

Exploring the Potential of Miniature Electrodynamic Tethers and Developments in the Miniature Tether Electrodynamics Experiment

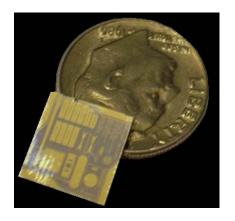
Nikhil Shastri

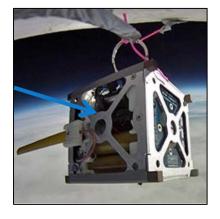
University of Michigan

Abhishek Cauligi, Bret Bronner, Brent Pniewski, Abiodum Alao, Peter Rivera Alexandria Western, Roshan Radhakrishnan, Rupak Karnik, Siju Varughese, Nate Scott, Brian Gilchrist

– University of Michigan

Jesse McTernan, Sven Bilen - Pennsylvania State University

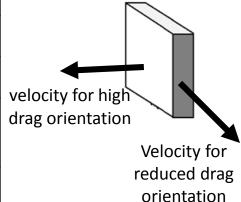

Picosatellites and Femtosatellites


- Picosats (0.1–1 kg) and femtosats (<100 g), are an emerging class of "ultra-small" satellites
 - o Smartphone sized satellites with enhanced MEMS sensors
- Can fly low-cost constellations of satellites
 - o Multi-point, simultaneous measurements

Sprite chipsat¹
7.5 mg, 1×1×0.025 cm

PhoneSat 1.0² ~1 kg, ~10×10×10 cm

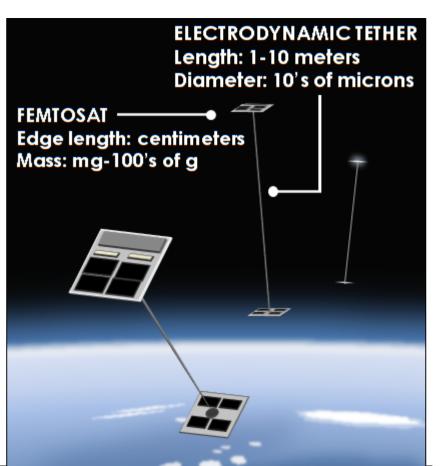
Google-HTC Nexus 1



Challenges for Ultra-small Sats

- 1. Missions requiring coordination and maneuverability (fleets of s/c)
- 2. Short orbital lifetime.
- 3. Limited power and size

A Rough Estimate of Satellite Lifetime due to Atmospheric Drag								
Parameters	1-kg CubeSat	200-g PicoSat		8-g FemtoSat				
Dimensions	10x10x10 cm	10x10x2 cm		3.8x3.8x0.1 cm				
Configuration	1 face in ram direction	Low drag	High Drag	Low drag	High Drag			
Ballistic Coeff. (kg·m ⁻²)	45	45	9	95	2.5			
Alt = 300 km	weeks	weeks	days	a month	hours			
Alt = 400 km	months	months	weeks	several months	days			
		~1 year						

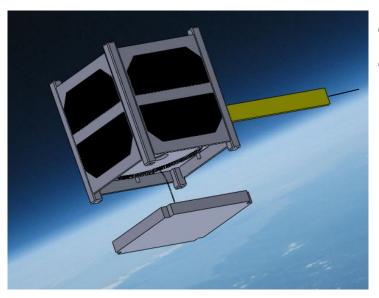


Early concepts
have no
propellant so
the orbital
lifetime is short

Motivation for using Miniature Electrodynamic Tethers (EDTs)

- EDT can provide propulsion
 - o Drag make-up
 - o Change inclination, altitude, etc.
 - o No consumable propellant
- Additional benefits of tether:
 - o Provided gravity gradient stability
 - o Tether as antenna
 - o Ionospheric plasma probe

Research questions:

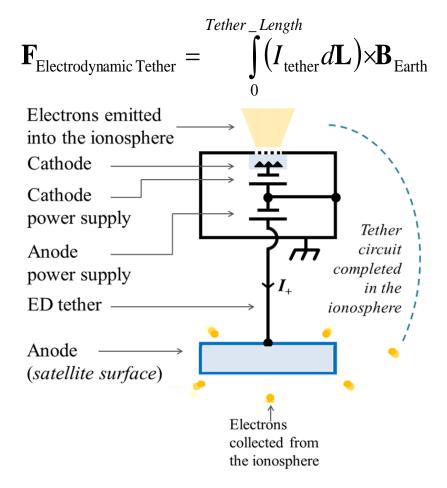

Can electrodynamic tethers provide ultra-small satellites with lifetime enhancement and maneuverability? Can it provide additional benefits?

