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Abstract

Cyber-Physical Systems Enabled by Unmanned Aerial System-Based Personal Remote

Sensing: Data Mission Quality-Centric Design Architectures

by

Calvin Coopmans, Doctor of Philosophy

Utah State University, 2014

Major Professor: Dr. YangQuan Chen
Department: Electrical and Computer Engineering

In the coming 20 years, unmanned aerial data collection will be of great importance to

many sectors of civilian life. Of these systems, Personal Remote Sensing (PRS) Small Un-

manned Aerial Systems (sUASs), which are designed for scientific data collection, will need

special attention due to their low cost and high value for farming, scientific, and search-and-

rescue uses, among countless others. Cyber-Physical Systems (CPSs: large-scale, pervasive

automated systems that tightly couple sensing and actuation through technology and the

environment) can use sUASs as sensors and actuators, leading to even greater possibili-

ties for benefit from sUASs. However, this nascent robotic technology presents as many

problems as possibilities due to the challenges surrounding the abilities of these systems to

perform safely and effectively for personal, academic, and business use. For these systems,

whose missions are defined by the data they are sent to collect, safe and reliable mission

quality is of highest importance. Much like the dawning of civil manned aviation, civilian

sUAS flights demand privacy, accountability, and other ethical factors for societal integra-

tion, while safety of the civilian National Airspace (NAS) is always of utmost importance.

While the growing popularity of this technology will drive a great effort to integrate sUASs

into the NAS, the only long-term solution to this integration problem is one of proper
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architecture. In this research, a set of architectural requirements for this integration is pre-

sented: the Architecture for Ethical Aerial Information Sensing or AERIS. AERIS provides

a cohesive set of requirements for any architecture or set of architectures designed for safe,

ethical, accurate aerial data collection.

In addition to an overview and showcase of possibilities for sUAS-enabled CPSs, specific

examples of AERIS-compatible sUAS architectures using various aerospace design meth-

ods are shown. Technical contributions include specific improvements to sUAS payload

architecture and control software, inertial navigation and complementary filters, and online

energy and health state estimation for lithium-polymer batteries in sUAS missions. Several

existing sUASs are profiled for their ability to comply with AERIS, and the possibilities of

AERIS data-driven missions overall is addressed.

(202 pages)
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Public Abstract

Cyber-Physical Systems Enabled by Unmanned Aerial System-Based Personal Remote

Sensing: Data Mission Quality-Centric Design Architectures

by

Calvin Coopmans, Doctor of Philosophy

Utah State University, 2014

Major Professor: Dr. YangQuan Chen
Department: Electrical and Computer Engineering

In the coming 20 years, unmanned aerial data collection will be of great importance to

many sectors of civilian life. Of these systems, Personal Remote Sensing (PRS) Small Un-

manned Aerial Systems (sUASs), or “data drones,” will need special attention due to their

low cost and high value for farming, scientific, and search-and-rescue uses, among count-

less others. Cyber-physical systems (large-scale, pervasive automated systems that tightly

couple sensing and actuation through technology and the environment) can use sUASs as

sensors and actuators, leading to even greater possibilities for benefit from sUASs. How-

ever, this nascent robotic technology of small unmanned aerial systems (sUASs) presents

as many problems as new possibilities due to the challenges surrounding the abilities of

these systems to perform safely and effectively for personal, academic, and business use.

For these systems, whose missions are defined by the data they are sent to collect, safe and

reliable mission quality is of highest importance. Much like the dawning of civil manned

aviation, civilian sUAS flights demand privacy, accountability, and other ethical factors for

societal integration, while safety of the civilian National Airspace (NAS) is always of ut-

most importance. While the growing popularity of this technology will drive a great effort

to integrate sUASs into the NAS, the only long-term solution to this integration problem



vi

is one of proper architecture. In this research, a set of architectural requirements for this

integration is presented: the Architecture for Ethical Aerial Information Sensing or AERIS.

AERIS provides a cohesive set of requirements for any architecture or set of architectures

designed for safe, ethical, accurate aerial data collection.



vii

To everyone. To the future!
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Chapter 1

Introduction

As Unmanned Aerial Systems (UASs) grow in functionality and mature in safety, ap-

plications for these versatile platforms will become abundant in the coming years. Civilian

applications for UASs are an emerging field–one that has great potential with the possibility

of explosive growth as their places in science and industry become secured. Within the U.S.,

civilian small unmanned aerial system (sUAS) deployments have been exceedingly rare due

to the severe restrictions currently in place by the US Federal Aviation Administration

(FAA) [1]. This is likely to change in the near future, however. Recently the US Congress

issued the FAA Modernization and Reform Act of 2012, calling in Sec. 322 a renewed fo-

cus towards advancing the integration of civilian UAS into the National Airspace System

(NAS) [2]. However, this integration will not be determined by policy alone; the challenges

and opportunities of addressing ethics and the public perception of UASs [3] will forever

be a part of aviation and robotics as levels of integration and technology progress. The

FAA’s UAS access rules for the NAS may eventually be in the familiar form of “file-and-

fly,” and domestic UAS operations will be commonplace. With the proper certifications

and standards in place, government and commercial operations will enable regular UAS

use, including integration into large-scale operations.

1.1 Personal Remote Sensing

Remote sensing is simply detection at a distance. Humans have a given set of per-

ceptions granted by a suite of sensors (eyes, ears, nerves, etc.), but with science, through

engineering, it is possible to significantly extend these perceptions. While information can

come from many sources, the best way to collect specific information is by the use of a

sensor–a device specifically constructed for the purpose of data collection. Multiple sensors
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may work in concert providing many sources of useful information at once; depending on

the information demanded, these sensors can change modes via communication to gather

better data as time passes and requirements or environments change. Remote sensing allows

us to gather data at a physical distance, including data for which there is no other way, or

no safe way, to collect in person. In difficult-to-access or inhospitable environments, remote

sensing is the only feasible method for accurate and reliable data collection.

There are two methods of remote sensing: passive (Fig. 1.1) and active (Fig. 1.2).

Passive remote sensing is as described above: “waiting” for data where they are expected

to be found. Active sensing involves stimulation of the sensed environment to excite or

otherwise illuminate the situation in question, not unlike using a flashlight to inspect a noise

heard in the dark. Many examples of active remote sensing can be found today: RADAR

systems [4], the use of lasers for detection of aerosols in the atmosphere [5], detection of

evasive species [6], or detection of land mines via honeybees [7].

Humanity, of course, has been attempting to extend the senses to gain advantages or

additional knowledge for as long as tools have existed. Devices such as binoculars allow

eyes to see further, and the hearing aid extends the range of an ear. These are examples of

Sensor
Process of
interest

Fig. 1.1: Passive remote sensing.

Sensor
Process of
interest

Active
stimulation

Fig. 1.2: Active remote sensing requires some kind of stimulation to reveal the desired data.
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Personal Remote Sensing (PRS): the detection of data useful to a small number of people—

perhaps only a single person—on short time-scales and within small budgets.

However, to be convenient, sensing requires aspects of autonomy: traditional systems

require a large amount of user interaction for useful function. Flying, pointing, or otherwise

controlling a remote sensing system can be time consuming and in some cases demands high

levels of skill or training for consistent quality data. An autonomous system can be pre-

programmed to patrol for changes in a scene or “follow” a data trail, such as an airborne

pollutant, to collect data automatically. In the case of the use of Normalized Difference

Vegetation Index (NDVI) in agriculture, a farmer could use a UAS for remotely sensing the

plant growth and vigor, vegetation cover, and biomass in her fields, and for determining

where water, fertilizer, etc., are needed most. Such a PRS could reduce the costs of the

inputs to agricultural production through greater efficiency in application, and increase

sustainability, yields, and profits.

The key driver for success with PRS systems is cost. Since traditionally remote sensing

required a high cost to provide useful information, this high standard must be met with lower

cost to make the technology widely available. Personal remote sensing can only be personal

if individuals and small groups can afford to own and operate systems capable of delivering

the data they need. Progression of technology (Microelectromechanical (MEMS) devices,

embedded processing power, battery power density, etc.) coupled with acceptance of PRS

systems by industry, regulators, and legislators, will allow PRS to become commonplace.

Low cost sUAS platforms, constructed for a little as 500 USD, have been demonstrated to

be usable for remote sensing [8]. Much like the personal computing revolution of the past 40

years, advancements in sUASs will bring remote sensing capabilities down to the personal

level, allowing unprecedented levels of knowledge and empowering change for the greater

good at smaller scales of operation than ever before.

Personal remote sensing systems are poised to provide the next generation of useful

data about our world. While large-scale remote sensing (like large-scale computing) will al-

ways have applications, such as weather prediction, PRS allows individuals or small groups
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to collect valuable data about situations or processes that concern them specifically. Per-

sonal remote sensing is an upcoming and perhaps disruptive technology which will show

efficacy when combined with UASs and other autonomous systems. With PRS, new ways of

interaction and feedback can be used–with scientific accuracy–to make better, more efficient

decisions about what concerns us most.

Although sensing is fundamental, once a decision about managing the world around has

been made, action must be taken. Even a non-action can be considered an active response

if properly considered, and therefore sensing is naturally coupled with actuation. Sensing

and actuation cycles can be coupled in a multitude of configurations, and the use of robotic

mobile platforms in addition to traditional static sensors can lead to new scenarios which

have never before been conceived or implemented.

1.2 Unmanned Aerial Remote Sensing

While the general public might still view the use of UAS in terms of military appli-

cations such as espionage and warfare, domestic UAS use will be significantly more wide-

ranging. Civilian UAS applications will range from science exploration to high-valued pre-

cision agriculture. Law enforcement, search and rescue operations, intelligence gathering

and fire-fighting applications have all been championed as the future of UASs, but these are

only the beginning: remote sensing and other technical activities will benefit greatly from

the utilization of UASs. In fact, real remote sensing sUASs are not only feasible but have

significant advantages.

The rise of sUASs has auspiciously coincided with significant advances in sensors. Cur-

rently there exist sensors capable of scientific data collection perfectly suited to fly in small,

low-cost unmanned aerial vehicles. As in Fig. 1.3 [9, 10], ShortWave InfraRed (SWIR),

Thermal InfraRed (TIR), as well as Near-Visible Infrared (NIR) and visible light cameras

can be used to improve agricultural, civil, and scientific data collection in new and excit-

ing ways. Thermal imagery (Fig. 1.4) [11] can be utilized for vegetation monitoring [12],

multispectral imagery can be utilized effectively in crop monitoring [13], as well as many

wetlands measurement applications [14].
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Fig. 1.3: sUAS-sized sensors for water management: thermal and short-wave infrared im-
agers from Infrared Cameras Inc. and Goodrich.

The collection of data is only one part of the solution to the larger problem of man-

agement, which requires some upper-level decision making processes, coupled with a kind

of manipulation or actuation. This cycle of real-world management and control is known as

a Cyber-Physical System (CPS). These cyber-physical systems are the future of large-scale

sensing and actuation. A key factor in CPS success is data that is detailed with enough tem-

poral and spatial resolution for effective operation, and the use of sUASs as mobile sensing

platforms will deliver data more frequently and with higher quality than ever before.

In the kingdom of data, quality is the coin of the realm—that is, in any way data can be

defined as better, it is. For PRS sUAS-enabled CPSs, this means a quality metric based on

frequency of data collection, reliability of data collection flights, as well as the accuracy of

the data itself. The ethical concerns of the data collected (e.g. privacy concerns), must also

be respected. Safety is a prerequisite for any flight, and the use of any airspace constitutes

a degradation of the safety therein. Therefore, safety, morality, and data quality must be

balanced together for successful PRS UAS data collection, and for reliable CPS operation

enabled by these technologies.

1.3 Dissertation Theme and Contribution

Architecture design is the key to integration of PRS UASs in the national airspace and

beyond. Since data is the mission for PRS UASs, a DMQ-based architecture is needed, which

will integrate all of the critical factors, metrics, and concerns into a unified architecture for
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Fig. 1.4: A 10cm-resolution mosaic of thermal imagery collected by AggieAir from test flight
under COA in Cache Junction, UT.

PRS flights. The design of such an architecture will facilitate UAS-societal integration and

is critical to the success of unmanned aerial systems for civilian applications.

In the United States, the FAA imposes the system architecture for flight and controls

airspace tightly. As soon as 2015, these highly restrictive limits on UAS flight may change,

but further rules and architecture need to be implemented for PRS and other civilian UAS

use. If DMQ-based metrics are used, airspace can be shared and surrendered safely as more

and more “data drones” are added every year.

In this study, an attempt is made to enumerate the major features such an architec-

ture will need to be successful. The Architecture for Ethical Remote Information Sensing

(AERIS) is proposed to allow scientific data collection flights while adhering to standards

reasonably expected by civilians (privacy, safety, etc.).

Any architecture that fulfills the requirements described in this text will adhere to

the proposed AERIS guidelines. Privacy, data quality, and airspace compliance are equally

important for sustainable operation of cyber-physical systems enabled by sUAS RS systems.

The architecture of the rules and standards which control the airspace will determine

the behaviors of the aircraft as well as the operators therein. Therefore, the architecture is

of critical importance to the functionality of unmanned systems for data collection in the

civil airspace.
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1.4 Dissertation Organization

This thesis presents background about personal remote sensing (PRS) and the AggieAir

unmanned aerials system (UAS) platforms in Chapter 2, and the coming technologies of

cyber-physical systems (CPSs), with motivating examples of how the two technologies can

work together in Chapter 3. Chapter 4 shows how architecture drives the values of a

system, which drives the functionality, risks, and rewards of the system dynamics and

interactions with the environment around it, as well as introducing AERIS, the architecture

for ethical remote information sensing. Enabled by AERIS, Chapter 5 shows detailed system

implantation details about a high-dataworthiness payload control structure, emphasizing the

idea of data as a mission, and equating data mission assurance partly with payload resilience.

Chapter 6 shows how low-cost inertial sensors are a good option for increasing mission

quality in PRS UASs, and how fractional calculus can help glean even more information

from them. Then, in Chapter 7, advanced battery management techniques are shown to

increase the dataworthiness of a vertical takeoff and landing craft by compensating for

power loss depending on the lithium-polymer battery power system, adding a state-of-

charge-dependent gain, and providing satisfactory control in situations when feedback about

actuator thrust or velocity is not available.

1.5 Chapter Summary

This chapter presents an overview of what remote sensing is and how it can be personal.

The goal of remote sensing systems is to collect data, and aerial PRSs are no different.

However, they are regulated by the FAA or other governmental organizations and must

be integrated in the common civil airspace in specific and planned ways with an overall

architecture guiding this integration. Also included are dissertation contributions, and the

overall organization with overview of the chapters in this dissertation.
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Chapter 2

AggieAir Unmanned Aerial Vehicle-Based Sensing Platforms

Current sources of remote sensed aerial imagery (e.g. manned aircraft and satellites)

are either expensive, have low spatial and/or temporal resolution, or have long turnover

times. These shortcomings make it difficult to use remote sensing effectively for many

applications, yet the market for these services is growing tremendously as costs fall. There

are many potential applications for low-cost, effective remote sensing platforms including

emergency response and disaster management, land management, resource monitoring, and

civil engineering. For example, in emergency response, lives and money can be saved with

the ability to send out small UASs to autonomously fly grid patterns over areas of interest

for search and rescue operations or disaster zones. Additionally, in many watershed science

applications it is important to have up-to-date, aerial images of a river multiple times

throughout the year at different flow levels. However, due to the price of aerial imagery

from conventional sources, researchers performing work on rivers are currently limited in

their ability to obtain multiple maps over their area of interest within the timeframes

required. In addition, since a river system can be constantly changing, if the processing

turnaround time is too long, the imagery used by field crews will not be up-to-date and

will be almost impossible to use. Satellite imagery can be especially difficult to work with

because the time when a satellite passes overhead and local weather conditions cannot be

controlled.

The AggieAir remote sensing sUAS developed by the Center for Self-Organizing and

Intelligent Systems (CSOIS) and the Utah Water Research Laboratory (UWRL) at Utah

State University, is designed to be the ideal sUAS remote sensing platform in response to

a market demand requiring high-quality aerial imagery for agricultural, riparian, wetland,

and civil engineering applications. To accomplish these missions, AggieAir is active at all
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levels of the science-to-information loop seen in Fig. 2.1 created by Dr. Austin Jensen [15].

AggieAir utilizes both vertical takeoff and landing (VTOL) and fixed-wing platforms.

The AggieAir UAS platform in Fig. 2.2 is an autonomous, multispectral remote sensing

platform [16]. AggieAir makes aerial imagery more accessible and convenient by allowing

users to choose when and where data is acquired by giving the user full control of the

platform. A most important distinguishing feature is the platform’s independence of a

runway. The fixed-wing aircraft launches using a bungee or pneumatic launcher and glides

to the ground for a skid landing seen in Fig. 2.3.

The avionics in AggieAir’s low-cost UASs consist of an Inertial Navigation Unit (IMU),

which measures acceleration, angular rate and magnetic field in three axes, Attitude Heading

and Reference System (AHRS) which combines IMU measurements and provides attitude

estimation, and a GPS sensor providing absolute position altimeter (altitude above mean

sea level), as well as pressure sensors for precise altitude estimation relative to a certain

setpoint. Optionally, a GPS Inertial Navigation System (GPS/INS) combines measurements

from all aforementioned sensors—fused together to estimate attitude and position can be

used instead of an AHRS [17].

In addition, a data radio transmitter/receiver is necessary for telemetry and remote

Fig. 2.1: AggieAir: Closing the UAV-based science-to-information loop (from Dr. Jensen).
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Fig. 2.2: AggieAir sUAS system diagram.

Fig. 2.3: AggieAir flying wing bungee launch and skid landing.

controlled (manual) flight. The autopilot unit runs control loops on-board the UAS and

controls the actuators to keep the desired attitude and altitude as well as flight plan exe-

cution. Optionally a safety copilot, black box memory, and payload can be added [11]. An

overview of AggieAir system is shown in Fig. 2.4.

During flight, data such as images are captured at a predetermined cadence along with

data describing the GPS position and orientation of the UAS at time of exposure of each

image. After the UAS has completed a data collection mission and successfully landed, cam-

era imagery and flight information are downloaded from the payload system. The images

and their corresponding position and orientation information can be quickly approximately

georeferenced to generate a map within 30 minutes after flight [18]. However, due to the

errors in position and orientation estimation by the craft’s sensors, images are not perfectly
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Fig. 2.4: AggieAir platform system diagram.

georeferenced during flight and represent a lower-quality data set. Figure 2.5(a) shows a

set of images that were taken over a river and directly georeferenced. Notice that although

the images appear approximately in the correct locations, they do not align well with each

other. While directly georeferenced images might be sufficient for some applications, more

demanding applications require more accurate results. For this EnsoMOSAIC UAV, devel-

oped by Mosaic Mill of Finland, is used [19]. EnsoMOSAIC UAV is an image processing

software package that reads aerial images captured with sensors such as compact digital

cameras and stitches them into seamless orthorectified image mosaics. Figure 2.5(b) shows

an orthorectified mosaic made from the imagery displayed in Fig. 2.5(a), (generated by

post-processing) was prepared and available only 72 hours after the data collection fight.

2.1 AggieAir Fixed-Wing Unmanned Platform

A current AggieAir fixed-wing platform, Minion is shown in Fig. 2.6. This platform is

based on the open-source Paparazzi autopilot [20], and has been in service since 2007. The

Minion series of airframes have been designed from the ground up at CSOIS and have been
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((a)) Before postprocessing ((b)) After postprocessing

Fig. 2.5: Data collected from AggieAir.

in service flying data missions since 2009.

2.2 AggieAir Rotary-Wing Platform

A current AggieAir hexarotor platform is shown in Fig. 2.7. This VTOL rotary-wing

craft is currently under development (Chapter 7), and will be in service by the second half

of 2014. Also based on the Paparazzi platform and designed to carry the same payload

systems as the fixed-wing aircraft in Sec. 2.1, the AggieAir VTOL is inter-compatible with

the existing AggieAir architecture, allowing the rotary-wing system to benefit from all of

the testing, verification, and most of the training of the fixed-wing system.

2.3 Chapter Summary

This chapter introduces the AggieAir overall systems and small-UAS airframes. Ag-

gieAir includes both fixed- and rotary-wing aircraft, making the overall system applicable

Fig. 2.6: AggieAir Fixedwing Platform (Minion), during landing maneuver.
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Fig. 2.7: AggieAir Multirotor Platform (Hexarotor), ready for flight.

to many small and medium-scale unmanned aerial sensing tasks.

AggieAir’s distinguishing features include:

1. Low cost;

2. High accuracy (scientific quality);

3. Runway-free mission requirements;

4. Safe, dependable, and easy-to-use.

In the following chapters, more AggieAir system design specifics are described and the

overall philosophy is espoused.



14

Chapter 3

Cyber Physical Systems Enabled by sUAS Remote Sensing

Control and management of real-world processes are challenging, complex tasks. Pro-

cesses can interact at many spatial and temporal scales, but when dealt with properly some

can be controlled just as a simple traditional process. With appropriate choices of sensors

and actuators, closed-loop control can be implemented around any controllable process,

limited only by the desired outcomes of the controlled system and the complexity of the

controller.

This chapter is based on a book chapter found in the upcoming UAS Handbook by

Springer [21].

A cyber-physical controller (Fig. 3.1) has a general structure that includes a real-world

process (the “plant” in control terminology), estimations of the dynamics of a process under

control (an “observer”), and a controller. This allows closed-loop feedback to be instantiated

for control of processes that might be outside of traditional definitions of control, such as

the moisture in a farm field, or the population of fish at an important aquatic site.

Models of physical processes can be used to help predict the behavior of a system in

a particular scenario, or the reaction of a process to a given input. Cyber-physical con-

trol is enabled by modeling (usually digitally) a target process and utilizing that model

to make decisions and exert control over the process by way of an actuator or a set of

actuators. Since computer modeling and control of complex processes naturally require

higher computational resources for higher performance, a computational cloud may be em-

ployed, distributing modeling tasks spatially and increasing reliability. Using advanced

techniques such as fractional calculus [22], sophisticated models of physical processes can

be constructed with proper boundary conditions, and, when refined by quality data, can

reliably and robustly controlled in real time.
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Fig. 3.1: The big picture of closed-loop cyber-physical system control.

Control loops cannot be closed without feedback data. Due to the nature of cyber-

physical control, the process under control may be multivariate, and therefore Cyber-

Physical Controllers (CPCs) potentially have very broad requirements for sensing. Since

in many closed-loop systems better sensing equates to better control, providing CPCs with

the most useful, or “best,” data is of primary importance. This is one requirement UASs

can effectively fulfill in CPSs: they can generate data with high spatial and temporal reso-

lution about complex processes, allowing for CPC loops to operate on new and heretofore

difficult-to-control plants.

UASs can also act as actuators in closed-loop scenarios. Chemicals, such as herbicides,

can be applied with high precision to areas determined to be in need, or a fire-fighting agent

can be precisely dropped in advance of a fire’s predicted path. A heterogeneous configuration

of fixed- and rotary-wing aircraft in teaming scenarios can be beneficial as well; fixed-wing
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flying sensors can determine areas of interest, and rotary-wing craft can take more specific,

detailed data or drop payloads such as ground sensor pods or radio relays for extending

network communication. In addition, ground or even underwater vehicles can act as part

of this team, with robotic systems of many different kinds working together to become a

cohesive cyber-physical system. Networked systems, or “systems of systems” will pervade

the physical world in the coming years. These networks are themselves CPSs, and must be

engineered with the goal of long-term functionality, integration, and inter-operability. CPSs

of many temporal and spatial scales will eventually be integrated, and as in Fig. 3.2, these

systems will work together for added functionality and overall system resilience [23]. This

chapter serves both as an introduction of CPS concepts as well as a high-level overview of

example research topics for possibilities for CPS applications enabled by UAS-based PRS.

3.1 CPS Enabled by PRS: Wildfire Tracking and Fighting

Wildfires are common in much of the Western US. Many brave men and women give

their lives to fight these fires and many millions of dollars are spent controlling the spread

of fire to protect the lives and property of the public.

Figure 3.3 shows a CPS set up to control a wildfire. The UASs pictured on the left

include wind measurement sensors, as well as thermal mapping sensors. While the UASs

Fig. 3.2: Systems of systems: How many CPSs interact to perform complex tasks.
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provide real-time data about the fire, a base station computes the most probable path of the

fire, and automatically dispatches a larger UAS (to the right in Fig. 3.3) with fire retardant

such as water, etc. to preemptively lessen the fire’s destructive power by dropping payload

in the most useful locations.

Many solutions to the problem of estimating a fire’s location have been proposed [24–

27], and this problem is now well studied. To close a CPS loop around this problem, both

sensors and actuators must be employed, and therefore predictions must be made of the fire’s

probable path. Fire path estimation is itself a research topic [28,29]; these frameworks can

be integrated as needed for a particular application scenario as needed. As this prediction

is produced and improved, the estimate of the fire’s path can also be used to warn the

surrounding populace about the impending arrival of the fire automatically, allowing the

residents the most possible time to evacuate before the fire arrives.

3.2 CPS Enabled by PRS: Real-time Irrigation Control

Aerial remote sensing can be used to better regulate and control water use by optimally

distributing irrigation supplies on the basis of predicted water demand.

Fig. 3.3: Several UASs work together to control a wildfire with sensors and retardant.
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As seen in Fig. 3.4, a water domain of interest (DOI) is depicted as a closed-loop cyber-

physical control system. Starting with weather and climate, the water becomes available.

Combined with water rights, an optimal irrigation policy can be established [30] that will

allow the gates and flumes which control water flow to direct the water to its best use. While

some water is lost to evaporation and leakage or seepage, most will reach the geo-domain

of interest, allowing use of the water.

During an example use of the water (a farmer’s field), traditional ground sensor pods

will determine the moisture level in the application areas, as well as UAS-borne sensors

flying above the field. Aerial imagery collected in the visible, near-infrared, and thermal

bands can be combined to determine the water content of the vegetation and the surface

soils in the scene [31], and data fusion can combine the ground and aerial sensor data into

the controller, thereby closing the water loop on the particular field in question.

Use of multispectral sensors can provide deep insight into moisture content as seen in

Fig. 3.5. Thermal infrared, shortwave infrared, and near-visible infrared, as well as visible

Fig. 3.4: Water distribution and use as a closed-loop cyber-physical control problem.
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light sensors are needed to complete the picture and provide detailed moisture maps, allow-

ing more data about the distribution of water and enabling greater control or management.

3.3 CPS Enabled by PRS: Algal Bloom Tracking for Alternative Energy

According to the NSF, “The United States faces a critical challenge to transform our

current fossil fuel based energy economy to a stable and sustainable energy economy” [32].

Sustainable Energy Pathways, SEP, is a new research program by the NSF, to encourage

and “support interdisciplinary efforts by teams of researchers to address the challenges of

developing efficient pathways towards a sustainable energy future. The overarching theme

of the solicitation is “sustainability” in all of its facets” [33].

((a)) Before flood (visible and NIR)

((b)) During flood (visible and NIR)

Fig. 3.5: Multispectral data collected from an agricultural scene by AggieAir.
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In one example of sustainability, algae grows in wastewater lagoons (such as Logan,

Utah City wastewater Lagoons, shown in Fig. 3.6 from Google Earth [34]) and feeds on

nutrients such as phosphorus from detergents, etc. These algae can be processed and trans-

formed into energy: both biofuels and methane can be produced from algae, allowing small

communities to transform local waste into power. Once the algae has been harvested, it is

consumed in a bioreactor such as a microbial fuel cell [35].

