CUBESAT PROPULSION MODULE WITH CLOSED-LOOP THRUST CONTROL

T-A. Grönland, K. Palmér, J. Bejhed, A. Zaldivar-Salaverri, and P. Rangsten

NanoSpace Uppsala Science Park SE-751 83 Uppsala SWEDEN

e-mail: tor-arne.gronland@sscspace.com http: www.sscspace.com/nanospace

www.sscspace.com/nanospace

Outline

- Background & Introduction
 - MEMS & first generation micropropulsion
 - Advanced propulsion requirements
- Second generation MEMS micropropulsion

– Closed loop thrust control

- Some other propulsion developments
- Swedish lessons

MEMS – MicroElectroMechanical Systems

- MEMS enables small sizes
 µm feature sizes
- MEMS enables batch fabrication
- MEMS enables on-chip integration
 - Nozzles, sensors, actuators...

Integration and small size => small internal volumes => short response time and small impulse bits

Our "MEMS kitchen"

First generation MEMS micropropulsion - developed for the Prisma satellites

Advanced missions – Demanding requirements

Example: MICROSCOPE – drag free fligth

16 thrusters with closed loop thrust control

- 16 thrusters with closed
- 1 300 µN thrust range
- 0,2 µN resolution
- 250 ms response time
- 260 million cycles

Second generation – Closed-Loop Thrust Control

Integrated mass flow sensor provides control signal to the proportional flow control valve

 \Rightarrow Closed loop thrust control

Thruster chip and front end electronics

Figure: Schematic view of a complete closed loop control thruster. ON/OFF valve in conventional technology, the rest in MEMS.

Key capabilities – Like any other

ON/OFF cycles, full thrust range

Figure: Test result of MEMS thruster operating in ON/OFF mode (open loop, using solenoid valve only) to show thrust range.

Full thrust can be set in the range 50 micro-Newton to 10 milli-Newton

Key capabilities – Unlike any other

Figure: Test result of a MEMS valve operating in closed loop control mode showing the thrust response to commanded steps of 5 μ N.

Unique performance

Low thrust regime response: 0.1µN steps

Figure: Test result of a MEMS valve operating in closed loop control mode responding to the commanded steps of 0,1 μ N.

The CubeSat propulsion module

General specification:

- Four 1mN thrusters with closed loop thrust control
- Thrust resolution: <10µN
- Propellant: Butane
- Total impulse: 40Ns
- Size: 10*10*3cm
- Mass: 250g
- Operating pressure: 2-5 bar
- Power consumption: 2 W (average, operating)
- Mechanical interface: CubeSat payload I/F (Pumpkin)
- Electrical interface: 52 pins analog (0-12V) and digital (SPI)

The propulsion module –in bits and pieces

The "tuna can" design

-following the new CubeSat standard

www.sscspace.com/nanospace

Confidential

Design, specification and performance changes possible

- Thrust levels
- Number of thrusters and thrust directions
- Other CubeSat designs, e.g. 6U
- Tank size

Outline

- Background & Introduction
 - MEMS & first generation micropropulsion
 - Advanced propulsion requirements
- Second generation MEMS micropropulsion

– Closed loop thrust control

- Some other propulsion developments
- Swedish lessons

MicroThrust: MEMS-based colloid thrusters for CubeSats

20 µm

Specification	
Operating media	EMI-BF ₄
Thrust/Power	50 μN/W
lsp	3000 sec
Δv (1U)	5 km/s
Lifetime	13 000 hours

www.sscspace.com/nanospace

MicroThrust – Recent Results

- Current-voltage measurements
- Time of flight
- Plume angle measurements

Variation of emitter current with voltage difference between emitter and extractor, at different acceleration voltages

Bipolar mode operation with 127 emitter array

FP7-SPACE-2011-283279: Liquid Micro Pulsed Plasma Thruster

JMP INGENIEROS SL JMP Spain NAJERA AEROSPACE SL NASP Spain Mecartex SA MECARTEX Switzerland IPPLM Poland NANOSPACE AB NANOSPACE Sweden KOPOOS, France

SEVENTH FRAMEWORK PROGRAMME

L-µPPT system diagram. Propulsion system and its components.

Liquid micro-Pulsed Plasma Thruster

Funding from European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n°283279, the L-µPPT project.

- Propellant not limited by geometry: total impulse much less constrained than Teflon PPTs
- Steady propellant feed geometry: **no long term drift in terms of impulse bit**
- Propellant balancing capability in multi-thruster configuration: better utilization of propellant mass

1st european LµPPT prototype (CubeSat-sized)

Thruster operating 900 V. Long exposure photographs over a single discharge.

PRECISE focuses on the research and development of a MEMS-based monopropellant micro Chemical Propulsion System (μ CPS) for highly accurate attitude control of satellites.

Outline

- Background & Introduction
 - MEMS & first generation micropropulsion
 - Advanced propulsion requirements
- Second generation MEMS micropropulsion

– Closed loop thrust control

- Some other propulsion developments
- Swedish lessons

SMÖRGÅSBORD ['smærgps_buːd]

MEMS Micropropulsion Components

• First generation MEMS micropropulsion:

- Next generation MEMS micropropulsion:
 - Closed-loop control

Xenon flow control module

CubeSat propulsion module

www.sscspace.com/nanospace

Swedish lesson #2:

