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ABSTRACT

Income Distribution Effects of Water Quality Controls:

An Econometric Approach

by
Ming Chien Chen, Doctor of Philosophy

Utah State University, 1977

Major Professor: Dr. John E. Keith
Department: Economics

The imposition of water quality controls may affect the

economy chiefly by altering aggregate production and changing the

factor payments. These two effects could not only reallocate

resources among production possibilities, but also could change
the distribution of benefits of production among members of the
society.

This study attempted to provide a workable theory to establish
an empirical test of the impacts of water quality controls on
family incame distribution. It consists of two separate areas:
first, to analyze methodologies of measuring incame distribution
changes, and, second, to develop a theoretical model that is
useful for empirical tests of the impacts of different water
quality controls.

A number of alternative probability density functions have
been proposed as models of personal incame distribution. The

lognormal, displaced lognormal, gamma, and beta distribution

vi




functions were considered as appropriate methodologies, since
each allows more productive power for income distribution as
suggested in the past literature. Detailed information on incame
distribution can be extracted fram the approximations of the
distribution functions.

One of the objectives of the research was to evaluate the
different methodologies far usefulness. The Gastwirth bounds for
Gini coefficient were used as the test of goodness of fit; the
beta density was clearly superior to the other densities for
the SMSA data.

Next, a theoretical model was constructed, emphasizing the
production sector and the distribution sector. Water quality
controls were introduced in the production process as a negative
input. Water quality data were collected for all states, and
indices of quality were estimated using analysis of variance
techniques. The equilibrium conditions in commodity and factor
markets generated the first inpacts of water quality controls on
total output and factor payments in the econamy.

The specific assumption was made as a theoretical bridge
connecting family income distribution and factor payments in the
distribution sector. It was assumed that a family's incame
equals total payments received fram owned labor and capital in the

production process. Thus, changes in factor payments and total

output were included in the distribution equations. Water quality

controls would, therefore, effect family incame distribution through
changes in total output and changes in factor payments.

vii




The simultaneous equation regression results for 172 SMSA's
were not conclusive. It appeared that water quality parameter
may effect the wage rate and total output, if the parameter was
not, in fact, a surrogate for other excluded variables in the
system. The effect of wage changes on income distribution was not
significant, but changes in total output appeared to be the most
significant variable in the distribution equations.

In an attempt to account for the many variables which might
be expected to effect incame distribution, factor analysis was
performed on the SMSA's. Two groups of SMSA's were identified,
and regressions were performed for these groups. Results from
these regressions were similar in sign to the results from the

172 observation regressions, although many of the coefficents

were not significant.

Interpreting the results of the research was samewhat

difficult, even though some results did appear consistent among

all regressions. It does appear that there is same evidence to

indicate that water quality controls lead to less equal family

incame distribution. Better data are required for more camplete

and accurate analysis.

The principle thrust of the study was to develop a model to

organize the camwplexity of econamic causality with respect to incame

distribution change and water quality policy. It appeared that

this type of systematic econametric approach can be fruitful in

analyzing incame distribution change.
(93 pages)




CHAPTER I

INTRODUCTION

The imposition of envirommental constraints on econamic

activity has heightened pecple's interest in the consequent impacts

of these new policies. Most people generally acknowledge that

changes in envirommental control affect the economy chiefly by

However, environmental policies

altering aggregate production.

may have two possible effects: changing resource allocations among

production possibilities and changing the distribution of the

benefits of production among members of society. Many of the

standard econamic tools are structured to analyze allocation effects.

The study of distributional changes also has a rather long history,
but only recently have tools with strong analytic capability been
suggested in the literature. The past studies have been theoretical,
rather than empirical. This study attempts to provide same
methodologies for empirical analysis of the distributional impacts

of water quality controls.

Study Objectives
The primary objective of the proposed research directs itself
toward two separate areas: first to analyze methodologies of
measuring incame distribution changes, and, second, to select
appropriate methodology and empirically test the hypothesis that

there are significant distribution impacts from water quality




controls. In order to achieve these objectives, several steps
will be accamplished in the following sequential order:
1. To determine camparable econamic and demographic units
in cross section and in time series.
To estimate incame distributions in each of the units,
using different methods of inequality measurement.
To evaluate the estimation efficiencies of different
inequality measurements.
To establish a theoretical relationship among the incame
inequality, water quality indices, and measurable
socio-econamic variables.
To develop indices fram the water quality data which had

a broad range of variables.