The algae harvesting cycle:

1. Algae grows in a controlled environment (lagoon) fed by waste water;

2. Algae “blooms,” or rapidly increases its biomass;

3. When sufficient biomass is available, the algae is harvested, providing raw materials

for energy production;

4. The algae lagoon begins growing another batch of algae.

To maximize biomass in Step 3 above, feedback is needed to determine when to harvest

the algae to maximize production and minimize production times. This feedback can be

provided by a UAS in a PRS configuration, flying at an appropriate frequency to estimate

and predict the peak algae biomass.

One perspective configuration for using a PRS UAS as a CPS to establish a SEP is seen

above in Fig. 3.7. Stations like this one allow production of algae-based power by drawing

Fig. 3.6: A view of the Logan Lagoons from Google Earth.
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on waste water from a local community, keeping the energy pathway short, and allowing the

highest efficiency. When coupled with other sustainable energy sources such as solar power,

the efficiency and autonomy (i.e., stand-alone, off-grid dependability) is higher, allowing for

better localization of energy resources, avoiding loss of power transmission line loss, leading

to higher overall efficiencies.

While algae grow in the phosphorus-rich wastewater of the lagoon, the algae’s natural

predator, Daphnia present a threat to the water treatment and energy production processes.

When Daphnia are present in the water, the algae are only able to decrease the phosphorus

by 1/40th the amount if they were alone [36]. This presents a compelling problem: harvest

the algae before the Daphnia do, when the algae are at peak saturation.

UASs are used to survey the algae and detect the optimum harvesting time for the

algae crop. Once this is determined, the algae are harvested by some automated means,

and the reactor uses the algae as fuel to produce power. The solar grid shown is mainly for

operation of the algae farm; however, if there is a power surplus it can be directed out as

Algal Processing Pathway

Algae
Lagoon

UAV
Depot

Cyber-
Physical

Controller

Solar PV
Arrays

Waste water influent
contaminated
by phosphorus

Biofuel-ready algae

Biofuel Reactor

Net energy output

Phosphorus-free
Reclaimed

Water

Fig. 3.7: Algaeland: A UAS Enabled CPS for SEP. A water treatment lagoon as a UAS-
enabled CPS to create biofuel from waste water.
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product energy.

As seen in Fig. 3.6, the Logan Utah Lagoons support eight local districts and, at 460

acres, are ideally sized for small-UAS data collection. Relative to traditional static (i.e.,

non-mobile) pod sensors embedded in the ponds themselves, UASs cost less to install and

operate. This is a vision of cyber-physical systems’ promise: a self-sustaining facility with

a net power gain.

3.4 Chapter Summary

This chapter introduces cyber-physical systems and the roles that sUASs can play in

coming years. UAS applications such as search and rescue, precision agriculture, etc., are

now well known, and more applications appear nearly every day. Small UASs in particular

are expected to play a major role in domestic UAS operations. Versatile, inexpensive, and

easily maintainable, these smaller systems can be utilized effectively in many applications

where fast responses are needed with precision information. Further applications of these

systems will lead to their utilization as part of larger cyber-physical systems as sensors or

even actuators, providing integration and control on larger scales and higher complexities.

Cyber-physical systems are the future of solving real-world problems such as water

management and alternative energy production. By using sUASs as sensors, better data can

be collected and used to make informed control decisions, transforming difficult, complex,

or abstract problems into closed-loop systems that can be analyzed and controlled.

Within the next 15 years, the development of unmanned technology will enable UASs

to be mobile actuators, actively exerting control in optimal locations for precision in both

sensing and actuation, and cognitive control systems for large-scale complex systems that

were previously uncontrollable or impractical to control. Management of crisis situations

such as food and water shortages, energy production, floods, and nuclear disasters can be

assisted by sUASs. Difficult problems can be solved with cyber-physical systems. This

chapter serves as a motivator to position small, inexpensive UASs as flying sensors and

actuators within the closed loops of cyber-physical control.
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Chapter 4

Architectures for Ethical Remote Information Sensing

As Unmanned Aerial Systems grow in functionality and utility and mature in safety,

applications for these versatile platforms will rapidly become abundant in the coming years.

Civilian applications for UASs are an emerging field–one that has great potential and the

possibility of explosive growth as their places in science and industry become secured. The

US Congress is aware of these possibilities and has given the Federal Aviation Administra-

tion (FAA) a deadline of 2015 for the creation of rules allowing the inclusion and integration

of UASs into the greater US National Airspace System (NAS). This integration will not be

determined by policy alone; the challenges and opportunities of addressing ethics and the

public perception and acceptance of UASs will forever be a part of aviation and robotics as

levels of integration and technology progress [3]. It is hoped that the FAAs UAS access rules

for the NAS will eventually be in the familiar form of “file-and-fly” (that is, a licensure and

law-based system with insurance) and domestic UAS operations will be commonplace. With

the proper certifications and standards, government and commercial operations will include

regular UAS use, including integration into large-scale operations such as Cyber-Physical

Systems discussed in Chapter 3.

Unmanned aerial systems for personal remote sensing are, like any unmanned system,

defined by their missions. Personal remote sensing, however is focused on data collection,

and therefore a PRS mission can be defined directly as data. While quality as a concept is

notoriously difficult to define [37], Data Mission Quality (DMQ) is a measure of the relative

quality of the data mission, and can be used as a yardstick to compare multiple missions,

different UASs, and different payloads.

Mission assurance, in a PRS sense, is Data Mission Assurance (DMA). Data Mission

Assurance is the upholding of a minimum DMQ. This means, for example, without a fully
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functional payload, there is little reason to fly and make use of the airspace allocated to the

sUAS.

To achieve data mission assurance in current AggieAir payloads, modular approaches

to PRS UAS systems design are taken, from development to testing, allowing overall perfor-

mance and system faults to be quickly and accurately diagnosed [11]. This concept must be

extended to the context of the greater airspace and expressed in a cyber-physical systems

context to enable PRS systems to interact with manned aircraft and other UASs while in

operation in a safe and reliable way, while delivering DMQ overall.

Architectures must be implemented to allow UAS use while preserving order and re-

specting many different kinds boundaries (safety-related as well as ethical). AERIS is pro-

posed as a set of guidelines as well as examples to allow scientific data collection flights while

adhering to standards reasonably expected by civilians (privacy, safety, etc.), as illustrated

in Fig. 4.1.

All architectures adhere to the same general structure. The purpose of an architecture

is to induce some kind of desired order from chaos–that is, to set “rules” so the possible

states of a system are set. In general, an architecture can be viewed as in Fig. 4.2. This

arrangement shows the chaos (above) and the desired behavior for resources to manage

below.

Once cyber-physical systems themselves have been accepted and implemented, the

important work moves to the intersection of cyber-physical domains. In the real world,

Fig. 4.1: An Architecture for Ethical Remote Information Sensing (AERIS) will allow RS
data missions in the civil airspace.
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Fig. 4.2: The most general representation of an architecture.

decisions can be complex [38]; all possible options must be considered for the guaranteed

best option to be chosen. Uncertainty naturally scales with complexity [39], which can be

described by power-law statistics [40], and in turn may be modeled by fractional calculus

[41]. The concept of “scale-richness” is also important: the mixing of different exponents

in power-law distributions, for example in biological networks [42].

This scale-free aspect of nature can be categorized as a form of chaos; that is the inputs

or requests from the environment or from other CPSs to a given CPS cannot be predicted

completely. Architecture that acts as a gatekeeper limits actions on the plant (the critical

minimums for preservation goals in a given case) will allow outside interactions–new or

innovative behaviors–which are not originally designed or predicted, yet are still compliant

with the “rules of the game” due to proper architecture design. These new behaviors can

be considered groundbreaking or innovative, allowing progress, improvement and research

to continue without violation of (and possibly permanent damage to) the system being

protected.

Proper segmentation of the layers in system architecture is of critical importance (as

espoused by Doyle [43]), and much can be learned about robustness to complexity from

systems occurring in nature. Lessons can also be learned from poor layer separation in

systems not designed for robustness such as email (originally, email was designed without

security features [44]). Although email has become a critical infrastructure element, for
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years malicious emails have been able to commandeer servers and workstations. Improper

segmentation of data and processes created this situation almost by design–the legacy of

poor architecture design. Other examples include insecure computer operating systems such

as Microsoft Windows 95, or conflict-of-interest situations such as bribery in government.

Prof. John Doyle has written about these issues and has encapsulated this idea as a

“bow-tie” as in Fig. 4.3 from Slide 46 of Doyle’s CDS212 lecture slides [43]. Since failures

and uncertainties lie at the edges of domains, an operating system or architecture allows

a variety of different processes to share data and communicate, provided they adhere to a

common set of standards. Proper layering and engineering of security of architectures is

critical to their stability, robustness, and resilience [45].

As shown in this dissertation, AERIS-compliant architectures enable functionality at

many levels for sUASs.

• Control and behaviors (Sec. 4.6),

• Payload control and data mission performance metrics (Chapter 5),

• Inertial measurement and navigation (Chapter 6),

• Battery state estimation (Chapter 7),

Fig. 4.3: From Doyle: An example of a successful layered architecture approach.
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• Any other behavior or system feature as required or innovated.

4.1 Cyber-Physical Philosophy

As an example: in the near future, there may exist a fully automated air traffic sys-

tem (i.e., mixed human passengers and air cargo flights, coordinated by cyber-physical

algorithms). A fully automated ground transportation system (self-driving cars in a net-

worked platooning configuration) is equally likely in this time frame. In the event of a

life-threatening airborne emergency such as an engine failure, how would these two highly

complex systems coordinate a landing of the stricken aircraft onto the busy interstate high-

way?

Figure 4.4 shows an intersection of CPS domains, such as the above scenario. The

general solution to problems like the above is architecture: standardizations that allow

communication to take place and interactions to be quantified. Once the contact is defined,

out-of-band or “cross-layer” [46] communication is no longer a possibility and both systems

are more robust.

The Internet and data networks are examples areas this kind of thinking is needed

for security and robustness. Allen Turing is referred to as the father of layered computer

system design [47], and in modern times Prof. John Doyle has written about these issues

and has encapsulated this idea as a “bow-tie” as in Fig. 4.3. Since failures and uncertainties

lie at the edges of domains, an operating system allows a variety of different processes to

CPS A CPS B

CPS Domain Intersection

Fig. 4.4: An intersection of cyber-physical domains: uncommon and important behavior.
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share data and communicate, provided they adhere to a common set of standards.

Doyle also points out Turing’s choice of base-2 as an architecture has enabled digital

calculus, and computing as we know it in general [45]. C# (or Ada, a more extreme case)

are more heavily typed and more popular for robust applications vs. assembly language,

which has practically no layering at all by design. Frameworks and architecture give systems

robustness through standards such as in autonomic computing [48].

Other examples of systems designed for complexity management include legal systems

and government [49], any number of biological systems [50], and psychological interaction

models [51]. Proper architecture design will allow both robustness and flexibility while

minimizing long-term fragility [52]. Once again, proper architecture is the only way forward

for DMQ-based sUAS remote sensing.

4.2 Biologically-Layered Robotic Scheduling and Functionality

As in Doyle [43], biology can teach important lessons about segmentation and layering.

Robotic goals are complex, and their general formulation is not a trivial task. Addition-

ally, there is a constant drive to lower robotic cost, while increasing demand for perfor-

mance. Consumer electronic hardware has similar attributes, however, due to the basic

physical nature of robotics, reliability is required beyond most consumer applications; in

some cases aerospace-grade reliability is required for dangerous or expensive robotic mis-

sions. To achieve this reliability, the system should be resilient to software failures and

faults, both from within (software bugs) and from without (hardware failures, intentional

hacking attempts, etc.).

Take, for example, multicore “application processor” level computing platforms. These

platforms are designed for high-level consumer interactive hardware such as cellular phones

and GPS navigation systems, DVD/Blu-ray players, etc., and have a considerable amount of

processing power and features due to a high level of integration. These processors are ideal

for low-cost robotic platforms due to their availability, and low power and size requirements,

and will continue to become more integrated as time passes. Robotics can benefit from this

trend: processors with multiple cores can be used to create robotic systems with higher
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reliability beyond a traditional unicore system [53].

4.2.1 The Triune Brain

In evolutionary biology, neurologist Paul MacLean’s triune brain theory [54] presents

a segmented picture of the human brain. The theory claims that as the brain evolved, the

different layers developed on top of one another. In Fig. 4.5 (Adapted from Cory [54]),

the triune brain is compared to the heterogeneous computing platform implementation

described in this chapter with some remarkable similarities. The three sections of the

human brain according to the theory are:

1. The Low-Level Lizard. First, the most basic processing is done by the Lizard or

Reptilian brain. This brain is physically contained in the brain stem, cerebellum,

and spinal cord, and can heavily influence commands given to the body from the

higher brains, effectively blinding the higher brains in extreme situations, creating

phenomena such as the heartbeat and respiratory system. The Lizard brain has no

long-term sense of time.

2. The Emotional Limbic. The Limbic system has also been called the old mammalian

brain, and is responsible for higher-level basic behavior, which handles fighting, fleeing,

feeding, and fornication [55]. Emotions are the language of the Limbic system; the act

of interpreting a vast amount of input data from the senses and producing an overall

“feeling” about a situation is the realm of the mammalian brain. The part of the

brain is found in more evolved mammal animals, and occurred later in the evolution

process. The Emotional brain also has no sense of long-term time.

3. The High-Minded Rational. At the top level, and most recently evolved, is the

neo-cortex, or “rational” brain. This part of the brain makes high-level decisions and

is responsible for cognition in the traditional sense. Physically, this is the part of the

brain divided into left and right (creative and logical), and consumes two thirds of the

brain mass in a normal Human brain. The rational brain makes key decisions about
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“good” and “evil;” it allows individuals to have preferences and think abstractly in

long-term timescales.

4.2.2 Robotic Processing Requirements

Robotic requirements are application dependent. However, they can be grouped into

general categories relating to common robotic system components as seen in Fig. 4.6.

Multicore CPU
Fabric

Massively parallel
graphics cores

Deterministic
realtime core(s)

Neo-cortex

Limbic System

Reptillian

Fig. 4.5: Homogeneous CPU architectures and the human brain adapted from Cory.

Fig. 4.6: Robotic functionality demands many different processes at many different levels
of priority and computation.
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Deterministic Control:

All robots require actuators for movement, whether it be propellers in water or air,

wheels or tracks for ground movement, or manipulators for moving parts, etc. These require

deterministic processing for feedback control, on the time-constants of the actuators. In

the triune brain, these “fast” closed-loop behaviors are handled at low levels which might

bypass the higher brains. If a nerve senses something resembling pain, a limb can be

withdrawn from the source very quickly, leaving the owner with little choice if the action is

not anticipated. The spinal cord and cerebellum provide near-deterministic functionality for

the animal’s body. Similarly, the real-time control and signaling a Digital Signal Processor

provides can close the control loops required for locomotion or manipulation at high rates,

allowing for other systems to provide setpoints for control without involvement in the specific

control mathematics.

Massively Parallel Data Processing:

Processing sensor data is crucial to any robotic system. Although some systems are

simple and need relatively little sensor processing, modern robotic systems can be exposed

to gigabytes of sensor data from laser range systems, computer vision systems, raw GPS

data, etc. Much like the millions of nerves and sensing systems in the animal body, sensors

could easily overwhelm a processor with information. However, in the biological Limbic

system, experiences and knowledge are used to process data from eyes, ears, and other

complex sensing systems very rapidly to produce emotions and other signals. With the

modern computing architectures’ parallel graphics processing cores, properly formulated

parallel algorithms can process gigabytes of sensor data very quickly for science, simultane-

ous localization and mapping (SLAM), or other important tasks.

Multicore Decision Making:

The most important task given to autonomous robots is decision making. Once data

is summarized, actions must be taken. Other tasks are also running on an autonomous

system: peripheral management, logging, safety monitoring, etc. The biological neo-cortex



32

makes logical decisions, acting in the owner’s best interest and keeping a sense of time.

While these logical processes can indeed also be parallel, they need not require the vast

amounts of computational resources that data processing does.

Machine Vision:

Machine vision (MV) is the application of making computers understand what is per-

ceived visually. Unlike human vision, machine vision systems perform more narrowly defined

tasks, and are mostly relied on digital imaging systems and computing devices that exam

individual pixels of the images.

Image processing techniques are commonly used in machine vision to develop the ability

of deriving visual results with the assistance of knowledge bases and features. However,

the machine vision algorithms usually require high computational effort. Therefore, high

computational throughput hardware are commonly used in order to process the images in

real-time.

Machine vision allows robotic systems to see its surroundings, and is widely used to

aid the control logic of the robotic systems. A lot of previous works have integrated image

classification and real-time object detection into robotics vision [56–58]. A 3D object tracing

system was implemented for humanoid to allow complex locomotion such as stair climbing

[59].

To meet the need of high computational efforts, a lot of machine vision implementations

for robotics system use graphics processing unit (GPU) to accelerate the computation. By

its nature, the computation required by image processing adapts high proportion of data-

level parallelism. These algorithms are able to fully exploit the high throughput of SIMD-

based computing architectures, such as GPUs. The increasing demanding of computational

throughput for machine vision is likely to be solved with the thriving of general purpose

GPU computing. Currently, many robotics systems have been integrated with GPUs to

allow on-board processing for complex algorithms [60].
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Navigation:

Navigation for robotics are widely deployed in mobile robot systems. The most com-

monly used navigation scheme is based on pre-defined waypoints and waypoint following. In

this scenario, the robotic system is aware of its current global position to a certain extent.

The navigation system conducts motion planning by comparing the robot’s current position

with the next waypoint position.

A more complex navigation technique is based on real-time information of the robot’s

surroundings. A very common case is target tracking, where the robotic systems are de-

signed to follow certain objects. The paths of such objects might be arbitrary, therefore

the robots need to be equipped with certain technology to detect the objects. The position

information of the objects is fed back to the navigation system to derive the subsequent

movement of the robot. Advanced robotics navigation requires combination of technologies

such as machine vision, 3D modeling, path finding, and decision making [58,61–65].

Due to the complexity and ambiguity of the problems, navigation algorithms commonly

rely on high-level processing architectures such as general purpose processors. In most cases,

navigation does not require absolute real-time processing and certain lag in processing time

is usually acceptable. The complex logic of navigation systems is better implemented on

more powerful general purpose processors that are separated from the low-level real-time

controllers or DSPs, so that complicated decision making algorithm does not interfere with

the real-time control logic of the robots. This segmentation is in line with Turing and

Doyle’s layered architectures.

Sensor Fusion:

Sensor fusion is a class of techniques of combining sensory data from disparate sources

to derive more accurate or dependable information (such as shown in Chapter 6). Due to

corruption from noises and disturbances, data acquired by different sensors have heteroge-

neous attributes and components. Sensor fusion is able to extract consensus information

from distributed sensors, or derive new information based on independent measurements in

a recursive sense.
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Sensor fusion is important for modern robotics systems [66–68]. Using stereo image

fusion technology, robotic vision sensor is able to operate similarly as human vision, and

its ability to detect and recognize objects can be significantly improved. Image fusion also

allows robotic vision to abstract and identify information from multispectral or hyperspec-

tral imagery. For mobile robots, sensor fusion allows several complementary and redundant

sensors to assist the robot accurately locating itself within complex environments.

Communication:

Communications between mobile robots and central control stations needs to be han-

dled on higher level computing architecture, where user can deploy WiFi, Bluetooth, or

other communication devices with the support of operating systems.

This level of communications creates a channel for information exchanging amongst

robot agents. It also provides users with an interface for remote monitoring and control

of each robot agent. Each node within the network can be configured with equivalent or

master/slave relationship, depending on the data flow direction.

Formation Control:

Based on the communication link among multi-agent robotics system, we can control

the movement of a group of robots, or a networked swarm system. Numerous works have

done to emphasize the robustness of formation control due to changes in network topology

and information consensus in networks [69].

The framework of the formation control system is largely based on matrix theory and al-

gebraic graph theory. In practice, the algorithm combines both control logic and mathemat-

ically intensive computation. For real-time applications, formation control algorithms can

be handled on-board by high-level computing architecture, combined with general purpose

processor with general purpose GPU accelerating the parallel portion of the computation.
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Interoperability:

The interoperability is the ability of diverse robotic systems to communicate, orga-

nize and operate together. Projects such as Joint Architecture for Unmanned Systems

(JAUS) [70] aim at supporting interoperability of robotics systems by providing a standard

for messaging among robots or unmanned systems. To achieve such interoperability re-

quires proper support of JAUS software platform and operating system, and therefore it is

supported by on-board hardware and software drivers.

Failsafe Procedures:

Due to the increasing complexity, it is inevitable for robotic systems to experience

malfunctioning or failure. A well-designed robotic system should consider all possible causes

of malfunction and means to minimize the cost of a possible failure. This is especially the

case for unmanned aerial systems, for which any failure might lead to disastrous results.

Therefore, in order to improve the airworthiness for such systems, failsafe procedures are

indispensable in their designs. A robotics system can deploy both hardware and software

level of failsafe procedures. On the hardware level, such as a power failure, catastrophic

accidents can be prevented by designing certain mechanisms, such as projecting parachute

for aerial systems. Software mitigations such as the one presented in Chapter 5 can also be

used.

Control Logic:

Control logic of robotics systems are the basic mechanism that drives the movements.

The control logic can be handled by the DSP or microcontrollers that are placed at the

lowest level of the processing hierarchy, where they have direct real-time access to sensor

and actuator I/O.

Hypervision:

A hypervisor provides oversight to the computing architecture by checking the virtual

machine states of various processes [71]. When a state is detected to be out of sequence,
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the corresponding state machine can be reset or other mitigation techniques employed.

Sensor I/O:

On the lower system level, sensor I/O is connected to the micro-controller or DSPs

which directly have access to input and output signals from sensors and actuators. On the

higher processing level, sensor I/O can be abstracted from software drivers on operating

systems that controls certain hardware.

4.2.3 Ethical Behavior as Implementation of Morals: Robots vs. Weapons

The study of ethics is a broad concept. However, unmanned ethics is becoming a

pertinent topic and is absolutely critical to the operational success of civil RS UASs due to

the significant ethical considerations of the operating environment and in the management

of a RS UAS. Civil UAS missions can be defined as robotic tasks. In this dissertation,

“morals” are defined as the “rulebook for doing or being good,” where “ethics” are defined

as the behavioral implementation of morals.

David Wright, a managing partner in Trilateral Research and Consulting [72] proposes

a Privacy Impact Assessment (PIA) and give these unassailable ethical principles which

must be adhered to for any project that deals with information [73]:

1. Respect for human autonomy,

2. Avoiding harm,

3. Beneficence,

4. Justice.

These compare favorably with Isaac Asimov’s classic Laws of Robotics. Asimov’s robots

serve for the good of humanity:

1. A robot may not injure a human being or, through inaction, allow a human being to

come to harm;
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2. A robot must obey the orders given to it by human beings, except where such orders

would conflict with the First Law;

3. A robot must protect its own existence as long as such protection does not conflict

with the First or Second Laws.

Any unmanned system which violates the above principals or laws cannot be considered

a robot. In most cases, if these omissions are by design, an unmanned system is a weapon

or strategic asset as in the case of military operations.

There have been some attempts to discuss the ethics of UASs, but they have been

focused on military or law enforcement applications [74,75]. These applications have more

apparent moral dilemmas, but are more commonly covered by literature. Remote sensing

applications more closely follow computer ethics and the ethics of information technology.

Some these concerns parallel the ethical concerns of a Google Street View vehicle col-

lecting information as it navigates routes on each continent. During its mission, a PRS UAS

may collect inadvertent information–but what information is too private? What informa-

tion and operations may affect the human operators? What effects does this have on the

operating environment and airspace management? Only scale of operations and applicable

laws can ultimately determine the answers. It is also unethical to remain in the airspace

if the quality of the data being collected is below a predefined threshold, since the data

mission will have failed in this case.

4.2.4 Successful Data Missions

Three main components are needed for successful data missions flying in civil airspace:

1. Data as the Mission. Unmanned aerial systems for personal remote sensing (PRS)

are, like any unmanned system, defined by their missions. Personal remote sensing,

however is focused on data collection, and therefore a PRS mission can be defined

directly as data. While quality as a concept is notoriously difficult to define [37],

Data Mission Quality (DMQ) is a measure of the relative quality of the data mission,
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and can be used as a yardstick to compare multiple missions, different UASs, and

different payloads. Mission assurance, in a PRS sense, is Data Mission Assurance

(DMA). Data Mission Assurance is the upholding of a minimum DMQ. This means,

for example, without a fully functional payload, there is little reason to fly and make

use of the airspace allocated to the sUAS.

2. Ethics. Remote sensing applications more closely follow computer ethics and the

ethics of information technology and medical record handling, and deserve specific,

detailed, and clear directions for accountability and transparency in remote data col-

lection. In addition, RS data has been collected for years in manned aircraft, while

privacy complaints have not been prominent.

3. Management of Airspace Safety. The US Federal Aviation Administration (FAA)

manages the civil airspace and sets standards for airworthiness in the US An overall

AERIS-compliant architecture is needed for the thousands of small UAS to inter-

act, and fly safely. Therefore, thoughtful architectures and policies based on those

architectures are needed.

4.3 Existing Civil UAS Architectural and Ethical Research

Although the problem of integration of sUAS into the civil airspace has many simi-

larities to integration of manned civilian air flights, there are some key differences which

make the challenges for sUAS–and specifically sUAS PRS-style missions–different from the

style that the existing civil airspace management system is intended to handle. The metrics

influencing the outcomes for information collection missions of PRS systems are based on

factors such as sensing coverage (e.g., covered area of interest), time of day, weather, and

many other factors. From a robotic perspective, this difference can be seen as one of task-

ing; i.e., data collection (PRS mission) vs. transportation (the main goal of the majority of

civilian passenger flights). In addition, the ADS-B protocol used for linking current flights’

data is inherently insecure and is not predicted to scale to meet the needs of a complex

airspace [76].
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Current sUAS PRS avionics architectures, for example, are at a state similar to one

in the history of manned civil avionics. This is necessarily because sUASs occupy smaller

scales than current civilian architectures overall. Comparing Fig. 2.4 (the AggieAir block

diagram) with Fig. 4.7 from Moir [77], it can be seen that AggieAir is mostly “distributed

digital” in its current form. As technological progressions are made, civil sUAS avionics

architectures will evolve to be more integrated, standardized, and reliable. So too can all

parts of the civilian aerial architecture evolve, to more integrated and layered systems which

allow PRS flights and smaller scales.

AERIS compliments existing sUAS architecture literature. Most research in sUAS is

robotic (path planning, teamwork, tasking, etc.). Quality work has been done targeting

the large-scale integration problems UASs in the NAS will experience, but mainly from a

communications and control perspective [78], and more encompassing work such as Heisey

et al. [79]. Cyber-physical perspectives on crop management and actuation are also being

investigated [80], but without inclusion of ethical or safety concerns. Other literature focuses

on ethical ramifications of UAS data collection (in the case, video and spy-style flight) [75]

or cloud-enabled civil applications [81], without the inclusion of an overall architectural
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coupled with satellite navigation systems has demanded higher density route structures and
improved surveillance systems with a commensurate increase in onboard computational power
to plan and prosecute complex flight paths with a high degree of precision. This has been
facilitated by advances in digital avionics technology in the areas of processing, software
development and network-centric digital communications, enabling aircraft systems to be
integrated on a much larger scale.

Aircraft avionics systems have grown rapidly in terms of capability and complexity, taking
full advantage of digital processing technological enhancements. Technology has brought
improvements in terms of increased performance, computing power, complexity and reliability,
although with an increase in cost. Other benefits include a decrease in weight, volume, power
consumption, wiring and support costs.

