJP and 

starts a conversation when a sender invokes a sent event, the EndConversation retrieves 

the matching RequestReplyConversationJP from the MessageJPRegistry and ends a 

conversation when a Receiver invokes a receive event (See Figure 4-12 for more details).   

Multi-step Conversations. Multi-step conversation involves any combination of 

send and receive events without any specific order. For example, few variations in multi- 

step conversations are as follows: one send event and multiple receive events; multiple 

send events and one receive event; multiple send events and multiple receive events or 

any complex model of send and receive events. 

	  

Figure 4-12: A Code Snippet of RRConversationAspect 

	  

Figure 4-11: A Code Snippet of OneWayReceiveAspect 



34 
	  

	  
	  

We programmed the multistep conversation aspect in Figure 4-13 by deriving 

from MessageAspect class and thereby inheriting the MessageSend and MessageReceive 

pointcuts. A multistep conversation retrieves message, role, protocol and conversation 

information from Message class and creates a state machine instance if it doesn’t already 

exist. During one application session, an aspect may apply several concurrent 

conversations for one type of state machine (protocol).   The context for each 

conversation is maintained in terms of its own current state and association state machine 

instance.  (See Figure 4-14 for more details on the state machines).      

CommJ State Machine for Multistep Conversations. In general, there are two 

types of state machines. Mealy and Moor state machines [18].  Mealy state machine is a 

finite state machine whose output values are determined both by its current state and the 

current inputs whereas in the Moore state machine, the output values are determined 

solely by its current state. Mealy state machines are better suited for CommJ because they 

can be defined in terms of transitions triggers, which correspond to message events and 

 message types. The design of the state machine for multistep conversation is shown in 

Figure 4-14 and code snippet is in Figure 4-15. A CommJ state machine has the following 

components: State and Transition. A State encapsulates the state name, whether it is in 

 

 

Figure 4-13: A Code Snippet of MultistepConversationAspect 



35 
	  

	  
	  

initial or final state, and its list of transitions. Transition is defined using four basic 

elements: ActionType, MessageType, FromState, and ToState.  The ActionType is 

transition trigger and can be either a send or receive action. The MessageType is a filter 

or guard that specifies what types of messages may trigger the transition. FromState  

defines the state before transition and ToState defines the target state after transition. 

ConversationInProgress. A distributed application may be communicating with 

multiple other processes, which are also involved in a multi-step conversation. A state 

machine instance can keeps track of these multiple concurrent conversations by 

maintaining a collection of in-progress conversations. 

StateMachineTypes. When an application is loaded in memory, all types of 

application-level state machine classes are initialized and stored in StateMachineTypes - a 

hash map type of data structure. This hash map keeps a mapping between application 

classes and state machine types. Register() method of the abstract state machine in 

CommJ is called when applications are loaded through static block initialization (Figure 

4-15). 

 
Figure 4-14: Design of Multi-step State Machine 



36 
	  

	  
	  

4.3.2. Connection Aspects 

A Connection Aspect derives from a CommJ base aspect, which crosscuts 

ListenerJoinPoinTracker and InitiatorJoinPointTracker pointcuts. The base connection 

aspect defines the following four pointcuts (See Figure 4-15): 

Connect pointcut. It crosscuts InitiatorJoinPointTracker connection related 

pointcut and provides Connect pointcut. 

Accept pointcut. It crosscuts ListenerJoinPointTracker accept related pointcuts 

and provides Accept pointcut. 

CloseServer pointcut. It crosscuts ListenerJoinPointTracker “close connection” 

pointcuts and provides Close pointcut. 

CloseClient pointcut. It crosscuts InitiatorJoinPointTracker “close connection” 

pointcuts and provides Close pointcut.  

4.3.3. Complete Connection Conversation.  

The complete Connection Conversation aspect is inherited from 

ConnectionAspect (Figure 4-16) and defines pointcuts that help programmers to define 

	  

Figure 4-15: A Code Snippet of Connection Aspect 



37 
	  

	  
	  

conversations for total connection time on both listener as well as on the initiator sides. 

CompleteConnectionAspect (Figure 4-16) is a reusable connection related 

conversation aspect. It extends from ConnectionAspect and provides following pointcuts: 

• ConversationBeginOnInitiator. This pointcut crosscuts the state of request 

to establish a connection on initiator side and marks it as start of the 

Initiator connection conversation 

• ConversationEndOnInitiator. This pointcut crosscuts the closing 

connection on initiator side and marks it as end of the initiator connection 

conversation 

• ConversationBeginOnListener. This pointcut marks the start of connection 

related conversation when Listener tries to accept a connection request. 

• ConversationEndOnListener. This pointcut marks the end of connection 

related conversation when Listener tries to close a connection  

 

 

	  

Figure 4-16: A Code Snippet of Complete Connection Aspect 



38 
	  

	  
	  

4.3.4. CommJ Initialization Aspect  

This aspect (Figure 4-17) loads application specific state machines when 

communication process starts. Besides initialization of state machines, this aspect also 

crosscut initialization of messages and introduces conversation, role, protocol and 

message identity information before sending or after receiving these messages. 

4.4. Reusable Aspects Library (RAL) 

Aspects in the RAL are also derived from the base aspects in CommJ. They 

represent general crosscutting concerns commonly found in applications with significant 

communication requirements.  Table 1 lists some of the aspects currently in the RAL and 

Figure 4-18 shows part of the implementation of first one, TotalTurnAroundTime-

	  

Figure 4-17: A Code Snippet of CommJ Initialization Aspect	  

 



39 
	  

	  
	  

Monitor. Note how the advice in this aspect follows the Template Method pattern [8].  

This allows developers to quickly adapt it to the specific needs of their application by 

overriding the Begin and End methods.  Other aspects in the RAL make use of this and 

other reuse techniques so developer can easily integrate them into existing or new 

applications. We expect that RAL will continue to grow as new generally applicable 

communication aspects are discovered, implemented, and documented.  

4.4.1. Turn-around Time Aspect in RAL 

As mentioned, aspect developers implement and add application-level aspects into 

core application logic by either reusing RAL aspects or specializing the base aspects in 

CommJ. As an example, this section describes the implementation of an application-level 

aspect that weaves performance measurements in the multistep protocol, introduced in 

the previous section.  For discussion purposes, assume that the performance 

measurements are a rolling window of throughput and average-conversation turn-around 

time statistics. Also, assume that the core application considers a unit of work to be the 

completion of a conversation that follows this protocol. So, we can measure throughput 

for a unit of time, say 1 minute, by simply counting the number of these conversations 

completed in that minute.  The average turn-around time is the average of timespans from 

conversation start times to conversation end times.  The rolling window keeps track of 

these statistics for the current minute and 10 previous minutes.   

First notice how this advice is derived from TotalTurnAroundTimeAspect and in 

doing so, it can reuse its implementation of the conversation turnaround time concept 

directly.  Then, it adds the Stats array for holding the rolling window of statistics and 

some additional behavior to the ending of a conversation to compute the statistics.  



40 
	  

	  
	  

	    

	  

Figure 4-18: A Code Snippet of TurnAroundTimeMonitor 



41 
	  

	  
	  

	  

 

Figure 5-1: State Machine for the A ProcessRole  

 

 

Figure 5-2: State Machine for the B ProcessRole  

CHAPTER 5 

APPLICATION-LEVEL ASPECTS 

As mentioned, aspect developers implement and add application-level aspects into 

core application logic by either reusing RAL aspects or specializing the base aspects in 

CommJ. This chapter provides four examples of communication and connection related 

crosscutting concerns implemented with CommJ.  

5.1. Measuring Performance in Multistep  
Conversation Processes 

This example discusses the design and implementation of measuring the total 

turnaround time for a multistep conversation. Consider a communication protocol 

involving three processes, A, B, and C, wherein A starts a conversation by sending a 

message to B and waits for a response.  When A receives a response B, it sends a message  



42 
	  

	  
	  

 

Figure 5-3: State Machine for the C ProcessRole  

 

 

 

 

to C and waits for a response.  When A receives a response from C, it sends a final 

message to both B and C.  Figure 5-1 shows a finite state machine for the A ProcessRole 

of this protocol.  The behaviors for B and C ProcessRoles are considerably simpler and 

are shown in Figures 5-2 and 5-3, respectively.  

5.1.1. Design and Implementation 

The CommJ StateMachine class includes a buildTransitions method that allows 

developers to define state machines in terms of states and message-event transitions.  

Figure 5-4 shows the implementation of this method to define a StateMachine for the A 

ProcessRole.  

	  

Figure 5-4: State Machine Configuration for ProcessRoleA 



43 
	  

	  
	  

For discussion purposes, assume that the performance measurements are a rolling 

window of throughput and average-conversation turn-around time statistics. Also, assume 

that the core application considers a unit of work to be the completion of a conversation 

that follows this protocol. So, throughput can be measured for a unit of time, say 1 

minute, by simply counting the number of these conversations completed in 1 minute.  

The average turn-around time is the average of timespans from conversation start times to 

conversations end time.  The rolling window keeps track of these statistics for the current 

minute and the 10 previous minutes. Figure 5-5 shows the key pieces of code for an 

aspect that implement this performance measure crosscutting concern.  

First notice how the aspect is derived from TotalTurnAroundTimeAspect and in 

doing so, it can reuse its implementation of the conversation turnaround time concept 

directly.  Then, it adds the Stats array for holding the rolling window of statistics and 

some additional behavior to the ending of a conversation to compute the statistics.  

5.2. Version Control Aspect 

This example discusses the design and implementation of an aspect that can 

coordinate communications when different processes are following different version of a 

protocol. Imagine that the protocol discussed in the previous example has evolved over 

time, resulting in multiple versions of the messages’ syntax.  If A process is following the 

updated syntax rules and trying to communicate with B or C processes that are following 

rules from prior versions, there will be communication errors.  Ideally, it would be nice to 

allow seamless independent upgrading to any of the processes without effecting the 

communications. 

 



44 
	  

	  
	  

 

5.2.1. Design and Implementation 

The application-level version control aspects in Figures 5-6 and 5-7 extend RAL 

aspects discussed Section 4.5. On sending the messages, OneWaySendAspect ensures that 

it is sending the most recent version of messages. Similarly, on receiving the messages, 

OneWayReceiveAspect verifies that received message is also in the most recent version.  

Figure 5-5: Performance Measure Crosscutting Concern 



45 
	  

	  
	  

	  

Figure 5-7: Version Control Aspect for Messages Received 

	  

	  

Figure 5-6: Version Control Aspect for Messages Sent 

5.3. Managing Quality of Service in  
Weather Station Data Collection 

This example discusses the design and implementation of Quality of Service 

(QoS) control aspect in the context of a system that collects data from weather stations, 

referred to here as a WSDC.  The QoS control involves managing the compression level 

for data transmitted by collection nodes in the WSDC. The aspect manages the QoS 

through a separate QoS channel that monitors and adjusts the compression level between 

Transmitter and Receiver.  

Typically a weather station is a facility either on land or sea, with instruments and 

equipment for observing atmospheric conditions to provide information for weather 

forecasts and to study the weather and climate. The measurements are usually taken 

including temperature, barometric pressure, wind speed, wind direcFtion and 

precipitation amounts. Observations can be taken manually or automatically and at 

regular intervals. Weather conditions out at sea are taken by ships and buoys that measure 

slightly different metrological quantities such as sea surface temperature, wave height, 

and wave period [23]. 



46 
	  

	  
	  

Following are the important devices for getting the data at a typical Weather 

Station: 

• Thermometer for measuring temperature 

• Anemometer for measuring wind speed 

• Wind vane for measuring wind direction 

• Hygrometer for measuring humidity 

• Barometer for measuring atmospheric pressure 

• Ceilometer for measure cloud height 

• Present weather sensor or visibility sensor 

• Rain gauge for measuring liquid-equivalent precipitation 

• Ultrasonic snow depth sensor for measuring depth of snow 

• Pyranometer for measuring solar radiations 

The standard mast heights used with typical weather stations are 2, 3, 10 and 30 

meters, respectively. These sizes are used as standards for differing applications.  

• The 2-meter mast is used for the measurement of parameters that affect a human 

subject 

• The 3-meter mast is used for the measurement of parameters that affect crops 

• The 10-meter mast is used for the measurement of parameters without 

interference from objects such as trees, buildings or other obstructions 

• The 30-meter mast is used for the measurement of parameters over stratified 

distances for the purposes of data modeling 

 



47 
	  

	  
	  

5.3.1. Design and Implementation 

Following are the important classes in the design of WSDC. Figure 5-8 represents 

its general architecture: 

WStationDataCollection. This class generates multiple readings of 

WeatherDataVector at regular intervals, in a separate process and stores them in a queue.  

WS-Transmitter. It receives WeatherDataRequest(s) from the Receiver (s), 

collects the observations of type WeatherDataVector from WStationDataCollection and 

transfers to one or multiple WS-Receivers.  

WS-Receiver. It sends WeatherDataRequest to the Transmitter and receives 

WeatherDataVector(s). It then decompresses the message by identifying the right 

compression technique. Once the Receiver receives the required number of observations, 

it can again request the Transmitter to transfer more weather observations at random 

intervals.  

WSDC uses the following protocol messages (Figure 5-7): 

WeatherDataVector. This data structure is passed to WS-Transmitter and WS-

Receiver for exchanging weather information. 

	  

Figure 5-8: Communication of Messages between AWS-Receiver and AWS-Transmitter 

 



48 
	  

	  
	  

WeatherDataReading. WeatherDataVector aggregates WeatherDataReading(s). 

An Instance of WeatherDataReading contains data, collected from different devices at a 

weather station. 

WeatherDataRequest. WS-Receiver(s) sends WeatherDataRequest message to 

WS-Transmitter for receiving weather data observations. On receiving the request, WS-

Transmitter sends all WeatherDataVector observations (Figure 5-9), available in 

WStationDataCollection. The Transmitter than goes to sleep, unless it again receives a 

request from the Receiver.   