To develop an econametric model fram the theoretical

relationships in order to test the hypotheses for
significance empirically.

To apply the tools, if they are efficient, to water
quality policies to appraise its effect on incame

distribution changes which might occur.




CHAPTER II

THE DISTRIBUTION MEASURES

Sen (1973) discussed measures of inequality that have been
proposed in the literature. He pointed out the strengths and
weaknesses of different measures. He concluded that inequality
is not easily represented by a single measure.

Inequality can be viewed in relative terms, viz., as a departure
fram same notion of an appropriate distribution. It is not only
a measure of dispersion but also as a measure of the bargaining
process between different income classes. In a normative sense,
the "right" distribution of incame based on "need" and "appropria-
tions." Sen pointed out this normative assumption, and separated
the measures of incame distribution into two categories: 1)

Those using statistical measures of relative variation of incame
to measure the extent of dispersion in an objective way are the
positive indices of inequality, such as the Gini Coefficient,
variance, and coefficient of variation, 2) Those indices that try
to measure inequality based on same normative notion, such as

Dalton's measure, Atkinson's measure, and Theil's entropy index.l

lDalton's measure is based on a camparison between actual levels
of aggregate utility and the level of utility that would be obtained,
if incame were equally distributed. Atkinson's measure was the con-
cept of equally distributed equivalent incame. See Champernowne
(1952) for more detail.




The appropriate approach for the study of changes in distri-

bution due to water quality controls is clearly the former.

The incame distribution measures most often utilized in the analysis

of policy effects have been the Gini, Pietra, or Theil's Entropy

measure. The Gini Coefficient, which is derived fram the Lorenz

curve, is insufficient in that Lorenz curve which cross and have

very different distributional characteristics may have identical

Gini coefficient. Theil's entropy is based on the concept in

Thermodynamics, which is proposed to measure disorder or randamness

for particles. One disadvantage of using the Theil's entropy is

that the proportion of families in different incame ranges cannot

be predicted from the index. All of these indices suffer fram a

lack of a unique relationship between the index and the actual

incame distribution.

Several authors have suggested alternative measuring methods
based on probability density functions which have parameters which
relate to both the mean and skewness of a density function (Champer-
nowne, 1974). Metcalf (1972) utilized lognormal and displaced
lognormal distributions to estimate the Lorenz curve. The latter
function has the property that the distribution need not necessarily
be symmetric about the mean, as would be expected of a Lorenz curve.
Two of the Pearson family of curves have also been suggested: the
gamma density function (Salem and Mount, 1974) and the beta density
function (Thurow, 1973). All these functions have two parameters
which relate mean, variances, skewness, and kurtosis, allowing a

more camplete description of the Lorenz curve.




The Lognormal Densities

Census data indicate that incame distribution is positively
skewed in that mean is greater than the median (See Figure 1).

Thus, it is likely that incame is more closely approximated by a

lognormal curve than a normal curve.

f(x)

|
5

Figure 1. Skewed distribution of incame distribution

The distribution of family incame may be approximated by a two

parameter lognormal distribution function,
1 log x — log a}
Ax a8 =———— exp {~—1IXx—Jogol

xB T;r— 2fF

s B = 3

0, and




6
or a three parameter displaced lognormal distribution function,

£4 % | Cpoy B} =& {60 | o, 8]

The variable x is defined as the incame level, A (x) and £ (x)
are the percentage of families attaining that incame level. The
density functions involve three parameters, «, B and c, which must
be estimated fram data. Various measures of distribution equality
fram the two functions are then obtaina.ble.2

The parameter a, which is the natural log of the geametric mean
of x, should equal the natural log of the median of the actual
distribution is the two parameter lognormal. Since the income dis-
tribution in the SMSA's is skewed, often dramatically, the three
parameter lognormal may be a more desirable estimation. The third
parameter of the lognormal distribution, c, will indicate the
extent of the log transform of the skewed data.3

The curve fitting procedures include the camputation of mean
incame in each of the incame groups. The midpoint is chosen as the
mean incame for the first incame group; the mean incame of the open
end interval is obtained by fitting a Pareto curve to the data.