Figure 5.1 portrays how avionics architectures have evolved from the 1960s to the present
time. The key architectural steps have been:

• Distributed analogue architectures (Section 5.2.2).
• Distributed digital architectures (Section 5.2.3).
• Federated digital architectures (Section 5.2.4).
• Integrated modular avionics architectures (Section 5.2.5).

Prior to the 1960s, civil transport aircraft had been manufactured in a similar way to their
earlier electromechanical forebears. Avionics systems were disjointed ‘point-solutions’ to

Fig. 4.7: Evolutional history of civil avionics architectures from “Civil Avionics Systems,
2nd Edition” by Moir, Seabridge, and Jukes.
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viewpoint. A broader view of safety and ethics is taken in publications such as Lin et

al. [82] and Clarke [83], but no treatment of scientific data collection or CPS is included.

4.4 The Three Elements of Ethical Aerial Scientific Data Collection

An AERIS-compatible architecture includes three main areas of definition. They are

Airspace Management, Data Mission Success, and Privacy by Design.

4.4.1 Airspace Management for Safety

For more information on Airspace Management for sUASs as a topic, see Brandon

Stark [84].

The FAA has defined the Safety Order of Precedence [85]. Seen in priority Table 4.1,

this order of precedence refers to how a safety management system should be designed.

The most reliable safety systems have the highest priority, while the least reliable systems

must be used sparingly as they are the highest risk to system safety. The safety order of

precedence in Table 4.1 is the approach for all safety considerations that is needed to enforce

safety through architecture. Airworthiness addresses the first two priority levels of safety by

incorporating fail-safes, system redundancies, and automatic termination sequences. Any

active part of the system not requiring human intervention is the first priority in designing

safety.

1. Airworthiness Issues. Automatic safety elimination, or hazard reductions;

2. Human Factor Issues. Incorporating human-automation interaction developments,

such as heads-up displays to improve Situational Awareness;

Table 4.1: Table of FAA safety priorities.

Description Priority

Design for minimum risk 1
Incorporate safety devices 2
Provide warning devices 3

Develop procedures and training 4
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3. Concept of Operations (CONOPS). Standardized procedures and operations,

detailed information on general and specific mission requirements (see Fig. 4.8);

4. Training and Documentation. Standardized systems (the FAA has given example

mission logging requirements in their “Unmanned Aircraft Systems Test Site Selec-

tion” document, Appendix B, page 24 [86]).

When automatic safety systems are not capable, the burden of safety becomes placed on

the human operators. Situational awareness and the optimization of operator cognitive load

will help ease human-UAS interaction. Training systems, documentations and certifications

fall into the last level of safety. These are traditionally the least reliable methods for ensuring

safety. Loss of safety is always the end of mission. In UAS missions loss of safety can happen

for a variety of reasons, in part:

1. Human factors failures;

2. Airworthiness issues;

3. Flight hours (wear) on components;

4. A given airframe’s safety history;

5. Crew training hours and history;

Fig. 4.8: Tree representation of COncept of OPerationS.
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6. Failure of forward-looking cameras or other safety pilot hardware;

7. Failure of automatic dependent surveillance-broadcast (ADS-B [87]) or applicable fu-

ture technologies, such as NextGen [88].

4.4.2 Data Mission Success (“Dataworthiness”)

Since data is the mission during PRS, a UAS must be able to estimate the quality of

the data during progress. Data mission quality estimation can then lead to data mission

assurance, and eventually to mission success, and scientific data fidelity. Technical aspects of

instrumentation and UAS flight-specific factors effect dataworthiness. Data mission quality

is most directly affected by the quality of the data itself. Sensor quality, weather, and many

other factors are at play when a PRS system is collecting data:

1. Airframe (data from autopilot and other autopilots in a swarm):

(a) Control efforts (detect actuator damage, etc.);

(b) Battery performance and quality;

(c) Motor performance (engine efficiency and wear for combustion powered-aircraft);

(d) Flight hours on components;

(e) Wind and other environmental effects;

(f) Navigation performance (Kalman filter convergence, sensor noise estimates).

2. Payload (Data quality metrics):

(a) Voltage and current on power supply rails;

(b) Vibration statistics;

(c) Sensor-specific quality metrics, such as thermal camera core temperature drift,

camera capture times, and many others;

(d) Data mission completeness (from other UASs in the mission as well).
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4.4.3 Ethics: Privacy by Design

Ethical considerations for data collection are the major political barriers for allowance

of RS UASs into the civil airspace. The collection of data by RS systems could capture

sensitive or private details and lead to a violation of the right to reasonable privacy (for

those inadvertently “caught” by the data collection system). This lack of control and lack

of accountability naturally leads to fear, and therefore to intolerance.

Personal remote sensing systems need to have good boundaries with data (prevention

of misuse), before (planning), during (flight path rules), and after (data security), as well as

prevention of hacking or other unauthorized access overall. Privacy is an expected right [73],

and therefore must be preserved.

The ethics surrounding using UAS RS systems to collect data is most closely related to

computer ethics [89]. One approach to solving these problems is called “privacy by design,”

or PBD [90]. Privacy by design is an architecture-based solution to the privacy issue by

engineering a data collection system to account for privacy from the ground up.

In part, PBD defines seven rules for data sensing UAS missions (from Cavoukian [90],

where the term “drone” is used for UAS):

1. The purpose for which the UAS will be used and the circumstances under which its

use will be authorized and by whom;

2. The specific kinds of information the drone will collect about individuals;

3. The length of time for which the information will be retained;

4. The possible impact on individuals privacy;

5. The specific steps the applicant will take to mitigate the impact on individuals privacy,

including protections against unauthorized disclosure;

6. The individual responsible for safe and appropriate use of the drone;

7. An individual point of contact for citizen complaints.
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Since the PBD effort is comprehensive and has momentum, AERIS-compatible archi-

tectures should abide by the most current PBD ruleset. Explicit use of PDB is crucial for

long-term public acceptance.

4.5 AERIS PRS Architectures and Implementations

4.5.1 Multiscale UAS-CPS Architectures

Since architectures are useful and any scale (from the very small to the very large), it

is reasonable for some of the rules to apply to all of the architectures in a given system.

Multiscale hardware is seen depicted in Fig. 4.9. Since smaller architectures are included

in larger ones, failure at any of the scales can possibly contribute to overall failure unless

properly engineered by segmentation and layering. This means that individual layers be

given standards to be resistant to the common cross-layer information sharing. Although

only loosely fitting the definition of “information,” this can include external disturbances

such as electromagnetic interference or physical energy such as shock or vibration.

Figure 4.9 shows the layered integration of many sUAS subsystems into first a single

cyber-physical system, then finally a cyber-physical system of systems. To achieve this

level of reuse and integration, architectural design standards must be followed. Some of the

following technical aspects are relevant for sUAS-CPS use:

1. Per-layer timing requirements (such as in Sec. 4.2.2);

2. Software architecture and software auditing standards;

3. Security standards for intrusion prevention.

4.5.2 General Small UAS Control Architecture

The control loops of a small UAS consist of attitude control, altitude control, and posi-

tion control, as shown in Fig. 4.10. The attitude controller controls the UAS’s orientation,

and uses IMU/AHRS to close the feedback loop. An altitude controller typically combines
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Fig. 4.9: Nested, multiscale UAS-CPS architectures.

measurements from a pressure sensor and GPS altitude. Ultrasonic and laser altimeters

can be used as well. The position controller navigates the UAS in the airspace according to

the mission requirements or safety copilot/operator input. Attitude and altitude controllers

feed commands to the actuators, whereas position control calculates the desired altitude

and orientation.

4.5.3 Optimal Multicore CPU Configuration Scenarios

Future system chips, besides including high-performance graphics cores and realtime

processing/control units, will include many (on the order of 16-128) CPU cores. The proper

use of these cores is an unanswered question in general practice, and remains an unasked

question in robotics. Since each CPU core has its own resources, a natural solution is to
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provide each software process in the decision-making or mission-management code with its

own core, allowing maximum separation between memory and physical processing for each

process running the logic for a given robotic system. However, there are more resources

available, and they should be exploited for fault-detection and tolerance as well as mission

assurance through active software process validation. This will allow use of the available

CPU resources to the fullest extent safely. Hard- and soft-error recovery are both possible.

• Soft-Error Recovery. A soft-error is an error solely of software; commonly called

a “bug.” Each software process created by the mission software be put on its own

CPU core, with several “helper” processes which will be spawned along with the

main process. Through a message-passing interface, these threads will check the main

thread for one of many fault conditions, and will be given access through the system

kernel to restart the main process in question, thus killing and restarting themselves.

• Hard-Error Recovery. Hard-errors are, naturally, errors induced by hardware fail-

ure. More specifically, hard-errors are caused by a breakdown of the CPU structure

itself, lending the system to produce errors ranging in severity from subtle numerical

errors to quite unexpected jumps in the system state machine. Hard-errors are no-

toriously difficult to detect, and in this conception, all unused CPU cores in a given

processor can be assigned similar “helper” processes, which are checking the processes

on the other task-used cores. These processes, are also given the authority to reset

and restore the operation of the main cores, even to move a process from one core to

another if several resets have been triggered and a particular core is probably dam-

aged. In addition to an off-chip hardware watchdog, such internal helper processes

will make the best use of the computing resources available, and will extend mission

safety and assurance. These helper processes will effectively produce a “distributed

hypervisor,” allowing many different internal check to be spread across many more

simple threads, while the overall system state machines are all checked and assured.
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4.5.4 Implementation of Architectures: Formality, Security, and Safety

Architecture defines rules for systems, and from this, properties such as safety and

efficiency result. This makes architecture crucial to setting policy; indeed architecture is

the overriding force behind good policies and laws. Figure 4.11 (made by Leveson [91],

adapted from from Rasmussen [92]) shows this interaction from top to bottom; a so-called

“social-technical” model.

Other examples of systems designed for complexity management include legal systems

and government [49] and any number of biological systems [50]. Proper architecture design

will allow both robustness and flexibility while minimizing fragility [52] for the long-term.

Therefore, proper architecture is the only way forward for DMQ-based sUAS remote sensing.

Leveson also writes about safety models and formal methods of establishing architec-

tures specifications [93]. AERIS-compliance someday needs to be concrete: formal methods

such as those used in software engineering (for example, SpecTRM-RL [94]) could be used
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Figure 2: Rasmussen and Svedung socio-technical model of system operations.

the area bounded by safety constraints. But in the search for optimal operations, humans and
organizations will usually close in on and explore the boundaries of established practice, and such
exploration implies the risk of occasionally crossing the limits of safe practice unless the constraints
on safe behavior are enforced.

For an accident model to handle system adaptation over time, it must consider the processes
involved in accidents and not simply events and conditions: Processes control a sequence of events
and describe system and human behavior over time rather than considering events and human
actions individually. As Rasmussen argues, accident causation must be viewed as a complex pro-
cess involving the entire socio-technical system including legislators, government agencies, industry
associations and insurance companies, company management, technical and engineering personnel,
operations, etc.

The idea of modeling socio-technical systems using process-control concepts is not a new one.
Jay Forrester in the 1960s, for example, created System Dynamics using such an approach (For-
rester, 1961). Industrial engineering models often include both the management and technical
aspects of systems. As one example, Johansson (Suokas, 1985) describes a production system as
four subsystems: physical, human, information, and management. The physical subsystem in-
cludes the inanimate objects—equipment, facilities, and materials. The human subsystem controls
the physical subsystem. The information subsystem provides flow and exchange of information
that authorizes activity, guides effort, evaluates performance, and provides overall direction. The
organizational and management subsystem establishes goals and objectives for the organization and
its functional components, allocates authority and responsibility, and generally guides activities for

10

Fig. 4.11: The Rasmussen and Svedung socio-technical model of system operations, from
Leveson, adapted from Rasmussen.
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to establish a formal description of AERIS-compliant architectures and to assure implemen-

tations hew to AERIS specifications via Lustre or other descriptive languages [95].

• Timing Requirements for DMA. The data volume generated by PRS missions un-

der AERIS will most likely be large, the timing requirements of actionable information

delivery (including scheduling of data collection) differ from mission to mission and

in a CPS are specific to the CPS functionality. These requirements are also linked to

the physical constraints of the sensing platform, and environmental constraints such

as weather, etc. This is an ongoing avenue of research; interesting interpretations can

be found e.g., from Bogdan et al. [96, 97].

• Software Architecture and Software Standards. Software at all levels of AERIS

is important: from the low-level autopilot code (such as the as-yet uncertified Pa-

parazzi), to the payload software such as in Chapter 5, to the storage infrastructure

which keeps the information after AERIS-enabled missions. Software testing stan-

dards can apply to AERIS and should be used. For example DO-178B/C describes

the safety standards of airworthy software [98], where IEEE 29119 is a testing standard

rubric which can be applied more generally [99].

• Security Concerns for AERIS-Compliant Systems. As globalization of data

networks grows and efforts like the “Internet of things” become a reality, PRS sUASs

which are necessarily made from similar basic blocks, will be vulnerable to attacks and

compromises. Just as current Internet servers, cellular phones, and other embedded

systems have architectures which can allow for outside access, all levels of a PRS sUAS

(such as those in Fig. 4.9 and beyond) are vulnerable to such attacks. In addition to

error recovery and other system robustness attributes, CPSs and indeed PRSs must

be designed with security in mind.

The possibility of intrusion and exterior control of physical systems such as self-driving

passenger vehicles is a real physical threat due to their kinetic energy, and sUASs are

no exception. Also, since no security is perfect, the goal of any security effort is to
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delay the inevitable (penetration or compromise). Techniques such as hypervision [71]

allow an active system (e.g., autopilot) to be running on a virtualized processor hosted

virtually on hardware, and in the case the autopilot state becomes compromised or

corrupted, problems can can be detected and mitigated [100].

An example of a successful hypervision implementation in the consumer product space

is Microsoft’s Xbox 360, which used a system hypervisior to resist the execution of

unauthorized (unsigned) program code [101]–a technique which upheld security and

withstood longer than 2 years’ time against intrusion with a very wide market for

exploitation [102]. For sUASs, an option for supported hypervision in ARM-core

processors is Atmel’s Trango platform [103].

4.5.5 Robotic Computing Hardware Outlook

Mobile and cellular applications are driving consumer computing platforms to be more

integrated with lower cost. Graphics hardware co-processors are becoming the on-chip norm

for many application processors, and integrated “peripherals” like digital signal processors

are being included in applications processors as default. The trend will continue to future

computing platforms such as NVidia’s Tegra platforms, and other computing systems de-

signed for integration consumer electronics. This will allow the creation of systems such as

in Fig. 4.12.

4.6 Control, Estimation, and Behaviors in AERIS

As a PRS/CPS mission progresses, the top priorities of AERIS are to keep safety,

then data quality as high as possible. To this end, flight control loops are part of any

AERIS-compliant system. At a basic level, this equates to well-tuned PID (for example)

control loops, which are applicable to most (if not all) application scenarios. However,

many factors effect the performance of a UAS during a PRS mission. To build true, long-

term CPSs enabled by PRS UASs, the UASs must be prepared to deal with factors such

as weather, payload changes, physical wear (such as actuators, control surfaces, etc.), and
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Fig. 4.12: Homogeneous CPU with interface assignments.

external factors such as other aircraft in the nearby airspace.

In the AggieAir system, Intelligent Safety and Airworthiness Co-Pilot, ISaAC (also

discussed in Chapter 5) is a general-purpose, relatively high-performance computer. ISaAC

acts as a safety co-pilot, processing detailed data from the autopilot such as mission sta-

tus, navigation information, and control efforts. A general flowchart of ISaAC’s system

estimation, behavior, and control algorithm is in Fig. 4.13.

ISaAC is also in communication with the payload, receiving data about the readiness

of the sensors, and other performance metrics determined per-payload. From these payload

and avionics data, ISaAC is able to determine mission quality. To estimate mission safety,

ISaAC is connected to any number of safety sensors such as forward-looking cameras and

sense-and-avoid systems. In this way, ISaAC can help avoid unsafe conditions. These

behaviors can take into account component history, global location, or any number of other

factors, and dictate mission modification states such as mission end or abort conditions

much faster than a ground observer.

In order to determine aircraft health, ISaAC can be running iterative system estima-

tion routines (many techniques exist, such as full-state extended Kalman filter (EKF) [104],



51

Fig. 4.13: The ISaAC flowchart for system estimation, behavior determination, and control
adaptation.

Fourier Transform Regression [105], Neural Net Unscented Kalman filter [106], etc.), with

a known aircraft model for comparison. This means that as the estimated aircraft model

diverges from the known model, control gains or schemes might need to be adjusted for

optimal control performance and safety. Therefore, ISaAC can also be running concur-

rent auto-tuning or adaptive control algorithms, allowing for optimal control parameters

to be set according to the UAS and payload design’s specific requirements. Note that this

process allows for adaptation to new payloads–ISaAC can be made aware of payload re-

quirements for system response and adjust the system accordingly if these parameters are

known beforehand.

If at any time the parameters generated by the system ID and estimation are beyond

some pre-defined boundaries set by the aircraft limits, ISaAC can attempt to determine

the cause of the fault. Such prognostics are heavily dependent on the aircraft and the
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mission, but incremental warning signs can help determine mission risk and allow ground

crews to avoid unsafe flights by repairing or replacing suspect components before an in-

flight emergency occurs. Once the fault cause is determined, the severity can be evaluated

based on safety and payload requirements, and either mitigation can occur (again, control

adaptation such as degraded-mode actuation), or mission termination in accordance with

the specific safety situation.

4.7 An Analysis of Selected Open Source Robotic and UAS Architectures and

Comparison to AERIS

AERIS compliance is challenging for current UASs, mainly because it involves more

than simple engineering and technical solutions. Nevertheless, several existing architectures

for robotic missions are analyzed in this Section, to determine their ability for AERIS

compliance or lack thereof. Since AERIS is all-encompassing and is based in many different

aspects of UAS design, implementation and operation, the following systems are evaluated

by their contributions to AERIS compliance if not their fulfillment. Table 4.3 summarizes

the information collected here about currently available UASs for PRS use.

• Safety and Airworthiness. Aerospace applications are high-risk, so engineering

and testing standards are common. The ultimate goal of aerospace system design is

to be testable and verifiable so that risks are categorized and quantifiable. To this

end, testability is very important for ethical use of airspace, and higher engineering

standards can be used to provide lower risk levels and better AERIS compliance.

• Airspace Management. The best way to measure how a UAS fulfills the airspace

management segment of an AERIS-compliant architecture is the FAA’s Safety Or-

der of Precedence [85]. The highest priority is designing for minimum risk. A UAS

can fulfill this by using a clearly written source code which is well tested. From a

hardware point of view it is important to know the maximal drift of the navigation

system–Inertial Measurement Unit (IMU) and Attitude and Heading Reference Sys-

tem (AHRS). Usually these values are provided in deg/hour; the magnitude of drift
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limits the GPS-denied mission time (beyond which the estimated attitude can be too

far beyond a safe level of variance to be considered safe).

Fail-safe devices are implemented as a state machine covering possible situations with

emergency flight termination procedures (see Table 4.2 for basic useful failsafe be-

haviors). For example: warning devices (priority three) are provided to the Ground

Control Station operator, who sees the airframe telemetry. However, during compli-

cated missions when the cognitive load is too large, a simple visualization of data is

not sufficient. To get the operator and pilot’s attention, additional devices have to be

implemented–for example audio and visual warnings. Since many UASs do not imple-

ment these features, they must be added to be AERIS compliant. Safety procedures

for the crew are important part of the overall airworthiness, but most UASs do not

yet provide specific instructions.

• Dataworthiness. Currently most UASs are developed as an autopilot and a ground

control station only. In the autopilot code, they can provide data about the airframe

(navigation, control efforts, battery monitoring, etc.), however the payload data (Data

Quality Metrics) are not part of most UASs and are not included with their standard

mission code.

• Ethics: Privacy By Design. Ethical constraints are the most difficult to im-

plement. Most UASs are not designed for privacy from inception. Currently the

responsibility for ethical use of the UAS with most systems depends solely on the

operational crew. Although some ethical measures are commonly implemented (such

as a predefined flight plan), much work is still needed in this field.

Table 4.2: UAS behaviors which are simple and useful.

Situation Behavior

Loss of telemetry link Return to the base
Loss of radio link Emergency landing or return to the base

Loss of GPS Emergency landing
Low battery Return to the base
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Table 4.3: Table of UAS and autopilots viable for personal remote sensing.

UAS Name Inception (Hardware)

Platforms

Cost CPU(s) Nav. Sensor Suite Sensor Options

(RT) Paparazzi 2003 (Multi)

Fixed-wing,

Rotary

$ 168Mhz 32bit

w/FPU

Many Many

3D-Robotics Pixhawk (PX4) 2009 (Single)

Fixed-wing,

Rotary

$ 168Mhz 32b

w/FPU +

72Mhz 32b

Proprietary IMU Many

Procerus Kestrel (3.2) 2004 (Proprietary)

Fixed-wing,

Rotary

$$$$$ Not published Proprietary IMU Many

Robot Operating System (ROS) 2007 (Linux-based)

General

$ Dependent on

CPU

None/Many Many

DJI Phantom (2.0) 2011 (Proprietary)

Rotary

$$ Not published Proprietary IMU Few

AggieAir (2.0) 2007 (Multiple)

Fixed-wing,

Rotary

$$$ 168Mhz 32bit

w/FPU +

1200 MIPS

Linux

3DM GX3/Many Many

UAS Name Control BW (Hz) Ext. Airborne In-

terfaces

Payload for Re-

mote Sensing?

AERIS Compliance Possible?

(RT) Paparazzi 500 I2C, SPI, CAN-

Bus, Serial, A/D

No Not as implemented

3D-Robotics Pixhawk (PX4) 200 I2C, SPI, CAN-

Bus, Serial, A/D

No, Possible Not as implemented

Procerus Kestrel (3.2) 500 I2C, SPI, CAN-

Bus, Serial, A/D

No, Possible Not as implemented

Robot Operating System (ROS) Dependent on CPU Any Linux No, Possible Not as implemented

DJI Phantom 2 Vision 200 Micro USB,

CAN-Bus

No, Inc. Gimbal

Camera

Not as implemented

AggieAir (2.0) 500 I2C, SPI, CAN-

Bus, Serial, A/D,

Ethernet

Yes Yes

4.7.1 RT-Paparazzi

Paparazzi is a free and open-source hardware and software project intended to create

an exceptionally powerful and versatile autopilot system for fixed-wing aircrafts as well as

multicopters by allowing and encouraging input from the community [20]. Paparazzi is

released under the GNU [107] license. A real-time port of the Paparazzi autopilot code,

RT-Paparazzi, was shown in 2013, and for this study it is considered from a features and

functionality standpoint.

RT-Paparazzi has two main parts, the Airframe segment (containing code for avionics

and additional sensors) and the Ground segment (Ground Control Station interface, com-

piler tool-chain and some additional tools). The Airframe segment is based on ChibiOS [108]

and written in C (for embedded hardware), the Ground segment in OCAML [109] and

Python with some specific tools in MATLAB.

The overall Paparazzi structure is pictured in Fig. 4.14, and is a generalized version
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of the command and control loop of a flying UAV. This system is controlled by a ground

station, which commands the UAV to fly from waypoint to waypoint, however the actual

control law remains as in Fig. 4.14 from the Paparazzi project.

• Safety and Airworthiness. Since RT-Paparazzi is implemented in a real-time OS, it

is possible to measure timing and verify each thread’s performance both on the ground

during testing and in flight. Software upsets can be detected in flight to detect errant

code or hardware, but these mitigation decisions are left up to the operators during

the UAS mission.

• Airspace Management. Paparazzi implements all of the behaviors in Table 4.2.

• Dataworthiness. Paparazzi alone does not implement remote sensing payload func-

tionality directly. However, due to the open-source nature of the project, different

payload interfaces are possible through defined I/O on the autopilot board.

• Ethics: Privacy By Design. Ethical constraints are the most difficult to implement

for any UAS. Paparazzi is not an exception; it was not designed for privacy from

Fig. 4.14: An overview of the Paparazzi control scheme from the Paparazzi project.
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inception. Currently the responsibility for ethical use of the UAS with Paparazzi

system depends solely on the crew.

4.7.2 PixHawk PX4

The Pixhawk autopilot system is a project of many contributors, managed by ETH

Zurich [110] and released under the BSD/Creative Commons license [111]. Like Paparazzi,

Pixhawk’s PX4 autopilot (diagramed in Fig. 4.15 from the Pixhawk project [110]) is not a

true UAS, 3D-Robotics [112] sells fully integrated and tested rotary unmanned platforms

based on the PX4.

• Safety and Airworthiness. The Pixhawk PX4 autopilot system is comprised of

two major parts (both seen in Fig. 4.15): the Flight Management Unit (FMU) and

an I/O module with power, data interfaces, and a backup/override processor to allow

for redundant manual flight control, should the main autopilot encounter an error

condition. Like RT-paparazzi, the PX4 autopilot system is implemented in a real-

time operating system (NuttX [113]), and therefore is expandable and testable for

software errors before and during flight.

((a)) The Pixhawk PX4 FMU from [110] ((b)) The Pixhawk PX4 IO board from [110]

Fig. 4.15: An overview of the PixHawk avionics system from the Pixhawk project.
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• Airspace Management. The Pixhawk system implements all of the behaviors in

Table 4.2, depending on its configuration.

• Dataworthiness. The Pixhawk system alone does not implement remote sensing

payload functionality directly, although throughout the project’s history image cap-

ture and processing as been targeted as a mission parameter. Due to the open-source

nature of the project, different payload interfaces are possible through predefined I/O

on the avionics system boards. In addition, at the time of this writing, the Pixhawk

project reports upcoming integration with ROS (see Sec. 4.7.3) for a more integrated

robotic system, which could give the Pixhawk system enough computational oversight

to comply with AERIS.

• Ethics: Privacy By Design. As with most of the listed UASs, ethical constraints

are not implemented in a technical sense and depend solely on the crew. Since the

PX4 system can fly fixed- and rotary-wing craft with pre-programmed waypoint flight,

it is possible to avoid untended data gathering during mission planning.

4.7.3 ROS

One example of a successful robotic architecture is the Robot Operating System, ROS

[114]. As with any good operating system, ROS is flexible and extensible, and implements

the main aspects of Doyle’s architecture requirements (data and process separation). ROS is

node-based, allowing designers to implement data and behavior flows as they deem necessary

at a high, graph-based level (seen in Fig. 4.16 from the ROS project documentation [114]).

The operating system is in the middle of the bow-tie, coordinating data and action in a

robust way.

• Safety and Airworthiness. ROS is based on solid design principles, but does not

target high-speed hard real-time computation. Since ROS is implemented as software

running on a Linux kernel, ROS is missing a critical element of feedback and control

to operate a UAS safely.
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Fig. 4.16: The node-based architecture of ROS, from the ROS project documentation.

• Airspace Management. Since ROS is not specifically targeting UAS use, it is not

specifically oriented to airspace management. However, it is possible to implement all

of the behaviors in Table 4.2.

• Dataworthiness. ROS is superior to many UASs with respect to dataworthiness,

since it is designed to provide reliable software/hardware interfaces to sensors such

as 3D cameras, GPS, etc. However, without pairing with a true autopilot-based UAS

(such as Paparazzi or Pixhawk), ROS is not a good candidate for a full AERIS-

compliant UAS.