The compression control aspect creates a Quality of Service (QoS) monitoring 

channel, which runs parallel to the WStationDataCollection. At regular intervals, this 

QoS channel exchanges ControlVector that contains information about packets received 

and their delays. Based on the results of these control statistics, QoSMonitor adjusts the 

	  

Figure 5-9: Protocol Messages for Weather Station Simulator 

 



49 
	  

	  
	  

level of compression on the Transmitter and Receiver sides. The aspect controls the level 

of compression by observing the number of received messages and maximum delay per 

message at regular intervals using ControlVector. The implementation of this 

crosscutting concern uses the following classes (See Figure 5-10). 

ControlVector. It contains compression related quality attributes that would be 

exchanged between TransmitterQoS and ReceiverQoS. 

ReceiverQoS. At regular intervals, the ReceiverQoS asks TransmitterQoS to send 

ControlVector message, which contains control statistics about received messages and 

their delays.  

	  

Figure 5-10: Architecture for QoS Extension 



50 
	  

	  
	  

TransmitterQoS. On receiving the ReceiverQoS request of type ControlVector, it 

builds the control stats, updates the ControlVector, and retransmits the vector to 

ReceiverQoS. After sending the message, it also adjusts the QoS compression. 

QoSMonitor. QoSCommunication channel dynamically weaves in two instances 

of QoSMonitor on the Transmitter and Receiver sides of the application. After 

exchanging ControlVector messages, QoSMonitor(s) of QoSReceiver and 

QoSTransmitter adjust matching compression levels for exchanging weather station 

observations. 

In this example, QoSSignalSent and QoSSignalReceived are the two CommJ 

aspects for controlling the compression. Their code snippets are provided in Figures 5-11 

and 5-12, respectively.  

QoSSignalSent. It extends from reusable OneWaySendAspect in CommJ. Before 

sending WeatherDataVector, it weaves in the advice, which compresses the message with 

QoSSignalReceived (Figure 5-11). 

QoSSignalReceived. It extends from reusable OneWayReceiveAspect in CommJ. 

After receiving the WeatherDataVector, it weaves in the advice, which decompresses the 

message with appropriate compression level matching compression level (Figure 5-12). 

	  

Figure 5-11: First Code Snippet of TurnAroundTimeAspect 



51 
	  

	  
	  

  

5.4. Logging Listener and Initiator  
Connection Times for FTP 

This section describes aspects for logging listener and initiator connection times 

for the processes using FTP for file transfer.  Assume that an FTPClient establishes a 

TCP connection to an FTPServer. Then it requests the server for transferring a file. The  

Figure 5-12: Second Code Snippet of TurnAroundTimeAspect	  

	  

Figure 5-13: Sequence Diagram for FTP 

 



52 
	  

	  
	  

server receives the request. If the file is too big to transfer in one send, it divides the file 

into smaller chunks of fixed block sizes and sends each chunk with its completion status. 

After sending the final chunk, both the server and client close the connections. 

5.4.1. Design and Implementation 

As mentioned above, with FTP, there are two processes: an FTPCient and 

FTPServer. The server and client communicate using two messages, i.e., 

FileTransferRequest and FileTransferResponse. FTPClient sends a FileTransferRequest 

message to FTPServer, after aconnection has been established between the two 

processes.  The FileTransferRequest message contains the requested file name. When 

FTPServer receives the request, it starts sending the response message 

(FileTransferResponse) to the client, which includes the file information, data chunk 

number and its completion status (See Figure 5-13 for more details).   

Aspect - Logging Initiator Connection Time. This is an application-level 

connection aspect, developed using the RAL connection aspect, i.e., 

CompleteConnectionAspect  (Section 4.4). It logs the time between initiating connection 

request to the listener (FTPServer) and ending of connection on the initiator (FTPClient) 

using ConversationBeginOnInitiator and ConversationEndOnInitiator pointcuts (See 

Figure 5-14). 

Aspect - Logging Listener Connection Time. This is an application-level 

connection aspect, developed using RAL connection aspect, i.e., 

CompleteConnectionAspect (Section 4.4). It logs the time period between acceptance of 

connection request from initiator (FTPClient) and ending of connection on the listener 



53 
	  

	  
	  

(FTPServer) using ConversationBeginOnListener and ConversationEndOnListener 

pointcuts (See Figure 5-15).   

  

	  

Figure 5-14: Third Code Snippet of TurnAroundTimeAspect 

Figure 5-15: Fourth Code Snippet of TurnAroundTimeAspect	  



54 
	  

	  
	  

CHAPTER 6 

MEASURING REUSABILITY AND MAINTENANCE 

To measure the maintainability and reuse, we used the Comparison Quality Model 

[10] and extend it with new factors and internal attributes, forming the Extended Quality 

Model (EQM).  See Figure 6-1.  Section 10.4 discusses related works on measurement 

metrics. The EQM consisted of four parts: qualities, factors, internal attributes, and 

quantity metrics respectively.  

6.1. Qualities 

 Qualities are the attributes that we want to primarily observe in our software. 

They are the highest level of abstractions in our EQM and include the following: 

• Reusability: Reusability exists for a given software element, when developers can 

use it for the construction of other elements or systems [24]. 

	  

Figure 6-1: Extended Quality Model (EQM) 



55 
	  

	  
	  

• Maintainability: Maintainability is the activity of modifying a software system 

after initial delivery [25]. It is the ease with which software components can be 

modified.  

6.2. Factors  

Factors are the secondary quality attributes (more granular than qualities) that 

influence the defined primary attributes, i.e., qualities. Following are the list of factors in 

our EQM. 

• Understandability: It indicates the level of difficulty for studying and 

understanding a system design and code. 

• Flexibility: It indicates the level of difficulty for making drastic changes to one 

component in a system without any need to change others. 

• Localization of Design Decisions:  It indicates the level of information hiding for 

a component’s internal design decisions. Hence, it is possible to make material 

changes to the implementation of a component without violating the interface 

[26]. 

• Obliviousness: It is a special form of low coupling wherein base application 

functionality has no dependencies on crosscutting concerns [27]. 

Localization of design decisions, and code obliviousness were not part of the 

original quality model [7]. However, we introduced them into our EQM for two reasons. 

First, in his landmark paper [27], Parnas proposes three important characteristics of 

modular code: understandability, flexibility and localization of design decisions 

(information hiding). Hence, reasoning maintainability and reusability only in terms of 



56 
	  

	  
	  

understandability and flexibility is not complete. Introduction of localization of design 

decisions is also equally important. Second, by the time Parnas proposed the definition of 

modular code, obliviousness had not been invented as a fundamental design principle. 

However, in the context of our research experiment, which depends heavily on measuring 

crosscutting concerns, code obliviousness becomes critical. 

6.3. Internal Attributes  

Internal attributes are properties of software systems related to well-established 

software-engineering principles, which in turn are essential to the achievement of the 

qualities and their respective internal factors. Following are the internal attributes in our 

EQM. 

• Separation of Concerns (SoC): It defines ability to identify, encapsulate and 

manipulate those parts of software that are relevant to a particular concern. 

• Coupling: It is an indication of the strength of interconnections between the 

components in a system. In other words, it measures number of collaborations 

between components or number of messages passed between components. 

• Cohesion: The cohesion of a component is a measure of the closeness of 

relationship between its internal components.  

• Size: It physically measures the length of a software system’s design and code. 

• Complexity: It measures how components are structurally interrelated to one 

another. 

• Tangling: It exists when a single component includes functionality for two or 

more concerns, and those concerns could be reasonably separated into their own 

components. 



57 
	  

	  
	  

• Scattering: It exists when two or more components include similar logic to 

accomplish the same or similar activities.  The most serious causes of scattering 

occur when design decisions have not been properly localized.   

6.4. Measurement Metrics 

Figure 6-2 presents the metrics the EQM uses to measure each of the internal 

attributes.  Detail descriptions of these metrics follow below. 

6.4.1. SoC/Scattering Metrics 

EQM includes the following metrics for SoC and code scattering: Concern 

Diffusion of Application (CDA) and Concern Diffusion over Operations (CDO).  CDA 

counts the number of primary components (a class or aspect) whose main purpose is to 

contribute to the implementation of a concern. It counts the number of components that 

access the primary components by using them in attribute declarations, formal 

parameters, return types or method calls. CDO counts the number of primary operations 

 

 Figure 6-2: Measurement Metrics in EQM 



58 
	  

	  
	  

whose main purpose is to contribute to the implementation of a concern. It also counts the 

number of methods and advices that access any primary component by calling their 

methods or using them in formal parameters, return types, and it throws declarations and 

local variables. Constructors also are counted as operations. 

6.4.2. Coupling Metrics 

Our quality model defines the following metrics for measuring coupling: 

Coupling between Components (CBC), Depth Inheritance Tree (DIT) and Number of 

Children (NOC). CBC counts the number of other classes and aspects to which a class or 

an aspect is coupled. On the other hand, excessive coupling of AspectJ concerns increases 

to CBC, which can be detrimental to the modular design and prevent reuse and 

maintenance. DIT counts how far down in the inheritance hierarchy a class or aspect is 

declared. As DIT grows, the lower-level components inherit or override many methods. 

This leads to difficulties in understanding the code and design complexity when 

attempting to predict the behavior of a component. NOC counts the number of children 

for each class or aspect. The subcomponents that are immediately subordinate to a 

component in the component hierarchy are termed as its children. However, as NOC 

increases, the abstraction represented by the parent component can be diluted if some of 

the children are not appropriate members of the parent component. 

6.4.3. Cohesion/Tangling Metrics 

Our quality model defines the following metrics for measuring cohesion and 

tangling among components: Lack of Cohesion in Operations (LCO).  



59 
	  

	  
	  

LCO measures the lack of cohesion of a class or aspect in terms of the amount of 

method and advice pairs that do not access the same instance variable. If the related 

methods do not access the same instance variable, they logically represent unrelated 

components and hence should be separated. 

6.4.4. Size Metric  

Our quality model defines the following size metrics: Lines of Code (LOC), 

Method Lines of Code (MLOC), Number of Operations (NO), Number of Parameters 

(NP), Vocabulary Size (VA) and Weighted Operations per Component (WOC). 

LOC counts the lines of code. The greater the LOC, the more difficult it is to 

understand the system and harder to manage the software maintenance activities or 

understand the implementation of the required functionalities during maintenance and 

reuse activities. MLOC counts the method lines of code. Kremer [23] states that the 

greater the average of MLOC for a component, the more complex the component would 

be. NO counts the number of operations in a component. Objects with large number of 

operations are less likely to be reused. Some times LOC is less but NO is more, which 

indicates that the component is more complex. NP counts the number of parameters for 

methods in each class or aspect. NP is an Operation-Oriented Metric. A method with 

more parameters is assumed to have more complex collaborations and may call many 

other method(s). VA counts the number of system components, i.e., the number of classes 

and aspects into the system. Sant’ Anna [7] points out that if number of components 

increase, it is an indication of more cohesive and less tangled set of ADT. 

Finally, WOC metric measures the complexity of a component in terms of its 

operations. WOC does not specify the operation complexity measure, which should be 



60 
	  

	  
	  

tailored to the specific contexts. The operation complexity measure is obtained by 

counting the number of parameters of the operation, assuming that an operation with 

more parameters than another is likely to be more complex. It is an object-oriented design 

metric, proposed by Kemerer [23] and sums up the complexity of each method. The 

number of methods and complexity is an indication of how much time and effort is 

required to develop and maintain the object. The larger the value of weighted operations, 

the more complex the program would be. 

6.4.5. Complexity Metric  

Our quality model defines the following complexity metrics: McCabe’s 

Cyclomatic Complexity (CC) [28]. Mathematically, the cyclomatic complexity of 

a structured program is defined with reference to the control flow graph of the program, 

a directed graph containing the basic blocks of the program, with an edge between two 

basic blocks if control may pass from the first to the second. The complexity M is then 

defined as: 

M = E − N + 2P 

Where: 

E = the number of edges of the graph 

N = the number of nodes of the graph 

P = the number of connected components (exit nodes). 

CC measures the logical complexity of the program. The metric defines the 

number of independent paths and provides you with an upper bound for the number of 

test cases that must be conducted to ensure that all statements have been executed at least 

once. High value of CC affects program maintenance and reuse. 



61 
	  

	  
	  

6.4.6. Obliviousness Metric 

Our quality model defines the following obliviousness metrics: Number of Inter-

type Declarations (NITD), Aspect Scattering Over Components (ASC), Aspect Scattering 

Over Component Operations (ASCO). NITD counts the number of inter-type 

declarations. A higher value of NITD indicates a tighter coupling between the aspect and 

application components. ASC counts the number of aspect components scattered over 

application components. It measures the tangling of aspects in the application 

components. More tangling of aspects in the program makes the original application less 

reusable and maintainable. ASCO counts the number of aspect components scattered over 

application component operations. ASC (discussed above) gives a high-level overview of 

the application tangling in the aspect components but ASCO provides more insight on 

operations-level tangling of applications inside aspect components.  



62 
	  

	  
	  

CHAPTER 7 

HYPOTHESES 

To determine whether CommJ improves reusability and maintainability, I 

conducted an experiment that tests the seven hypotheses listed below.  All of these 

hypotheses have the same premise and refer to the metrics defined for the EQM described 

in Chapter 6.  

Hypothesis #1: If crosscutting communication concerns are effectively 

encapsulated in CommJ aspects, then the software has better separation of concerns and 

less scattering (as described by CDA, CDO in Section 6.4.1.) than equivalent systems 

developed with AOP design techniques. 

Method of Calculation:  

• CDA. Counts the total lines of concern-related occurrences in an application 

level component. Concern occurrences can be in an aspect or a class. It is a 

manual calculation. 

• CDO. Counts the total number of operations in an application-level component 

containing the concern related occurrences. It is a manual calculation. 