MiTEE System Concept

MiTEE: Miniature Tether Electrodynamics Experiment

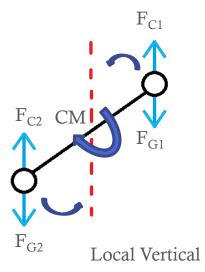
- Technology demonstration mission
- Primary mission: verify a 10 meter long tether can provide drag makeup for a femtosatellite (smartphone sized satellite)

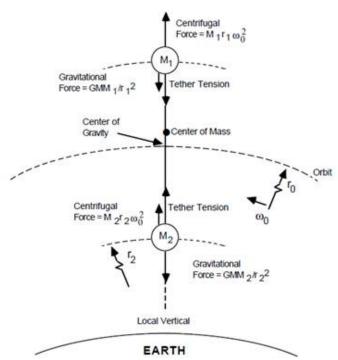
- Secondary mission: Can the tether be used as an antenna?
- Use as a plasma probe



Electrodynamic Tether Propulsion

Exploits the Lorenz force generated by current flow in a magnetic field

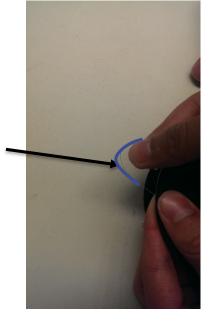


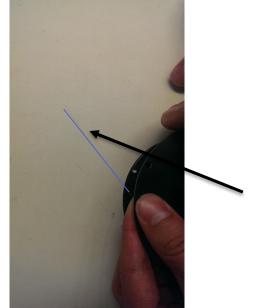


Gravity Gradient Stabilization

- The gravity gradient force generates tension in the tether
- The gravity gradient torque helps align the tether along the local vertical

Gravity Gradient Forces³




Bent Nitinol

Tether Overview

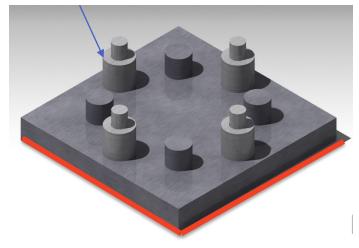
- Requirements for Tether Material
 - o High tensile strength to prevent tether from breaking
 - o Conductive with insulating overlay
 - o Semi-rigid
- Investigating various materials for use
 - Conducting testing on gold plated Nitinol as main material base

Springs back to original shape

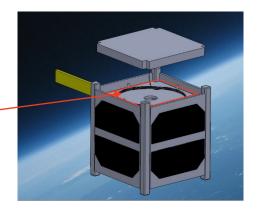
Deployment System

• Tether Storage

 Coiled in a figure 8 pattern in spool to minimize tip off dynamics


Deployment

- o Thermal knife cuts fiber that holds back end body
- o Spring loaded pegs push end body away
- Investigating methods to prevent bounce back at end of tether


Micro-Gravity Testing

- o Initial testing conducted in house
- o Constructed drop chamber to deploy tether
- o Will conduct further testing on parabolic flight

Spring Loaded Pegs

Tether Deployment System

Deployment System

Tether Storage

 Coiled in a figure 8 pattern in spool to minimize tip off dynamics

Deployment

- o Thermal knife cuts fiber that holds back end body
- Spring loaded pegs push end body away
- Investigating methods to prevent bounce back at end of tether

Micro-Gravity Testing

- o Initial testing conducted in house
- o Constructed drop chamber to deploy tether
- o Will conduct further testing on parabolic flight

Tether Deployment

Deployment System

• Tether Storage

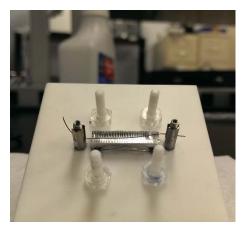
 Coiled in a figure 8 pattern in spool to minimize tip off dynamics

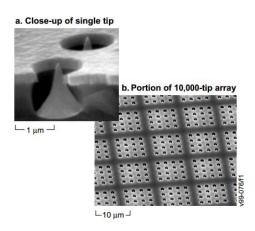
Deployment

- o Thermal knife cuts fiber that holds back end bod
- o Spring loaded pegs push end body away
- Investigating methods to prevent bounce back at of tether

• Micro-Gravity Testing

- o Initial testing conducted in house
- o Constructed drop chamber to deploy tether
- o Will conduct further testing on parabolic flight

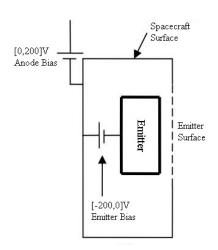


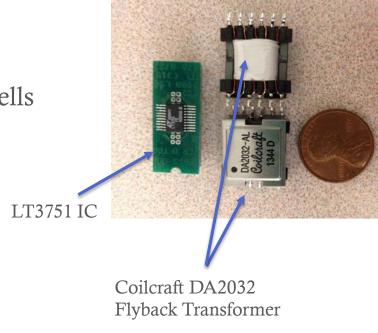

Cathode

- Emits electrons from main body of satellite
- Flying two types of cathodes
 - o Thermionic cathode
 - Hot cathode for primary emission
 - o Field emission array cathode
 - Low TRL, cold cathode for demonstration and redundancy

Thermionic cathode

FEAC Cathode⁴




EPS - HVPS

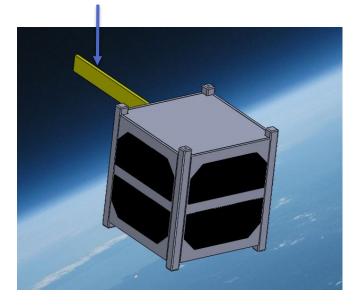
- High-Voltage Power Supply (HVPS) supplies voltage bias for anode and cathode
- Low TRL item never tested in a CubeSat
- Requirements
 - o 200 V drop, supplying up to 5 mA
 - Low power (< 2 W)
 - o Small form factor
- Powered by on-board battery/solar cells

HVPS Anode/Cathode System Application⁵

Communications Overview

Primary Antenna

- o Monopole antenna
- o Omnidrectional in azimuth plane
- o 90° beamwidth in elevation plane


Secondary Antenna

- o Travelling wave antenna
- o Gain 8 dBi at 435 MHz
- Doughnut shaped radiation pattern directed towards nadir

Ground stations

- o Ann Arbor, MI
- o TBD backup station
- o HAM community

Primary Antenna

Communications Overview

• Primary Antenna

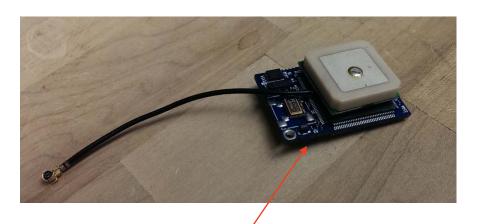
- o Monopole antenna
- o Omnidrectional in azimuth plane
- o 90° beamwidth in elevation plane

Secondary Antenna

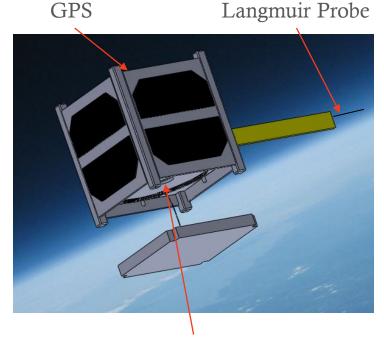
- o Travelling wave antenna
- o Gain 8 dBi at 435 MHz
- Doughnut shaped radiation pattern directed towards nadir

Ground stations

- o Ann Arbor, MI
- o TBD backup station
- o HAM community



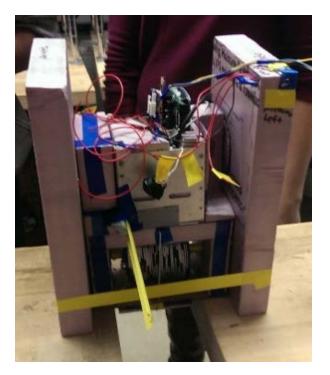
Diagnostics Tools



• Langmuir Probe

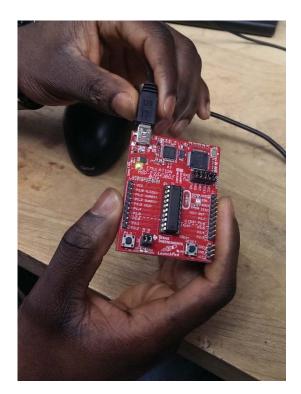
- o Plasma diagnostics tool to measure ambient plasma characteristics
- o Deployed off of primary antenna boom
- Camera
 - o Verifies deployment, end body location
- GPS
 - o Position data

GPS Receiver and Patch Antenna


Camera Location

Summer Progress Summary

- Successfully completed a high-altitude balloon flight
 - o Tested communications and integration of components



Summer Progress Summary

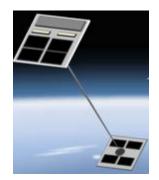
- Successfully completed a high-altitude balloon flight
 - o Tested communications and integration of components
- Decision to have distributed network of MSP430s control CubeSat

Summer Progress Summary

- Successfully completed a high-altitude balloon flight
 - o Tested communications and integration of components
- Decision to have distributed network of MSP430s control CubeSat
- In-house microgravity chamber and thermionic cathode testing system

Future Plans

- Heading towards a Preliminary Design Review in Fall 2014
- Plan to submit a proposal for launch position
- Submit proposal for reduced gravity flight with NASA



Questions?