• Ethics: Privacy By Design. Ethical constraints are not implemented in a technical

sense within ROS, but due to ROS’s high-level functionality it is more possible to

implement computational oversight such as no-fly boundaries, etc. As stated above,

ROS must be paired with a true UAS autopilot system, as well as an ethical support

network to fulfill AERIS requirements.

4.7.4 DJI Phantom 2 Vision

Developed by Da-Jiang Innovations Science and Technology Co., Ltd. of Shenzhen,

China, the DJI Phantom 2 Vision UAS [115] is a full flight system (unmanned aircraft,

safety pilot control system) with gimbaled HD camera pictured in Fig. 4.17 from the DJI

corporate website [115]. Complete with a 14mp camera, when coupled with an iOS or

Android mobile device as a ground station, the DJI Phantom allows for pre-planed flight

maneuvers (i.e., beyond line-of-sight), and 1080p HD video or still pictures to captured

and transmitted down to the operator. Easy social sharing features (Facebook, Twitter,
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and more) allow for instant propagation of media captured when the ground station device

(iPhone, etc.) has an Internet connection. The low cost of entry and ease of use of the

Phantom 2 make UAS technology truly more available than before.

• Safety and Airworthiness. Although DJI has been making autonomous rotary

hardware for hobbyist/enthusiast market for many years, the Phantom 2 Vision rep-

resents the first mass-market full image and video platform with GPS waypoint and

other autonomous pre-programmed functionality. Although DJI does not make full

system specifications open to users or developers, interfaces like CAN bus show an

outward commitment to airworthiness.

• Airspace Management. While the Phantom 2 Vision does implement the behaviors

in Table 4.2, it is intended solely for noncommercial use in the US However high-quality

camera options (such as the now film industry-standard GoPro) show the obvious (and

subtly marketed) possibilities for commercial video and still image collection e.g.,

movie/commercial camerawork or realtor house imagery. Since these applications are

commercial and therefore forbidden by the FAA, there is no way to manage them

safely in the airspace.

• Dataworthiness. Although camera options such as gimbals and GoPro sensors are

attractive for its target market, they have little to no value in the AERIS-style of

Fig. 4.17: The DJI Phantom 2.0 rotary UAS from DJI.
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remote sensing. No information about the quality of the data recorded by the cam-

era is stored. For AERIS-compliant missions, the Phantom 2 is at a low level of

dataworthiness for PRS CPS work.

• Ethics: Privacy By Design. Since ethics have not been considered in the DJI

design, and since the Phantom 2 and other DJI and DJI-style autonomous aircraft

are mass produced and are more capable and accessible than before, it is likely that the

mass production of this kind of craft actually represents a net lowering of the ethical

qualifications. Crew training, ethical training, no-fly considerations are not given with

the DJI system and are therefore left to the consumer users of the hardware.

4.7.5 Procerus Kestrel

The Procerus UAS [116] was developed for many years at Brigham Young University’s

MAGICC Lab before being purchased by Northrop Grumman corporation in 2011. The

Procerus Kestrel 3.2 autopilot (Fig. 4.18 from Procerus’ documentation [116]) is able to

control both fixed- and rotary-wing aircraft, both of which are vended by Northrop Grum-

man (such as the Unicorn flying wing in Fig. 2.3). Microsoft Windows-based ground station

software, training, and many military uses for the Procerus system add to the relatively

high cost factor for Kestrel-based UASs.

Fly Light with Kestrel Onboard
The highly integrated Kestrel Autopilot is small and light, yet powerful. Sacrificing nothing for its compact, weight-
saving design, the Kestrel Autopilot integrates all flight sensors, communication and payload interfaces into a neat, 
elegant package.

Kestrel™ Autopilot v2.4
2” x 1.37” x .47”

17 grams

Virtual Cockpit™ v3.0

and landing (VTOL) and fixed wing unmanned aerial 
vehicles (UAV).

video streams.

health monitoring. 

Kestrel Autopilot v2.4 Fixed Wing

algorithms provide responsive control in all attitudes 
and flight modes.

frequencies.

semi-autonomous guidance modes.

thousands of flight hours. 

Kestrel Autopilot v3.1 VTOL/Fixed Wing

stability in windy/inclement weather. 

and precise payload control and targeting.

maneuver capability. 

servos and onboard data logging.

of integrated payloads.Kestrel Autopilot v3.1
2.26” x 1.46” x .67”

24 grams

Fig. 4.18: Procerus Kestrel 3 autopilot from Procerus’ documentation.
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• Safety and Airworthiness. Years of proven flight history and the backing by

a major global defense contractor, with many flight-hours of the 3.2 and previous

versions of the Kestrel UAS indicate a high-level of airworthiness and safety.

• Airspace Management. Many behaviors, including all of Table 4.1, are or can be

implemented in the Kestrel UAS. Many UAS projects use the Kestrel autopilot for

UASs,

• Dataworthiness. The Procerus system allows for many payloads such as visible,

thermal IR, etc., but is not targeted toward remote sensing and PRS use directly.

Metrics about mission quality could certainly be added, but are not present in the

current form of the Kestrel UAS, and therefore the system is at a low-level of data-

worthiness.

• Ethics: Privacy By Design. As with many UASs, the Procerus UAS was not

designed with ethical considerations in mind. However, the high cost of entry and the

probability for use in tactical or emergency use mean the AERIS constraints to not

apply to such a UAS. For civilian PRS and CPS use, as in AERIS, the Kestrel scores

no higher than any other UAS listed here.

4.7.6 AggieAir 2.0

Introduced in Chapter 2 and originating at CSOIS [117] in 2006, the AggieAir 2.0

UAS [118] uses a modified Paparazzi autopilot and GCS environment for PRS missions in

various environments and missions. Paparazzi is evaluated specifically in Sec. 4.7.1, controls

all AggieAir UASs, and is shown in Fig. 4.14. This system is controlled by a ground station,

which commands the UAV to fly from waypoint to waypoint, however the actual control

law remains as in Fig. 4.14. The AggieAir UAS flight system diagram is seen in Fig. 2.4,

which includes the ISaAC safety co-pilot detailed in Chapter 5.

• Safety and Airworthiness. AggieAir has many hours over several years of au-

tonomous flight by way of the Paparazzi UAS. With the advent of the RT-Paparazzi
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branch, much like the Pixhawk system, hard real-time processing targets can be made

and verified, allowing for better testing before flight, and more knowledge of software

inconsistencies during flight. Mitigation strategies such as emergency landing or mis-

sion termination via parachute can be deployed depending on the failure analysis.

• Airspace Management. In addition to the behaviors in Table 4.2, AggieAir flies

under many FAA-provided COAs (certificate of authority) with a PIC (pilot in charge)

to interface with the local airspace and avoid collision conditions. Coupled with

comprehensive training, this allows AggieAir to fly safely and manage airspace.

• Dataworthiness. To achieve data mission assurance in current AggieAir payloads,

modular approaches to system design were taken, from development to testing, al-

lowing performance and system faults to be quickly and accurately diagnosed. Ag-

gieAir has augmented Paparazzi with a modular payload architecture which embodies

AERIS-compliant payload design (Chapter 5), also seen integrated in the AggieAir

UAS in Fig. 2.4, this design has captured remote sensed data successfully over many

hours of safe, autonomous flight (for example, thermal infrared data collection [119]).

This is a higher-level approach, which brings Paparazzi to a layered PRS based on

DMQ.

A higher-level approach, which would bring Paparazzi to a CPS based on DMQ (along

the lines of Doyle and ROS) is seen in Fig. 4.19 (with Paparazzi image from the Pa-

parazzi project [20], and airspace image from NASA [120]). In this way, Paparazzi has

been augmented (via implementation in ISaAC) and controlled by a DMQ estimator

for DMA and mission success.

These concepts must be extended to the context of the greater civil airspace and

expressed in a cyber-physical systems context to enable PRS systems to interact with

manned aircraft and other UASs while in operation in a safe and reliable way, while

delivering overall DMQ.
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• Ethics: Privacy By Design. Because the Paparazzi UAS only provides a base

for the AggieAir operations, ethical concerns are handled at the crew level. This

means that AggieAir’s standard mission practice is to keep a high-level of security

around collected data, as well as only flying missions around targeted agricultural

and natural resource areas, avoiding populated and otherwise sensitive subjects. Also,

data containing personally identifiable content is deleted, assuring the privacy of any

private subjects who might be unwittingly imaged. This makes AggieAir the most

AERIS compliant of all the UASs profiled.

4.7.7 AERIS in Current UASs

Overall, many current UASs provide solid bases for AERIS-compliant architecture,

but additional systems still have to be implemented to fully comply with the requirements.

Current UASs like Paparazzi were not originally developed with AERIS-stye requirements in

mind, and therefore the next generation of UASs must be AERIS-compliant at the design

stage due to the system complexity required and the impracticality of retrofitting older

designs. What follows is an example AERIS Implementation Based on AggieAir.

Since AggieAir allows for the best AERIS compliance of all surveyed UASs, Table 4.4

summarizes the different how AggieAir can comply with AERIS.

Making assumptions for networking and databases, an AERIS-enabled use case is re-

markably simple.

1. Remote sensing user (group) acquires AERIS-compliant sUAS,

2. User completes training and is registered as the operator of the sUAS,

3. Pre-flight checks are performed and logged on ground control station,

4. Flight plan is generated and registered with airspace regulators,

5. Aircraft is launched and is monitoring mission performance during flight,

6. End of mission (either planned or exceptional): landing and post-flight information is

automatically logged and relevant information is added to a flight database.
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DMQ (Safety, Morality, Accuracy)

Fig. 4.19: Paparazzi UAS control loops (image from Paparazzi), interfaced to the NAS
(image from NASA) via DMQ.
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There are many parts of AERIS implementations which are infrastructural, logistical,

or simply future research topics; however the core functionality is needed for sustaining

sUAS PRS-style data collection flights in the NAS and civil society.

4.8 Chapter Summary

The future of UASs is undoubtedly bright. While the current public perception of UASs

is one of espionage and warfare, they will become more accepted into domestic use as their

potential value becomes apparent and as the airspace rules change to include them. While

current regulations of UASs are restrictive and limited in the US, soon UASs will become

available for regular use as standards for certification and airworthiness are developed.

With these standards, mission quality metrics are needed to determine if the UAS is

truly in need of the airspace. Along with ethics (privacy by design), an AERIS-compliant

airspace access requirement architecture will allow civil flights of many kinds with minimal

concern for right violations, allowing humans and unmanned robotic systems to peacefully

coexist and grow together.

This chapter discusses cyber-physical concepts, and shows that human biology is lay-

ered, and can be compared to modern small application processor hardware for robotic

mission execution. The difference between robotic systems and weapons is shown to be

ethical guidelines. Then, AERIS is presented as a way for unmanned aerial data collection

flights to operate in an ethical way, designed into the systems architectures’ many scales,

separated by layers. AERIS is shown in a level of detail, and popular current sUAS options

are evaluated based on the AERIS criteria are evaluated based on AERIS concepts for their

viability in implementing AERIS-compliant architectures.

The concepts of layering and modularity must be applied to all levels of the greater

civil airspace and expressed in a cyber-physical systems context to enable PRS systems to

interact with manned aircraft and other UASs while in operation in a safe and reliable way,

while delivering DMQ overall.

The concepts of layering and modularity must be applied to all levels of the greater

civil airspace to enable PRS systems to interact with manned aircraft and other UASs
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Code of Conduct for the Use of Small Airborne Objects 

on Smith College Property 

This code of conduct governs the use of Small Airborne Objects (SAOs) on Smith College property.  

For the purposes of this code, SAOs are understood to include any balloon, kite, rocket, projectile, 

model aircraft, drone, small unmanned aircraft, or flying toy that is used exclusively below the 

federal navigable airspace for manned aircraft.  SAOs have long been used for teaching, research, 

sport,  and  recreation1;  in  the  future,  they  may  find  additional  applications  in  facilities 

management, public safety, and campus planning.  Authority for this code derives from the long‐

standing principle that the landowner, in the words of the Supreme Court, has “exclusive control 

of the immediate reaches” of the airspace2.  The purpose of this code is therefore to ensure safe 

and orderly use of Smith College property. 

Except for objects used for sanctioned sports and under the purview of athletic director, any 

Small Airborne Object (SAO) used on Smith College property: 

 shall not weigh more than 2 pounds or exceed 60 mph without institutional authorization3; 

 shall not exceed 400 feet altitude without authorization from the FAA; 

 shall not enter any other property below 400 feet altitude without landowner permission; 

 shall not create a hazard or nuisance to any person or property unaffiliated with the use4; 
 shall not be used for observing individuals or their property without their permission; 

 shall not carry any weapon or significant amount of any hazardous substance5; 

 shall display contact information if the total travel distance could exceed 400 feet; 

 shall obey local ordinances including those regarding nuisance, privacy, and land use; 
 shall give right of way to, and not be used in proximity of, any full‐scale aircraft; 

 shall adhere to FAA Advisory Circular 91‐57 as appropriate for model aircraft. 

Any SAO not conforming to this code of conduct, or any unidentified SAO of concern below 400 

feet on Smith College property should be reported to Campus Police (x800 or 413‐585‐2490). 

                                                            
1 Model aircraft similar to drones and unmanned aircraft have been freely used for teaching, research, and 
recreation since the 1930’s.  Kites, balloons and projectiles have been in use for centuries.  Such tools are used in 
fields ranging from aeronautics, robotics, and art, to environmental science and agriculture to name a few. 
2 United States v. Causby, 328 U.S. 256 (1946).  See also Griggs v. Allegheny County, 369 U.S. 84 (1962); California 
v. Ciraolo, 476 U.S. 207 (1986); Florida v. Riley, 488 U.S. 445 (1989); Argent v. United States, 124 F. 3d 1277 (1997).  
In July, 2013, the Northampton City Council unanimously passed a resolution affirming landowner and local control 
of the immediate reaches of the airspace within the city limits, an area that includes the Smith College campus. 
3 The Institutional Chemical Hygiene Committee (ICHC) currently oversees general safety matters in the sciences at 
Smith College and will be responsible for the safe use of SAOs on college property. The weight and speed limits 
specified are based on the Academy of Model Aeronautics (AMA) definition of a “Park Flier”, a model aircraft that 
is considered to be small and safe enough to be used in a public park. In no case shall a SAO exceed 55‐pounds or 
otherwise exceed the physical limits of a model aircraft as defined by the FAA. 
4 Additional care should be exercised when using SAOs that by virtue of their mass, speed, power, or construction 
could potentially cause a serious injury.  Such SAOs shall not be used within 100 feet of any unaffiliated person or 
within 500 feet of any public road, event, or unaffiliated group. 
5 Low‐toxicity batteries of reasonable size are not considered hazardous but should be protected by appropriate 
placement, padding, and containment.  Batteries with capacities greater than 800 mAhr should have a safety fuse. 

Fig. 4.20: Sample code of conduct for sUAS operations from Dr. Paul Voss of Smith College
(provided privately). Used with permission.
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while in operation in a safe and reliable way, while delivering DMQ overall. Eventually,

cyber-physical systems will be enabled by AERIS-compliant systems.
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Chapter 5

A Payload Verification and Management Framework for

Small UAV-based Personal Remote Sensing Systems

Over the past decade, small unmanned aerial systems (sUAS) have become a major

area of academic research and a growing sector of the aerospace industry. While these

systems have traditionally been used in military applications, civilian applications for these

platforms are rapidly becoming a reality. It is expected that these sUAS will experience the

greatest growth in civilian and commercial applications [125]. The content in this chapter

is based on content from “A Payload Verification and Management Framework for Small

UAV-Based Personal Remote Sensing Systems” by Coopmans et al. [11].

For a specific class (typically defined as 50 airborne pounds and under) of sUAS, known

as Personal Remote Sensing sUAS (PRS sUAS), the major application is the collection of

data. This data can be of any variety: aerial imagery, multispectral analysis (published

previously [126]), airborne particle collection, RFID tag locations, etc. These small yet

versatile platforms are designed to be controlled by non-experts, yet still provide the highest

level of performance for its given mission.

Because the purpose of these sUAS are to gather data, the data is the most important

facet of the mission. An architecture devoted to gathering diverse sets of data and ensuring

that the data is retrieved successfully is necessary to accomplish the mission. This is known

as Data Mission Assurance or DMA.

Because PRS sUAS are intended for personal use, cost must be kept to a minimum. In

order to achieve this goal commercially available sensors are used when possible. There has

been much research literature in the area of integrating commercial-off-the-shelf (COTS)

components into systems that require a high degree of accuracy. It is possible to use the

IEEE-1324 and I2C buses more reliably by using various optimizations in tandem, such as
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fail-silence and watchdog timers [127]. COTS is also used on satellites, because of the low

use of power. sUAS also have power limitations so COTS can also help in this respect [128].

It is also possible to solve the unreliability problem by using multiple sensors to make

sure an accurate reading is being obtained [128–130]. It is difficult to have very many

redundant sensors on a PRS sUAS so exhaustive testing is used to ensure DMA Testing

for fault-tolerance and resilience of COTS systems as also been previously discussed [130,

131]. By injecting faults into the system to ensure proper behavior; both hardware and

software simulations were discussed. The testing process shown in this chapter uses the

same hardware that will be used in flight, but also modularly tests the sensors. This allows

sensors to be combined in any reasonable way and ensures fault tolerance regardless of

sensor combination.

Other groups have designed architectures for connecting sensors together but none

of them suit the needs of PRS sUAS. Middleware, or a software abstraction layer between

services is a possibility [132]. This allows services to be connected to the program physically

in multiple ways, but the way in which the main program interacts with these services

remains constant. Middleware can not only customizable but dynamically changeable as

well. This allows for a sensor network that adapts to changing situations in real time [133].

Long-term sensor networks and power consumption management are also in need of software

verification. In order to do this, a central system can be designed that is responsible for

triggering all the sensors on the network [134]. The use of many middleware layers can have

a significant resource overhead, but algorithms can detect when layers of abstraction can

be skipped [135]. All of these methods have merit but none fit the specific needs of PRS

sUAS. The system outlined in this chapter utilizes many of the same concepts. What is

needed is a system modular in design, giving a high level of customization, as well as very

concise descriptions of faults or failures. Since this does not exist in the context of sUAS,

a new system must be implemented.

Prior work has been done on centralized control software for UASs and their payloads.

Modularity is a main focus and is the ability to add different sensors to a new system and be
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assured of compatibility and functionality. It is possible to create a middleware architecture

that acts as the information hub for all the components of the UAS, and is flexible in what

sensors are used [132]. This is modular, however data acquisition is not a focus of other

work. This chapter presents a system that, by design, accepts certain levels of fragility.

Others have created a service based architecture that is very robust. If any component fails

the rest of the system is still functional [136]; this is very robust but for data purposes if

one sensor fails, the data mission is in danger.

Mission assurance is a leading topic in sUAS research and much has been done on the

subject. However in the case of a PRS sUAS, data is the mission itself, and there has been

little research done. Some work has focused on mission assurance with regards to cyber-

security and resilience against malicious attacks. Various methods exist that can be used

to attempt to ensure that the system will not be compromised [137].

The gauging risk is also a part of mission assurance. A focus is on managerial decisions

that can be made with the right data, and what type of data can be gathered about a

particular mission [138]. In order to assure mission success for a PRS sUAS, extensive

standardized testing must take place. By simulating a flight and sending that data to a

payload, a particular sensor can be tested to ensure correct operation. This increases the

resilience of the overall platform. Overall, research on mission assurance exists, but on data

mission assurance it is non-existent.

The main contributions of this chapter are the concepts of data as a mission, and of

mission assurance as resilience. Coupled with software architecture, this chapter shows that

to ensure data mission success, modular, standardized testing and flexible fault handling is

needed, especially when consumer COTS (CCOTS) hardware and sensors are used.

5.1 Data Mission Assurance

Unmanned aerial systems for personal remote sensing are, like any unmanned system,

defined by their missions. PRS, however is focused on data collection, and therefore a PRS

mission is directly defined as data. Mission assurance, in a PRS sense is then Data Mission

Assurance (DMA). This means, in effect, without a fully functional payload, there is little
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reason to fly and make use of the airspace allocated to the sUAS.

To achieve data mission assurance, a modular approach to the PRS system design is

taken, from development to testing, allowing overall performance and system faults to be

quickly and accurately diagnosed.

AggieAir PRS systems are designed to be low-cost, and are therefore based on com-

monly available consumer-grade hardware. To achieve DMA with low-cost hardware, sys-

tem testing and validation is required to assure performance at all levels (hardware and

software). This allows a small UAS to achieve low-cost and high-reliability, a combination

needed for PRS.

5.2 AggieAir Architecture

In order to assure mission success for a PRS sUAS, namely the acquisition of data,

extensive testing must take place. Payload handling and fault detection is a very impor-

tant part of the AggieAir system. Since consumer-level cameras and other sensors are not

constructed to a relatively high quality level, allowances must be made in payload control

software architecture. Figure 2.4 shows this software system design in detail. The per-

formance of this system can be verified through extensive testing: especially useful is a

hardware-in-the-loop simulation testing capability, providing simulated flight data into the

payload system for confirmation of performance and reliability over any specific mission.

AggieAir at Utah State University has been actively developing the AggieAir archi-

tecture, a cohesive framework and system design to bring PRS sUAS to a higher level of

safety and functionality. AggieAir encompass the entire sUAS: from the airframe, servos

and control surfaces, autopilot and ground station (from the Paparazzi project [20]), to the

high-level payload, safety systems and risk mitigation such as parachutes. See Sec. 4.7.6 for

more detailed information on AggieAir.

In Fig. 2.4, AggieCap receives the current mission data (global position, roll, pitch,

yaw, etc.) from the navigation unit AggieNav (published previously [139, 140]), allowing

payloads to geo-spatially timestamp their data as it is collected. This is critical for data

collection, since PRS data need to be geolocated to be useful to the end users. Figure 2.4
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also shows the separation between simple autonomy (the ability to fly, for instance) to the

left, and on the right side, the features of the AggieAir system that enable data mission

assurance and resilience such as the Go/NoGo signal from AggieCap and input from ISaAC

(see Sec. 5.2.2), with the ability to evaluate the safety of the current mission in the scope

of the surrounding airspace.

The AggieAir architecture allows PRS missions to proceed with whatever level of com-

plexity is needed. For example, if a given payload does not need an IP network connection

to its respective ground station during flight (as is the case for nearly all current imaging

payloads), this can be omitted for simplicity. AggieCap itself is also optional, however no

data would be collected from such a mission.

5.2.1 Personal Remote Sensing Payload Requirements and Functionality

In an sUAS payload, software should exist separately from the autopilot for resilience

reasons. If the payload software suffers a fault, the UAS should remain functional and

continue flight in safe manner before landing. The payload should only collect data when

necessary, to reduce energy consumption. To accomplish this, the payload must have a

state machine that defines discrete mission states. The AggieCap Sensor State Machine

(Fig. 5.1) is comprised of three main sections: Pre-Takeoff, Active State, and Post Landing

Data Processing stage. In the Pre-Takeoff stage the payload is monitoring all of the sensors

attached to it. If faults are detected an external signaling device such as a klaxon is

activated, and the operators can locate and fix the error. This assures an sUAS with a

faulty payload will not be flown. Once the sUAS has taken off, it transitions to the Active

state. This state has two substates: Warm and Cool. In the Cool state, the payload is

active, but is not yet capturing data. Bay doors are closed and sensors are suspended.

From the Cool state the payload can transition to the Warm state, usually at some desired

altitude above ground level. In the Warm state the payload is actively gathering data

at preprogrammed intervals. During the transition, bay doors open and the sensors are

prepped for data acquisition. While in the active state the payload can transition freely

between Warm and Cool states. Before landing, all sensors are Cooled. After landing the
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payload transitions to the Data Processing state. In this state the payload prepares all of

the data for post-processing, data buffers are flushed and file handles are closed so the data

can be retrieved correctly by the sUAS operators.

5.2.2 ISaAC: The Intelligent Safety and Airworthiness Co-Pilot

A PRS sUAS is able to fly and record data solely with an autopilot, payload module,

and software (such as AggieCap). However, in the quest to deliver the most reliable and safe

data over many flight missions and in various conditions, an sUAS can integrate knowledge

about internal system status (such as autopilot and payload faults) and external data to

the extent that it is known. The Intelligent Safety and Airworthiness Co-Pilot or ISaAC is

designed to evaluate the safety of flight plan actions given up-to-date airspace information.

ISaAC provides high levels of detail about sensor failures and autopilot status (such as a

navigation data log) during flight, and provides a path for airspace-based safety oversight

for systems requesting flight plan changes such as smart payloads.

Multiple subsystems including the ground station, payload, and autopilot, must be

ready before a launch procedure can be initiated. For DMA, launch is only possible once

the payload is fully ready to fly. Determining the status of the various payload parts

is part of the functionality of ISaAC. Since the sensor hardware can be complex, and the

software interface stack (drivers) can be equally complex, many different states of the various

sensors are possible. In the AggieCap block diagram (seen in Fig. 5.2), the Sensors and their

Trigger all report Go/Nogo (GnG) signals to ISaAC, allowing ISaAC to ascertain the overall

Fig. 5.1: Flight states for AggieCap sensors.
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operational status of the payload. Only when all sensors report a “go” status will ISaAC

show a “go” and indicate to the operators that the payload is ready for flight, allowing the

rest of the flight operation to continue.

In the scope of this work, resilience is defined as keeping DMA at the highest possible

level. Despite fragile system components such as CCOTS cameras, USB hubs, and other

hardware, the AggieAir system is able to deliver DMA by handling component failures

(for instance, a USB bus reset by a loose cable mitigated by detecting and restarting the

Linux USB subsystem while in flight). Should more drastic actions be needed as defined

by a pre-determined fault tree (such as a full payload kernel panic), ISaAC has control of

the payload power via a MOSFET switching system, also seen in Fig. 5.2. ISaAC detects

GnG signal timeouts or special requests from troubled payloads, and hard-resets payloads

to a “known-good” system state. In this way, ISaAC increases DMA during flight/data

collection in real time.

Seen in Fig. 2.4, ISaAC receives data from the navigation system about the current

global position and attitude (pose) of the aircraft. This along with the data from AggieCap

about the go status of the payload(s), allows for an overall picture of the success of the flight

to be produced. Also, ISaAC allows a black box memory module (flash-based in reality)

to record the payload and aircraft status during flight, and thereby allowing operators or

investigators to reconstruct the faults that may have occurred after an airborne malfunction

or crash, so improvements in safety and accountability are made possible.

ISaAC is implemented in practice on a Gumstix Overo [141] computer, connected into

the airborne flight system as seen in Fig. 2.4, to AggieCap via Ethernet or local Unix sockets

as needed. This allows for separation of the autopilot, the payload, and ISaAC itself. ISaAC

is tasked with both recording the status of the AggieAir system (GnG and autopilot errors,

etc.) and with interfacing AggieCap payloads with the autopilot. ISaAC is also responsible

for sense-and-avoid behavior, allowing a camera system or other sensor to be integrated

into the safety architecture and connected to the autopilot to achieve desired maneuvers.
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Should ISaAC be given knowledge about the greater airspace by way of an Auto-

matic Dependent Surveillance-Broadcast (ADS-B) receiver, or the most up-to-date equiva-

lent [142], the global position and flight plan of the sUAS can be evaluated against the other

airborne entities in the airspace, and cognitive path planning is made possible. This means

payloads can autonomously request new sampling locations, and ISaAC will only allow the

autopilot to move the airframe to the new location after evaluation of the safety factors of

such a move. ISaAC therefore, increases overall safety of the aircraft and improves DMA

by allowing better data to be requested and recorded by PRS payloads.