Prediction: For this hypothesis to hold, we expect that CDA, CDO will decrease 

when using CommJ. 

Hypothesis #2: If crosscutting communication concerns are encapsulated in 

CommJ aspects, the software has lower coupling (as described by CBC, DIT, NOC in 

Section 6.4.2.) than equivalent systems developed with AOP design techniques. 

 

 



63 
	  

	  
	  

Method of Calculation:  

• NOC. Describes the total number of direct subcomponents of a component. 

Additionally, if a component is implementing an interface, it counts as a direct 

child of that interface. The tool [29] calculates this metric. 

• CBC. Counts the total number of associations, dependencies between 

components of a program. It is a manual calculation. 

• DIT. Maximum hierarchical distance from component object in the 

inheritance hierarchy. It is a manual calculation. 

Prediction: For this hypothesis to hold, we expect that NOC, CBC, DIT will 

decrease when using CommJ. 

Hypothesis #3: If crosscutting communication concerns are encapsulated in 

CommJ aspects, the software has higher cohesion and less tangling (as described by LCO 

in Section 6.4.3.) than equivalent systems developed with AOP design techniques. 

Method of Calculation: LCO. Measures for the cohesiveness of a component and 

is calculated with the Henderson-Sellers method. If (m(A) is the number of 

methods accessing an attribute A, it calculates the average of m(A) for all 

attributes, subtracts the number of methods m and divides the result by (1-m). A 

low value indicates a cohesive component, and a value close to 1 indicates a lack 

of cohesion and suggests the component might better be split into a number of 

(sub) components. The tool [29] calculates this metric. 

Prediction: For this hypothesis to hold, we expect that LCO will decrease for 

CommJ. 



64 
	  

	  
	  

Hypothesis #4: If crosscutting communication concerns are encapsulated in 

CommJ aspects, the software is not significantly larger (as described by LOC, MLOC, 

NO, NP, VA, WOC in Section 6.4.4.) than that of equivalent systems developed with 

AOP design techniques. 

Method of Calculation:  

• LOC: It counts the total lines of code excluding white spaces and comments. 

The tool [29] calculates this metric. 

• MLOC: It counts the total lines of code for a method or advice ignoring white 

spaces and comments. The tool [29] calculates this metric. 

• NO: It counts the total number of operations in a component. The tool [29] 

calculates this metric. 

• NP: It counts the total number of parameters for all methods in a component. 

The tool [29] calculates this metric. 

• VA: It counts the total number of components, which include classes, aspects, 

and inner classes. The tool [29] calculates this metric. 

• WOC: It sums up the CC for all methods in a component. The tool [68] 

calculates this metric. 

Prediction: For this hypothesis to hold, we expect that: 

• LOC, MLOC, NO, NP, VA, WOC will decrease, and 

• VA will increase for CommJ. 

Hypothesis #5: If crosscutting communication concerns are encapsulated in 

CommJ aspects, the software is not significantly complex (as described by CC in Section 

6.4.5.) than equivalent systems developed with AOP design techniques. 



65 
	  

	  
	  

Method of Calculation: CC: Counts the number of flows through a piece of code. 

Each time a branch occurs (if, for, while, do, case, catch and the ?: ternary 

operator, as well as the && and || conditional logic operators in expressions) this 

metric is incremented by one.  It is calculated for methods/advice only. The tool 

[29] calculates this metric. 

Predictions: For this hypothesis to hold, we expect that CC will decrease when 

using CommJ. 

Hypothesis #6: If crosscutting communication concerns are encapsulated in 

CommJ aspects, the software is significantly more oblivious (as described by NITD, 

ASC, ASCO in Section 6.4.6.) than equivalent systems developed with AOP design 

techniques. 

Method of Calculation:  

• NITD: It counts the number of inter-type declarations in the aspects and 

number of times they are used, which also includes their references in the 

aspects and application classes. It is a manual calculation. 

• ASC: It counts the number of distinct application components in the concerns, 

which includes both the distinct number of components and number of 

operations for those components. It is a manual calculation. 

• ASCO: It counts the number of methods and advices in the concern containing 

the references of application components. It is a manual calculation. 

Prediction: For this hypothesis to hold, we expect that NITD, ASC, ASCO will 

decrease when using CommJ. 



66 
	  

	  
	  

Hypothesis #7: If crosscutting communication concerns are encapsulated in 

CommJ aspects, the extension part of the software requires less number of changes to 

reuse and maintain (as measured by Eclipse IDE diff function) than equivalent systems 

developed with AOP design techniques. 

Method of Calculation:  

• CR: Number of changes required to reuse the concern for another application. The 

eclipse IDE calculates this metric. 

• CM: Number of changes required to maintain the concern. The eclipse IDE 

calculates this metric. 

Prediction: For this hypothesis to hold, we expect that the number of changes to reuse 

and maintain will decrease when using CommJ.  



67 
	  

	  
	  

CHAPTER 8 

EXPERIMENTAL METHOD 

The experiment to test the previously stated hypotheses consists of the 17 general 

steps listed below. Additional details about the more complex steps can be found in 

Sections 8.1 through 8.7.  Section 8.8 discusses the independent and dependent variables.  

Further, Section 8.9 describes how I minimized threats to validity caused by extraneous 

variables. 

Preliminaries 

1. All the researchers passed the online Human Research Training course offered 

through the Collaborative Institutional Training Initiative (CITI). See 

Appendix I for more details.  

2. Submitted an application for a Human Research Experiment to the 

Institutional Review Board (IRB) and got its approval (See Appendix I for 

more details). 

3. Developed three simple software applications and documented their 

requirements, design, and implementation. See Section 8.1 for more details. 

4. Selected three common communication-related crosscutting concerns for the 

above sample applications. Developed an initial requirements specification 

document. See Section 8.2 for more details. 

5. Sent invitation letters (See Appendix I) and recruited seven volunteer 

developers who were experienced in object-oriented software development 

(Section 8.3.1), and randomly organized them into two study groups: A and B. 

Group A programmed using a AOP approach and Group B used CommJ. 



68 
	  

	  
	  

6. Had the seven volunteers complete a survey that assessed their background 

and skill levels (Appendix C). See Section 8.3.3. 

7. Provided AOP training to developers in Group A, and had them worked 

through some practice applications. See Section 8.4. 

8. Provided CommJ training to developers in Group B, and had them worked 

through some practice applications. See Section 8.4. 

Phase 1 

9. Gave three sample applications mentioned above, associated documentation 

(Appendix A), and all three concerns initial requirements specifications 

(Appendix B) to the seven developers.  

10. Asked them to complete a pre-implementation questionnaire (Appendix D), 

once they understood the code and documentation provided to them in Steps 

7, 8 and 9.  

11. Asked them to develop the three crosscutting concerns, and collected their 

implementations. See Section 8.5. 

12. Asked volunteers to complete a post-questionnaire that gathered additional 

information to measure quality metrics. See Appendix D. 

13. Measured the quality metrics using EQM, collected findings from the logs and 

post/post-questionnaires from Phase 1. 

	   	  



69 
	  

	  
	  

Phase 2 

14. Gave enhancements (sample applications and crosscutting concerns) to all 

seven developers, had them revise their implemented concerns, and then 

collected those revised implementations. See Section 8.6. 

15. Asked them to complete a questionnaire (Appendix G) that gathered 

additional information to measure quality metrics.  

16. Evaluated the reusability and maintainability of the various software artifacts 

using EQM. See Section 8.7 for details on the metrics and experiment. 

17. Interrupted the results. 

Section 8.8 summarizes the control, independent, dependent, and extraneous 

variables for this experiment. Section 8.9 describes possible threats to validity of the 

research experiment. 

8.1. Selection of Sample Applications 

Table 2 describes three selected applications for the experiment.  To improve the 

validity of the experiment, it was important that the sample applications were non-trivial 

systems and that their communications represented a broad range of issues.  To this end, 

the sample applications were all multithreaded, used JDK sockets or channels, included 

different types of communication heterogeneities (Section 2.2.), had one or more senders, 

and contained opportunities for different types of conversations.  Developers were 

provided with the application code along with their documentation and UML diagrams. 

 



70 
	  

	  
	  

8.2. Selection of Crosscutting  
Concerns from Sample Applications 

We selected the crosscutting concerns for the experiment such that they could 

apply to all the sample applications and the various types of conversations described in 

Section 4.4.  Additionally, these concerns needed to be sufficiently simple that a novice 

programmer (i.e., one who meets the criteria specified in Section 8.3) could integrate 

them into the sample applications in less than 10 hours, regardless of whether CommJ is 

used. Table 3 describes the three crosscutting concerns selected for the experiment.  

Appendix B provides more details about these selected crosscutting concerns. 

Table 2. Selected sample applications 

Application	  Name	   Description	  

Levenshtein	  Edit-‐Distance	  
Calculator	  (LD)	  

The	  programmer	  implemented	  an	  application	  where	  a	  
server	  would	  calculate	  the	  LD	  between	  two	  input	  strings,	  
provided	  by	  the	  client,	  over	  a	  connection-‐oriented	  
communications.	  

File	  Transfer	  Program	  (FTP)	   The	  programmers	  implemented	  a	  file	  transfer	  protocol	  
over	  connection-‐oriented	  communication.	  

Weather	  Station	  Simulator	  
(WS)	  

The	  programmers	  implemented	  a	  simple	  weather	  
station	  simulator,	  supported	  by	  a	  Transmitter	  and	  a	  
Receiver.	  

	  

Table 3. Selected sample crosscutting concerns 

Aspect	  Name	   Description	  

Version	  
Compatibility	  	  

This	  concern	  adapted	  one	  version	  of	  the	  message	  to	  another,	  so	  
processes	  running	  different	  versions	  could	  still	  communicate	  with	  each	  
other.	  The	  crosscutting	  concern	  included	  knowledge	  of	  converting	  one	  
version	  to	  another	  and	  conversely	  	  

Symmetric-‐
Key	  

Encryption	  

It	  encrypted	  the	  communication	  between	  a	  sender	  and	  receiver	  using	  
symmetric-‐key	  encryption	  	  

Measuring	  
Performance	  

It	  measured	  some	  performance	  related	  statistics	  for	  message-‐based	  
communications	  between	  a	  sender	  and	  receiver	  	  

	  



71 
	  

	  
	  

8.3. Recruitment of Developers 

8.3.1. Criteria for Selection of Developer 

All participants were either undergraduate or graduate students in computer 

science. They had taken courses in algorithms, data-structures, Java and software 

engineering. They had also good exposure of OOD and Unified Modeling Language 

(UML). In addition, they had implemented at least one multi-threaded network 

programming project using Java, and the size of the project was comparable to the scope 

of our implementations. 

8.3.2. No Personal-Identifying Information 

Once selected, each volunteer was assigned a unique number.  Data and code 

gathered from the volunteers were tagged with this number. No other identifying 

information was collected. Furthermore, we kept no record of the volunteers’ assigned 

numbers. 

8.3.3. Survey to Assess Skill Levels  

To identify the effects of extraneous variables (Section 8.9), developers were 

asked to fill a questionnaire after hiring and before starting the experiment. The results of 

this survey, provided in full in Appendix H, clearly indicate that our selection of 

candidates fulfilled all the criteria mentioned in Section 8.3.1. 

8.4. Training of Developers 

After organizing the participants into two groups, Group A developers were 

trained on how to write aspects using AspectJ, and the Group B developers were given 

training for both AspectJ and CommJ. During training, each developer implemented three 



72 
	  

	  
	  

sets of examples, similar to those that would be part of the experiment. Later results from 

the pre-implementation questionnaires (Appendix D) reveals that 100% of the developers 

found these questionnaires very helpful in understand and coding the language related 

complications. 

8.5. Developing Crosscutting Concerns Using  
Initial Set of Requirements and Collected Artifacts 

All seven developers were given an initial set of requirements in which they were 

asked to implement three concerns using sample applications (Sections 8.1 and 8.2).  

During this phase, we found that correctly understanding the requirements, 

familiarity with the language, and debugging were the three most prominent challenges. 

First, on requirements understanding, 42% of the total participants agreed that 

understanding and analyzing the requirements correctly was the most time consuming 

activity in Phase 1, whereas none of the participants complained about this during second 

phase.  Second, 57% of the total participants said that familiarity with the language/tool 

was the hardest thing during initial phase of implementation, whereas no participant 

raised this issue again in the second phase. Third, debugging for both AspectJ and 

CommJ took more time than initial development.  Specifically, 57% of the participants 

supported this observation in Phase 1, and 71% supported it again in Phase 2. This 

observation indicates that debugging time may be more connected to the complexity of 

the requirements than to experience with the implementation platform.  

	   	  



73 
	  

	  
	  

8.6.  Extended Set of Requirements and Collected Artifacts 

Once the developers had implemented the requirements in Section 8.5 and we 

calculated the code metrics, the developers were given an extended set of requirements 

for the crosscutting concerns, updated sample application codes, and revised descriptions.  

Overall participants found that in this phase, their debugging time increased (from 

57% in the initial phase to 71% in the second phase). Neither understanding the 

requirements nor familiarity with the language/tool presented a significant issue, and 

developers spent much less time to implement the requirements, compared to the initial 

phase.  Specifically, 86% of the participants confirmed that they spent almost 50% less 

time to implement the Phase 2 requirements, compared to the Phase 1 requirements. 

8.7. Measuring Dependent Variables  
Using Reuse/Maintainability Metrics 

I measured EQM code metrics (Section 8.7), using both manual- and tool-based 

[65] methods. Total measurements include following: 

• Experiment input variables included a total of seven developers, three 

applications with two versions each. 

• Experiment generated a total of 28 software systems against which the metrics 

need to be applied. 

• The 16 code metrics of EQM  required a total of 448 measurements. Of these 448 

measurements, 280 measurements from 10 metrics were generated using tools, 

and 168 measurements from 6 metrics were calculated manually. 

After data collection using the above code metrics measurement procedure, we 

interpreted our hypothesis (Chapter 7) using the dependent variables in Section 8.8. 