Thank you for your time!

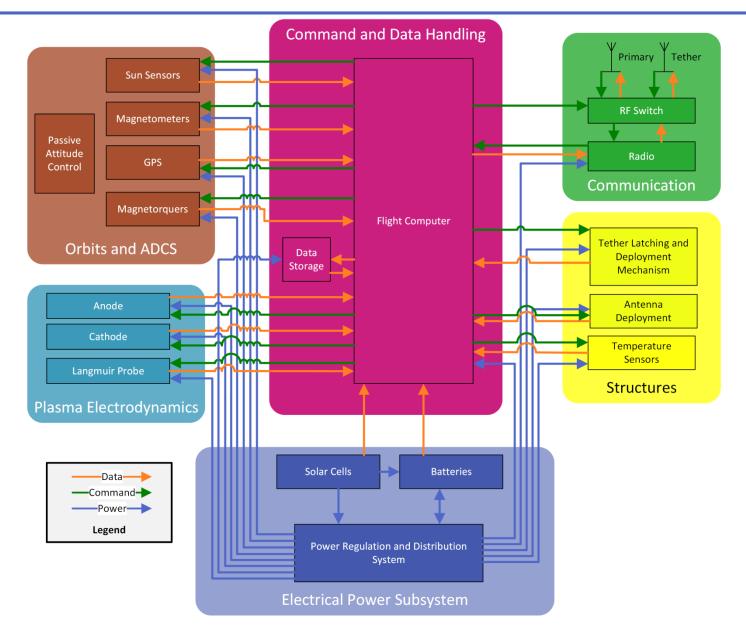
References

- 1. Atchison, J.A. and M.A. Peck, "A Passive, Sun-Pointing, Milimeter-Scale Solar Sail," Acta Astronautica, Vol. 67, No. 1-2, July-August 2010, pp. 108-121
- 2. Twiggs, R.J. and R.A. Deepak, "Thinking Outside the Box: Space Science Beyond the CubeSat," Journal of Small Satellites, Vol. 1. No. 1, 2012, pp. 3-7
- 3. Cosmo, M. L. Tethers in Space Handbook. 3rd ed. 1997. Print.
- 4. V.M. Aguero and R.C. Adamo, "Space applications of Spindt cathode field emission arrays," in 6th Spacecraft Charging Technology Conf. 2000, pp347-352
- 5. Morris, D.P., "Optimizing space-charge limits of electron emission into plasmas with application to in-space electric propulsion," Ph.D dissertation, The University of Michigan, Ann Arbor, MI, 2005.

Backup Slides

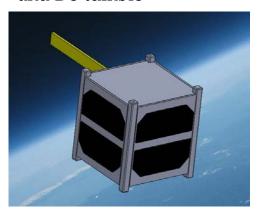
Picosatellites and Femtosatellites

- Can be launched to form low cost constellations if propulsion source was on board
 - o Multi-point, simultaneous measurements
 - o Take *in-situ* measurements