5.3 AggieCap Modular Software Architecture

PRS sUASs have a multitude of configurations for missions, and can be quickly recon-

figured, even in the field. Enabling this functionality requires PRS payloads to be modular

and readily tested and verified for a given mission, thus providing DMA as part of the

payload development and testing process.

A modular software architecture allows for “plug and play” payload configuration after

a given payload module is tested and available for integration. Modularity also allows

for fast payload prototyping, giving system designers the ability to quickly demonstrate

functionality. Abstraction of the sensor and actuator architectures is the key to achieving

Fig. 5.2: AggieCap ISaAC data flow block digram.
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modularity. Modularity and abstraction allow for code reuse and standardized testing,

which increases the reliability of a payload and gives the best possible DMA, the overall

goal of a PRS sUAS. Once a payload module is well tested, it can be added to future

payloads with minimal testing overhead, and be verified more readily.

Small UASs for PRS make use of consumer-level COTS hardware to perform their

remote sensing tasks, and fragility at many levels of the system is expected. Therefore,

intelligent error logging is an important part of assuring functionality and performance.

Modularity allows standardized error logging to be included automatically via inheritance

in new payload designs, increasing re-use of tested payload components.

5.3.1 AggieCap Design

AggieCap is composed of three main parts: the sensors and actuators, the trigger,

and the Go/NoGo logging interface. The sensors are responsible for gathering data and

making logs of sensor status. Similarly the Actuators are responsible for controlling the

physical actuation in the payload. The sensors are organized into payload objects which

are then further inherited by the Trigger. The Trigger is responsible for timing all of

the sensor captures. It also receives the platforms current attitude and position (pose)

which is received from the autopilot. The Trigger associates this position data with each

Sensor capture. The Trigger also sends the ISaAC regular messages (“TOP” as seen in

Fig. 5.2) to verify operational status. The GnG Logger produces a log of all errors—

including unhandled exceptions—that occur in the system. These logs are sent to the

ISaAC system. This implementation of AggieCap is an excellent example of standardized

testing protocols, facilitating resilience and data mission assurance.

5.3.2 AggieCap Implementation

Python was chosen as the AggieCap programing language for a variety of reasons.

Maintainability, readability, platform independence, ease of prototyping, and the ability to

link to shared object libraries.

Maintainability of code is highly linked to its readability. Python is a very high-level
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language, and as such is easy to read and understand. This makes code maintainability

more viable, and eases third-party code evaluation for more robust software. In addition,

the lack of pointers in Python help avoid a common class of programming-related errors.

Python is interpreted, so there is no need to recompile for different architectures. Since

many sensors require precompiled driver interface code, Python allows linking and loading

of shared libraries: precompiled C-code can still be used in AggieCap, provided the binaries

exist for the target platform. Python has automatic garbage collection, which incurs a speed

penalty compared to a compiled language. This is mostly irrelevant because AggieCap and

payload control is IO bound, meaning the majority of runtime is spent interfacing with

hardware devices. If there is a computationally expensive operation that must be performed

in one of the sensors, the bottleneck can be alleviated in software implemented partially in

C. This does not need to be done often, so the cross-platform benefits are retained for most

applications. The inheritance hierarchy for AggieCap can be seen in Fig. 5.3.

5.4 Standardized Testing and Verification for DMA

Assurance of resilience is a challenging task, especially when remote sensing systems

such as AggieAir are implemented with cost as a driving factor. This results in sensors

being chosen that are more prone to faults. Consumer COTS frequently fail either due to

Fig. 5.3: AggieCap inheritance.
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their inexpensive nature, or as is often the case, the requirement of an “unofficial” interface

library such as gPhoto that is not supported by the manufacturer. To achieve data mission

assurance with such a system, AggieCap is part of a standardized testing framework that

allows payloads under development to undergo a payload-in-the-loop simulation of various

mission parameters to prove experimentally their airworthiness and resilience during flight.

Standardized testing is a critical part of the process of testing and verifying a payload

and ensuring functionality. Before a mission, the flight plan is constructed to allow the

operators to train and prove the feasibility of the mission. During this testing, a stream of

virtual navigation data is fed into the payload, and just as if a real flight was occurring,

the payload will warm up and deploy, capture data, and land, all in the laboratory. Since

the mission requirements are known in a general way during creation of payload modules,

and more specifically after missions are chosen, it is possible to set up simulated missions

for verification of payload modules in more and more specific scenarios during payload

development.

This payload-in-the-loop style of testing helps assure data missions by revealing the

great majority of software and hardware flaws before the payload modules are integrated

into the aircraft. This means also that the aircraft need not be finished for the payload

development, allowing efforts during development to progress in parallel. By using specific

payload test data streams, the issue of fragility of consumer COTS sensors can be explored

in a scientific closed environment. When coupled with the ISaAC framework described

above, the interaction of various parts of the payload can be determined and verified as one

system, with error logging allowing automated testing to proceed.

By implementing a suite of standardized tests, a payload verification rubric can be

established. Starting at the physical levels: power usage, electro-magnetic interference and

wiring problems can be diagnosed. Environmental factors such as humidity and temper-

ature can be analyzed using test chambers designed for those specific purposes. Physical

interfaces that might be prone to interruptions which can end the mission such as a USB hub

disconnection during flight can be simulated, and the proper fault-tree-based response can
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be tested. Given expected fault conditions, the logs produced from a payload module can

be analyzed in real time to assure compliance with design specifications and performance

in flight.

5.5 AggieCap Results

Table 5.1 contains a summary of all of the sensors implemented in AggieCap at the

time of this writing. The variety of sensors shows how flexible the AggieCap architecture

and system can be. Several implementations of the Actuator class show that AggieCap can

be used and reused in many different configurations, and that once tested, the modularity

of the payload components allow for new payloads to be built quickly out of well-tested

software.

5.6 AggieCap Payload Implementation Example

PRS sUASs can be used for any number of civilian applications, such as natural resource

management. For such a multispectral PRS mission (previously, thermal data was published

Table 5.1: AggieCap sensor and actuator list.

Hardware Type Interface

Nikon D90 DSLR camera (visible and NIR) gPhoto

Canon T1i DSLR camera (visible and NIR) gPhoto
Canon s95 Small still camera (visible and NIR) CHDK
Canon is110/115 Small still camera (visible and NIR) gPhoto
Sensoray 2255 Video framegrabber USB
FLIR Photon 320 Thermal IR camera Sensoray
ICI7640 Digital thermal IR camera USB
Lotek Nanotag Radio Small animal radiotag locator CSOIS internal
System Computer hardware health Linux System
Pololu Micro Maestro 6-channel servo controller and I/O USB
Microswitch Limit switches for motion control Pololu Maestro
Standard servo motor General servo actuator Pololu Maestro
Firgelli linear actuator Miniature actuator w/ position feedback Pololu Maestro
Overo System LED System I/O Linux Kernel
Overo audio CODEC Audible GnG Warning Linux Kernel
Overo system analog inputs System I/O Linux Kernel
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by Sheng [126]), AggieCap was used to create a payload (see block diagram in Fig. 5.4),

consisting of an Infrared Cameras Incorporated model 7640 Thermal Infrared (TIR) camera

[9], paired with a Canon s95 visible light camera. This payload also included an actuated

sliding bay door, designed to protect the image sensors before takeoff and after landing.

Images of this door in the Open and Closed position can be seen in Fig. 5.5. The payload

enclosure was constructed from carbon-fiber and Kevlar weave, designed to be durable even

during the stressful belly landings of the AggieAir system.

During this flight, 365 images were captured, on a cadence of 4 seconds with a total

flight time of 37 minutes. These individual images were successfully “stitched” to form a

combined image of the target area, seen in Fig. 1.4.

5.7 AERIS Significance of Payload Management and Chapter Summary

AERIS presents the idea of data as a mission, and equates mission assurance to payload

resilience. Data mission assurance is introduced, along with a flexible, modular software

architecture for DMA, as well as standardized tests and verification for such a system using

consumer-level COTS hardware for PRS sUAS data collection missions such as the given

example of TIR imaging for natural resource management.

Fig. 5.4: AggieCap example payload block diagram.
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((a)) Payload door closed. ((b)) Payload door open.

Fig. 5.5: Multispectral payload module ready for flight.

Future work will include a larger framework for holistically testing both airframe-and

payload-in-the-loop during development, improvements to ISaAC allowing more cognitive

processing of flight situational awareness to improve overall PRS missions, and increase

data mission assurance.
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Chapter 6

Small Unmanned Aerial System Navigation and a

Fractional-Order Complementary Filter

To accomplish mission goals or to fly passengers to their destinations, all aircraft rely

on sensors for the core of their navigational systems. During PRS flights, it is of critical

importance to determine the attitude of the aircraft, for stable flight, and more importantly,

for data quality. The knowledge of the states of the aircraft is used to post-process and merge

raw collected data into contiguous, useful datasets such as maps. This process requires

many different sensors (rate gyros, accelerometers, etc.) to be combined into a single set of

states useful for flight and data. In AERIS, accurate information about the attitude of the

aircraft is important for both safe flight in a variety of conditions, as well as payload date

accuracy. Better navigational estimation means higher DMQ. This chapter is adapted from

two publications, “A Comparative Evaluation of low-Cost IMUs for Unmanned Autonomous

Systems” by Chao et al. [143] and “Fractional-Order Complementary Filters for Small

Unmanned Aerial System Navigation” by Coopmans et al. [144].

An inertial measurement unit (IMU) is a device to measure the relative states of a

static or mobile unit with respect to the inertial reference frame. Recently, many Micro

Electro-Mechanical systems (MEMS) IMUs have emerged for under $300USD [145]. These

low-cost IMUs can be used on unmanned vehicles for navigation [146], or can be combined

with imaging sensors for georeferecing purposes. For example, the accurate orientation data

is needed for the interpretation of the images from an airborne LIDAR radar. Actually, an

accurate IMU accounts for a large portion of the total cost for an unmanned autonomous

system [147]. The emergence of low-cost IMUs makes it possible to use more unmanned

vehicles for agricultural or environmental applications like precision farming and real-time

irrigation control [16, 148]. With the current trend of modularization and standardization
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in the unmanned system design, the developers can either use an inexpensive commercial-

off-the-shelf (COTS) IMU as a part of the navigation system, or develop their own system

with low-cost inertial sensors.

In this study, low-cost IMUs are defined as those with the price around or less than

$3000 USD. Low-cost MEMS IMUs are widely used on small or micro unmanned vehicles

since they are small, light, yet still powerful. However, these lower-cost IMUs have bigger

measurement errors or noise compared with expensive navigation grade or tactical grade

IMUs [149]. It is challenging to design, test, and integrate these low-cost inertial sensors

into a powerful IMU for navigation uses. More considerations for system design and sensor

fusion algorithms need to be addressed to achieve autonomous navigation missions.

IMUs are usually used to measure the vehicle states like orientation, velocity, and po-

sition. The orientation measurement is especially important for missions requiring accurate

navigation. However, the orientation is not directly measurable with the current COTS

MEMS sensors. It has to be estimated from a set of correlated states like angular rates

(gyros), linear accelerations (accelerometers), and magnetic fields (magentometers). There-

fore, the estimation accuracy of IMUs heavily relies on the sensor fusion algorithm. Many

researchers have looked into the state estimation problem using nonlinear filtering tech-

niques [150]. Different kinds of Kalman filters are widely used in the aeronautics societies

for spacecraft attitude estimations [151]. However, many of these algorithms are developed

for highly accurate inertial sensors. Besides, those algorithms may have high demands for

the computational power, which may not be possible for low-cost IMUs. The sensor fu-

sion algorithms based on low-cost IMUs are focused in this chapter. A short survey of

the current available state estimation filters for low-cost unmanned autonomous systems

is provided with several representative examples like complementary filters [152], extended

Kalman filters [153–155], and other nonlinear filters [156].

Kalman or Kalman-style combining filters are the established solution for combining

sensor data into navigation-ready data. Extended Kalman filter approaches allow nonlinear

models to be linearized and used with the Kalman techniques, however, they have proved
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difficult to apply to sUASs with low-cost, high-noise sensors [157], and even EKF-based

techniques are known to give unsatisfactory results [158]. Complementary filters are not

mathematically rigorous like the Kalman filter, and therefore are not well-suited for high-risk

applications like space missions. However, compared to Kalman filtering, complementary

filter techniques are less computationally intensive and more readily performed on small,

low-power processing hardware ideal for small, low-cost UASs.

Due to their inherent advantages, enriching complementary filters with new ideas may

be beneficial. One paradigm which is gaining momentum in research is that of fractional

calculus. The idea of fractional calculus has been known since the development of the regular

calculus, with the first reference probably being associated with letter between Leibniz and

L’Hospital in 1695. Fractional-order calculus is experiencing a resurgence as applications

are found for the fractional calculus’ more physical representation of dynamics of the real

world.

The links between fractional–order calculus and stable power-law statistics are also well

known [41]. Power-law statics are ubiquitous [159], and although Kalman-style power-law

aware filters (such as the Kalman-Levy filter) have been considered in research, they are not

well studied and have even higher mathematical complexity compared to standard Kalman

techniques [160]. Complimentary filters work without assuming Gaussian noise statistics,

however, and are applicable to a wider variety of sensor hardware like commonly-available

MEMS devices with longer-tail noise tendencies [161]. Since complementary filters require

less computational power, they couple well with low-cost MEMs sensors and microcon-

trollers. Fractional-order filters are being implemented in other mechatronic applications

such as lithography [162] with good success.

6.1 IMU Basics and Notation

Most IMUs are employed for the measurement of the movements of a craft or a vehicle

in 3D space. To describe the vehicle movements in 3D space, the coordinate frames are

defined as follows, shown in Fig. 6.1 from Chao et al. [16]:
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1. Vehicle Body Frame. Fbody, the reference frame with the origin at the gravity

center and the axes pointing forward, right and down.

2. Inertial Navigation Frame. Fnav, the reference frame with a specific ground origin

and the axes pointing the North, East, and down to the Earth center.

3. Earth-Centered Earth-Fixed (ECEF) Frame. FECEF , the reference frame with

the origin at the Earth center. The z axis passes through the north pole, the x axis

passes through the equator at the prime meridian, and the y axis passes through the

equator at 90◦ longitude.

Instead of making a direct measurement, IMUs rely on the sensor fusion algorithm to

provide an accurate estimation of the system states. More precisely, the following states

need extra estimation since no direct measurements are available or the update rate is not

fast enough:

1. Position. The position information can greatly affect the georeferencing result (see

Chapter 2). However, civilian GPS receivers can only provide measurements at 4-10

Hz or slower with the 3D accuracy of no less than three meters;

2. Attitude. The orientation information is very important for both flight control and

image georeferencing;

3. Velocity. The ground velocity of the autonomous vehicle from GPS can not be

updated fast enough for many applications.

(2) Inertial Navigation Frame: Fnav, the reference frame
with a specific ground origin and the axes pointing the
North, East and down to the Earth center.

(3) Earth-Centered Earth-Fixed (ECEF) Frame: FECEF , the
reference frame with the origin at the Earth center. The
z axis passes through the north pole, the x axis passes
through the equator at the prime meridian, and the y
axis passes through the equator at 90± longitude..

Fig. 1. Aircraft Coordinate Systems [5]

Instead of making a direct measurement, IMUs rely on the
sensor fusion algorithm to provide an accurate estimation of
the system states. More precisely, the following states need
extra estimation since no direct measurements are available
or the update rate is not fast enough:

(1) Position: the position information can greatly affect the
georeferencing result. However, civilian GPS receivers
can only provide measurements at 4-10 Hz or slower
with the 3D accuracy of no less than three meters;

(2) Attitude: the orientation information is very important
for both flight control and image georeferencing;

(3) Velocity: the ground velocity of the autonomous vehi-
cle from GPS can not be updated fast enough for many
applications.

The available direct measurements for low-cost IMUs
include:

(1) Position: for example longitude (pe), latitude (pn),
altitude (h) (LLH) from GPS in 4-10 Hz or lower, the
altitude or height can also be measured by pressure or
ultrasonic sensors;

(2) Velocity: ground speed from GPS (vn, ve, vd) and the
air speed from pressure sensors;

(3) Rate gyro: angular velocity expressed in the body
frame (p, q, r);

(4) Acceleration: linear acceleration expressed in the body
frame (ax, ay, az).

The sensor fusion problem is defined as making an optimal
estimation of the required vehicle states with the direct
measurements from multiple sensors. This problem is also
called a state estimation or a nonlinear filtering problem [7].
There are many possible solutions to this problem such as
Kalman filters or complementary filters.

III. SENSOR PACKAGES

The developments of the low-cost MEMS inertial sensors
can be traced back as early as 1970s [6]. In this section, the
possible sensor packages for IMUs are introduced with an
emphasis on the error models and the IMU categories.

a) Gyro: A gyro sensor is to measure the angular
rate around the pre-specified axis observed from the earth
coordinated in the body frame. Most manned or unmanned
aircraft have three-axis gyros onboard. The gyro error model
can be expressed as:

ŵ = (1+ sg)w +bg + µg, (1)

where ŵ is the measurement value, sg is the scale error, w
is the true value, bg is the gyro bias, and µg is the random
noise. Gyro sensors can be integrated to get the estimate
of the angle. However, angle estimates based only on gyros
have big drifts since the gyro bias is integrated over the time.

b) Accelerometer: Acclerometers used on low-cost
IMUs are to measure the linear acceleration. In fact, ac-
celerometers measure the acceleration minus the gravity
vector. For example, the default output of the accelerometer
(static) is -1 when the axis is pointing down into the earth
center.

â = (1+ sa)a+ba + µa, (2)

where â is the measurement value, sa is the scale error, a
is the true value, ba is the accelerometer bias, and µa is the
random noise.

The accelerometer can also be used to measure the vehicle
attitude since three-axis accelerometers can measure the
gravity vector under the condition of zero acceleration. How-
ever, angle estimates from accelerometers suffer from high
frequency noise when the unmanned vehicles are moving.

c) Magnetometer: Magnetometers are to measure the
magnetic fields of the Earth, which can be approximated
as an absolute value assuming the vehicle is not moving
too fast. Three-axis magnetometer can be used for heading
estimation and gyro bias compensation. One disadvantage
of magnetometer sensors is that the hard-iron and soft-iron
calibrations are needed for every vehicle.

d) GPS: GPS sensors can provide measurements of the
absolute position, velocity, and course angle. The position
packets can either be latitude, longitude, height (LLH) or x,
y, z expressed in the ECEF frame. The velocities include vn,
ve, vd , all with respect to the inertial frame. The course angle
is defined as the angle relative to the north clockwise [14].
The GPS measurements have advantages of bounded errors,
which can be used to reset the system error infrequently.
The disadvantages of GPS include low update rate (<4 Hz
mostly) and vulnerability to weather and terrain interference.

e) Pressure Sensor: Pressure sensors include absolute
pressure sensors and relative pressure sensors. The former
can be used to measure air pressure and to estimate the
altitude. The latter can be used to measure air speed, which
is especially useful to unmanned aerial vehicles.

Based the performance and the characteristics of the
above sensors, the commercial inertial measurement units

Fig. 6.1: Aircraft coordinate systems from Chao et al.
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The available direct measurements for low-cost IMUs include:

1. Position. For example, longitude (pe), latitude (pn), altitude (h) (LLH) from GPS in

4-10 Hz or lower, the altitude or height can also be measured by pressure or ultrasonic

sensors;

2. Velocity. Ground speed from GPS (vn, ve, vd) and the air speed from pressure

sensors;

3. Rate gyro. Angular velocity expressed in the body frame (p, q, r);

4. Acceleration. Linear acceleration expressed in the body frame (ax, ay, az).

The sensor fusion problem is defined as making an optimal estimation of the required

vehicle states with the direct measurements from multiple sensors. This problem is also

called a state estimation or a nonlinear filtering problem [150]. There are many possible

solutions to this problem such as Kalman filters or complementary filters.

6.2 Sensor Packages

The developments of the low-cost MEMS inertial sensors can be traced back as early

as 1970s [149]. In this section, the possible sensor packages for IMUs are introduced with

an emphasis on the error models and the IMU categories.

1. Gyro. A gyro sensor is to measure the angular rate around the pre-specified axis

observed from the earth coordinated in the body frame. Most manned or unmanned

aircraft have three-axis gyros onboard. The gyro error model can be expressed as:

ω̂ = (1 + sg)ω + bg + µg, (6.1)

where ω̂ is the measurement value, sg is the scale error, ω is the true value, bg is the

gyro bias, and µg is the random noise. Gyro sensors can be integrated to get the

estimate of the angle. However, angle estimates based only on gyro data are heavily

prone to drifting since any gyro bias is integrated over time.
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2. Accelerometer. Accelerometers used on low-cost IMUs are to measure the linear

acceleration. In fact, accelerometers measure the acceleration minus the gravity vec-

tor. For example, the default output of the accelerometer (static) is -1 when the axis

is pointing down into the earth center. The accelerometer output can be expressed

as:

â = (1 + sa)a+ ba + µa, (6.2)

where â is the measurement value, sa is the scale error, a is the true value, ba is the

accelerometer bias, and µa is the random noise.

The accelerometer can also be used to measure the vehicle attitude since three-axis

accelerometers can measure the gravity vector under the condition of zero acceleration.

However, angle estimates from accelerometers suffer from high frequency noise when

the unmanned vehicles are moving.

3. Magnetometer. Magnetometers are to measure the magnetic fields of the Earth,

which can be approximated as an absolute value assuming the vehicle is not moving

too fast. Three-axis magnetometer can be used for heading estimation and gyro bias

compensation. One disadvantage of magnetometer sensors is that the hard-iron and

soft-iron calibrations are needed for every vehicle.

4. GPS. GPS sensors can provide measurements of the absolute position, velocity, and

course angle. The position packets can either be Latitude, Longitude, Height (LLH),

or x, y, z expressed in the ECEF frame. The velocities include vn, ve, vd, all with

respect to the inertial frame. The course angle is defined as the angle relative to the

north clockwise [163]. The GPS measurements have advantages of bounded errors,

which can be used to reset the system error infrequently. The disadvantages of GPS

include low update rate (<4 Hz mostly) and vulnerability to weather and terrain

interference.
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5. Pressure Sensor. Pressure sensors include absolute pressure sensors and relative

pressure sensors. The former can be used to measure air pressure and to estimate the

altitude. The latter can be used to measure air speed, which is especially useful to

unmanned aerial vehicles.

Based on the performance and the characteristics of the above sensors, the commercial

inertial measurement units (IMUs) can be categorized into four types: navigation

grade, tactical grade, industrial grade, and hobbyist grade. It is worth mentioning

here that most of the industrial grade and hobbyist grade IMUs use MEMS inertial on-

chip sensors, which greatly reduce the unit sizes and weights. The brief specifications

are shown in Table 6.1. It can be seen that low-cost IMUs mostly fall into the industrial

grade or the hobbyist grade due to their low cost and bigger errors compared with

navigation or tactical grade IMUs.

6.3 Attitude Estimation Algorithms

Given the above sensor packages, an efficient sensor fusion algorithm is needed for the

optimal estimation of the vehicle attitude. Extended Kalman filters are frequently used in

nonlinear estimation problems, especially attitude estimation problems of rigid bodies like

a spacecraft or an aircraft. The extended Kalman filter can recursively estimate the system

states from system measurements corrupted with Gaussian noises. It has advantages here

Table 6.1: IMU categories.

IMU Type Navigation
Grade

Tactical Grade Industrial
Grade

Hobbyist Grade

Cost ($) > 50k 10-20k 0.5-3k < 500
Weight > 5 lb about 1 lb < 5 oz
Gyro Bias < 0.1 deg/h 0.1-10 deg/h ≤ 1 deg/sec > 1 deg/sec

Gyro Random
Walk Error

< 0.005
deg/
√
h

0.2-0.5 deg/
√
h

Accel Bias 5-10 µg 0.02-0.04 mg
Example Honeywell

HG9848
Honeywell
HG1900

Microstrain
GX2

ArduIMU
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since both gyro and accelerometer sensors have drifts and Gaussian-like noises. The general

extended Kalman filter and three representative approaches for the attitude estimation

problem are introduced in the following sections.

6.3.1 General Extended Kalman Filter

Assume that a general nonlinear discrete-time system can be modeled as follows:

xk = f(xk−1, uk) + wk, s.t. w ∼ N(0, Q), (6.3)

yk = g(xk) + vk, s.t. v ∼ N(0, R), (6.4)

where xk is a m×1 vector, yk is a n×1 vector, f(xk−1, uk) and g(xk) are nonlinear functions.

The first equation is called the propagation equation and the second one is called the

measurement equation.

Given the initial values P0, the measurement covariance R and the state covariance Q,

the optimal Kalman estimate of the states can be updated using the following steps [164]:

1. State estimation extrapolation: x̂k|k−1 = f( ˆxk−1|k−1, uk),

2. Error covariance extrapolation: Pk|k−1 = FkPk−1|k−1F
T
k +Qk,

3. Kalman gain: Kk = Pk|k−1G
T
k (GkPk|k−1G

T
k +Rk)

−1,

4. State estimate update: x̂k|k = ˆxk|k−1 +Kk(yk − g( ˆxk|k−1)),

5. Error covariance update: Pk|k = (I −KkGk)Pk|k−1.

The Fk is the Jacobian matrix of f(xk−1, uk), and the Gk is the Jacobian matrix of g(xk).

6.3.2 Quaternion-Based Extended Kalman Filter

Unit quaternions have many applications in state estimation problems because their

simplicity. A quaternion-based extended Kalman filter was proposed originally for the

MNAV IMU from Crossbow Technology [155]. UAV developers have used this approach on

their specific platform [165]. The system state variables include both the unit quaternion
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(q) and the gyro biases (bp ,bq, br). The measurements or observation of the system are

the accelerations: ax ,ay, az, and the yaw angle ψ derived from the magnetometer. The

propagation equation and the measurement equation are listed below [155].

q̇ =
1

2




0 −p̂ −q̂ −r̂ 0 0 0

p̂ 0 r̂ −q̂ 0 0 0

q̂ −r̂ 0 p̂ 0 0 0

r̂ q̂ −p̂ 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0




q + wk, (6.5)

q =




q0

q1

q2

q3

bp

bq

br




,




p̂

q̂

r̂




=




p

q

r



−




bp

bq

br



, (6.6)




ax

ay

az

ψ




=




2g(q1q3 − q0q2)

2g(q2q3 + q0q1)

g(q20 − q21 − q22 + q23)

tan−1 2(q1q2+q3q0)
q20+q

2
1−q22−q23




+ vk, (6.7)

where wk ∼ N(0, Q), vk ∼ N(0, R).

It is worth pointing out that the measurement equation has an assumption that the

acceleration measured is only the projection of the gravity vector. However, this assumption

may not be true for small UAVs.
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6.3.3 Euler Angle-Based Extended Kalman Filter

Euler angles can also be chosen as the system states for the attitude estimation problem.

Assuming that the system state is a vector x (representing the roll and pitch angle) and

the system output is a vector ŷ (representing the accelerometer readings), the system can

then be modeled [166]:

x =



φ

θ


 , ŷ =




ax

ay

az



, (6.8)

ẋ =



p+ q sinφ tan θ + r cosφ tan θ

q cosφ− r sinφ


+ vw, (6.9)

ŷ =




u̇− rv + qw − g sin θ

v̇ + ru− pw − g cos θ sinφ

ẇ − qu+ pv − g cos θ cosφ




+ vk, (6.10)

where vw ∼ N(0, Q), vk ∼ N(0, R).

In fact, the velocities (u, v, w) are not easily measurable at high frequencies. The air

speed can be used instead to simplify the measurement equation for small fixed-wing UAVs.