74 
	  

	  
	  

8.8. Independent and Dependent Variables 

For this experiment, the only independent variable was the implementation 

method.  It had two possible values (i.e., AOP, and CommJ). 

The dependent variables were those that we wanted to observe possible difference 

among the groups. All instruments in our EQM (Chapter 6) represented our dependent 

variables. 

• Measurement metrics (Section 6.4) were our direct independent variables 

• Internal attributes (Section 6.3) were indirect dependent variables, which were 

interpreted from measurement metrics 

• Factors (Section 6.2) were indirect dependent variables and were interpreted by 

using internal attributes 

• Finally, qualities (Section 6.1) were indirect dependent variables and were 

interpreted by using factors 

8.9. Extraneous Variables and  
Mitigation of Threats to Validity 

Extraneous variables were other factors that might affect the dependent variables 

being studied, but were difficult or impossible to control.  Below is a list of extraneous 

variables (threats to validity) in our research experiment, along with our mitigation 

strategies to control their effects on the research experiment output. 

• Development Experience. Our selection criteria for hiring the developers (Section 

8.3.1), and survey to assess their skill levels (Section 8.3.3) reasonably mitigated 

its effect. 



75 
	  

	  
	  

• Capacity to Work. Training of developers (Section 8.4) for specialized skills, 

needed in this experiment, reasonably mitigated the effect of this extraneous 

variable. 

• Intelligence. We found no sufficient mitigation strategy to control this threat. 

• Health Factors. We found no sufficient mitigation strategy to control this threat. 

• Work Environment. We found no sufficient mitigation strategy to control this 

threat. 

• Personnel Commitment of Developers for Better Design. We found no sufficient 

mitigation strategy to control this threat. 

• Accuracy in Manual Measurements. More than one people measured the metrics. 

• Accuracy in Tool’s Measurements: Human resources were asked to manually 

calculate measurements using EQM metrics, which crosschecked the tool’s 

automatically-generated measurement with manual ones and hence effectively 

mitigated the inaccuracy risks.  



76 
	  

	  
	  

CHAPTER 9 

RESULTS AND INTERPRETATIONS 

9.1. Separation of Concerns  

Hypothesis #1 theorized that if crosscutting communication concerns are 

effectively encapsulated in CommJ aspects, the software has better separation of concerns 

and less scattering as measured by CDA and CDO than equivalent systems developed 

with AOP design techniques. In other words, the CDA and CDO metric values for 

CommJ should be less than AspectJ (See Section 6.4.1. for details on metrics). We found 

CDA and CDO did decrease for the CommJ group. In Figures 9-1 and 9-2, the vertical 

axes represent the CDA and CDO measurements, and the horizontal axes represent the 

four activities of the experiment. For each activity there are two bars: a blue bar for the 

results of AspectJ group and a green bar for the results of CommJ group. 

Not only were CDA and CDO values reduced using CommJ, but also they went to 

zero in all four activities of the experiment.  The reason for phenomena is that CommJ 

pointcuts provide total obliviousness between the application and communication-related 

crosscutting concern. In AspectJ, components and their operations for crosscutting 

   
Figure 9-1: CDA Coverage over Phases 

	  



77 
	  

	  
	  

concern were significantly more diffused in the application because the pointcuts had to 

be tied to programming constructs instead of communication abstractions.  

From these results, we can confidentially conclude that Hypothesis#1 holds true 

for better separation of concerns in CommJ implementations than in AspectJ. 

9.2. Coupling 

Hypothesis #2 theorized that if crosscutting communication concerns are 

effectively encapsulated in CommJ aspects, the software has lower coupling as measured 

by CBC, DIT and NOC than equivalent systems developed with AOP design techniques. 

In other words, CBC, DIT and NOC metric values for CommJ should be less than 

AspectJ (See Section 6.4.2. for details on metrics).  Figures 9-3 thourgh 9-5 indicate that 

CommJ implementations significantly reduced the values of CBC, DIT and NOC, 

respectively, as compared to AspectJ implementations in all the four phases of the 

experiment.  CommJ crosscutting concerns did not maintain any direct relationship with 

the application components and thus had a lower CBC value. However, in AspectJ, 

excessive coupling of concern with the application increased CBC, which hindered reuse 

and maintenance.   

  
Figure 9-2: CDO Coverage over Phases 



78 
	  

	  
	  

  

	    

 
Figure 9-4: DIT Coverage over Phases 

 

 
Figure 9-5: NOC Coverage over Phases 

 

 
Figure 9-3: CBC Coverage over Phases 

 



79 
	  

	  
	  

The reason for higher DIT and NOC values in AspectJ was that the participants  

preferred to override parent methods in crosscutting concerns to share data structures 

across aspect and application components during message passing. However, CommJ 

provides a comprehensive set of pointcuts, which fully encapsulates the IPC abstractions, 

and thus participants did not need to override or inherit the aspect components. From 

these results, we can confidentially conclude that Hypothesis#2 holds true for reduced 

coupling in CommJ than in AspectJ. 

9.3. Cohesion  

Hypothesis #3 theorized that if crosscutting concerns are effectively encapsulated 

in CommJ aspects, the software has higher cohesion (as described by LCO in Section 

6.4.3.) than equivalent systems developed with AOP design techniques. In other words, 

the LCO metric value for CommJ should be less than AspectJ.  The results shown in 

Figure 9-6 demonstrate that CommJ maintains a lower value for LCO than AspectJ in all 

four phases of the experiment. Santana [10] says that LCO measures the degree to which 

a component implements a single logical function. Results proved that CommJ 

 
Figure 9-6: LCO Coverage over Phases 



80 
	  

	  
	  

implementations were more cohesive and logical than AspectJ, hence have a lower LCO 

value.  

From these results, we can confidentially conclude that Hypothesis#3 holds true 

for increased cohesion in CommJ than in AspectJ. 

9.4. Size  

Hypothesis #4 theorized that if crosscutting communication concerns are 

effectively encapsulated in CommJ aspects, the software is not significantly larger (as 

described by LOC, MLOC, NO, NP, WOC, VA in Section 6.4.4.) than equivalent 

systems developed with AOP design techniques. In other words, LOC, MLOC, NO, NP, 

WOC metrics values for CommJ should be less and VA be more than AspectJ.  Figures 9-

7 through 9-11 show that CommJ implementations significantly reduced the metrics 

values for LoC, MLoC, NP, NO and WOC in all phases of the experiment. 

In comparison with AspectJ, CommJ participants found a more neat and clean set 

of pointcuts in IPC abstractions, which helped them to code the crosscutting concerns in 

less LOC. CommJ conceptually models various general network and distributed 

 
Figure 9-7: Average LoC Coverage over Phases 



81 
	  

	  
	  

   

 
Figure 9-10: Average NO over Phases  

 
Figure 9-8: Average MLoC over Phases 

 

 
Figure 9-9: Average NP over Phases  



82 
	  

	  
	  

abstractions using UMC (Section 4.1) into rich set of communication and connection join 

points along with general purpose family of conversations, which helped the participants 

to implement the application crosscutting concerns in simpler and more logical method 

bodies, with no extra lines of code and less number of operations. Hence it reduced 

MLOC, NO, NP and WOC.  

As predicted by the above hypothesis, results shown in Figure 9-12 give sufficient 

evidence that average VA for all programs was more for CommJ than AspectJ. Although 

 
Figure 9-12: Average VA over Phases  

 
Figure 9-11: Average WOC over Phases  



83 
	  

	  
	  

the number of components were more in CommJ implementations, they were more 

cohesive.  

From these results, we can conclude that Hypothesis#4 holds true for improved 

code size in CommJ than in AspectJ. 

9.5. Complexity  

Hypothesis #5 theorized that if crosscutting communication concerns are 

effectively encapsulated in CommJ aspects, the software is significantly less complex (as 

described by CC in Section 6.4.5.) than equivalent systems developed with AOP design 

techniques. In other words the CC value for CommJ should be less than AspectJ.  Figure 

9-13 shows that the value of CC is smaller for CommJ than AspectJ, because CommJ 

hides complex IPC abstractions, which result in simple conditional statements and less 

tangled code.  

 From these results, we can confidentially conclude that Hypothesis#5 holds true 

for less complex software in CommJ than AspectJ.  

 
Figure 9-13: Average CC over Phases  



84 
	  

	  
	  

9.6. Obliviousness  

Hypothesis #6 theorized that if crosscutting communication concerns are 

effectively encapsulated in CommJ aspects, the software will be more oblivious (as 

described by NITD, ASC, ASCO in Section 6.4.6.) than equivalent systems developed 

with AOP design techniques. In other words, NITD, ASC, ASCO for CommJ should be 

less than AspectJ.  Figures 9-14 through 9-16 show that CommJ implementations 

significantly reduced the values of NITD, ASC and ASCO metrics. 

In comparison with AspectJ, the reason for having a zero value for NITD in 

CommJ was that the participants used IPC constructs and did not need to use inter-type 

declarations (ITD) for sharing of data structures between application and aspect 

component. Significant reduction in ASC and ASCO was due to the layers of indirection   

 
Figure 9-14: Average NITD over Phases 

 
Figure 9-15:  Average ASC over Phases 



85 
	  

	  
	  

 

between the application and aspect components, which CommJ provides but are missing 

in AspectJ.  

From these results, we can confidentially conclude that Hypothesis#6 holds true 

for less oblivious software concerns in CommJ than AspectJ.  

9.7. Reuse and Maintenance of Concern  

Hypothesis #7 theorized that if crosscutting communication concerns are 

effectively encapsulated in CommJ, the crosscutting concern will require a smaller 

number of changes in order to reuse and maintain (as measured by CR, CM in Chapter 7) 

than equivalent systems developed with AOP design techniques. In other words CR, CM 

values for CommJ should be less than AspectJ.  From the results shown in Figure 9-17, 

 
Figure 9-17: CR over Extensions 

 

 
Figure 9-16: Average ASCO over Phases 



86 
	  

	  
	  

we can see that CommJ implementation significantly reduced the changes required to 

reuse the previous implementations in the second phase of the experiment than AspectJ.  

CommJ aspects were overall more oblivious, logical and independent from the 

base application than AspectJ concerns and so they reduced the CR value in all four 

phases of the experiment. 

Figure 9-18 provides another graphical representation to analyze reuse for AspectJ 

and CommJ. The light green colored-graphs represent scattering in CommJ (aspects only) 

and light blue colored-graphs represent AspectJ implementations. The scattered points in 

graph indicate the number of changes for reusing a concern with CommJ and AspectJ in 

different activities of Phases 1 and 2, respectively. The scattered points in blue represent 

 

Figure 9-18: ASC and ASCO over Phases in AspectJ and CommJ 

 



87 
	  

	  
	  

ASC and in red represent ASCO metrics results. Overall, the results of the graph indicate 

that ASC and ASCO remained zero for all the activities of CommJ (highly reusable), but 

it was highly scattered in AspectJ. The reason for less scattering is discussed in Section 

9.6 above. 

Figure 9-19 shows the number of changes required to maintain the program in its 

initial activity (Activity 1 of Phase 1) to its maintenance activity (Activity 2 of Phase 2), 

reduced significantly for CommJ than AspectJ. The difference between CR and CM is 

that in CR we are only considering changes in the concern; however, in CM we are 

interested in number of changes both in the concern and application. We found that 

CommJ concerns were overall more oblivious, logical and independent from the base 

application than AspectJ concerns, and so they have reduced CM values in all four phases 

of the experiment. 

 Figure 9-20 presents another representation for maintenance. The light green 

colored-graphs represent scattering in CommJ and light blue colored-graphs represent 

AspectJ respectively. The scattered points in blue, red and green represents CDA, CDO 

 
Figure 9-19: CM over Phases 

  



88 
	  

	  
	  

and NITD metrics results respectively. The points in graph Figure 9-20 indicate the 

number of changes for maintaining a program with CommJ and AspectJ in different 

activities of Phases 1 and 2, respectively. The results of the graph indicate that CDA, 

CDO and NITD were zero for all the activities of CommJ (highly maintainable) but were 

highly scattered in AspectJ.  The reason for reduced values for CDA, CDO and NITD is 

already discussed in Sections 9.1. and 9.6.  

From these results, we can confidentially conclude that Hypothesis#7 holds true 

for more reusable and maintainable software in CommJ than AspectJ.  

 

 

 

Figure 9-20: CDA, CDO and NITD in AspectJ and CommJ 

 



89 
	  

	  
	  

9.8. Other Useful Observations 

Besides analysis of the hypotheses, we also collected a handful observations from 

participants’ questionnaires (Appendices D and G) and daily journals during each phase 

of the experiment. 

In regards to understandable code, we found that 100% of AspectJ participants in 

the Phase 1 were confused in identifying pointcuts for implementing the given extension 

part, and 33% of the same participants were still confused during Phase 2. On the other 

hand, none of the CommJ participants struggled with identifying pointcuts during either 

phase. This tells us that CommJ implementation provides simple pointcuts with 

understandable IPC abstractions.  

For reusability, we observed that 67% of the AspectJ participants in Phase 1 

agreed that their applications might not run after removing the extension part from the 

original application. This percentage further increased to 100% in Phase 2. On the other 

hand, none of the CommJ participants made this observation for either phase. This 

indirectly reconfirms Hypothesis #7, which states that CommJ implementations help in 

developing more reusable crosscutting concerns.  

Similarly, for maintainability, 100% of the AspectJ participants said that their 

changes introduced new dependencies in the original sample application after both 

phases. However, none of the CommJ participants felt that they introducedany 

dependencies during either phase.  So, this reconfirms our Hypothesis #7, which asserts 

that CommJ implementation helps in developing more maintainable programs.  