Pareto's mathematical formulation is widely used as the basis

for estimating the mean for the open-end of an incame distribution.

2Aitchisan, J. and Brown, J.A.C., The Lognormal Distribution
with special reference to its uses in econamics, Cambridge:
Canbridge University Press, 1973. Chapter 2.

3'Ihe two parameter lognormal is simply a special case of

the three parameter one, wherein the skewness, or third parameter,
is zero.




For a discussion of fitting a Pareto curve to the open-end interval

see U.S. Bureau of the Census (1965). Due to the assumed geametric
nature of the income distribution, the mean income of each of
the remainder of the groups is computed fram the geometric mean
of the lower and upper bounds.

The overall mean incame of the population (u) is estimated by:
& uy fi
£.

1

=
|
e |-

where My is the mean income of group i and fi is the number of
families in income group i.

The method of quantiles is used to estimate the parameters.
It is more efficient to take median, 10% decile, and 90% decile

as the three quantiles. If B, M, and S denote the estimators
4

of three parameter lognormal functions®, the determining simultaneous

equations are:

DEC = B + e:—l.ZBS

XMED = B + €

O = 1 B T 1208
where DEC = 10% decile,

XMED = median,

DEC9 = 10% decile.

For further discussion of estimation procedure, see Aitchison

and Brown (1973), Chapter 6. The coamputer program is listed in

Appendix A.
Metcalf (1972) applied the displaced lognormal distribution

function to postwar United States income data. He states that

4Again, for the case of two parameter lognormal, B = 0.




"...A cursory examination of U.S. income data for any year reveals
that the actual distribution is positively skewed, contrary to
the symmetry of a normal distribution...The coefficients of

skewness and Kurtosis are both positive, indicating a departure

from normality." He, then, chooses the lognormal distribution
model. He indicates the statistical failure of the descriptive
power of the lognormal distribution model. In the discussion

of the rejection of a simple lognormal distribution, he found that
it is unlikely that the displacements are random variations

about a zero mean.

Given the empirical assertion that f (x) is positively
skewed, £ (1In x ) overcorrects for the positive skewness. Clearly,
there exists same value of ¢ > o such that the transformation
f (In {x— c}) has zero skewness. Thus, it is possible to find a
value of c such that the distribution possesses the desired

degree of skewness. Metcalf suggested using the displaced

lognormal to improve the fit, and he accepted it as analytic

tractable.

Nevertheless, Salem and Mount (1974) rejected the displaced
lognormal distribution as an alternative approximation of income
distribution, due to the difficulty of relating the parameters
to an inequality measure. They indicated that "...Even though
the displaced lognormal provides a good fit to the data, there
are two serious drawbacks that reduce its usefulness as a model

5

of incame distribution.. The two drawbacks involve the

statistical properties and economic interpretations of the three




parameters. Testing hypotheses about the parameters is difficult,
since the statistical properties of the estimators are unknown.
Furthermore, skewness depends upon both B and C; hence, the
economic interpretation of the parameters is no longer straight-
forward. They concluded that gamma density may be a better

functional form to describe changes in the distribution of incame.

The Gamma Density

The gamma distribution may be defined:

g” a-1
gixlednl=map—r

-8y
where o < x < =, a and B are positive parameters, and

Pl ~f" e ot a
is the gamma function.

Salem and Mount found that the two parameters can be directly
related to indicators of inequality and scale respectively, and
the two parameters are easy to estimate.

Assume that all the family incames (x) are multiplied by
a constant k, namely Y=ky, as would happen under Gibrat's Law of
proportionate growth. The density function of Y is g (Y), and
the cumulative distribution function is G (Y), where

g0 =—F—cW®
by definition.
G (Y) and g (Y) can be related to F (X) and £ (x) in the

following equations:

5See Glenn, A.B.Z. and Mount, T.D. "A Convenient Descriptive
Model of Income Distribution: The Gamma Density," Econometrica 42
(6) , November, 1974, 1115-1127.