The following assumptions can be made [166]:

1. u̇ = v̇ = ẇ = 0. The small UAV will not accelerate all the time;

2. v = 0. The small fixed-wing UAV will not go sideways;

3. u = va cos θ, w = va sin θ;

where Va is the air speed measured by a pitot tube [153]. The measurement equation can

then be simplified [166].

ŷ =




qVa sin θ + g sin θ

rVa cos θ − pVa sin θ − g cos θ sinφ

−qVa cos θ − g cos θ cosφ




+ vk, (6.11)
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where vk ∼ N(0, R).

The attitude can then be estimated using the extended Kalman filter following the

steps described in the above section.

6.3.4 AggieEKF: GPS Aided Extended Kalman Filter

AggieEKF, a GPS aided extended Kalman filter is proposed in this section with con-

siderations from both filters designed in the above sections. An extended Kalman filter

similar to Jang and Liccardo [155] is developed. However, the measurement equation is

replaced by a more accurate estimation of the gravity vector with the help from the GPS

speed measurements. The system equations are shown as below where Vg is the ground

speed measured by the GPS.

q̇ =
1

2




0 −p̂ −q̂ −r̂ 0 0 0

p̂ 0 r̂ −q̂ 0 0 0

q̂ −r̂ 0 p̂ 0 0 0

r̂ q̂ −p̂ 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0




q + wk, (6.12)




âx

ây

âz




=




2g(q1q3 − q0q2)

2g(q2q3 + q0q1)

g(q20 − q21 − q22 + q23)




+ vk, (6.13)

where




âx

ây

âz




=




ax

ay − rVg + g sinφt−1

az + qVg + g cosφt−1



, (6.14)

and vk ∼ N(0, R). The attitude state estimation can be calculated using the steps described

in the above section.
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6.3.5 Complementary Filters

Aside of the Kalman filter approaches, there are other nonlinear filters like complemen-

tary filters. One example complementary filter is shown below [167]:

˙̂
R = [(RΩ)× + kestπa(R̃)R̂T ]R̂, (6.15)

πa(R̃) =
1

2
(R̃− R̃T ), R̃ = R̂TR, (6.16)

where Ω is the body angular velocity, R is the rotation matrix estimated from accelerom-

eters, and kest is the gain to tune. The key idea here is to fuse the estimation from gyros

and from accelerometers [152].

6.4 Example Low-Cost IMUs

Several example low-cost IMUs are compared in this section focusing on hardware

sensors, estimation accuracy, and software modification ease. The detailed hardware speci-

fications are compared in the end of this section.

6.4.1 Attitude Estimation IMUs

The Microstrain 3DM-GX2 IMU has typical inertial sensor sets including 3-axis gyros,

3-axis accelerometers, and 3-axis magnetometers [168]. The 3DM-GX2 IMU can output the

angle estimations in either Euler angles or rotational matrix at up to 250 Hz and the sensor

bandwidth is 100 Hz. The 3DM-GX2 IMU can be easily connected with other units through

RS232/422 or USB interfaces. Another advantage of The 3DM-GX2 IMU (Fig. 6.2) is its

resistance to shock interferences of up to 500g when powered. There are also similar IMUs

like the 3DM-GX3 from Microstrain and VN100 from VectorNav Technologies [169].

6.4.2 GPS-Coupled IMUs

The GPS/inertial navigation system could be only one board or two separate units.

Unfortunately, the GPS/INS integrated unit with the built-in sensor fusion algorithm is

very expensive. The MTi-G IMU from Xsens has both attitude and position estimations at
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TABLE I
IMU CATEGORIES

IMU Type Navigation Grade Tactical Grade Industrial Grade Hobbyist Grade
Cost ($) > 50k 10-20k 0.5-3k < 500
Weight > 5 lb about 1 lb < 5 oz
Gyro Bias < 0.1 deg/h 0.1-10 deg/h ∑ 1 deg/sec > 1 deg/sec
Gyro Random Walk Error < 0.005 deg/

p
h 0.2-0.5 deg/

p
h

Accel Bias 5-10 µg 0.02-0.04 mg
Example Honeywell HG9848 Honeywell HG1900 Microstrain GX2 ArduIMU

measurement equation can then be simplified [17].

ŷ =

2
4

qVa sinq +gsinq
rVa cosq ° pVa sinq °gcosq sinf

°qVa cosq °gcosq cosf

3
5+ vk,(11)

where vk s N(0,R).
The attitude can then be estimated using the extended

Kalman filter following the steps described in the above
section.

D. AggieEKF: GPS Aided Extended Kalman Filter
AggieEKF, a GPS aided extended Kalman filter is pro-

posed in this section with considerations from both filters
designed in the above sections. An extended Kalman filter
similar to the one in [12] is developed. However, the mea-
surement equation is replaced by a more accurate estimation
of the gravity vector with the help from the GPS speed
measurements. The system equations are shown as below
where Vg is the ground speed measured by the GPS.

q̇ =
1
2

2
666666664

0 °p̂ °q̂ °r̂ 0 0 0
p̂ 0 r̂ °q̂ 0 0 0
q̂ °r̂ 0 p̂ 0 0 0
r̂ q̂ °p̂ 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

3
777777775

q+wk,(12)

2
4

âx
ây
âz

3
5 =

2
4

2g(q1q3 °q0q2)
2g(q2q3 +q0q1)

g(q2
0 °q2

1 °q2
2 +q2

3)

3
5+ vk, (13)

where

2
4

âx
ây
âz

3
5 =

2
4

ax
ay ° rVg +gsinft°1
az +qVg +gcosft°1

3
5 , (14)

and vk ª N(0,R). The attitude state estimation can be calcu-
lated using the steps described in the above section.

E. Complementary Filters
Aside of the Kalman filter approaches, there are other

nonlinear filters like complementary filters. One example
complementary filter is shown below [18]:

˙̂R = [(RW)£ + kestpa(R̃)R̂T ]R̂, (15)

pa(R̃) =
1
2
(R̃° R̃T ), R̃ = R̂T R, (16)

where W is the body angular velocity, R is the rotation matrix
estimated from accelerometers, and kest is the gain to tune.
The key idea here is to fuse the estimation from gyros and
from accelerometers [9].

V. EXAMPLE LOW-COST IMUS

Several example low-cost IMUs are compared in this
section focusing on hardware sensors, estimation accuracy,
and software modification ease. The detailed hardware spec-
ifications are compared in the end of this section.

A. Attitude Estimation IMUs

The Microstrain 3DM-GX2 IMU has typical inertial sen-
sor sets including 3-axis gyros, 3-axis accelerometers, and 3-
axis magnetometers [19]. The 3DM-GX2 IMU can output the
angle estimations in either Euler angles or rotational matrix at
up to 250 Hz and the sensor bandwidth is 100 Hz. The 3DM-
GX2 IMU can be easily connected with other units through
RS232/422 or USB interfaces. Another advantage of The
3DM-GX2 IMU is its resistance to shock interferences of
up to 500g when powered. There are also similar IMUs like
the 3DM-GX3 from Microstrain and VN100 from VectorNav
Technologies [20].

Fig. 2. Microstrain GX2 IMU.

B. GPS-Coupled IMUs

The GPS/inertial navigation system could be only one
board or two separate units. Unfortunately, the GPS/INS
integrated unit with the built-in sensor fusion algorithm
is very expensive. The MTi-G IMU from Xsens has both
attitude and position estimations at up to 120Hz, shown in
Fig 3. However, this IMU costs a lot more than $3000. It is
just shown here for comparison reasons.

A GPS-coupled IMU can also be combined with two
isolated units (GPS and IMU) and a central processor. Ag-
gieNav is built in Center for Self-Organizing and Intelligent
Systems (CSOIS) at Utah State University following this
idea [22]. Based around Analog Devices’ ADIS1635X 6-
DOF IMU part, AggieNav includes a GPS unit, a magnetic

Fig. 6.2: Microstrain GX2 IMU.

up to 120Hz, shown in Fig. 6.3 from Xsens documentation [170]. However, this IMU costs

a great deal more than $3000, and is just shown here for comparison reasons.

A GPS-coupled IMU can also be combined with two isolated units (GPS and IMU)

and a central processor. AggieNav was designed and implemented at the Center for Self-

Organizing and Intelligent Systems (CSOIS) at Utah State University following this idea

[139]. Based around Analog Devices’ ADIS1635X 6-DOF IMU part, AggieNav includes

a GPS unit, a magnetic compass, as well as pressure sensors for airspeed measurement.

AggieNav also has a Gumstix Verdex Pro (Fig. 6.4) or Overo connected for heavy compu-

tations like further processing of the sensor data, and greater control over other aspects of

the UAV mission.

6.4.3 Hobbyist Grade IMUs

Recently, several hobbyist grade IMUs have become available with “flat” three-axis

gyros and accelerometers. Hobbyist grade IMUs can also be used by the hobbyist for the

Fig. 3. Xsens Mti-g IMU [21].

compass, as well as pressure sensors for airspeed measure-
ment. AggieNav also has a Gumstix Verdex Pro connected
for heavy computations like further processing of the sensor
data, and greater control over other aspects of the UAV
mission.

Fig. 4. AggieNav [22]

C. Hobbyist Grade IMUs

Recently, several hobbyist grade IMUs have become avail-
able with “flat” three-axis gyros and accelerometers. Hobby-
ist grade IMUs can also be used by the hobbyist for the
navigation mission of easy-configured UAVs [1].

Ardu-IMU is one representative IMU made from an open
source project, shown in Fig. 5. It uses complementary filters
derived from Mahony’s work [2]. It can output attitude
estimates up to 50 Hz.

Sparkfun Razor IMU is another representative IMU made
from “flat” three-axis sensors [23], shown in Fig. 6.

D. Comparisons

A detailed comparison of the specifications for all the
IMUs mentioned above is provided in Table II. It is worth
mentioning that several low-cost IMUs like Ardu IMU are
using single-chip dual axis gyro sensors which is convenient
for micro unmanned vehicles.

VI. FUTURE DIRECTIONS

Nowadays, inertial sensor and unmanned system technolo-
gies are undergoing great changes every year. There are still
many new research ideas that can be tried on IMUs.

Fig. 5. Ardu-IMU

Fig. 6. Sparkfun Razor IMU

(1) Optical-Flow-Based IMU: Most birds rely on vision for
navigation, which is the basic idea of the optical flow.
With the improving accuracy of the optical flow chips,
an optical-flow-based IMU can be expected soon.

(2) Accelerometer/gyro Network: Small size and wire-
less capabilities make it possible to employ a gyro
or accelerometer network on the unmanned vehicles.
The redundant sensors can be combined for an more
accurate estimate.

(3) GPU: Most current IMUs are still more or less limited
by the computational power. The graphics processing
unit (GPU) can be put onboard to support intensive
calculations such as real-time image processing for
attitude estimations.

(4) Fractional Order Kalman Filter (FOKF): Fractional
order Kalman filter can provide a different approach
from the current nonlinear estimation algorithms. The
reason is that most current extended Kalman filter
approaches made an assumption that the sensor noise is
Gaussian, which may not be true. FOKF could handle
the non-Gaussian noise better because fractional order
calculus assumes infinite dimensions.

(5) Collaborative IMUs: The low-cost IMUs and un-
manned vehicles introduce a new challenge on how to
optimize the IMU capabilities among a heterogeneous
UAV group with different types of IMUs. A leader
UAV with a high accuracy IMU can send messages to
the follower UAVs with low-cost IMUs for estimation
improvements at a low frequency.

Fig. 6.3: Xsens Mti-g IMU from Xsens’ documentation.
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Fig. 6.4: AggieNav IMU.

navigation mission of easy-configured UAVs [145].

Ardu-IMU is one representative IMU made from an open source project, shown in

Fig. 6.5. It uses complementary filters derived from Mahony’s work [146]. It can output

attitude estimates up to 50 Hz.

Sparkfun Razor IMU is another representative IMU made from “flat” three-axis sensors

[171], shown in Fig. 6.6.

6.4.4 IMU Comparisons

A detailed comparison of the specifications for all the IMUs mentioned above is provided

in Table 6.2. It is worth mentioning that several low-cost IMUs like Ardu IMU are using

single-chip dual axis gyro sensors which is convenient for micro and small unmanned vehicles.

Fig. 3. Xsens Mti-g IMU [21].

compass, as well as pressure sensors for airspeed measure-
ment. AggieNav also has a Gumstix Verdex Pro connected
for heavy computations like further processing of the sensor
data, and greater control over other aspects of the UAV
mission.

Fig. 4. AggieNav [22]

C. Hobbyist Grade IMUs

Recently, several hobbyist grade IMUs have become avail-
able with “flat” three-axis gyros and accelerometers. Hobby-
ist grade IMUs can also be used by the hobbyist for the
navigation mission of easy-configured UAVs [1].

Ardu-IMU is one representative IMU made from an open
source project, shown in Fig. 5. It uses complementary filters
derived from Mahony’s work [2]. It can output attitude
estimates up to 50 Hz.

Sparkfun Razor IMU is another representative IMU made
from “flat” three-axis sensors [23], shown in Fig. 6.

D. Comparisons

A detailed comparison of the specifications for all the
IMUs mentioned above is provided in Table II. It is worth
mentioning that several low-cost IMUs like Ardu IMU are
using single-chip dual axis gyro sensors which is convenient
for micro unmanned vehicles.

VI. FUTURE DIRECTIONS

Nowadays, inertial sensor and unmanned system technolo-
gies are undergoing great changes every year. There are still
many new research ideas that can be tried on IMUs.

Fig. 5. Ardu-IMU

Fig. 6. Sparkfun Razor IMU

(1) Optical-Flow-Based IMU: Most birds rely on vision for
navigation, which is the basic idea of the optical flow.
With the improving accuracy of the optical flow chips,
an optical-flow-based IMU can be expected soon.

(2) Accelerometer/gyro Network: Small size and wire-
less capabilities make it possible to employ a gyro
or accelerometer network on the unmanned vehicles.
The redundant sensors can be combined for an more
accurate estimate.

(3) GPU: Most current IMUs are still more or less limited
by the computational power. The graphics processing
unit (GPU) can be put onboard to support intensive
calculations such as real-time image processing for
attitude estimations.

(4) Fractional Order Kalman Filter (FOKF): Fractional
order Kalman filter can provide a different approach
from the current nonlinear estimation algorithms. The
reason is that most current extended Kalman filter
approaches made an assumption that the sensor noise is
Gaussian, which may not be true. FOKF could handle
the non-Gaussian noise better because fractional order
calculus assumes infinite dimensions.

(5) Collaborative IMUs: The low-cost IMUs and un-
manned vehicles introduce a new challenge on how to
optimize the IMU capabilities among a heterogeneous
UAV group with different types of IMUs. A leader
UAV with a high accuracy IMU can send messages to
the follower UAVs with low-cost IMUs for estimation
improvements at a low frequency.

Fig. 6.5: Ardu-IMU.
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Fig. 3. Xsens Mti-g IMU [21].

compass, as well as pressure sensors for airspeed measure-
ment. AggieNav also has a Gumstix Verdex Pro connected
for heavy computations like further processing of the sensor
data, and greater control over other aspects of the UAV
mission.

Fig. 4. AggieNav [22]

C. Hobbyist Grade IMUs

Recently, several hobbyist grade IMUs have become avail-
able with “flat” three-axis gyros and accelerometers. Hobby-
ist grade IMUs can also be used by the hobbyist for the
navigation mission of easy-configured UAVs [1].

Ardu-IMU is one representative IMU made from an open
source project, shown in Fig. 5. It uses complementary filters
derived from Mahony’s work [2]. It can output attitude
estimates up to 50 Hz.

Sparkfun Razor IMU is another representative IMU made
from “flat” three-axis sensors [23], shown in Fig. 6.

D. Comparisons

A detailed comparison of the specifications for all the
IMUs mentioned above is provided in Table II. It is worth
mentioning that several low-cost IMUs like Ardu IMU are
using single-chip dual axis gyro sensors which is convenient
for micro unmanned vehicles.

VI. FUTURE DIRECTIONS

Nowadays, inertial sensor and unmanned system technolo-
gies are undergoing great changes every year. There are still
many new research ideas that can be tried on IMUs.

Fig. 5. Ardu-IMU

Fig. 6. Sparkfun Razor IMU

(1) Optical-Flow-Based IMU: Most birds rely on vision for
navigation, which is the basic idea of the optical flow.
With the improving accuracy of the optical flow chips,
an optical-flow-based IMU can be expected soon.

(2) Accelerometer/gyro Network: Small size and wire-
less capabilities make it possible to employ a gyro
or accelerometer network on the unmanned vehicles.
The redundant sensors can be combined for an more
accurate estimate.

(3) GPU: Most current IMUs are still more or less limited
by the computational power. The graphics processing
unit (GPU) can be put onboard to support intensive
calculations such as real-time image processing for
attitude estimations.

(4) Fractional Order Kalman Filter (FOKF): Fractional
order Kalman filter can provide a different approach
from the current nonlinear estimation algorithms. The
reason is that most current extended Kalman filter
approaches made an assumption that the sensor noise is
Gaussian, which may not be true. FOKF could handle
the non-Gaussian noise better because fractional order
calculus assumes infinite dimensions.

(5) Collaborative IMUs: The low-cost IMUs and un-
manned vehicles introduce a new challenge on how to
optimize the IMU capabilities among a heterogeneous
UAV group with different types of IMUs. A leader
UAV with a high accuracy IMU can send messages to
the follower UAVs with low-cost IMUs for estimation
improvements at a low frequency.

Fig. 6.6: Sparkfun Razor IMU.

Table 6.2: IMU comparisons.

Specifications Microstrain Microstrain Xsens Mti-g ADIS16405 Ardu-IMU VectorNAV
3DM-GX2 3DM-GX3 (w. GPS) VN-100

Size (mm) 41× 63× 32 44× 25× 11 58× 58× 33 23× 23× 23 28× 39× 12 75× 75× 17
Wight (g) 39 18 68 16 6 36

Orientation Accuracy (static) ±0.5◦ typical ±0.5◦ typical < 0.5◦(roll/pitch) Only raw data N/A < 0.5◦(roll/pitch)
(dynamic) ±2.0◦ typical ±2.0◦ typical 1◦ RMS < 2.0◦ typical

Update Rate < 100Hz < 1000Hz < 120Hz < 330Hz < 50Hz < 200Hz
Gyro Bias (◦/sec) ± 0.2 ±0.2 1 ±3(initial) N/A <0.028 (25◦C)

0.007 (in-run)
Gyro Range(default) ±300◦/sec ±300◦/sec ±300◦/sec ±300◦/sec ±300◦/sec ±500◦/sec

Gyro Nonlinearity 0.2% 0.2% 0.1% 0.1% 1% < 1%
Gyro Random Walk Error N/A N/A 0.05◦/sec/

√
Hz N/A N/A

Accel Bias ±0.005g ±0.005g ±0.002g ±0.05g(initial) N/A ±0.0005g(X,Y)
0.0002g(in-run) ±0.0016g(Z)

Accel Range(default) ±5g ±5g ±50m/s2 ±18g ±3.6g ±2g
Accel Nonlinearity 0.2% 0.2% 0.2% 0.1% 0.3% < 0.5%
Mag Bias (Gauss) ±0.01 ±0.01 0.0001 ±0.004 N/A ±0.000125

Mag Range (Gauss) ±2.5 ±1.2 ±0.75 ±2.5 N/A ±6
Mag Nonlinearity 0.4% 0.4% 0.2% 0.5% N/A < 1%

6.4.5 Sensors and Navigation

For small UAVs targeted toward remote sensing, the navigation sensor suite determines

much about the usefulness and capabilities of such a system, and is mostly limited because

of the relatively high cost of high-quality navigational sensors and equipment.

Although technology is always improving, the options for high-quality, low-cost minia-

ture attitude navigation sensors are few; many inexpensive, small fixed-wing UAVs use

infrared thermopiles to sense the relative heat differential from the black body radiation of

the Earth’s surface. While this technique does work, it is not accurate enough for some

remote measurement tasks and has problems when flying near large land features such as
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mountains and through valleys. Combined with a modern civilian GPS receiver, navigation

is possible with these sensors, but applications in acquiring scientific data requires higher

accuracy in attitude estimation.

Inertial measurement units with roll-rates and accelerometers are the standard sensor

for attitude determination in flight. Several integrated solutions exist for navigation in small

UASs, most of which use a Kalman or other state-estimation filter of some kind to provide

a high-accuracy estimation of the current position and attitude of the system at a given

instant. While these systems work well for their intended applications, even the academic

prices are prohibitive for integration into inexpensive UAVs. Additionally, the source code

is not made available, and users of the systems are forced to accept the filter/algorithm

performance of the systems as they are given.

In any navigation system, performance, and reliability are primary design drivers. In

the world of small UAVs, size, weight, and price are also of very high importance. Recently,

due to the high-availability of low-cost sensing chips, many consumer-level devices such as

Apple’s iPhones, Nintendo Wii, and Sony PlayStation 3 have integrated accelerometers into

their hardware for more immersive user-experiences. Fully integrated 6-degree-of-freedom

chips are being produced by Invensense, and other companies who target the consumer

motion interface segments of the market. These sensors work well for static human motion

applications, and not as well for dynamic applications such as aerial robotics.

Many organizations are producing IMUs for low-cost hobbyist-level (i.e., under

$200USD) UAV flight such as Sparkfun, DIYDrones, etc. [143] based on complementary

filters. These products are good enough for flight (and basic data collection in some cases),

but with current data filtering techniques it is not possible to derive high-quality data from

inexpensive sensor systems due to nonlinearities, relatively poor noise performance, and

poor temperature calibration [172].
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6.4.6 Kalman Filtering for Small UASs

Estimating the orientation of the aircraft is a very important part of a UAS. Commonly

a Kalman filter is used [154, 157, 173–175] and combines information from multiple sensors

and models to estimate the orientation and variance. Kalman filters are model-based and

require system models to propagate state estimates. When the Kalman Filter receives

measurements, it uses those measurements and their models to update state estimates.

One requirement of the Standard Kalman Filter is that these models must be linear. The

Extended Kalman Filter does not share this same requirement and can be used when the

models are nonlinear. However the Extended Kalman Filter linearizes the models in the

operation of the filter and assumes that the state estimates will not deviate far from the

nominal solution. Knowledge about the noise attached to these models is also necessary

to design a Kalman Filter, and most Kalman Filters assume that this noise is Gaussian.

These assumptions make Kalman filters difficult to use with with small, low-quality inertial

sensors due to the nonlinearity and non-Gaussian characteristics of these sensors [167,176].

In these cases, complementary filters are often used [158, 177, 178] because no assumptions

are made about linearity and noise statistics [179].

6.4.7 Complementary Filters

The basic idea of a complementary filter is to take two or more sensors, filter out

the unreliable frequencies for each sensor, and combine the filtered outputs to get a better

estimate throughout the entire bandwidth of the system. To achieve this, the sensors

included in the filter should complement each other by performing better over different parts

of the system bandwidth than the other sensors. For example, one sensor could have reliable

data at high frequencies and unreliable data at low frequencies. To complement this sensor,

one or more sensors should be added to the filter that have reliable low frequency data. An

example of two sensors that complement each other are an accelerometer and gyro. The gyro

is reliable at high frequencies while the accelerometer is reliable at lower frequencies [167].

The complementary filter filters out the unreliable parts of the frequency for each sensor

and combines their output. Figure 6.7 shows a diagram of a simple complementary filter
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with two sensors.

Complementary filters were first introduced in a patent in 1951 [180]. The patent

describes an automated steering system for keeping a manned aircraft on a proper flight

path during landing using the Instrument Landing Approach System (ILAS) along with a

gyro-stabilized accelerometer. The ILAS was used to measure the rate of change between

the distance from the aircraft and the desired path, and the gyro-stabilized accelerometer

was used to measure changes in heading. The ILAS had reliable low frequency data but

unreliable high frequency data, while the accelerometer had reliable high frequency data.

Therefore, a complementary filter was used to combine this data, although the term “com-

plementary filter” was not used. This term was coined in a journal paper in 1953 that

describes a similar automated steering system [181]. These early complementary filters

were designed in the frequency domain and realized with simple RC circuits.

Many other applications for the Frequency Domain Complementary Filter (FDCF)

were presented after their introduction. Shaw and Srinivasan [182] used a complementary

filter to combine low frequency position data from strain sensors and high frequency data

from an accelerometer to estimate the position of the end of a beam. Zimmermann and

Sulzer [183] used low frequency data from an inclinometer and high frequency accelerometer

data to measure orientation. Baerveldt and Klang [177] introduced a similar system to

measure orientation for an autonomous helicopter with an inclinometer and a gyro. Roberts

High-pass
Sensor A

Sensor B

+x x̂

Filter

Low-pass

Filter

Fig. 6.7: Simple complementary filter diagram.
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et al. [158] used an accelerometer and a gyro to measure 3D orientation. For the simplified

purposes of this chapter, accelerometers and inclinometers are considered to be equivalent.

Eventually researchers began to design complementary filters in state space due to their

advantages with multiple-input multiple-output systems, realization in digital systems, and

closed-loop control designs. A common application of the State Space Complementary

Filter (SSCF) is to estimate the orientation of a rigid body. Bachmann et al. [184–186]

used such a complementary filter based on quaternions to track the orientation of robotic

flexible links. Quaternions are used to represent orientation because they represent the axis

and the rotation angle directly without singularities [187]. Instead of using quaternions to

represent orientation, Mahony et al. [167] introduced a direct and passive complementary

filter using a rotation matrix in the special orthogonal group, SO(3) (also referred to as a

direct cosine matrix (DCM) [188], or attitude matrix [187]). Although the design of the

filter was carried out using the SO(3), Mahony et al. [152] recommended that realization be

done with quaternions. Hamel and Mahony [178] introduced another type of complementary

filter based on SO(3), called the explicit complementary filter.

6.5 Frequency Domain Complementary Filters (FDCFs)

To illustrate how a frequency-domain complementary filter works, assume that two

sensors complement each other and can be used to measure a signal x. Both of these

sensors can be modeled and have transfer functions H1(s) and H2(s). According to the

complementary filter design, the unreliable frequencies of each sensor are filtered out by

passing the outputs through filters G1(s) and G2(s). Figure 6.8 shows a block diagram of

this system [177,189].

The objective of the estimator is to find an estimate of x (x̂) such that x̂ = x. This

is possible, according to the block diagram in Fig. 6.8, if the transfer functions G1(s) and

G2(s) are designed according to the following equation:

H1(s)G1(s) +H2(s)G2(s) = 1, ∀s. (6.17)
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H2(s) G2(s)
xm2

+x x̂

Fig. 6.8: Frequency domain complementary filter.

If H1(s) and H2(s) are known, they can be used with Eq. (6.17) to find G1(s) and

G2(s). If H1(s) and H2(s) are not known, a modeless approach can be used which assumes

that H1(s) and H2(s) are both ideal (H1(s) = H2(s) = 1). Instead of specifically designing

G1(s) and G2(s) based on the sensor models, G1(s) and G2(s) are set as generic filters and

tuned to minimize the error (e = x− x̂).

With H1(s) = H2(s) = 1, Eq. (6.17) becomes the following:

G1(s) +G2(s) = 1, ∀s, (6.18)

and is used as a constraint when choosing filters for G1(s) and G2(s).

While using the modeless approach, one might choose the second order filters in

Eq. (6.19) and Eq. (6.20) for G1(s) and G2(s). Since ω0 determines where the filters are

cut-off, it is used as a tuning parameter. Figure 6.9 shows a Bode plot of G1(s) and G2(s)

with ω0 = 1. If ω0 is reduced, more of H1(s) is filtered out and more of H2(s) is allowed to

pass through (H2(s) dominant). If ω0 is increased, more of H2(s) is filtered out and more

of H1(s) is allowed to pass through (H1(s) dominant). A well-designed filter will have a

value for ω0 such that the best parts of both H1(s) and H2(s) are allowed to passed through

while the unreliable parts are filtered out.