The survey also provides information on frequency of bugs.  Specifically, 67% of 

the participants in AspectJ group said that their extensions introduced new failures, i.e., 



90 
	  

	  
	  

bugs, into the application code during Phase 1. This percentage further increased to 100% 

for Phase 2. However, only 25% of the CommJ participants in Phase 1 and Phase 2 made 

this statement.  This tells us that CommJ’s modularization and obliviousness decreased 

the failures and debugging time.  



91 
	  

	  
	  

CHAPTER 10 

RELATED WORK 

10.1. Work on Communications and  
Composability with Reference to CommJ 

We found many papers wherein aspect-oriented technology was for crosscutting 

concerns related to concurrency and distribution, such as replication [31], persistence 

[32], synchronization [33], [34], remote pointcuts [35].   However, we did not find any 

techniques for modularizing crosscutting communication concerns as aspects.  To our 

best knowledge, the closest idea to our research discusses composition of communication 

abstractions by separating out the definition of communications from the definition of 

other aspects using general-purpose abstract communication model [36]. We believe our 

work enables better modularization and obliviousness for IPC concerns. 

Marco, et al., describe a Java -based communication middleware, called 

AspectJRMI [37] that applies AOP concepts to modularize the design and implementation 

of RMI. Their major contribution is the decomposability of RMI into small crosscutting 

concerns. The idea of horizontal decomposition and defining reusable crosscutting 

concerns for RMI is somewhat similar to CommJ design; however, it has a number of 

differences. First, it is targeting just RMI, while our research is more about modeling IPC 

concerns. Second, CommJ tries to define a communication joinpoint model, which is not 

the only contribution of this paper. 

We also found some similar ideas of defining reusable communication constructs 

in Erlang language [38], which is based on communication processes using asynchronous 

message passing. It provides clearly defined communication primitives for IPC. In 



92 
	  

	  
	  

another paper, they also developed a tool using the above communication abstractions 

[38] to test concurrent systems. We found some conceptual similarity with this design 

approach to our work, but their scope in communications is very limited as compare to 

the CommJ. 

Gary, et al., describe an approach to build a customized protocol Cactus [40], a 

system in which micro-protocols implement individual attributes of transport that can be 

combined into a composite protocol that realizes the desired overall functionality. The 

protocol allows customization of a number of properties, including reliable transmission, 

congestion detection and control, jitter control, and message ordering. The idea is similar 

in the sense that CommJ allows many reusable aspects, which can be extended to build 

more useful application-level aspects. In the future, we can define more reusable aspects, 

which not only can be extended but can also be combined to build more complex types of 

communication concerns. 

Dirk, et al., presents a transformational approach (a Modularized Communication 

Model) on communication view [41]. The author shows how to separate the definition of 

communication from the definition of other system aspects, how to extract this definition 

from existing systems, and how to weave it back into the system. The main concern it 

tackles is the reconfiguration of communication aspects. Although this paper tries to 

abstract the communication concerns from core application functionality, it does not talk 

about the extensions to write reusable, application-level communication aspects as 

explained in CommJ. 

A paper on Extensible client-server software by Coady, et al. talks about requiring 

a clear separation of core services from those that are customizable [42]. This separation 



93 
	  

	  
	  

is difficult, as these customizable features tend to crosscut the primary functionality of 

the core services. The authors sketch out aspects for an NFS-based client-server 

architecture using an AspectJ language. However, they talk about handling low-level 

communications. Although CommJ can handle the consistency- and performance-related 

concerns between initiator and listener, but it describes them in high-level 

communication abstractions rather than low-level abstractions. 

Remi, et al., talk about concurrent event-based AOP [13], which defines the 

approach of writing concurrent aspects. It first defines a model for concurrent aspects that 

extends from sequential event-based AOP. Then, it shows how to compose concurrent 

aspects using a set of general composition operators and sketches its Java prototypical 

implementation. The way the paper tries to compose concurrent aspects shares some 

similarity with CommJ; however, its scope is focused more on concurrency than 

communications. 

Lodewijk, et al., introduces a general model of multi-dimensional concern 

composition [43] and defines so-called composition anomalies. The authors argues that 

building software by composition of components is far from trivial and fails when 

components express complex behaviors such as constraints, synchronization and history-

sensitiveness. CommJ already provides a set of reusable aspects and have the ability to 

compose using these reusable aspects, but it still needs to consider effects due to 

composition anomalies.  

	    



94 
	  

	  
	  

10.2. Works Related to CommJ’s Joinpoint Model 

Chanwit et al. propose a distributed advice code execution [44].  This interesting 

idea proposes distributed advice execution using shared execution units. Along the 

similar lines, Ruben introduces a complete aspect remoting service with one-to-one and 

one-to-many abstractions, and outlines a distributed joinpoint model to intercept remote 

services [45]. The notion of remote service abstractions, such as one-to-one and one-to-

many abstractions and later its implementation as anypointcut, manypointcut and 

multipointcut share some design principles with our work. 

The main contribution of Muga, et al., in their paper on remote pointcut is to 

propose a remote pointcut and remote inter-type declaration, an extension to AspectJ 

language for distributed software [35]. The language construct, called remote pointcut, 

enables developers to write simple aspects to modularize crosscutting concerns related to 

distributions, scattered on multiple hosts. Similarly, Renaud et al. present a framework to 

build aspect-oriented distributed applications in Java [46]. They discuss dynamic 

wrappers (also called generic advice) and meta-model annotations to add well-separated 

concerns. The authors provide a way to define distributed pointcuts. This paper shares 

some design similarities and future extension points for CommJ. 

Luis presents three contributions in his paper [36]. First, he introduces a new 

pointcut language for distributed programming. Second, a notion of distributed advice 

with support for asynchronous and synchronous executions is defined. Third, he 

describes distributed aspects including models for deployment, instantiation and state 

sharing of aspects. These models for deployment, instantiation and state sharing can be 

another future extension to CommJ.  His programming patterns proved not so successful 



95 
	  

	  
	  

in the distributed environment over irregular communication topologies and 

heterogeneous synchronization requirements [47].  Luis introduces well-known 

computation and communication patterns like pipelining, etc., a proposal of language 

support and their prototypical implementation. CommJ design principles include a similar 

concept for implementing these communication patterns using a language support. 

10.3. Work on Interesting Literature  
with Reference to CommJ 

Some other authors have explored variousways to deal with inter-concern 

dependencies between replication and communication [31], [34]. This approach allows 

reasoning about these inter-dependencies at different levels of abstractions and at the 

same time discusses the composition of those concerns. Our work focuses primarily on 

the communication side and is more elaborative. Additionally, we hope that replication 

concerns composed with communication concerns, programmed using CommJ can 

provide more modular design abstractions. 

In his paper, Carlos presents a collection of concurrency patterns using AspectJ 

and compares its benefits with plain Java implementation [33]. He presents two alternate 

implementations: one based on traditional pointcut interfaces and another based on 

annotations. The aspect-oriented implementation provides high-level reusability, 

unpluggability, and do not introduce additional overhead when aspects are not included 

in the build. We believe that in using CommJ the same level of concurrency patterns can 

be redefined in a more modular and oblivious fashion. 

The main contribution of the Soargo, et al., is to provide architectural guidelines 

and implementation of several persistence and distribution concerns in the application 



96 
	  

	  
	  

using AspectJ [32]. Their purpose is to demonstrate that coding crosscutting concerns 

using AspectJ is a better option than writing in plain Java language. This paper shares 

some architectural guidelines with CommJ architecture. 

Netinant describes an aspect-oriented framework wherein both functional 

components and system properties are designed relatively separate from each other [48]. 

This separation of concerns allows for reusability and enables the building of software 

systems that are manageable, stable and adaptable. Most of the work in Netinant’s paper 

concentrates on the decomposition of concurrent object-oriented systems with the goal to 

achieve an improved separation of concerns in both design and implementation. It 

highlights the general design principles for separation of concerns, some of which can be 

employed in CommJ to improve its existing design.  

10.4. Work on Measurement Metrics  
with Reference to EQM 

McCall identifies a list of 11 quality attributes that have an important influence on 

quality of the software [24]. In our experiment’s perspective, we decided that 

maintainability and reusability would be the most important. 

We use Sant’Anna’s quality model [10] because it is more generalized to measure 

different concerns of design and code as compared to Lopes’ work [2]. Additionally, 

Sant’Anna’s is strong enough to be applied to all three different types of 

implementations. Some other metrics [49] can be considered as complimentary to our 

chosen quality model, but they are not based on well-known software engineering quality 

models. 



97 
	  

	  
	  

Sant’ Anna builds the Quality model [10] using Basili’s GQM Methodology [50]. 

Basili provides a three-step framework: (1) list the major goals of the empirical study, (2) 

derive from each goal the questions that must be answered to determine if the goals have 

been met; (3) decide what must be measured in order to be able to answer the questions 

adequately.  

We also made a few enhancements to the quality of the model [10] and hope that 

doing so would further strengthen the model. For instance, interpretation of 

maintainability and reusability is dependent upon flexibility and understandability 

factors. As per our definitions of qualities (Section 6.2), code obliviousness [44] and 

localization of design decisions [27] are two very important missing factors in the model. 

Research and practices also validate that modular code is more maintainable [12]. 

Further, Parnas previously defined three properties of modular code as being flexibility, 

comprehensibility and independent development [27]. At that time, code obliviousness 

was not the primary concern but became an important element of software design in later 

years after emerging research in AOSD.  

Because our research method is of an empirical nature and depends on a quality 

model [10], our model is neither a fully qualitative or quantitative but a combination of 

both.  Some parts of the model are quantitative, such as quality metrics, but others, such 

as qualities, factors, and internal attributes, are of qualitative nature, and rely on an 

inductive processes.  

  



98 
	  

	  
	  

CHAPTER 11 

SUMMARY AND FUTURE WORK 

11.1. Summary 

Our research introduces the notation of communication and connection aspects 

and discusses an AspectJ framework, namely CommJ, for weaving aspects into IPC. It 

then describes the design and implementation of some of CommJ components, such as 

the base aspects.  It also provides an overview of a toolkit, i.e., the RAL that consists of 

reusable communication aspects and doubles as a proof of concept, since these aspects 

can be directly applied to a wide range of existing applications. We believe that CommJ 

is capable of encapsulating a wide range of communication-related and connection-

related crosscutting concerns in aspects. We hope to gather more empirical evidence of 

the CommJ’s value by increasing the number of aspects in the RAL and by continuing to 

expand the number and types of applications that use CommJ. We also conducted a 

research experiment to compare AspectJ with CommJ for various software design 

attributes related to reuse and maintenance through an extended quality model. Initial 

findings from this experiment revealed that crosscutting concerns programmed in CommJ 

delivered more modular, reusable and maintainable programs. However, our future 

research will include more formal software-engineering productivity experiments to 

verify this belief.   

	    



99 
	  

	  
	  

11.2. Future Work 

We envision a number of extensions or spins off to CommJ.  First, distributed 

transaction processing systems is another high-level programming concept that can be 

unnecessarily complex when crosscutting concerns, e.g. logging, concurrency controls, 

transaction management, and access controls, are scattered throughout the transaction 

processing logic or tangled into otherwise cohesive modules.  We can use the same 

approach that we used for CommJ to extended AspectJ for the weaving of crosscutting 

concerns in transactions.  

Second, CommJ can also be extended for distributed pointcuts that would simplify 

the implementation of even more complex crosscutting concerns, such as object-

replication, migration, or fragmentation in a distributed system.  

Finally, CommJ has the potential to be very useful for testing various kinds of 

time-sensitive communication related errors in IPC.   We plan to explore this potential 

and additional experiments focus on quality of service and timing issues related to IPC. 

  



100 
	  

	  
	  

REFERENCES  

[1]  G. Kiczales, G. et al., “Aspect-oriented programming,” In Proc. 11th ECOOP, 
Jyvaskyla, Finland, 1997, pp. 220-242. 

[2]  C. Lopes, “D: A language framework for distributed programming,” PhD. 
dissertation, Coll. Comp. Sci., Northeastern University, Boston, MA, 1997. 

[3]  Eclipse, 2014, Sep 13, AspectJ, [Online]. Available: 
http://www.eclipse.org/aspectJ/ 

[4] AspectWorkz2, 2005, Plain Java AOP [Online]. Available: 
http://aspectwerkz.codehaus.org/ 

[5]  JBoss, 2014, Sep 13, JBoss AOP, [Online]. Available: 
http://www.jboss.org/jbossaop 

[6]  Spring Framework, 2014, Sep 13, Spring AOP, [Online]. Available:  
http://www.tutorialspoint.com/spring/aop_with_spring.htm 

[7]  C. Clifton and G T. Leavens, “Obliviousness, modular reasoning, and the behavior 
subtyping analogy,” In Proc. 2nd Int. Conf. AOSD SPLAT Workshop, Boston, MA, 
2003, pp. 1-6.  

[8]  L. Bergmans , et al., “Composing software from multiple concerns: Composability 
and composition anomalies,” In ICSE Workshop on Multi-Dimensional Separation 
of Concerns in Software Engineering, Limerick, Ireland, 2000. 

[9]  Office of Research and Graduate Studies at Utah State University, (2014, May 26) 
Institutional Review Board [Online]. Available: http://rgs.usu.edu/irb/ 

[10]  C. Sant'Anna et al., “On the reuse and maintenance of Aspect-Oriented Software: 
An assessment framework,” In Proc. 17th Brazilian Symp. Software Engineering,  
Manaus, Brazil, 2003, doi: PUC-RioInf, MCC26/03.  

[11]  G. Gamma et al., Design Patterns: Elements of Reusable Object-Oriented Software. 
Boston, MA: Addison-Wesley, 1995. 

[12]  G. Kiczales and M. Mezini, “Aspect-oriented programming and modular 
reasoning,” In Proc. 27th Int. Conf. Software Engineering, St. Louis, MO, 2005, pp. 
49-58. 

[13]  R. Douence et al., “Concurrent aspects,” In. Proc. 5th Int. Conf. GPCE, Portland, 
OR, 2006, pp. 79-88. 