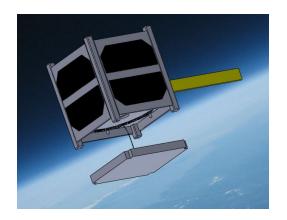
DARPA System F6 Constellation Concept³

System Block Diagram

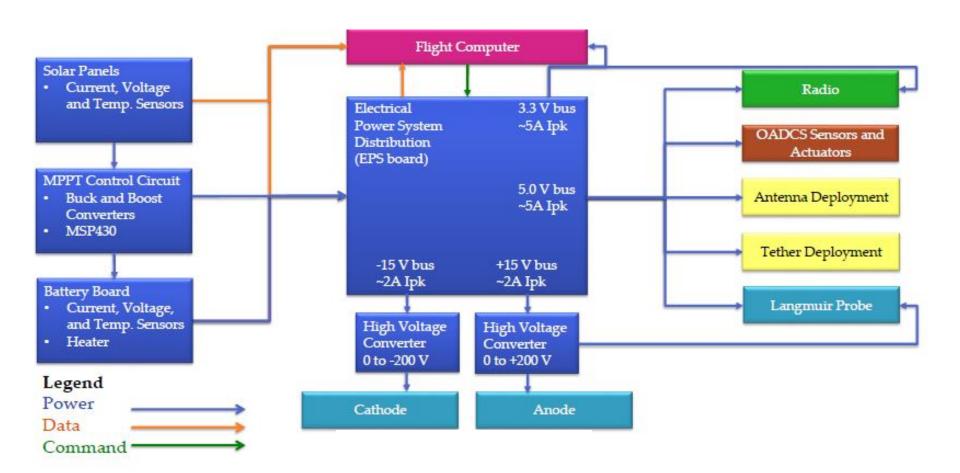

Operations Overview

Launch from PPOD

Primary Antenna Deployment and De-tumble



Science Mission Starts



EPS Block Diagram

Link Budget

 Assumptions – UHF downlink at 435Mhz Reception using 436CP2UG Antenna from M2inc at ground station, 10dB Eb/No requirement to get a BER of 1e-06 using FSK modulation from an orbit of 500km altitude.

Item	Completed	Units	Source	S
Frequency	Symbol f	GHz	Cource	Spacecraft to Ground 0.44
Transmitter Power (DC)	P	Watts		1.50
Transmitter Power Amplifier Efficiency	h ^p		Input Parameter	0.30
Transmitter Power (RF)	P	Watts		0.45
Transmitter Power (RF)	P	dBW	10 log(P)	-3.468
Transmitter Line Loss	Lı	dB	Input Parameter	-2.000
Transmit Antenna Beamwidth	θt	deg	Input Parameter	48.276
Transmit Antenna Efficiency	ht		Input Parameter	0.80
Peak Transmit Antenna Gain	Gpt	dBi	Eq. (13-18b)	12.21
Transmit Antenna Diameter	Dt	m	Input Parameter	1.0
Transmit Antenna Pointing Error	et	deg	Input Parameter	10.000
Transmit Antenna Pointing Loss	Lpt	dB	Eq. (13-21)	-0.515
Transmit Antenna Gain (net)	Gt	dBi	Gpt + Lpt	11.70
Equiv. Isotropic Radiated Power	EIRP	dBW	P + Lı + Gt	6.23
Propagation Path Length	S	km	Input Parameter	5.000E+02
Space Loss	Ls	dB	Eq. (13-23a)	-139.19
Propagation & Polarization Loss	La	dB	Fig. 13-10	-0.5
Receive Antenna Diameter	Dr	m	Input Parameter	2.0
Receive Antenna Efficiency	hr		Input Parameter	0.55
Peak Receive Antenna Gain	Grp	dBi	Eq. (13-18b)	16.60
Receive Antenna Beamwidth	$\theta_{\rm r}$	deg	Eq. (13-19)	24.138
Receive Antenna Pointing Error	er	deg	Input Parameter	0.130
Receive Antenna Pointing Loss	Lpr	dB	Eq. (13-21)	0.000
Receive Antenna Gain (net)	Gr	dBi	Grp + Lpr	16.60
System Noise Temperature	Ts	K	Table 13-10 or DSN table	135
Data Rate	R	bps	Input Parameter	9600
Modulation Rate			Input Parameter	1.0
Computer Implementation Efficiency			Input Parameter	0.90
Effective Data Rate	R	bps	*See cell	10667
Eb/No (1)	Eb/No	dB	Eq. (13-13)	50.16
Carrier-to-Noise Density Ratio	C/No	dB-Hz	Eq. (13-15a)	90.44
Bit Error Rate	BER		Input Parameter	1.000E-07
Required Eb/No (2)	Req Eb/No	dB	Fig. 13-9	12.0
Implementation Loss (3)		dB	Input Parameter	-2.0
Rain Attenuation (4)		dB	Fig. 13-11	-1.0
Margin		dB	(1) - (2) + (3) + (4)	35.161

OADCS Overview

- Pre-Deployment nadir pointing accuracy of 10°
- Post-Deployment will rely on gravity gradient for nadir pointing stability
- Rotational stability in-plane to less than 0.2 rad/s
 - Out of plane rotation should be less than 0.01 rad/s
- Actuator
 - o Magnetorquers with active control
- Position and attitude determination sensors
 - o GPS
 - o IMU
 - o Magnetometer
 - Sun sensor