G1(s) =
2ω0s+ ω2

0

(s+ ω0)2
(6.19)
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G2(s) =
s2

(s+ ω0)2
(6.20)

6.5.1 FDCF Example – Modeless Second Order Filter

A modeless FDCF with second order filters can be used to combine the outputs of

an inclinometer and a gyroscope to measure orientation. An inclinometer is a general

term given to devices that directly measure orientation; one example is an accelerometer.

The accelerometer measures orientation by the acceleration due to gravity. In general,

inclinometers have a slow response time and will filter out high frequency movement. A

gyro measures angular rate, which is converted to orientation by integration. While the

gyro does well at high frequencies, the inherent noise and integration introduces drift.

The complementary filter improves the orientation estimate by combining the reliable high

frequency data from the gyro and the low frequency data from the inclinometer.
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Fig. 6.9: Bode plots of G1(s) and G2(s).
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Simulink is used to test the Second Order FDCF with the inclinometer and gyro.

As shown in the simulink model in Fig. 6.10, the inclinometer is modeled as the transfer

function in Eq. (6.21) [177]. The gyro is modeled as the derivative of the actual orientation

plus a bias. Noise is also added to the gyro before the signal is integrated to get orientation.

The output of the sensors are then passed through the filters from Eq. (6.19) and Eq. (6.20)

and combined to get the orientation estimate.

H1(s) =
1.88

s+ 1.88
(6.21)

The input orientation to the simulation is a chirp signal that produces a sine wave

between ±10 degrees at frequencies between 0.05Hz and 1Hz. At the beginning of the

simulation, the sine wave will start at 1Hz and gradually decrease to 0.05Hz after 100

seconds. At that point, the frequency will gradually increase until the end of the simulation.

Figure 6.11 and Fig. 6.12 show the response of the inclinometer and gyro to the input

chirp signal. As expected, the inclinometer cannot track the input at high frequencies.

However, as the frequency is reduced, the inclinometer is more capable of tracking the sine

wave. The output of the gyro is also expected; it tracks the input well but drifts away from

Fig. 6.10: Simulink model of modeless complementary filter.
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the actual orientation at 1 degree per second.

The filter is tuned by finding the optimal value of ω0 that minimizes the error e. This is

done by running multiple simulations with varying values of ω0 (0.01 rad/s to 0.5 rad/s). At

the end of each simulation, the squared error and the variance are calculated for each value

of ω0. Figure 6.13 shows the result of these simulations. The lowest variance is σ2 = 2.23

with an ω0 of 0.22 rad/s. Figure 6.14 and Fig. 6.15 show plots of the filter output (estimated

orientation) and the squared error with this optimal frequency.

While exploring the concept of a complementary filter, it is also worthwhile to look at

the filter output at non-optimal frequencies. As Fig. 6.13 explains, if ω0 is too high, the

inclinometer will dominate the output of the filter. If ω0 is too low, the gyro will dominate

the output of the filter. Figure 6.16 and Fig. 6.17 show the filter output and error plots when

ω0 is too high and the output is dominated by the inclinometer. Notice how similar the

output plot matches the output of the inclinometer in Fig. 6.11. Figure 6.18 and Fig. 6.19
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Fig. 6.11: Response of the inclinometer to the input chirp signal.
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Fig. 6.12: Response of the gyro to the input chirp signal.

show the filter output and error plots when ω0 is too low and the output is dominated by

the gyro. These gyro dominated plots also show similarities to the gyro output in Fig. 6.12.

6.5.2 Other FDCF Design Options

The previous example simulated for this study shows how a modeless FDCF with second

order filters can be used to combine the output of two sensors to get a better estimate of

orientation. Other design options for FDCFs include more complex, higher order filters and

filters based on the sensor models. Some of these options may achieve better performance

than was shown in the previous example [177].

6.6 State Space Complementary Filters

The complementary filter can be interpreted in state space form in order to easily

realize the complementary filter with digital systems, implement multiple-input multiple-
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Fig. 6.13: Variance of the error vs. cutoff frequency (ω0).

output systems, and use classical control theory for filter design [167, 190]. Figure 6.20

illustrates this conversion with an example of the frequency domain complimentary filter

where φi and φg are the outputs from the inclinometer and the gyro, Gi(s) and Gg(s) are

the filters for the inclinometer and gyro, and φ̂ is the estimate of φ.

To be a complementary filter, Gi(s) + Gg(s) must equal 1 (as shown in Eq. (6.18)).

Therefore Gi(s) and Gg(s) could be set as the following:

Gi(s) =
C(s)

C(s) + s
, (6.22)

Gg(s) =
s

C(s) + s
. (6.23)

According to the diagram in Fig. 6.20 and the definitions of Gi(s) and Gg(s), φ̂ is

defined as
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Fig. 6.14: Estimated orientation vs. actual orientation at ω0 = 0.22 rad/s (optimal fre-
quency).

φ̂ = φi
C(s)

C(s) + s
+
φg
s

s

C(s) + s
,

φ̂ =
(
φiC(s)s+ φg − C(s)φ̂

) 1

s
,

sφ̂ = (φi − φ̂)C(s) + φg. (6.24)

Equation (6.24) represents the frequency domain complementary filter in the closed-

loop form as displayed in Fig. 6.21. With this design, classical closed-loop control theory

can be used to design the complementary filter.

After choosing a controller, Eq. (6.24) can be converted to state space. Using a gain

controller, P , Eq. (6.25) shows the state space representation of a complementary filter with

φ̂ set as the state space variable x.
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Fig. 6.15: Squared error for ω0 = 0.22 rad/s (optimal frequency).

ẋ = (φi − x)P + φg (6.25)

Additionally, classical closed-loop control theory can now be used to design the comple-

mentary filter. Since there is a good deal of established research on application of fractional

calculus in closed-loop control [191], it is a simple matter to change the integer-order con-

troller to a fractional-order one as seen in Sec. 6.7.

6.6.1 SSCF Example–Using a Gain Controller

To test the SSCF from Eq. (6.25), the simulator from Sec. 6.5.1 was used. After running

this simulation multiple times for different values of P , they are plotted with their respective

error variance to find the gain P with the lowest error. Figure 6.22 shows this plot and a

minimum variance of σ2 = 4.15 with a gain of 0.84. Figure 6.23 and Fig. 6.24 show the

filter output and squared error plots using the optimal gain.
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Fig. 6.16: Estimated orientation vs. actual orientation at ω0 = 3 rad/s (inclinometer
dominant).

Even though it was subjected to the same input, the performance of this filter was

not as good as the frequency domain filter designed in Sec. 6.5. This could be because of

constant bias in the gyro. Introducing an integrator (of requisite order) in the controller

could improve the performance by removing this bias.

6.6.2 SSCF Example – Using a PI Controller

After adding an integrator to the controller C(s), Eq. (6.24) can be written as shown

below where P is constant gain and I is integrator gain.
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Fig. 6.17: Squared error for ω0 = 3 rad/s (inclinometer dominant).

sφ̂ = (φi − φ̂)(P + I/s) + φg,

sφ̂ = (φi − φ̂)P + (φi − φ̂)I/s+ φg.

(6.26)

The term (φi − φ̂)I/s is compensation for the bias and can be set as one of the state

variables x2. x1 will remain equal to the estimated angle φ̂.

ẋ1 = (φi − x1)P + x2 + φg,

ẋ2 = (φi − x1)I. (6.27)
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Fig. 6.18: Estimated orientation vs. actual orientation at ω0 = 0.01 rad/s (gyro dominant).

Notice the similarities between Eq. (6.27) and Eq. (6.25). Equation (6.27) can now

be rearranged into its matrix representation (Eq. (6.28)) where b is the gyro bias. The -1

found in the C matrix is negative in order to cancel out the gyro bias.



ẋ1

ẋ2


 =



−P 1

−I 0






x1

x2


+



P 1

I 0






φi

φg


 ,



φ̂

b̂


 =




1 0

0 −1






x1

x2


 . (6.28)

Figure 6.25 shows the realization of Eq. (6.28)) in Simulink. This model was used with

the same input signal and sensor models from the simulation in Sec. 6.5.1. Multiple values

of P and I were simulated, the variance of the error was found, and the contour plot in
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Fig. 6.19: Squared error for ω0 = 0.01 rad/s (gyro dominant).

Gi(s)

+

φi

φ̂

1
s Gg(s)

φg

Fig. 6.20: Alternative frequency domain complementary filter.

Fig. 6.26 was generated to find the optimal values for P and I that minimize the variance

of the error. As shown in Fig. 6.26, the optimal values for P and I in this example are 0.44

and 0.048, respectively, with a variance of σ2 = 2.31.

Figure 6.27 and Fig. 6.28 show the output of the filter with optimal gains. With a



114

C(s)
φi

φ̂1
s

φg

+

−

+

+

Fig. 6.21: Closed-loop complementary filter system.
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Fig. 6.22: Variance of the error vs. controller gain (P ) for SSCF.

variance of σ2 = 2.31, the performance of this filter is very similar to the performance

of the frequency domain filter designed in Sec. 6.5. This similarity is expected. If the

complementary filter from Eq. (6.28) were converted back into its frequency domain form

shown in Fig. 6.20, the system would be identical to the second-order filters shown in

Eq. (6.19) and Eq. (6.20), where P = 2ω0 and I = ω2
0. Therefore, these two systems are

equivalent. However, the state space system would be easier to implement using a digital
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Fig. 6.23: Estimated orientation vs. actual orientation with P = 0.84 (optimal gain).

computer. In addition, it is possible to estimate the bias in the state space system since it

is added as an additional state. Figure 6.29 shows the estimated bias vs. the actual bias.

6.6.3 Other SSCF Design Options

Since the SSCF is derived using the closed-loop control version of the complementary

filter, any other type of controller could be used to help improve the performance of the

filter. For example, a full PID controller could possibly perform better in some systems

than the PI controller. Other possibilities include model based controllers and fractional

order controllers.

SSCFs are also used for multiple-input multiple-output systems. These include SSCFs

to estimate 3D orientation using Euler-angles, quaternions [184], and direct cosine matrices

[188,192]. Work has also been done on estimating position and velocity using complementary

filters [193].
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Fig. 6.24: Squared error for P = 0.84 (optimal gain).

Fig. 6.25: Simulink model of state space complementary filter.

6.7 Fractional-Order Complementary Filters

What follows is a new interpretation of the complementary filter–one with fractional

“integro-differential” operators in place of traditional calculus operators.

6.7.1 Fractional-Order Calculus

Fractional calculus is a generalization of integration and differentiation to non-integer

order fundamental operator aD
α
t , where a and t are the limits of the operation. The
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Fig. 6.26: Variance of the error vs. controller gains (P and I) for SSCF.

continuous integro-differential operator is defined as

aD
α
t =





dα

dtα : α > 0,

1 : α = 0,
∫ t
a(dτ)−α : α < 0.

(6.29)

The two definitions used for the general fractional differintegral are the Grunwald-Letnikov

(GL) definition and the Riemann-Liouville (RL) definition [194,195]. The GL is given here

aD
α
t f(t) = lim

h→0
h−α

[ t−a
h

]∑

j=0

(−1)j
(
α

j

)
f(t− jh), (6.30)

where [.] means the integer part. The RL definition is given as

aD
α
t f(t) =

1

Γ(n− α)

dn

dtn

∫ t

a

f(τ)

(t− τ)α−n+1
dτ, (6.31)
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Fig. 6.27: Estimated orientation vs. actual orientation with P = 0.44 and I = 0.048
(optimal PI gains).

for (n− 1 < α < n) and where Γ(.) is the Gamma function.

The Laplace transform method is used for solving engineering problems. The formula

for the Laplace transform of the RL fractional derivative (Eq. (6.31)) has the form [194]:

∫ ∞

0
e−st 0D

α
t f(t) dt = sαF (s)−

n−1∑

k=0

sk 0D
α−k−1
t f(t)

∣∣∣
t=0

, (6.32)

for (n− 1 < α ≤ n), where s ≡ jω denotes the Laplace operator.

Some other important properties of the fractional derivatives and integrals can be found

in many existing works (e.g., Oldham and Spanier [195], Podlubny [194], and others).
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Fig. 6.28: Squared error for P = 0.44 and I = 0.048 (optimal PI gains).

6.7.2 Fractional-Order Filtering

In order to implement fractional-order calculus in a real system, a practical approx-

imation must be made. While it is possible to realize fractional-order elements in ana-

log hardware–“passive” hardware devices for fractional-order integrator, such as fractances

(e.g., RC transmission line circuit and Domino ladder network) [196] and Fractors [197],

there exist some restrictions, since these devices are currently difficult to tune. An al-

ternative feasible way to implement fractional-order operators and controllers is to use

finite-dimensional integer-order transfer functions, or fractional-order signal processing.

The fractional-order differentiator and fractional-order integrator are fundamental build-

ing blocks for fractional-order signal processing. The transfer function of fractional-order

integrator (FOI) is simply

GFOI(s) =
1

sα
(6.33)
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Fig. 6.29: Estimated bias plots for P = 0.44 and I = 0.048.

where α is a positive real number. Without loss of generality, we only consider 0 < α < 1.

The transfer function of fractional-order differentiator (FOD) is simply

GFOD(s) =
1

GFOI(s)
= sα. (6.34)

In time domain, the impulse response of GFOI(s) is

h(t) = L−1GFOI(s) =
tα−1

Γ(α)
, t ≥ 0. (6.35)

Replacing α with −α will give the impulse response of fractional differentiator sα.

A FOI or FOD is an infinite-dimensional system. So, when implemented digitally,

it must be approximated with a finite-dimensional discrete transfer function. This is the

so-called “discretization” problem of FOI or FOD [198]. The reader is referred to Chen

et al. [199], Monje et al. [191], and Krishna [200] for excellent reviews and tutorials on
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discretization issues.

As said, an integer-order transfer function representation to a fractional-order oper-

ator sα is infinite-dimensional. However, it should be pointed out that a band-limited

implementation of a fractional-order controller (FOC) is important in practice, i.e., the

finite-dimensional approximation of the FOC should be done in a proper range of frequen-

cies of practical interest [201]. Interestingly, the fractional-order α could even be a complex

number as discussed by Oustaloup et al. [201].

In this chapter, the recursive frequency-space discretization techniques of Oustaloup et

al. [201] are used. A generalized Oustaloup filter can be designed as

Gf (s) = K
N∏

k=1

s+ ω′k
s+ ωk

, (6.36)

where the poles, zeroes, and gain are evaluated from

ω′k = ωbω
(2k−1−γ)/N
u , ωk = ωbω

(2k−1+γ)/N
u , K = wγh, (6.37)

where ωu =
√
ωh/ωb. The term “generalized” is used because N can be an odd or even

integer.

To illustrate the method, the approximation of the fractional-order integrator of order

0.45 can be obtained. In this particular case, the orders of the approximation are selected

as 4 and 5, respectively, with ωh = 1000 rad/sec and ωb = 0.01 rad/sec. Using MATLAB,

from Sheng et al. [202], HOust(s) approximations:

GO1(s) =
0.04467s4 + 21.45s3 + 548.2s2 + 783.2s+ 59.57

s4 + 131.5s3 + 920.3s2 + 360.1s+ 7.499
, (6.38)

and

GO2(s) =
0.04467s5 + 26.35s4 + 1413s3 + 7500s2 + 3942s+ 188.4

s5 + 209.3s4 + 3982s3 + 7500s2 + 1399s+ 23.71
. (6.39)

The Bode plots are shown in Fig. 6.30. It can be seen that the Bode plots of the two

filters are relatively close to that of the theoretical one over the frequency range of interest.
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It can be seen that the fitting quality is much superior to those obtained with continued

fraction-based approaches.

Detailed comparisons of different methods of FOI and FOD discritization can be found

in Chapter 5 of the 2012 book by Sheng et al. [202].

6.7.3 Alpha-stable Noise

The Probability Distribution Functions (PDFs) of the sensors used for small UAS

navigation are very important to filter choice and tuning. Using the Alpha-Stable Random

Distribution (ARD), a standard Gaussian PDF as well as a non-Gaussian PDF was used

for simulation.

The ARD is usually denoted S(αn, β, γ, δ). Note that this αn differs from the fractional-

order α. Due to the ARD’s nature, only in select cases can the PDF be written analytically,

however, from Nolan [203], the characteristic function ϕ and the PDF can be determined
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Fig. 6.30: Bode plots of HOust(s), corresponding to the approximation of a fractional-order
integrator of order 0.45 with the Oustaloup method, with solid lines for GO1(s), dash lines
for GO2(s) and dotted lines for the theoretical Bode plot.
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by:

f(x) =
1

2π

∫ ∞

−∞
ϕ(t)e−ixt dt, (6.40)

where

ϕ(t;µ, c, αn, β) = exp [ itµ− |ct|αn(1− iβsgn(t)Φ)] , (6.41)

and

Φ = tan(παn/2), αn 6= 1. (6.42)

The ARDs generalize many PDFs, for example, the well-known Gaussian PDF

f(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 (6.43)

is conveniently produced by the ARD with αn = 2, γ = σ√
2
. This means that the Gaussian

distribution is encapsulated within the alpha-stable distribution, and a single function can

be used to simulate both Gaussian and SRD noise cases.

For the purposes of this publication, the ARD was always used with αn = 1.8, and scale-

parameter γ = 1.3. As seen in the plots such as Fig. 6.31, this generates noise sufficiently

“spiky” (non-Gaussian) compared to the Gaussian case to be considered low-quality (i.e.,

low-cost). The effective PDFs of both of the distributions used are found in Fig. 6.32.

The differences in these PDFs can be clearly seen in Fig. 6.11 and Fig. 6.12, by com-

parison to Fig. 6.31 and Fig. 6.33.

6.7.4 Fractional-Order Complementary Filter Simulations

By their nature, the most simple integer-order and fractional-order controllers have

different numbers of parameters and can be difficult to compare fairly. The experiments

performed in this chapter were as follows: the integer-order controller was simply a P

(or constant-gain) controller. The fractional-order controller was Iα (single-term fractional
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Fig. 6.31: Inclinometer signal with non-Gaussian noise.

with constant gain). This allows for nearly the same degrees of freedom in the simulation

process and the most fair comparison. The block diagram for the example system is shown

in Fig. 6.34. Since the fractional calculus encapsulates the integer-order calculus with proper

choices of α, the same system diagram can be used for all the simulations. The P case is

set when α = 0.

To accomplish numerical simulations of FOCFs, the following codes from MATLAB-

Central were used.

• “STBL: Alpha stable distributions for MATLAB by” Veillete [204] for ARD genera-

tion;

• “ninteger” by Valrio [205] for fractional operator simulation.
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The “ninteger” package includes a full toolbox for simulation of fractional-order imple-

mentations in MATLAB Simulink. Due to its numerical reliability, the Crone distretiza-

tion (as in Sec. 6.7.2) was chosen for the Iα feedback term, with ωb = 0.01 rad/sec and

ωh=1000 rad/sec. Recall that negative values of α create an integrator-like operator.

6.7.5 Fractional-Order Complementary Filter Simulation Results

Five simulations were performed to investigate the performance of the system in ques-

tion.

1. First, an integer system with a simple P controller was used. A range of gains was

used and the variance tracked, to find the minimum. As seen in Fig. 6.35, this was

k = 0.75, resulting in σ2 = 3.975.
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Fig. 6.34: Simulink model used for all simulations.
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2. Then, this same simulation was performed with non-Gaussian noise, under which the

system produced nearly the same plot (Fig. 6.36), however with the long waiting times

involved with the ARD, the variance was not as consistent over the range of gains as

the Gaussian case.

3. Then, this same simulation was performed with non-Gaussian noise, under which

the system produced nearly the same results, however with the long waiting times

involved with the ARD, the variance was not as consistent over the range of gains as

the Gaussian case.

4. Next, the fractional-order system was used, with Gaussian noise. The value of the

integrator order, α was varied to find a minimum variance. The gain of the Iα term

was set to the optimal value found in simulation Item 1, k = 0.75. This produced an

optimal value of α = −0.18.

5. The fractional-order system was then tested with non-Gaussian noise, and shown to

give the same α = −0.18 minimum variance as with the Gaussian case.

6. Finally, using the optimum α = −0.18 found above, the controller gain k was opti-

mized for the fractional order controller and non-Gaussian noise case (Fig. 6.37). This

gain, k = 0.35 is much lower than the integer-order case, while providing less than 1
2

the variance, at σ2 = 1.52.

From these simulations, it is clear that the fractional-order filter outperforms the

integer-order filter. With a low-order integrator (less than 0.2), and comparatively low gain,

the fractional-order controller nearly halves the variance of the integer-order controller.

6.8 Guidelines for Complementary Filter Use in sUAS

Kalman or Kalman-style combining filters are the established solution for combining

sensor data into navigation-ready data. Extended Kalman filter approaches allow nonlinear

models to be used and estimated with the Kalman techniques; however, these models are

linearized and assumptions are made that the estimates do not deviate too far from the
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Fig. 6.35: Variance vs. gain: integer controller with Gaussian noise.

nominal solution. They have also proved difficult to apply to small UAS with low-cost,

high-noise sensors [157,158]. Complementary filters are not mathematically rigorous like the

Kalman filter, and are therefore not well-suited for high-risk applications like space borne

missions. However, compared to Kalman filtering, complementary filter techniques are

less computationally intensive and more readily performed on small, low-power computing

hardware, which is ideal for small, low-cost UASs.

Although Gaussian statistical models are traditional and have a wide range of applica-

tions, non-Gaussian, power-law statics are ubiquitous in practice [159]. Although augmented

Kalman-style filters (such as the Kalman-Levy filter) that allow non-Gaussian PDFs have

been considered in research, they are not well studied and have even higher mathematical

complexity than standard Kalman techniques [160].
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Complimentary filters work without assuming Gaussian noise statistics and are appli-

cable to a wider variety of sensor hardware such as commonly-available MEMS devices with

longer-tail noise tendencies [161]. Since complementary filters require less computational

power, they couple well with low-cost MEMs sensors and microcontrollers and can be better

suited to the navigation needs of small, low-cost UASs.

The suggested guidelines include

1. Understand each sensor’s pros and cons;

2. Understand the tradeoff objectives;

3. Whenever possible, as demonstrated in this chapter, try to iteratively decide the best

cut-off frequency;
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4. Use as much domain knowledge as possible when deciding the design parameters linked

to the complementary filter design.

6.9 AERIS Significance of Navigation and Chapter Summary

Navigation is critical for UASs to fly safely and for collection of scientific mission data.

In order to better comply with AERIS and perform this task with lower cost and higher

accuracy and reliability better navigation data is critical, but must be weighed against the

cost of the navigation systems if true low-cost personal remote sensing-level UASs are to be

a reality.

Other than the now standard Kalman filter, one way to fuse data from different sensors

is to use a complementary filter. These complementary filters can be formulated in a tra-
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ditional control system format, and can then be tuned like any control system. Fractional

calculus is as old as the traditionally used integer-order calculus, and its use is still being in-

vestigated. When the concepts of fractional calculus are introduced into the complementary

filter, it is shown that it is possible to derive much better performance from noisy sensors,

in this case, more than double the performance can be achieved as evaluated by variance.

Future work includes noise modeling of physical navigation sensors, testing of fractional-

order complementary filters on real flight data, and eventually implementation and flight

with a real UAS.
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Chapter 7

Battery State-of-Charge Aware Altitude Controller for

Small, Low-Cost Multirotor Unmanned Aerial Vehicles

Robust altitude control of a multirotor small Unmanned Aerial Vehicle (sUAV) is

one of the most difficult control problems of Vertical Take-Off around Landing (VTOL)

UAVs [206,207], of which quadrotors and hexarotors are common.

Small, low-cost UAVs are typically driven by Lithium-ion Polymer (LiPo) batteries,

because of their high energy density, high charge and discharge rates, long lifetime, relatively

low memory effects compared to other battery technologies [208], and affordable cost. The

internal dynamics of LiPo batteries changes during power discharge and degrade the flight

and control performance due to the change in available power.

This change in dynamics affects the UAV’s ability to maintain desired altitude. The

goal of this chapter is to:

1. Analyze LiPo battery and actuator dynamics;

2. Describe their effects on the flight performance;

3. Briefly summarize existing control strategies for small, rotary-wing sUAS altitude

control;

4. Propose a novel altitude controller and a battery monitoring system for small rotary-

wing sUASs;

5. Experimentally verify the controller performance with real flight data.

AERIS-compliance requires detailed knowledge about mission performance, and be-

cause the AggieAir sUASs mainly are based on LiPo for their energy storage, it is critical

for AERIS-compliant sUASs to have knowledge about the health of the battery system,
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as well as the ability for the power system to transfer energy during any point in a given

mission. This means that state-of-charge estimation is critical to enable mission risk esti-

mation systems like ISaAC or the GCS operators to make command decisions such as safely

landing or other early mission termination options.

This chapter, drawn from Podhradsky et al. [209], first gives a necessary background

about UAV altitude control in Sec. 7.1. Then, battery and actuator models are described

in Sec. 7.2. A summary of existing solutions to this problem is presented in Sec. 7.3. The

proposed controller, then, is described in Sec. 7.4. The experimental test setup is described

in Sec. 7.5.1, and the laboratory experimental results which prove the efficiency of the

approach are shown in Sec. 7.5.3. Implementation of the controller on an existing AggieAir

sUAV and its flight verification is presented in Sec. 7.6.3.

7.1 sUAS Altitude Control Obstacles

Precision agricultural applications, 3D mapping and other civilian applications of UAVs

require relatively precise altitude control (i.e., within 1m [18]).

Relative altitude estimation in multirotor UAVs is typically based on measurements

from an accelerometer and a pressure sensor. GPS provides absolute position, but its

vertical accuracy is rarely better than few meters in perfect conditions so its not commonly

used. Pressure sensors have resolution of ±10cm, but they drift in time, thus introducing

error into the relative estimate. Acceleration data are burdened with noise from motor

induced vibrations, thus they have to be corrected with pressure readings. Additional

sensors (such as ultrasonic or laser altimeters) can be used, however their use is limited to

close proximity of the ground. Note that in altitudes above 20 meters, the UAV is usually

subject to strong wind gusts (≥ 10m/s) and pressure changes [210], which further affect the

controller performance.

A traditional approach combining accelerometer and pressure sensor data and using

a classical PID control system can provide satisfactory altitude hold despite the changing

battery dynamics. However, its performance strongly depends on properly tuned altitude

estimator, size of the platform (heavier UAVs with higher inertia are more difficult to



134

control [211]), and the operational altitude.

The proposed controller offers an alternative approach, which can be used when altitude

estimation cannot be tuned, Electronic Speed Controllers (ESC) do not provide a feedback

loop around Revolutions Per Minute (RPM) of the motors, or when classical PID control

fails.

The significance of the battery dynamics for larger (> 1kg) platforms can be seen in

Fig. 7.1. It shows a radio controlled indoor flight of a hexarotor at constant altitude. A 4-cell

LiPo battery is fully charged at the beginning, and discharges during this 19 minute flight.

The pilot increases throttle command to keep constant power output from the battery

and thus constant altitude. During the flight, the pilot had to increase the throttle by

around 10% (comparing the beginning and end of flight). After the 18th minute of flight,

the battery voltage suddenly drops as the battery is almost completely depleted and the

voltage begins to collapse. Before the hexarotor lands the voltage dropped even below the

minimal recommended limit for LiPo batteries, 12V (3V for each cell) which could damage

the battery.