[14]  W. De Meuter, Monads as a theoretical foundation for AOP, In Int. Workshop on 
AOP at 11th ECOOP, 1997, Springer-Verlag. doi: 10.1.1.2.4757 



101 
	  

	  
	  

[15]  P. Tarr et al., “N degrees of separation: Multi-dimensional separation of concerns,” 
In Proc.21st Int. Conf. Software Engineering, Los Angeles, CA, 1999, pp. 107-119. 

[16]  H. Ossher and P.Tarr. “Multi-dimensional separation of concerns and the 
hyperspace approach,” IBM,  Yorktown Heights, NY, IBM Res. Rep. 21452, April, 
1999. 

[17]  W. Harrison and H. Ossher, “Subject-oriented programming - A critique of pure 
objects,” In Proc. 8th Conf. on Object-Oriented Programming Systems, Languages, 
and Applications, Oakland, CA,1993, pp. 411-428. 

[18]  S. Chiba. “Load-time structural reflection in Java,” In Proc.14th ECOOP, Cannes, 
France, 2000, pp. 313-336.= 

[19]  T. J. Brown et al., “ Mixin programming in Java with reflection and dynamic 
invocation,” In Proc.of the Inaugural Conf. on the Principles and Practice of 
programming, and Proc. 2nd Workshop on Intermediate Representation 
Engineering for Virtual Machines, Dublin, Ireland, 2002, pp. 25-34. 

[20]  Wikipedia. 2013, Feb. 09. Block Diagram. [Online]. Available: http://en. 
wikipedia.org/wiki/Block_diagram  

[21]  M. Shaw and D. Garlan, Software Architecture: Perspectives on an Emerging 
Discipline., Upper Saddle River, NJ: Prentice-Hall, 1996.  

[22]  G. Kiczales and M. Mezini. “Aspect-oriented programming and modular 
reasoning,” In Proc. 27th Int.Conf. Software Engineering, St. Louis, MO, 2005, pp. 
49-58. 

[23]  S.R. Chidamber and C. F. Kemerer, “A metrics suite for object-oriented design,” 
IEEE Trans. Softw. Eng., vol. SE-20, no. 6, pp. 476–493, June 1994.  

[24]  J.A. McCall et al., “Factors in software quality,” NTIS, Alexandria, VA, Tech. Rep.  
AD-A049-014, 015, 055, 1977. 

[25]  IEEE Standard for Software Maintenance, IEEE Standard 1219-1998, 1998. 

[26]  R.E. Filman and D. P. Friedman, “Aspect-oriented programming is quantification 
and obliviousness,” IEEE RIACS Tech. Rep. 01.12, May 2001. 

[27]  D. L. Parnas. “On the criteria to be used in decomposing systems into modules,” 
Commun. ACM, vol. 15, no.12, pp. 1053-1058, Dec. 1972.  

[28]  T.J. McCabe, “A complexity measure,” IEEE Trans. Softw. Eng., vol. 2, no. 4, pp. 
308-320, Dec. 1976.  

[29]  SourceForge, 2014, Sep 13, Eclipse Metrics Project 1.3.6 [Online]. Available: 
http://metrics.sourceforge.net  



102 
	  

	  
	  

[30]  E. Figueiredo et al., “AJATO: An AspectJ assessment tool,” In Proc. 20th ECOOP,  
Nantes, France, 2006.  

[31]  M. Nishizawa and S. Chiba,  “Jarcler: Aspect-oriented middleware for distributed 
software in Java, Tokyo Inst. of Tech., Tokyo, Japan, Dept. of Math. And Comp. 
Sciences Res. Rep. C-164, 2002. 

[32]  S. Soares  et al., “Implementing distribution and persistence aspects with AspectJ,” 
In Proc. 17th ACM SIGPLAN Conf. OOPSLA, Pittsburgh, PA, 2002, pp. 174-190. 

[33]  C. A. Cunha et al., “Reusable aspect-oriented implementations of concurrency 
patterns and mechanisms,” In Proc. 5th Int. Conf. AOSD, Bonn Germany, 2006, pp. 
134-145. 

[34]  M. Antunes et al,, “Separating replication from distributed communication: 
Problems and solutions,” In 2001 Int. Conf. on Distributed Computing Systems 
Workshop, Mesa, AZ, 2001, pp. 103-108. 

[35]  M. Nishizawa et al., “Remote pointcut – A language construct for distributed 
AOP,” In Proc. 3rd Int. Conf. AOSD, Lancaster, UK, 2004, pp. 7-15.  

[36]  L.D. Benavides Navarro et al., “Explicitly distributed AOP using AWED,” In Proc. 
5th Int. Conf. AOSD, Bonn Germany, 2006, pp. 51-62. 

[37]  M.T. de Oliveira Valente et al., 2005. “An aspect-oriented communication 
middleware system,” In Proc. 2005 OTM Confederated Int. Conf. On the Move to 
Meaningful Internet Systems: CoopIS, COA, and ODBASE - Volume Part II, Agia 
Napa, Cyprus, 2005, pp. 1115-1132.  

[38]  M. Christakis and K. Sagonas, “Detection of asynchronous message passing using 
static analysis,” In Proc.13th Int. Conf. Practical Aspects of Declarative Languages, 
Austin, TX, 2011, pp. 5-18.  

[39]  Gregor Kiczales and Mira Mezini. 2005. Aspect-oriented programming and 
modular reasoning. InProceedings of the 27th international conference on Software 
engineering (ICSE '05). 

[40]  G. T. Wong et al., “A configurable and extensible transport protocol,” IEEE/ACM 
TON, vol. 15, no. 6, pp. 1254-1265, Dec. 2007. 

[41]  D. Heuzeroth et al., “Aspect-oriented configuration and adaptation of component 
communication,” in Proc. of 3rd Int. Conf. on GCSE, Erfurt, Germany, 2001, pp. 
58-69. 

[42]  Y. Coady et al., “Can AOP support extensibility in client-server architectures?” in 
Proc. ECOOP Aspect-Oriented Programming Workshop, Budapest, Hungary, 2001. 



103 
	  

	  
	  

[43]  L. Bergmans and M. Aksit, “Composing software from multiple concerns: A model 
and composition anomalies,” In ICSE Workshop on Multi-Dimensional Separation 
of Concerns in Software Engineering, Limerick, Ireland, 2000. 

[44]  C. Kaewkasi and J. R. Gurd, “A distributed dynamic aspect machine for scientific 
software development,” In Proc.1st Workshop on VMIL, 2007, ACM. doi: 
10.1145/1230136.1230139 

[45]  R. Mondejar et al., “Building a distributed AOP middleware for large scale 
systems,” In Proc. 2008 Workshop NAOMI, Brussels, Belgium, 2008, pp. 17-22. 

[46]  R. Pawlak et al., “JAC: An aspect-based distributed dynamic framework,” J. 
Software, Practices and Experience, vol. 34, no.12, pp. 1119-1148, Oct., 2004.[47] 
 L.D. Benavides Navarro et al., “Invasive patterns for distributed programs,” In 
OTM Confederated Int. Conf., Vilamoura, Portugal, 2007, pp. 772-789. 

[48]  P. Netinant, “Composition of system properties,” Bankok University, Tech. Rep., 
2004.[49]  J. Zhao “Towards a metrics suite for aspect-oriented software,” 
Info. Processing Soc. of Japan, Tokyo, Japan,Tech. Rep. SE-136-25, Mar. 2002. 

[49]  S. Matsuoka and A. Yonezawa. Analysis of inheritance anomaly in object-oriented 
concurrent programming language. In Research Directions in Concurrent Object-
Oriented Programming, pages 107–150. 1993. 

[50]  V. Basili et al., “The goal question metric approach,” In Encyclopedia of Software 
Engineering, vol. 2, J.J. Marciniak, Ed. Hoboken, NJ: Wiley, 1994, pp. 528-532. 

[51]  Raza A., Clyde S., Weaving Crosscutting Concerns into Inter-Process 
Communication (IPC) in AspectJ. In ICSEA 2013, Venice, Italy, pp. 234-240. 

[52]  Raza A., Clyde S., Communication Aspects with CommJ: Initial Experiment Show 
Promising Improvements in Reusability and Maintainability. In ICSEA 2014, Nice, 
France (Submitted). 

[53]  Deuence R., Motelet O., Sudholt M., A formal definition of crosscut, MISC 2001. 

[54]  Crista L., D: A Language Framework for Distributed Programming Ph.D. Thesis. 
College of Computer Science, Northeastern University, Dec 1997 (1998). 

[55]  E. Frchi et al., “Concurrent bug patterns and how to test them,” In Int. Symp. On 
Parallel and Distributed Processing, Nice, France, 2003, p. 286.2.   

 

 

 



104 
	  

	  
	  

 

 

 

 

 

 

 

 

 

APPENDICES 

	    



105 
	  

	  
	  

APPENDIX A 

SELECTED SAMPLE APPLICATIONS 

A.1. Levenshtein Edit-Distance Calculator 

This system allows users to enter two words into the client console, which then 

requests a server to compute the Levenshtein Distance, LD, between the two words, 

wherein LD is the minimum number of single-character edits (insertion, deletion, and 

substitution) required to change one word into the other. For example, the LD between 

"kitten" and "sitting" is 3, since the following three edits change one into the other, and 

there is no way to do it with fewer than three edits: 

• kitten → sitten (substitution of "s" for "k") 

• sitten → sittin (substitution of "i" for "e") 

• sittin → sitting (insertion of "g" at the end) 

Figure A-1 shows an overview of the current architecture for this system.  It only 

contains three classes, Client, Calculator, and Message.  Both the Client and Calculator 

run as separate processes, and may even be on separate machines.  The Client allows the 

users to type in two words using a simple console interface.  Then, it creates an instance 

of the Message class containing these two words and sends it to the calculator.  The 

calculator computes the LD  and a package that result in a new instance of Message, and 

sends it back to Client.  The UML Sequence Diagram in Figure A-2 shows this 

interaction. 

Note, that the interaction is asynchronous from the Client’s perspective.  In other 

words, the Client does not block while waiting for a response to the translation request. 



106 
	  

	  
	  

	  

Figure A-1: Architecture Diagram of Levenshtein Edit-Distance Calculator 

 

 

	  

Figure A-2: Interaction Diagram between Client and Edit-Distance Calculator  



107 
	  

	  
	  

A.2. File Transfer Protocol 

FTPClient requests FTPServer for a list of available files and then sends a file 

download request to the server. The server sends the requested file in small chunks to the 

client. 

Figure A-3 shows an overview of the current architecture for this system.  It only 

contains two main classes, i.e., FTPClient, FTPServer and three protocol messages 

FileTransferRequet, FileTransferResponse and FileTransferAck.  Both the client and 

server run as separate processes, and may even be on separate machines. The UML 

Sequence Diagram in Figure A-4 shows this client-server interaction in more detail. 

	  

Figure A-3: Architecture Diagram for FTP 

FTPClient communicates with the FTPServer and establishes a TCP connection. 

The client sends a FileTransferRequest to the server to ask for the list of available files on 

the server. FTPServer sends back the list of available file names, encapsulated in 

FileTransferRequest. FTPClient then allows the user to enter the selected file index, 

using console input. Then it creates an instance of FileTransferRequest, encapsulated  



108 
	  

	  
	  

	  

Figure A-4: Interaction Diagram between FTPClient and FTPServer 

with selected file index, and sends to the server. FTPServer receives the request, and 

starts transferring the selected file contents in fixed-length data chunks, encapsulated in 

FileTransferResponse. Once the file has been successfully transferred, client sends an 

acknowledgement message, FileTransferAck, to the FTPServer. FTPClient process 

automatically opens the file after successful transfer and terminates itself. FTPServer 

terminates itself after the file has been transferred successfully and has received an 

acknowledgement. 

Note, that the interaction is asynchronous from both the client and server 

perspective.  In other words, both the client and server does not block while waiting for a 

protocol message. 

	   	  



109 
	  

	  
	  

A.3. Weather Station Simulator 

This example simulates a typical weather station consisting of three main 

components, i.e., WeatherStationSensor, Transmitter and a Receiver. 

WeatherStationSensor runs in a thread, generates weather-data readings at random 

intervals and temporarily stores them in a queue, accessible to the Transmitter. On 

receiving a request weather-data from the Receiver in random intervals, the Transmitter 

sends all of the data available in the queue, one weather-data reading at a time and in 

order, to Receiver. Receiver periodically sends more requests for weather data if it has not 

received any data for some time period. 

A.3.1. Current Design 

Figure A-5 shows an overview of the current architecture for 

WeatherStationSimulator and protocol messages. The system contains three main classes 

,i.e., WeatherStationSensor, Transmitter and Receiver.  WeatherStationSensor generates 

WeatherDataVector(s) (weather-sensitive observations). Transmitter collects 

WeatherDataVector(s) and sends them to the Receiver. Figure A-6 describes the 

WeatherStationSensor design. The UML Sequence Diagram in Figure A-7 shows the 

Transmitter /Receiver interactions in more details. 

Application runs two instances of Transmitter and one instance of Receiver. Each 

Transmitter starts its own WeatherStationSensor thread. The sensor combines the 

readings from its various sub-components (Figure A-6) into a WeatherDataReading 

object. It then generates an instance of WeatherDataVector message, and populates it 

with four WeatherDataReading instances, at random intervals, and stores in a temporary 

data structure. Finally, a glossary is provided at the end of this appendix. 



110 
	  

	  
	  

 

Figure A-5: Data Structures for Weather Station Simulator Example 

  



111 
	  

	  
	  

 

Figure A-6: Weather Station Simulator  



112 
	  

	  
	  

 

Figure A-7: Interaction Diagram between Transmitter and Receiver  

 

  

GLOSSARY 
Term Description 

Thermometer It is used for measuring temperature 
Anemometer It is used for measuring wind speed 
Wind vane It is used for measuring wind direction 
Hygrometer It is used for measuring humidity 
Barometer It is used for measuring atmospheric pressure 
Ceilometer It is used for measuring cloud height 
Visibility sensor It is used for measuring visibility 
Rain gauge It is used for measuring liquid-equivalent precipitation 
Ultrasonic snow sensor It is used for measuring depth of snow 
Pyranometer It is used for measuring solar radiations 
Mast Heights A pole, or long, strong, round piece of timber, or spar, 

set upright in a boat or vessel to note weather readings 



113 
	  

	  
	  

APPENDIX B  

SELECTED INTER-PROCESS EXTENSIONS 

B.1. Version Compatibility 

This extension adapts one version of the message to another, so processes running 

different versions can still communicate with each other. In addition: 

• Each application process knows its version number. 

• Each message contains that version number. 

• Before sending the message to Receiver, this extension always converts the 

message to its application version on the sender side. 

• After receiving the message, it always ensures that the received message is 

matched with the application version at Receiver side.  

B.2. Measuring Performance  

This extension measures some performance-related statistics for message-based 

communications between a Sender and Receiver. In addition, the extension logs the 

following performance related statistics: 

• Total numbers of conversations, which occurred in the system where a 

conversation can be defined with any combinations of, sends or receives. 

Different types of conversations are one-way send, one-way receive, request-reply 

and multi-step conversations 

• Total time for all conversations 

• Average turnaround time for a request to be processed where average turn-around 

time is the average of a timespan from conversation start time to conversation end 

time 

• Maximum turnaround time for any conversations 



114 
	  

	  
	  

• Minimum turnaround time for any conversation 

• The program logs the time when a conversation starts 

• It logs and calculates the above statistics when the conversation ends  

• Note that a conversation can be a simple request-reply type exchange of messages 

or a complex combination of send and receive events. We define the 

conversations for sample applications as follows: 

o Levenshtein Edit-Distance Calculator: A conversation is when a client 

sends a request and receives a response from the calculator 

o File Transfer Protocol: A conversation is when a client sends a request for 

a file download and when it receives the last response of data chunk for 

that file from the server 

o Weather Station Simulator: A conversation is when a Receiver sends a 

request to get weather-related data readings and receives the first response 

from the Transmitter  

• Developers would be provided with the following classes: 

• Stats: A data structure containing elements to measure performance 

• PerformanceMeasure: It logs performance measure using sliding window 

  



115 
	  

	  
	  

B.3. Symmetric-Key Encryption  

The program encrypts the communication between a sender and receiver using 

symmetric-key encryption. In addition to that:  

Exchanging secret keys 

• The program first starts a KeyManager process, which handles the key requests 

from Sender and Receiver processes. We assume that both the Sender and 

Receiver are already registered with the KeyManager.  

• Sender starts a KeyClient process, which sends a KeyRequest message to 

KeyManager. The KeyManager authenticates the sender, creates a SharedKey, 

encapsulates it in KeyResponse message, and sends it to Sender. 

• Receiver also creates a KeyClient, which sends a KeyRequest to KeyManager. The 

KeyManager again authenticates the Receiver, creates a SharedKey, encapsulates 

it in KeyResponse message, and sends it to Receiver. 

• If KeyManager cannot authenticate any processes, it sends an empty KeyResponse 

and the respective process terminates itself on receiving null Key. 

• Figures B-1 and B-2 describes the process of exchanging secret keys. 

• Message Communications between Sender and Receiver  

• Before sending a protocol message, Sender encrypts the message with SharedKey. 

• After receiving the message, Receiver decrypts the Message with SharedKey. 

• Developers would be provided with the following classes: 

• Encryption: A data structure containing elements to measure performance. 

• KeyManager: It authenticates the processes and provides the shared key. 



116 
	  

	  
	  

• KMClient: It sends the authentication information to KeyManager and requests 

the shared key. 

• KeyRequest: A protocol message used to request SharedKey. 

• KeyResponse: A protocol message used by KeyManager to send SharedKey. 

• SharedKey: This class encapsulates the shared key information. 

	  
Figure B-1: Data Structures for Symmetric-Key Encryption 

	  

	  

Figure B-2: Process of Exchanging Shared Keys 

 



117 
	  

	  
	  

APPENDIX C  

SKILL ASSESSMENT SURVEY 

Volunteer # _________     

 

Rank the following on scale from 1-5, where 1 represents beginner, 3 novices, and 5 

experts.   

1. Beginners will have a working knowledge of the skill, but no practical experience.  

A novice will have at least 2 year of practical experience, in either academic or 

industrial settings.  An expert will have more than 3 years of experience. 

a. Java network programming using channels? 1    2    3    4   5 

b. Java network programming using sockets?  1    2    3    4   5 

c. UML?       1    2    3    4   5 

d. Good design principles such as modularity etc.   1    2    3    4   5 

e. Multithreaded programming using Java?   1    2    3    4   5 

	  

2. Can you quantify in terms of Lines of Code (LoC) for your most complex Java 

programming project? 

a. Less than 1,000 LoC 

b. Between 1,000 and 10,000 LoC 

c. Between 10,000 and 20,000 LoC 

d. Between 20,000 and 100,000 LoC 

e. More than 100,000 LoC 



118 
	  

	  
	  

	  

3. How many years of programming experience do you have? 

a. No prior programming experience 

b. Less than 1 year 

c. Between 1-3 years 

d. Between 3-5 years 

e. More than 5 years 

	  

4. How many years of Java programming experience do you have? 

a. No prior programming experience 

b. Less than 1 year 

c. Between 1-3 years 

d. Between 3-5 years 

e. More than 5 years 

	  

5. Please select your favorite programming languages? 

a. Java  

b. C# 

c. PHP 

d. Ruby and Rails 

e. C++ 

f. Other 



119 
	  

	  
	  

	  

6. What is your computer science education background?  

a. BS/BE 

b. MS 

c. Ph.D. 

d. Other 

	  

7. Which of the following courses have you taken as part of your computer science 

curricula? 

a. Object Oriented Design 

b. Software Engineering 

c. Unified Modeling Language 

d. Object-Oriented Programming 

e. Multithreaded Programming 

f. Network/Distributed Programming 



120 
	  

	  
	  

APPENDIX D 

QUESTIONNAIRE FOR PHASE 1 IMPLEMENTATION 

 

Volunteer	  #	  ___________	  

D.1. Phase 1 pre-implementation questionnaire 

1. From scale 1-5, how would you rank the existing applications for code tangling (1 

means fully tangled and 5 means two are totally independent)?  

 
 

2. From scale 1-5, how would you rank the existing applications for code scattering 

(1 means fully scattered in all classes and 5 means no scattering)?  

 
 

3. If the original application (such as Edit-Distance Calculator and FTP) were 

implemented using connection-less communications, would your changes have 

been? 

a. Considerably different 

b. Somewhat different 

c. A little different 

d. No different 

 



121 
	  

	  
	  

4. Now if you were asked to change the implementations (such as Edit-Distance 

Calculator and FTP) for Phase 1 to connection-oriented communications, would 

this be? 

a. Major change 

b. Minor change 

c. No different 

 

5. If the original application of WeatherStationSimulator were implemented using 

connect-oriented communications, would your changes have been? 

a. Considerably different 

b. Somewhat different 

c. A little different 

d. No different 

 

6. Now if you were asked to change the implementation for 

WeatherStationSimulator in Phase 1 to connection-less communications, would 

this be? 

a. Major change 

b. Minor change 

c. No different 

 



122 
	  

	  
	  

7. If the original application (such as Edit-Distance Calculator and FTP) were 

implemented using JDK Sockets rather than JDK Channels, would your changes 

have been? 

f. Considerably different 

g. Somewhat different 

h. A little different 

i. No different 

 

8. Now if you were asked to change the implementation for original application 

(such as Edit-Distance Calculator and FTP) back to JDK Channels, would this be? 

a. Major change 

b. Minor change 

c. No different 

d. Considerably different 

 

9. If the original application of WeatherStationSimulator where implemented in such 

a way so that the Transmitter s in the original application, send data readings to 

multiple Receiver s, would your changes be? 

a. Considerably different 

b. Somewhat different 

c. A little different 

d. No different 

 



123 
	  

	  
	  

10. Now if you were asked to change the implementation for 

WeatherStationSimulator back to the original application where Transmitter s are 

sending the data readings to just one Receiver, would this change be? 

a. Major change 

b. Minor change 

c. No different 

	  

11. Suppose we want to implement the “Performance Measurement” feature for the 

original applications. The feature measures some performance related statistics 

such as turn-around time for message-based communications between a sender 

and Receiver. To implement this feature would your changes be? 

a. Considerably different 

b. Somewhat different 

c. A little different 

d. No different 

 

12. Now suppose if we change the requirements for “Performance Measurement” 

feature such that a conversation is not only a request-reply sequence but also a 

request-reply-acknowledgement (multi-step conversation), would this change be? 

a. Major change 

b. Minor change 

c. No different 



124 
	  

	  
	  

D.2. Phase 1 post-implementation questionnaire 

Volunteer	  #	  ____________	  

1. While implementing the initial version of changes for sample applications, which 

of the following did you find the most difficult? 

a. Adding additional requirements for the extension part to applications design 

b. Deciding how to share data between previously existing sample application 

code and new code 

c. Debugging the applications with crosscutting concerns 

d. Working with the Java implementation language or the IDE 

e. Managing the complexity of the application 

 

2. Which of the following was the most time consuming activity during Phase 1? 

a. Understanding the original applications and analyze the new requirements 

b. Designing the solutions 

c. Implementing the solutions 

d. Debugging the solutions 

e. Learning the tools (e.g., Java, an IDE) 

f. Learning AOP (not applicable for group 1) 

g. Learning CommJ (not applicable groups 1 and 2) 

 

3. While implementing your changes, did your come across any of the following 

situations? (Select all that apply) 

a. Your changes introduced new bugs 



125 
	  

	  
	  

b. Your changes introduced new dependency among existing application 

components 

c. Tangling and scattering increased 

d. None of the above 

  

4. If you were asked to refactor the changes related to the extension part so it could 

be reused by other applications, which of following would you do?  

a. Redesign the application’s structure, making major changes in the classes, 

their relationships, and responsibilities 

b. Refactor the code to make minor improvements to the classes, their 

relationships, or responsibilities 

c. Improve the implementation of individual methods, independent of changing 

the structure of the application, to improve readability or maintainability 

d. Nothing – the implementation is ready for reuse 

 

5. How would you rank your application, so that it would work again if you separate 

the extension related code files in Phase1 from sample application code? 

a. Very easy change, the two parts are almost oblivious 

b. A little difficult as there are some extension related references exists in the 

original application 

c. A significant effort is required as some extension related code snippets is 

tangled and scattered in the original application code or vice versa 



126 
	  

	  
	  

 

6. Suppose your original application (such as Edit-Distance Calculator and FTP) 

were implemented using connectionless communications. To implement this 

feature would your changes be? 

a. Considerably different 

b. Somewhat different 

c. A little different 

d. No different 

 
7. If the original application of WeatherStationSimulator where implemented in such 

a way so that the Transmitter s in the original application, send data readings to 

multiple Receiver s. To implement this feature would your changes be? 

a. Considerably different 

b. Somewhat different 

c. A little different 

d. No different 

 

8. If the original application (such as Edit-Distance Calculator and FTP) were 

implemented using JDK Sockets rather than JDK Channels. To implement this 

feature would your changes be? 

a. Considerably different 

b. Somewhat different 

c. A little different 



127 
	  

	  
	  

d. No different 

 

9. To implement the “Performance Measurement” feature, what are the following 

changes you made in your original application? 

a. Need to introduce major changes in the original application code 

b. Need to introduce new pointcuts 

c. Need to define new data structures to keep track of conversation 

d. Lines of Code (LoC) and complexity of sample application may increase 

e. Tangling and Scattering of sample application may increase 

f. Require only minor change in implementation  

g. Only need to modify some rules i.e., state machines etc., to accommodate new 

conversations 

h. May expect some new bugs in the program 

i. Overall debugging time would dramatically increase 

j. Can reuse existing code to implement new changes 

 

10. Suppose if we change the requirements for “Performance Measurement” feature 

such that a conversation is not only request-reply sequence but also a request-

reply-acknowledgement (multi-step conversation), what are the following changes 

you can expect in your implementation? 

a. Need to introduce major changes in the original application code 

b. Need to introduce new pointcuts 

c. Need to define new data structures to keep track of conversation 



128 
	  

	  
	  

d. Lines of Code (LoC) and complexity of sample application may increase 

e. Tangling and Scattering of sample application may increase 

f. Require only minor change in implementation  

g. Only need to modify some rules i.e., state machines etc., to accommodate new 

conversations 

h. May expect some new bugs in the program 

i. Overall debugging time would dramatically increase 

j. Can reuse existing code to implement new changes 

 

 

11. From scale 1-5, how would you rank the overall application after changes you 

implemented in Phase1 for code tangling (1 means fully tangled and 5 means two 

are totally independent)?  

 

 

12. From scale 1-5, how would you rank the overall application after changes you 

implemented in Phase 1 for code scattering (1 means fully scattered in all classes 

and 5 means no scattering)?  

 

13. How many hours did you spend to implement each of the following crosscutting 

concern? 

  



129 
	  

	  
	  

APPENDIX E  

EXTENDED APPLICATION DESCRIPTIONS  

REQUIREMENTS FOR PHASE II 

E.1. Connectionless Levenshtein Edit-Distance Calculator 

This system allows user to enter two words into client console, which then 

requests a server to compute the Levenshtein Distance, LD, between the two words, 

wherein LD is the minimum number of single-character edits (insertion, deletion, and 

substitution) required to change one word into the other. For example, the LD between 

"kitten" and "sitting" is 3, since the following three edits change one into the other, and 

there is no way to do it with fewer than three edits: 

• kitten → sitten (substitution of "s" for "k") 

• sitten → sittin (substitution of "i" for "e") 

• sittin → sitting (insertion of "g" at the end)  

This version of the design is similar to that in the initial application description. 

