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Picosatellites and Femtosatellites

Sprite chipsat1

7.5 mg, 1×1×0.025 cm
PhoneSat 1.02

~1 kg, ~10×10×10 cm

• Picosats (0.1–1 kg) and femtosats (<100 g), are an emerging class of  “ultra-small” 
satellites  
o Smartphone sized satellites with enhanced MEMS sensors

• Can fly low-cost constellations of  satellites
o Multi-point, simultaneous measurements

Google-HTC 
Nexus 1
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1. Missions requiring coordination and maneuverability (fleets of s/c)
2. Short orbital lifetime.
3. Limited power and size

Velocity for 
reduced drag 
orientation

velocity for high 
drag orientation

Challenges for Ultra-small Sats

A Rough Estimate of Satellite Lifetime due to Atmospheric Drag

Parameters 1-kg CubeSat 200-g PicoSat 8-g FemtoSat

Dimensions 10x10x10 cm 10x10x2 cm 3.8x3.8x0.1 cm

Configuration 1 face in ram 
direction

Low 
drag

High 
Drag

Low 
drag

High 
Drag

Ballistic 
Coeff. (kg·m-2) 45 45 9 95 2.5

Alt = 300 km weeks weeks days a 
month hours

Alt = 400 km months months weeks several 
months days

Alt = 500 km ~1 year or more ~1 year 
or more months ~years weeks

Early concepts 
have no 

propellant so 
the orbital 

lifetime is short
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Concept of ED tethers with pairs of femtosats as 
a maneuverable and coordinated fleet.

Motivation for using Miniature 
Electrodynamic Tethers (EDTs)

• EDT can provide propulsion
o Drag make-up
o Change inclination, altitude, etc.
o No consumable propellant

• Additional benefits of  tether:
o Provided gravity gradient stability
o Tether as antenna
o Ionospheric plasma probe

Can electrodynamic tethers provide ultra-small satellites with lifetime enhancement 
and maneuverability?  Can it provide additional benefits?

Research questions:
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MiTEE System Concept

• Technology demonstration mission 

• Primary mission: verify a 10 meter long 
tether can provide drag makeup for a 
femtosatellite (smartphone sized satellite) 

• Secondary mission: Can the tether be used 
as an antenna?

• Use as a plasma probe

MiTEE: Miniature Tether Electrodynamics Experiment
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Electrodynamic Tether Propulsion

• Exploits the Lorenz force generated by current flow in a magnetic field

( ) Earth

_

0
tetherTether amicElectrodyn BLF ∫ ×=

LengthTether
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• The gravity gradient force generates tension in 
the tether

Gravity Gradient Stabilization

• The gravity gradient torque helps align the 
tether along the local vertical

Local Vertical

FC1

FC2

FG2

FG1

CM

Gravity Gradient Forces3
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Tether Overview

• Requirements for Tether Material
o High tensile strength to prevent tether from breaking

o Conductive with insulating overlay

o Semi-rigid

Bent Nitinol
Springs back to 
original shape

• Investigating various materials for use
o Conducting testing on gold plated Nitinol as main 

material base
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Deployment System

• Tether Storage
o Coiled in a figure 8 pattern in spool to minimize tip 

off  dynamics

• Deployment
o Thermal knife cuts fiber that holds back end body

o Spring loaded pegs push end body away

o Investigating methods to prevent bounce back at end 
of  tether

• Micro-Gravity Testing
o Initial testing conducted in house

o Constructed drop chamber to deploy tether

o Will conduct further testing on parabolic flight

Spring Loaded Pegs

Tether Deployment System



10
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Drag Shield

Inner Structure

Tether Deployment
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Cathode

• Emits electrons from main body of  satellite

• Flying two types of  cathodes 
o Thermionic cathode

• Hot cathode for primary emission

o Field emission array cathode

• Low TRL, cold cathode for demonstration and redundancy

FEAC Cathode4Thermionic cathode
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EPS - HVPS

• High-Voltage Power Supply (HVPS) supplies voltage bias for anode and 
cathode

• Low TRL item never tested in a CubeSat 

• Requirements
o 200 V drop, supplying up to 5 mA

o Low power (< 2 W)

o Small form factor 

• Powered by on-board battery/solar cells

LT3751 IC

Coilcraft DA2032 
Flyback Transformer

HVPS Anode/Cathode System 
Application5
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Communications Overview

• Primary Antenna
o Monopole antenna

o Omnidrectional in azimuth plane

o 90° beamwidth in elevation plane

• Secondary Antenna
o Travelling wave antenna

o Gain 8 dBi at 435 MHz

o Doughnut shaped radiation pattern directed 
towards nadir

• Ground stations
o Ann Arbor, MI

o TBD backup station

o HAM community

Primary Antenna
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Diagnostics Tools