Clearly it is important to know the battery state of charge for safety reasons, as well

as to adjust the control according to the battery dynamics.

7.2 Battery and Actuator Models

An actuator of a multirotor UAV typically consists of a LiPo battery, a Brushless

Direct Current (BLDC) motor, and an Electronic Speed Controller (ESC) which controls

the rotation of the motor (measured in Revolutions Per Minute–RPM).

7.2.1 Battery Model

An equivalent circuit representation of the Chen and Rincon-Mora’s battery model [212]

is shown in Fig. 7.2. Although the model was originally validated on NiMH and Li-ion

batteries, it can still be successfully applied to LiPo batteries, since LiPo and Li-ion batteries

have very similar characteristics [213].
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Fig. 7.1: Change in throttle command during indoor hexarotor flight–the red box indicates
the beginning of collapse.

The left half of the model describes the variation of the State Of Charge (SOC) of the

battery (x1 = SOC, x1 ∈ [0, 1]), the right half models the variation of battery output voltage

y as a function of the charge/discharge current [213]. Note that SOC is the percentage of

the maximum possible charge that is present inside a rechargeable battery [214]. All the

Fig. 7.2: Chen and Rincon-Mora’s battery model.
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circuit components Cts, Ctl, Rs, Rts, Rtl, and E0 are functions of x1:

Cts[F] = −k4e−k1x1 + k3, (7.1)

Ctl[F] = −k6e−k2x1 + k5, (7.2)

Rs[Ω] = k7e
−k8x1 + k9, (7.3)

Rts[Ω] = k10e
−k11x1 + k12, (7.4)

Rtl[Ω] = k13e
−k14x1 + k15, (7.5)

E0[V] = −k16e−k17x1 + k18 + k19x1 (7.6)

− k20x
2
1 + k21x

3
1,

Cc[C] = 3600Cf1f2, (7.7)

where ki > 0 for i = 1 . . . 21 and k1 < k2 < k3 < k4 < k5 < k6. E0 is the Open-Circuit

Voltage (OCV) of the battery. In Eq. (7.7) f1, f2 ∈ [0, 1] are factors taking into accounts the

effects of temperature and charge-discharge cycles [213]. C[A] stands for maximal battery

capacity. For a new battery at a room temperature f1 = f2 = 1, but f2 will decrease after

each charge-discharge cycle (in fact representing State Of Health - SOH of the battery).

This allows the model to account for ageing of batteries, which is characterized by loss

of maximal charge the battery can store [215]. The various resistances, capacitances, and

constants (k1 . . . k21) are independent of i(t). Note that with decreasing SOC resistance of

the battery (Rs, Rts, Rtl) increases and capacitance (Ctl, Cts) decreases [212].

State space realization of the battery model is provided by Knauff et al. [216] as:

ẋ1 = − 1

Cc
i, (7.8)

ẋ2 = − x2
RtsCts

+
i

Cts
, (7.9)

ẋ3 = − x3
RtlCtl

+
i

Cu
, (7.10)

y = E0 − x2 − x3 − iRs, (7.11)

where y represents the voltage output from the battery (if i = 0, y =OCV), x2 represents
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the voltage drop across Rts‖Cts and x3 stands for the voltage drop across Rtl‖Ctl;x2, x3 ∈ R

and x0 = [1, 0, 0]>.

The OCV(E0) is a function of SOC(x1), which itself depends on temperature and

SOH. Assuming a constant ambient temperature, the dependence of OCV on SOC has the

following properties:

1. The OCV increases monotonically with SOC,

2. The OCV drops in an exponential fashion as the SOC approaches 0%,

3. The OCV rises in an exponential fashion as the SOC approaches 100%,

4. In the large region between 20% and 85% of SOC the relation is nearly linear,

which are captured in the battery model. Figure 7.3 shows an experimental verification of

the OCV vs. SOC dependency, which has the predicted properties. The SOC was measured

using Coulomb counting technique (i.e., current integration), more details can be found in

Podhradsky et al. [215].

The properties of LiPo battery dynamics can be summarized as:

1. Open Circuit Voltage decreases with SOC (discharge),

2. Closed Loop Voltage decreases with increased load and with SOC,

3. Internal battery resistance increases with lower SOC,

4. Battery capacity decreases as the battery ages (SOH is degrading).

For the purpose of this work, only new batteries are assumed, and no SOH is estimated.

7.2.2 Actuator Model

For actuation, Brushless Direct Current (BLDC) motors are typically used, since they

provide higher efficiency and more torque per Watt than brushed DC motors [217]. BLDC

motors for UAVs are almost always sensor less trapezoidal motors with stator coils in the

core of the motor (outrunners). It is because of a combination of lower cost (no position



138

0 20 40 60 80 100
14

14.5

15

15.5

16

16.5

17

SoC[%]

O
C

V
[V

]

 

 

measurement     .
fitted curve

Fig. 7.3: Dependency of OCV on SOC.

sensor needed), and higher efficiency over sinusoidal/inrunner motors [217]. Motors are

characterized by their number of magnetic poles and a motor constant [218]. An example

of the actuator is shown in Fig. 7.4.

To drive a BLDC motor, an Electronic Speed Controller (ESC) is used. An ESC

consists of a controller, MOSFET driver, and at least six MOSFET transistors. To sense the

position of the motor, back ElectroMotive Force (back-EMF) is fed to the micro controller.

An illustrative diagram of a typical ESC is shown in Fig. 7.5 from Allegro documentation

[219]. The driver uses Pulse Width Modulation (PWM), typically at 16kHz, to open/close

individual MOSFETs, according to commands from the microcontroller. MOSFETs then

activate the phases with current.

Such actuator connected to a power supply, can be described as a first order system

with delay [218]:

G(s) =
Kp

1 + Tp
e−Tds, (7.12)

where Td is a communication delay between the autopilot and the ECS. If the control rate

is 512Hz, Td = 1.95 ms. Tp is typically between 16 and 100ms. Kp is strongly dependent

on the combination of a motor and a propeller [218]. The produced thrust directly depends



139

  ESC

Motor

Fig. 7.4: An example of a multirotor actuator–Av-Roto BLDC motor (without a propeller)
and Mystery 40A ESC.

Fig. 7.5: A typical ESC and motor connection scheme. Microcontroller (left), MOSFET
driver (middle), MOSFETs and BLDC motor (right), from Allegro.
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on RPM.

However, battery dynamics affects the actuator and the real system is no longer linear

time invariant (LTI). To understand this relationship, the ESC functionality has to be

described in more detail. BLDC motor is rotated by induced voltage on its armature. For

trapezoidal motors, a square current wave is used and the relation between current and

induced voltage is as follows [217]:

Vk(t) = Rkik(t) + L
dik(t)

dt
, (7.13)

where k = 1 . . . 3 is a number of phase, R is resistance of the wiring and L is inductance of

the coil. The motor speed depends on the duty cycle of the MOSFET driver, and on energy

delivered to it during one cycle. Energy accumulated in the inductor during one cycle:

W [J] = L

∫ T

0
idt. (7.14)

T is constant as the duty cycle is the same. From Eq. (7.3), Eq. (7.4), and Eq. (7.5) it can be

seen that the resistance of the battery increases during discharge. Since the battery is not

an ideal current source, the rate of change of the supplied current is limited. With increased

resistance, the maximal rate of change of the current become lower. Energy delivered to

the motor during one cycle will decrease, so does RPM of the motor.

7.3 Comparison of Existing Solutions

In this Section the most common multirotor altitude control methods are compared.

They can be divided into classical control (PID regulator with feedforward) which assumes

a Linear Time Invariant (LTI) system, and Adaptive Control which tackles the problem of

time-varying system.

There exist a number of vision-based [220, 221] and visual servoing altitude control

techniques [222,223] which can be implemented. However, they are not investigated in this

work, because the typical mission is assumed to be outdoors, in higher altitudes (up to
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hundreds of meters) and in rural area or wilderness. In such environments it is hard to

guarantee sufficient amount of distinct features in the camera image during whole mission,

which would affect the control performance.

7.3.1 Classical Control

The most common altitude control system used in multirotor UAVs is a PID regulator

with feedforward terms. Feedforward is set manually and gives a baseline of thrust to be

applied to keep a UAV in constant altitude because the PID feedback control input is small

in comparison with nominal thrust. Although very simple to implement, this technique

often does not provide acceptable performance because the real system is time-variant. In

other words, if the controller is tuned for a full battery pack, performance degrade as the

battery is depleted, as can be seen in Fig. 7.6.

The main advantage of classical control is simplicity (no system model required, can

be tuned experimentally). However, it can be used only for applications with weak require-

ments on altitude control.
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Fig. 7.6: Above: altitude tracking during autonomous outdoor hexarotor flight–the green
box indicates increasing oscillations. Below: closed-loop battery voltage.
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7.3.2 Adaptive Control

Unlike simple PID control, adaptive controllers require a kind of system model. Al-

though models of multirotor dynamics are known [224, 225], identifying the model is a

tedious process. The actuator, consisting of an ESC and a BLDC motor (described in

Sec. 7.2.2), can be identified separately from the rest of the system [218] if necessary.

Adaptive control approaches can be divided as follows:

1. PID + Adaptive Feedforward. The aforementioned PID controller can be aug-

mented with adaptive feedforward. Adaptively estimated is nominal thrust, required

for hover. Full model and more details are given in the Paparazzi documentation [20].

A Kalman filter with a kinematic model is used, so no knowledge about the multirotor

model is necessary. However, the controller still has to be tuned for a specific airframe.

2. Model Predictive Control. Model predictive control (MPC) is another option for

altitude control. Although promising better performance, it requires a full model of

the UAV, which can be difficult to obtain [226].

3. Sliding Mode Control. Another popular control solution is sliding mode control

[227,228]. Again, an identified model of the UAV is required.

7.4 Battery State-Of-Charge-Based Controller

The State-Of-Charge-based controller extends the classical PID controller with constant

feedforward (see Sec. 7.3.1) with gain scheduling compensating for battery dynamics. The

scheduling is based on the actual SOC of the battery. The advantage is that no state-space

model or a transfer function of the system is needed, only the battery dynamics has to be

measured.

Mathematically it can be expressed as (assuming a PID controller with feedforward):

u(t) =

(
kpe+ kI

∫ t

0
e(τ)dτ + kD

de(t)

dt
+ kff

)
kb(SOC).
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Shown in Fig. 7.7 is the block diagram of the proposed controller. The feedback section and

tilt compensation is unchanged, and the battery compensation block (function kb(SOC))

is added to the feedfoward line. The battery dynamics measurements are described in next

section. The main advantage is that the controller compensates for changes in the time-

varying system and its performance is consistent. The actual function kb(SOC) is to be

characterized in the next section.

7.5 Battery Dynamics Measurements

In order to design the SOC-based controller, the battery dynamics must be measured.

For this reason an experimental test bench was built and batteries were characterized, as

described in this section.

7.5.1 Instrumentation

In order to measure thrust of the actuators and SOC of the battery, a testbench based

on Chéron et al. [218] was developed. The data acquisition and interface to sensors is done

by an Arduino MEGA-2560 with a custom expansion board. The testbed solid model is

shown in Fig. 7.8.

Force (Measurement Specialities FC2231) and current (Allegro MicroSystems

ACS756SCA-050B) analog sensors are filtered with resistor-capacitor filters to prevent ex-

cessive noise. The force sensor error is ±3.25%, the current sensor error is ±5% according to

the datasheets. The whole system captures data at 12Hz and sends them to the computer

via USB, with post-processing done in MATLAB. The actuator consists of a Mystery 40A

ESC, T-motor MT2814 KV770 motor, and 12×3.8” propeller, which is a suitable combina-

tion for a quad or hexarotor. The ESC is controlled from an Arduino PWM port at 50Hz

rate. The complete testbed prepared for the measurement is shown in Fig. 7.9.

Two different 4-cell LiPo batteries were used: Zippy 5000mAh 40C and MaxAmps

11000mAh 40C. Both batteries are shown in Fig. 7.10.
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Fig. 7.7: Battery-based altitude control diagram with battery compensation block.

Fig. 7.8: 3D Model of the motor testbench apparatus.

Fig. 7.9: Experimental setup: testbench, Arduino board and computer.
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Fig. 7.10: Zippy 5000mAh 40C 4-cell battery (above); MaxAmps 11000mAh 40C 4-cell LiPo
battery (below).

7.5.2 Experimental Setup

In order to measure the battery dynamics, the following experiment was conducted.

The actuator was set to a constant throttle of 55% (PWM = 1.54ms), which produces

around 1000g of thrust for a fully charged battery. The change in throttle was measured

as well as current and battery voltage. The experiment ran until the battery was depleted,

which was clearly marked by a sudden decrease in battery voltage, right before the collapse

(i.e. until the closed-loop voltage dropped below 12V).

Measured battery discharge current is shown in Fig. 7.11. The current was integrated

as:

Qi(t) =

∫ t

0
ib(τ)dτ. (7.15)

The percentage of remaining SOC is defined [229] as:

SOC(t) = 100

(
Qc −Qi(t)

Qc

)
, (7.16)

where Qc is the maximal current capacity present when SOC = 100%. Note that for 11Ah

battery(MaxAmps): Qc = 11[A] ∗ 3600[s] = 39600[C=A×s]. For 5Ah battery (Zippy):
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Qc = 18000[C].

Note that as the batteries were new, their nominal maximal capacity was used. The

discharge experiment is shown in Fig. 7.12. The thrust is proportional to the battery power

output F (grams) ∝ P (Watts) = I(Ampers)× U(V olts).

To obtain conversion from grams of thrust to PWM command, the actuator must be

characterized [218]. Such conversion is necessary for the experimental verification of the

controller, when thrust setpoint (instead of an altitude setpoint) is used (see Sec. 7.5.3).

The actuator was connected to a power supply, simulating a fully charged battery. PWM

commands were changed to cover whole admissible range of the ESC (1.1–1.9ms) and pro-

duced thrust was measured. The data for each command step was averaged to obtain the

resulting plot in Fig. 7.13. The measured data was approximated with a linear function

(y = ax+ k, a = 4.0323× 10−4, k = 1.1722, x ∈ (300, 1700)) to avoid nonlinearity.

The noisy force and current measurements were interpolated using least-squares ap-

proximation to obtain dependency of thrust on SOC. The end of the battery pack is identi-

fied as when the Closed-Loop Voltage (CLV) drops below 12V. Knowing the 5% measure-

ment error of the current sensor, the estimated SOC aligns well with the battery capacity.

Due to the inherent error in measurements, the flight should be terminated at 10% SOC,

so the observed voltage drop does not occur.

The dependency of produced thrust on battery SOC is shown in Fig. 7.14. The overall

change in thrust (100%-10% SOC) is about 20% for MaxAmps battery and about 25%

for Zippy battery. The thrust curve is almost linear on this range of SOC, except for an

exponential drop from fully charged battery to 90%, and then another drop before the

battery collapses (below 10% SOC). The measured thrust was interpolated using least-

squares spline approximation with coefficients from Table 7.1, the two knots were chosen to

separate the almost linear piece and two highly nonlinear parts.

Assuming that the change in thrust over the SOC is identical for whole range of throttle,

it can be normalized. The normalized spline approximation is shown in Fig. 7.15. To obtain

function kb(SOC) (“Thrust-Bonus”) of the battery compensator, the normalized throttle
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Fig. 7.11: Measured current during battery discharge.
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Fig. 7.12: Thrust variations during battery discharge (blue: raw data, red: filtered data).
Filtered with Exponential Moving Average (EMA) filter, α = 0.01.
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Table 7.1: Least-squares spline approximation for thrust measurements.

Order # Knots Knot 1 Knot 2

4 2 10% SOC 90% SOC

Battery c1 c2 c3 c4 c5 c6

MaxAmps 615.45 791.79 819.87 836.18 955.19 1006.53
Zippy 585.81 735.03 859.25 811.60 983.17 1025.00

curve must be inverted.

To avoid computing a nonlinear curve, the inverted thrust bonus is approximated with

a piecewise linear function (y = ax + k), divided into four segments. The original and

linearised curve is shown in Fig. 7.16, the parameters of piecewise linear function, including

root-mean-square (RMS) error of the approximation, are in Table 7.2.

Having these models it is possible to implement the proposed controller.

7.5.3 Experimental Verification

The proposed controller was implemented on Arduino board in order to verify the

controller performance on the testbench. The controller performance was measured from

full battery to 10% SOC to avoid the voltage drop. Both produced thrust and battery

output power were measured. The reference thrust was arbitrarily set at the beginning

of the experiment (Tref = 900[g] for Zippy battery and Tref = 1100[g] for the MaxAmps

battery). The measured thrust was smoothed with EMA filter (α = 0.001).

The results for Zippy 5000mAh battery is shown in Fig. 7.17, for MaxAmps 11000mAh

battery in Fig. 7.18. The average error of the controller is shown in Table 7.3. The error is

calculated as the RMS error of EMA smoothed thrust from the reference thrust divided by

the reference thrust (e = RMSEMA
T /Tref ∗ 100[%]).

The controller performed well in both cases (error under 6%), however MaxAmps bat-

tery controller provided dramatically better results (error under 3%). This is because the

thrust gain curve for this battery (see that Fig. 7.16 is more linear and follows more closely
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(green: 10% mark, red: 90% mark).

0 20 40 60 80 100
1

1.2

1.4

1.6

T
hr

us
t B

on
us

MaxAmps 11000mAh

0 20 40 60 80 100
1

1.2

1.4

1.6

SOC [%]

T
hr

us
t B

on
us

Zippy 5000mAh

Fig. 7.16: Inverted nominal thrust (blue) and its piecewise-linear approximation (red).
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Table 7.2: Piecewise-linear approximation of the thrust bonus.

MaxAmps 11000mAh

Segment Min.SOC Max.SOC α K

1 0 10 -0.0326 1.5737
2 11 50 -0.0015 1.2630
3 51 90 -0.0030 1.3367
4 91 100 -0.0069 1.6900

Zippy 5000mAh

Segment Min.SOC Max.SOC α K

1 0 10 -0.0775 2.1380
2 11 50 -0.0037 1.4005
3 51 90 -0.0035 1.3880
4 91 100 -0.0073 1.7300

Battery RMS Error

MaxAmps 11000mAh 33.249
Zippy 5000mAh 32.222
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Fig. 7.17: Laboratory test of the controller with Zippy 5000mAh battery.



152

10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

1200

1400

SOC [%]

T
hr

us
t [

g]
 / 

P
ow

er
 [W

]

 

 

Raw Thrust Data [g]
EMA smoothed [g]
Battery Output Power [W]   .

Fig. 7.18: Laboratory test of the controller with MaxAmps 11000mAh battery.

the piecewise linear approximation i.e. the battery dynamics are more linear between 100%

and 10% SOC).

7.6 Flight Verification

The controller was tested on an AggieAir hexarotor platform (shown in Fig. 2.7). The

platform uses same actuators as were used in the laboratory experiment in Sec. 7.5, and

flies with a pair of MaxAmps 11Ah batteries.

To implement and verify the controller in flight, two obstacles must be overcome:

1. Initial SOC of the battery has to be known (it cannot be assumed that a fully charged

battery pack is used);

2. Current has to be measured during flight.

Table 7.3: Laboratory experiment error.

Battery Nominal Thrust[g] Error[%]

Zippy 900 10
MaxAmps 1100 3
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To solve both of the above issues, a battery monitoring system was designed.

7.6.1 Battery Monitoring Subsystem

The battery monitoring system serves as an interface between the autopilot and the

battery. It measures battery bus current, voltage and calculates SOC, which is required for

proper gain scheduling of the altitude controller. A diagram of such subsystem is shown in

Fig. 7.19.

For the actual hardware realization a similar current sensor as for experimental veri-

fication was used (Allegro MicroSystems ACS756SCA-150B), just with higher rating (max

150A) as the current consumption was expected to be up to 130A peak. Both voltage

and output of the current sensor were measured using a 10-bit ADC converted with I2C

bus (Analog Devices AD7997). The software part of the subsystem (SOC calculation) was

implemented on the current autopilot board. An assembled board is shown in Fig. 7.20.

7.6.2 SOC Estimation

It is possible to infer the initial SOC of a battery from its OCV. If there is no load placed

on the battery, the battery closed-loop voltage (CLV) eventually converges to OCV (details
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Fig. 7.19: Diagram of the developed battery monitoring subsystem.
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Fig. 7.20: An assembled battery monitoring system, mounted on a hexarotor platform:
ready to fly.

can be found in Sec. 7.2.1). A square wave discharge experiment was conducted. MaxAmps

11Ah battery was placed on the testbench, the motor was run at 50% throttle command

for a minute, then it was switched off for one minute to allow the voltage to recover. This

cycle continued until the closed-loop voltage dropped below a safety threshold of 13V. The

current was integrated and the SOC was mapped to the OCV, as shown in Fig. 7.21. Note

that for two batteries in parallel, the capacity doubles but the mapping is still valid.

To avoid computing a nonlinear function representing OCV on SOC dependency (Eq. (7.7))

in flight, a piecewise linear approximation was used instead. This approximation is shown

in Fig. 7.22. A lookup table was calculated from the obtained values and stored in the

autopilot memory.

Note that if older batteries are used, their capacity is lower and the discharge test would

have to be repeated to find the actual capacity. The measured OCV on SOC dependency

would however stay the same. For battery pairs, assume using a pair of equally old/new

batteries, because using old and new batteries together is not recommended by the battery

manufacturers.
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Fig. 7.21: Square wave discharge experiment, MaxAmps 11Ah battery. Top: measured
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Fig. 7.22: Piecewise-linear approximation of OCV-to-SOC dependency for MaxAmps 11Ah
battery.

7.6.3 Flight Data

After implementing the State-of-Charge controller and the battery monitoring system

into the autopilot, and properly calibrating the SOC estimation, an actual outdoor flight

test was conducted.
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The flight consisted of a manual take-off and consequential switch to altitude hold

mode. The altitude was held using PID control with constant feedforward, and the SOC-

based controller. The flight time was 30 minutes and results are shown in Fig. 7.23 and

Fig. 7.24. Overall the controller is able to keep the altitude within ±1m from the reference.
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Fig. 7.23: Altitude hold with the AggieAir hexarotor within ±1m using the controller. Blue:
estimated altitude, red: altitude setpoint, green: ±1m threshold.
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Fig. 7.24: Flight test with the AggieAir hexarotor. Top: total current consumption, middle:
battery voltage, bottom: estimated SOC.
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7.7 AERIS Significance of Battery Estimation and Chapter Summary

In AERIS, the more knowledge of the state of the airborne system, the better the mis-

sion quality. In this chapter a battery State-of-Charge (SOC)-based altitude controller was

developed and experimentally verified. The dynamics and model of both LiPo batteries and

actuators consisting of brushless DC motors and electronic speed controller were described.

The proposed controller adds a SOC-dependent gain, and provides satisfactory control in

situations when feedback about actuator thrust or RPM is not available.

After characterizing battery dynamics (dependency of nominal thrust on the SOC of

the battery, relation between open circuit voltage and SOC of the battery), a complete

description and implementation of the controller was shown. The controller was first tested

in laboratory experiment, where it showed control errors of 3% and 10% for MaxAmps

11Ah and Zippy 5Ah batteries. The linearity of the battery dynamics affects the control

performance, showing the higher-quality batteries (MaxAmps) are more linear.

Consequently, the controller was implemented to the autopilot of AggieAir hexarotor

and tested in real flight. To do this, an additional battery monitoring subsystem was

developed to correctly estimated the SOC of the batteries. The conducted flights prove

that the controller is able to keep the airframe within 1m from the desired setpoint.
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Chapter 8

Conclusion

This thesis presents background about personal remote sensing (PRS) and the AggieAir

unmanned aerials system (UAS) platforms in Chapter 2, and the coming technologies of

cyber-physical systems (CPSs), with motivating examples of how the two technologies can

work together in Chapter 3. Chapter 4 shows how architecture drives the values of a

system, which drives the functionality, risks, and rewards of the system dynamics and

interactions with the environment around it, as well as introducing AERIS, the architecture

for ethical remote information sensing. Enabled by AERIS, Chapter 5 shows detailed system

implantation details about a high-dataworthiness payload control structure, emphasizing the

idea of data as a mission, and equating data mission assurance partly with payload resilience.

Chapter 6 shows how low-cost inertial sensors are a good option for PRS UASs, and how

fractional calculus can help glean even more information from then. Then, in Chapter 7,

advanced battery management techniques are shown to increase the dataworthiness of a

vertical takeoff and landing craft by compensating for power loss depending on the lithium-

polymer power system, adding a SOC-dependent gain, and providing satisfactory control

in situations when feedback about actuator thrust or RPM is not available.

Cyber-physical systems are the future of solving real-world problems such as water

management and alternative energy production. By using sUASs as sensors, better data can

be collected and used to make informed control decisions, transforming difficult, complex,

or abstract problems into closed-loop systems that can be analyzed and controlled.

Overall, the outstanding research question is: how will a DMQ-based UAS architecture

be best tested, integrated, and implemented in an active airspace? Future work lies in many

different directions.
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• Future work with architectures and AERIS exists in all presented avenues of pol-

icy and engineering to create workable architectures (both inside and outside UASs)

that protect rights, uphold safety, and better the world for both man and machine.

Specifically this can include setting up flights to test systems, payloads, and safety

performance estimations, and to show the benefits of interaction in real mission sce-

narios. This includes axiomatic interpretations, as well as implementation details such

as formal methods, software and security standards, and standards for training and

crew certification.

• Future work with PRS payload management software will include a larger framework

for holistically testing both airframe and payloads in-the-loop during development, im-

provements to ISaAC allowing more cognitive processing of flight situational awareness

to improve overall PRS missions, and increasing data mission assurance.

• Future work with navigation estimation includes noise modeling of physical naviga-

tion sensors, testing of fractional-order complementary filters on real flight data, and

eventually implementation and flight with a real UAS.

• Future work with sUAS battery estimation includes collecting data with many differ-

ent flights, with varying ages of batteries and actuators, showing that the proposed

estimation techniques will or will not work over repeated missions and be useful in

the long-term.

The future of UASs is undoubtedly bright. While the current public perception of UASs

is one of espionage and warfare, they will become more accepted into domestic use as their

potential value becomes apparent and as the airspace rules change to include them. While

current regulations of UASs are restrictive and limited in the US, soon UASs will become

available for regular use as standards for certification and airworthiness are developed.

Architectures like AERIS are of critical importance as the capabilities and demands for

automation increase. As the human population grows and resources are ever more taxed,
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techniques like sUASs for remote sensing will become of vital importance to conservation

and long-term sustainability.

Along with these standards, mission quality metrics are needed to determine if the UAS

is truly in need of the airspace. Along with ethics (privacy by design), an AERIS-compliant

airspace access requirement architecture will allow civil flights of many kinds with minimal

concern for right violations, allowing humans and unmanned robotic systems to peacefully

coexist and grow together.

At the time of this writing, there is only one commercial group authorized for UAS

operations within the 50 United States [1]. According to the FAA roadmap [230], integration

with UAS into the NAS will be in a gradual manner in the next 5 to 10 years, with many

improvements made before 2028.

In these next 15 years, the development of unmanned technology will enable UASs

to be mobile sensors as well as actuators, actively exerting control in optimal locations

for precision actuation, and cognitive control systems for large-scale complex systems that

were previously impractical to control. Management of crisis situations such as food and

water shortages, energy production, floods, and nuclear disasters can be assisted by sUASs.

Difficult problems can be solved with cyber-physical systems: inexpensive sUASs as flying

sensors and actuators within the closed loops of cyber-physical control.
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