Figure E-1 describes the architecture, whereas Figure E-2 describes the interactions 

between Client and Edit-Distance Calculator. However, this version has the following 

differences from its initial draft: 

• Communication between Client and Edit-Distance Calculator occurs using 

connectionless protocol or user datagram protocol (UDP).  

• The message class uses the MessageID attribute of type UUID instead of 

RequestID and ResponseID. 



130 
	  

	  
	  

	  

Figure E-1: Architecture Diagram of Levenshtein Edit-Distance Calculator 

	  

	  

Figure E-2: Interaction Diagram between Client and Edit-Distance Calculator 

	   	  



131 
	  

	  
	  

E.2. File Transfer Protocol 

FTP Client requests FTP Server for a list of available files and then sends a file 

download request to the server. The server sends the requested file in small chunks to the 

client. 

This overall functionality is similar to that of initial application description. 

Figure E-3 shows an overview of the current architecture for this system whereas the 

UML Sequence Diagram in Figure E-4 shows this client-server interaction in more 

details. However, this version has following changes: 

• FileTransferAck  message is removed. Hence, client will not inform the server 

about the successful transfer of a file. After sending the last chunk of data, the 

Server terminates itself. 

  

	  

Figure E-3: Architecture Diagram for FTP 

	  



132 
	  

	  
	  

	  

Figure E-4: Interaction Diagram between FTPClient and FTPServer 

E.3. Weather Station Simulator 

This example simulates a typical weather station consisting of three main 

components, i.e., WeatherStationSensor, Transmitter and a Receiver. 

WeatherStationSensor, runs in a thread, generates weather-data readings at 

random intervals and temporarily stores them in a queue, accessible to the Transmitter. 

On receiving a request weather-data from the Receiver in random intervals, the 

Transmitter sends all of the data available in the queue, one weather-data reading at a 

time and in order, to Receiver. Receiver periodically sends more requests for weather data 

if it don’t receive any data for some time period. 

Receiver can requests the Transmitter to either SEND, PAUSE or STOP 

WeatherDataVector(s) as shown in Figure E-5. 

• If Receiver sends a WeatherDataRequest of type SEND to each Transmitter, 

Transmitter receives the request, and starts sending the stored 

WeatheDataVector(s), one at a time. After transferring all the 



133 
	  

	  
	  

WeatherDataVector(s),  Transmitter sleeps unless  Receiver notifies it again. 

When Receiver receives WeatherDataVector, it saves to a file and returns to the 

listening state. Receiver resends WeatheDataRequest of any value after random 

time interval. 

• If Receiver sends PAUSE request, Transmitter interrupts sending of 

WeatherDataVector(s) and sleeps. 

• If Receiver sends STOP request, Transmitter terminates itself. 

	  

Figure E-5: Interaction Diagram between Transmitter 
 (Two Threads) and Two Receivers  

	    



134 
	  

	  
	  

APPENDIX F  

EXTENDED EXTENSIONS FOR PHASE II 

F.1. Enhancements in the Performance Measure 

Calculate the similar performance measurement statistics (Appendix B.2.) for the 

following programs as follows: 

• Levenshtein Edit-Distance Calculator: A conversation is when a calculator 

receives a request and sends a response to the client 

• File Transfer Protocol: A conversation is when a server receives the selected file 

transfer request and sends the last chunk of data to the server 

• Weather Station Simulator: A conversation is when a Receiver sends a request to 

get weather related data readings and receives the first response from the 

Transmitter  (see Enhancements for modification) 

F.2. Enhancements in the Version Control 

The version control is calculated using Message class attributes Sender version 

and Receiver version attributes, respectively. 

F.3. Enhancements in the Encryption 

Communication between KeyClient and KeyManager are implemented using 

UDPChannels. 

	  

 

  



135 
	  

	  
	  

APPENDIX G  

QUESTIONNAIRE FOR PHASE II IMPLEMENTATION 

Volunteer	  #	  ___________	  

1. The phase 2 changes have following results on phase 1 changes? 

a. No effect 

b. Applications did not run properly 

c. Applications throw exceptions 

 

2. To integrate phase 2 changes into phase 1 changes, you need to make the following 

code modifications? 

a. No change in implementation was required 

b. Need major changes such as creating new classes 

c. Need moderate changes such as creating new methods and variables 

d. Need minor changes such as modifying few existing methods and variables 

e. Overall scattering or tangling increased due to phase 2 application changes 

f. None of the above 

 

3. While implementing the phase 2 features for phase 1 applications, which of the 

following did you find the most difficult? 

a. Adding crosscutting concerns to the applications design 

b. Deciding how to share data between previously existing sample application 

code and new code 

c. Debugging the applications with crosscutting concerns 



136 
	  

	  
	  

d. Working with the Java implementation language or the IDE 

e. Managing the complexity of the application 

 

4. While implementing the phase 2 application changes, which of the following did you 

find the most difficult? 

a. Adding crosscutting concerns to the applications design 

b. Deciding how to share data between previously existing sample application 

code and new code 

c. Debugging the applications with crosscutting concerns 

d. Working with the Java implementation language or the IDE 

e. Managing the complexity of the application 

 
5. What of the following was the most time consuming during implementation of phase 

2 feature changes? 

a. Understanding the original applications and analyze the new requirements 

b. Designing the solutions 

c. Implementing the solutions 

d. Debugging the solutions 

e. Learning the tools (e.g., Java, an IDE) 

f. Learning AOP (not applicable for group 1) 

g. Learning CommJ (not applicable groups 1 and 2) 

  



137 
	  

	  
	  

6. What of the following was the most time consuming during implementation of phase 

2 application changes? 

a. Understanding the original applications and analyze the new requirements 

b. Designing the solutions 

c. Implementing the solutions 

d. Debugging the solutions 

e. Learning the tools (e.g., Java, an IDE) 

f. Learning AOP 

g. Learning CommJ (not applicable groups A) 

 
7. While implementing your phase 2 changes in both applications and features, did your 

come across any of the following situations? (Select all that apply) 

a. Your changes introduced new bugs 

b. Your changes introduced new dependency among existing application 

components 

c. Tangling and scattering increased 

d. None of the above 

 

8. If you were asked to refactor the phase 2 changes so it could be reused by other 

applications, which of following would you do?  

a. Redesign the application’s structure, making major changes in the classes, 

their relationships, and responsibilities 



138 
	  

	  
	  

b. Refactor the code to make minor improvements to the classes, their 

relationships, or responsibilities 

c. Improve the implementation of individual methods, independent of changing 

the structure of the application, to improve readability or maintainability 

d. Nothing – the implementation is ready for reuse 

 

9. In phase 2, your original application (such as Edit-Distance Calculator and FTP) was 

implemented using connectionless communications. To implement this modification 

you made? 

a. Major changes 

b. Minor changes 

c. No different 

 

10. In phase 2, your original application of WeatherStationSimulator was implemented 

using multiple Receiver s. To implement this modification you made? 

a. Major changes 

b. Minor changes 

c. No different 

 

11. In phase 2, your original application (such as Edit-Distance Calculator and FTP) was 

implemented using JDK Sockets rather than JDK Channels. To implement 

modification you made? 



139 
	  

	  
	  

a. Major changes 

b. Minor changes 

c. No different 

 

12. Would your application be able to run standalone again if you remove the phase 2 

feature changes from sample application code? 

a. Yes 

b. No 

c. Not sure 

 
13. Would your application be able to run standalone again if you remove the phase 2 

application changes from sample application code? 

a. Yes 

b. No 

c. Not sure 

 
14. In order to implement the change in requirements for “Performance Measurement” 

feature such that a conversation is not only request-reply sequence but also a request-

reply-acknowledgement (multi-step conversation), what are the following changes 

you made in your implementation? 

a. Need to introduce major changes in the original application code 

b. Need to introduce new pointcuts 

c. Need to define new data structures to keep track of conversation 



140 
	  

	  
	  

d. Lines of Code (LoC) and complexity of sample application may increase 

e. Tangling and Scattering of sample application may increase 

f. Require only minor change in implementation  

g. Only need to modify some rules i.e., state machines etc., to accommodate new 

conversations 

h. May expect some new bugs in the program 

i. Overall debugging time would dramatically increase 

j. Can reuse existing code to implement new changes 

 

15. From scale 1-5, how would you rank the overall application after changes you 

implemented in Phase2 for code tangling (1 means fully tangled and 5 means two are 

totally independent)?  

 

16. From scale 1-5, how would you rank the overall application after changes you 

implemented in Phase 2 for code scattering (1 means fully scattered in all classes and 

5 means no scattering)?  

 

17. How many hours did you spend to implement phase 2 extension changes? 

  

18. How many hours did you spend to implement phase 2 application changes? 

	    



141 
	  

	  
	  

APPENDIX H  

DATA ASSESSMENT FROM THE SURVEYS 

Based on our skill assessment survey in Appendix C, we gathered the following 

data about the background of participants in the experiment. The observations we make 

from the data support to our initial requirements about the selection and background of 

the experiment mentioned in Chapter 8.  

H.1. Language Preferences of the Participants 

 Figure H-1 shows that all the participants selected only C# or Java as their 

preferred programming languages. Out of seven, four participants showed interest in Java 

and three in C#. 

	    

	   	  

Figure H-1: Language Preferences of the Selected Participants 



142 
	  

	  
	  

H.2. Programming Experience 

H.2.1. Previous Programming Experience 

All the participants had some previous programming experience. From the graph 

in Figure H-2, we can see that four Participants had 1-3 years of experience, two had over 

5 years of experience and one had less than a year of experience. 

H.2.2. Quality of Experience 

The graph in Figure H-3 shows us that the majority of the participants (four 

participants) had experience in developing programs with up to 1,000 – 10,000 LoC. Two 

participants had developed programs of over 10,000 LoC, and only one had developed 

less than 1,000 LoC.   

	   	  

Figure H-2: Programming Experience of the Selected Participants 

	   	  

Figure H-3: Previous Projects LoC of the Selected Participants 



143 
	  

	  
	  

H.3. Java/Software Engineering-Specific Skill Set 

Figure H-4 illustrates for us the following observations about the participants. 

• Almost 80% of the participantd had intermediate-level expertise in understanding 

and applying good design principles.  

• Almost 80% of the participants had basic or no familiarity with network 

programming in Java. Hence, we arranged tutorials on network programming, 

and in later surveys, participants described themselves as having a sufficient grasp 

to implement the network programming-related tasks in the experiment.  

• Almost 80% of the participants had only a basic familiarity with the 

multithreading concepts. Our tutorial on multi-threaded and network 

programming proved helpful for the participants to comfortably implement the 

required programming tasks in the experiment. 

• Collectively, 90% of the participants were found to have intermediate or high 

expertise in understanding and applying UML. 

	    



144 
	  

	  
	  

 

Figure H-4: Specific Skills Set of the Selected Participants 

From the data in the above graphs, we can easily conclude that participants shared 

a common background in object-oriented concepts, previous programming experience, 

and level of projects completed in the past, as well as understanding and applying good 

software engineering principles. Hence, the selected participants were found to 

sufficiently fulfill the requirements related to the selection of the developers in Section 

8.3.1. 

	    



145 
	  

	  
	  

APPENDIX I  

DOCUMENTS FOR THE  

RESEARCH EXPERIMENT APPROVAL 

I.1. CITI Passing Report 

As per requirements of IRB, the student researcher was supposed to pass the 

Human Research Experiment Training course (See Figure I-1 below). 

	  
Figure I-1: CITI Passing Report 

 

	    



146 
	  

	  
	  

I.2. Research Experiment Invitation Letter 

Following invitation letter was sent to the interested participants in order to get 

their voluntarily approval to participate in our research experiment. 

LETTER OF INVITATION TO PARTICIPATE IN A RESEARCH STUDY 

	  

Investigation into the Benefits of weaving aspects into Inter-process 
Communications (IPC) 

 

Dated: 11/07/2013 

Dear Students, 

 

We are in process of conducting a research experiment to measure the reusability 

and maintainability for an aspect-oriented framework, called CommJ, with respect to 

AspectJ. 

We believe you a good candidate for our research study because you meet the 

following criteria: 

• You are enrolled for a degree program in Computer Science 

• You have good exposure of OOD and Unified Modeling Language (UML) 

• You have taken at least one programming course in Java  

• You have taken at least one software-engineering class 

• You have exposure to multi-threaded concepts in Java  

 

By helping us in our research study, you are contributing in the advancement of 

software engineering tools and methods for network applications.  In addition to 



147 
	  

	  
	  

receiving a $200 stipend, you may also receive the following benefits by participating in 

the study: 

• New skills in aspect-oriented programming 

• An opportunity to learn a new software development framework, namely CommJ 

• Additional practice and experience with object-oriented design and software 

engineering principles 

Completing your part of the study will involve the task listed below and should 

take around 30 hours of your time: 

• Enhance three existing applications (written in Java) to meet the requirements for 

three new extensions 

• Update the three applications to meet a second set of requirements 

• Record your observations in a journal throughout the development 

• Completing questionnaires before and after each implementation phase 

We look forward to you participation.  If you have any questions about the 

experiment or your role, please contact Dr. Stephen Clyde (PI) at (435) 797-

2307/Stephen.Clyde@usu.edu and Ali Raza (student researcher) at (435) 225-

3723/ali.raza@aggiemail.usu.edu.  

 

Regards, 

Dr. Stephen Clyde (Principal Investigator) 

Ali Raza (Student Researcher) 

	    



148 
	  

	  
	  

I.3. Experiment Approval Letter from Institutional Review Board (IRB) 

IRB evaluated and approved the research experiment application. Approval letter 

is shown in Figure I-2 below. 

 

Figure I-2: IRB Approval Letter 

 

 

 


	Improving Reuse and Maintainability of Communication Software With Conversation-Aware Aspects
	Recommended Citation

	PhD-Dissertation-Final