• Langmuir Probe
o Plasma diagnostics tool to measure ambient plasma characteristics

o Deployed off  of  primary antenna boom

• Camera
o Verifies deployment, end body location

• GPS
o Position data

Langmuir Probe

GPS Receiver and Patch Antenna
Camera Location

GPS
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Summer Progress Summary

• Successfully completed a high-altitude balloon flight
o Tested communications and integration of  components
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Summer Progress Summary

• Successfully completed a high-altitude balloon flight
o Tested communications and integration of  components

• Decision to have distributed network of  MSP430s control CubeSat
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Summer Progress Summary

• Successfully completed a high-altitude balloon flight
o Tested communications and integration of  components

• Decision to have distributed network of  MSP430s control CubeSat

• In-house microgravity chamber and thermionic cathode testing system
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Future Plans

• Heading towards a Preliminary Design Review in Fall 2014

• Plan to submit a proposal for launch position

• Submit proposal for reduced gravity flight with NASA
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Questions?
Thank you for your time!
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Backup Slides
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Picosatellites and Femtosatellites

• Can be launched to form low cost constellations if  propulsion source was on 
board 
o Multi-point, simultaneous measurements
o Take in-situ measurements

DARPA System F6 Constellation Concept3
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System Block Diagram

25
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Operations Overview

Launch from PPOD

Primary Antenna Deployment 
and De-tumble

Tether Deployment 
when Nadir Facing

Science Mission Starts

26
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EPS Block Diagram
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Link Budget

• Assumptions – UHF downlink at 
435Mhz Reception using 
436CP2UG Antenna from M2inc 
at ground station, 10dB Eb/No 
requirement to get a BER of  1e-
06 using FSK modulation from 
an orbit of  500km altitude.

Item Symbol Units Source Spacecraft to Ground
Frequency f GHz Input Parameter 0.44
Transmitter Power (DC) P Watts Input Parameter 1.50
Transmitter Power Amplifier Efficiency hp -- Input Parameter 0.30
Transmitter Power (RF) P Watts P*hp 0.45
Transmitter Power (RF) P dBW 10 log(P) -3.468
Transmitter Line Loss Ll dB Input Parameter -2.000
Transmit Antenna Beamwidth θt deg Input Parameter 48.276
Transmit Antenna Efficiency ht -- Input Parameter 0.80
Peak Transmit Antenna Gain Gpt dBi Eq. (13-18b) 12.21
Transmit Antenna Diameter Dt m Input Parameter 1.0
Transmit Antenna Pointing Error et deg Input Parameter 10.000
Transmit Antenna Pointing Loss Lpt dB Eq. (13-21) -0.515
Transmit Antenna Gain (net) Gt dBi Gpt + Lpt 11.70
Equiv. Isotropic Radiated Power EIRP dBW P + Ll + Gt 6.23
Propagation Path Length S km Input Parameter 5.000E+02
Space Loss Ls dB Eq. (13-23a) -139.19
Propagation & Polarization Loss La dB Fig. 13-10 -0.5
Receive Antenna Diameter Dr m Input Parameter 2.0
Receive Antenna Efficiency hr -- Input Parameter 0.55
Peak Receive Antenna Gain Grp dBi Eq. (13-18b) 16.60
Receive Antenna Beamwidth θr deg Eq. (13-19) 24.138
Receive Antenna Pointing Error er deg Input Parameter 0.130
Receive Antenna Pointing Loss Lpr dB Eq. (13-21) 0.000
Receive Antenna Gain (net) Gr dBi Grp + Lpr 16.60
System Noise Temperature Ts K Table 13-10 or DSN table 135

Data Rate R bps Input Parameter 9600
Modulation Rate -- -- Input Parameter 1.0
Computer Implementation Efficiency -- -- Input Parameter 0.90
Effective Data Rate R bps *See cell 10667
Eb/No (1) Eb/No dB Eq. (13-13) 50.16
Carrier-to-Noise Density Ratio C/No dB-Hz Eq. (13-15a) 90.44
Bit Error Rate BER -- Input Parameter 1.000E-07
Required Eb/No (2) Req Eb/No dB Fig. 13-9 12.0
Implementation Loss (3) --- dB Input Parameter -2.0
Rain Attenuation (4) -- dB Fig. 13-11 -1.0
Margin --- dB (1) – (2) + (3) + (4) 35.161

28
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OADCS Overview

• Pre-Deployment nadir pointing accuracy of  10°

• Post-Deployment will rely on gravity gradient for nadir pointing stability

• Rotational stability in-plane to less than 0.2 rad/s
o Out of  plane rotation should be less than 0.01 rad/s

• Actuator
o Magnetorquers with active control

• Position and attitude determination sensors
o GPS

o IMU

o Magnetometer

o Sun sensor

29
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