(assume k < 0)
= [ Y% £ (0 ax
F (y/k) - F (0)

It is clear, then, that a is not directly related to the scale

change in income, but is related to the skewness, kertosis, and
variance. It has been shown that the Gini (Salem and Mount, 1974),
Theil's entropy (Salem and Mount, 1974), and Pietra (McDonald and
Jensen, 1976) indices are functions of a only. Thus, the non-
uniqueness of these inequality measures is obvious. McDonald and
Jensen (1976), indicate that maximum likelihood estimators have
smaller sample biases than method of moments estimators in

most cases. Thus, maximum likelihood technique will be used to
estimate the two parameters. The cawputer program is developed

in Appendix B for both gamma and beta densities.




The Beta Density

The final distribution form to be examined is the beta

density function, as suggested by Thurow (1973).

The beta function has the form

-~ Lo p) o-1 oAl B
By, o, 0] = st ¥ @y © 1

where o < x < 3, p > 0, and ¢ > o.

The relationship between the beta function and the three

indices of inequality is currently under study. No specific

relationship has been determined, nor has it been demonstrated

that the maximum likelihood estimators have smaller sample basis

than the method of moments. HOwever, since the beta and gamma

functions are members of the same Pearson family of distributions,

the use of maximum likelihood estimators appears arranged. Since
no direct maximum likelihood estimators of the beta function

exist, a Newton-Raphson approximation is used.

The BEmpirical Estimation Of Income Distribution

The major problem in estimating the incame distribution
parameters for each of the chosen functions were: first, to choose
the method of estimating the mean of the highest (unbounded)
incame class, and second, to estimate the parameters of each
function correspending to the incame distribution data collected
fram the 1960 and 1970 census data for every Standard Metropolitan
Statistical Area (SMSA) in the nation.

As discussed, the Pareto-Levy law was used by the U.S. Bureau

of the Census (1965), to estimate the mean of the unbounded

upper incame group. This law states:
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i .’Ihg: upper ranges of the incame distribution og_gld be

described by a curve of the general type, Y = AX °, where

X is the incame size and Y is the number of persons have

that, or a larger, incame.

Graphically the curve would appear as a straight line in
its logarithmic form. While the law is difficult to use for
lower incame levelsG, it is a reasonable approximation of higher
income group. Since the only income group requiring estimation
is the open-end highest incame group, the law should be appropriate.

A related difficulty occurs when the beta function is used
for income distribution estimation. Since the beta function is a
finite distribution function of scaled incames (that is, scaled
between 0 and 1), it has a maximum income implicit in its
estimation. The mean incame of the open-ended interval derived
fram the Pareto-levy law, is the mid-point of the interval. The
formula used is:

WD = B + 2(X-B)

where UD = maximum income;

B = upper limit of the interval preceding the open-ended
interval; and

X = mean income of the open-ended interval.
Incames are divided by UD to satisfy the scale (0 to 1).
Distribution data were collected fram the 1960 and 1970 Census
of population (U.S. Bureau of the Census, 1963, 1973, 1974, 1975)

and from data available in the 1972 County and City Data Book (1972).

6See for references, R.G.D. Allen, Mathematical Analysis for
Econamists, (London: MacMillan), 1974, pp. 407-408 and L.R. Klein,
An Introduction to Econometrics, (Prentice Hall, Inc.) 1962, pp.
152-153.
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Since only grouped data of the family incame of SMSA's are
available, it is assumed that every member of the particular
incame group receives the same incame, measured by the midpoint
of that group. Thirteen incame groups are used for 1960 and
1970 data to make camparisons possible.

Computer programs were developed to estimate the parameter
of the displaced lognormal, gamma, and beta density functions
from these data. The programs can be found in apperdices. The
estimation of these parameters are given in Table 1 and 2 for
each SMSA.

One of the objectives of the research was to evaluate the
different methodologies for usefulness. The Gastwirth indices
were used as the test.

Gastwirth (1971, 1972, 1974) suggested a method of estimation
of the Gini coefficient with group data that does not require any
assumption about the fundamental form of incame distribution.

The method yields upper and lower bounds for the Gini coefficient.
A test can be performed by relating the Gini coefficient generated
by each of the estimation techniques to the Gastwirth bounds. The
Gastwirth bounds are also indicated in Tables 1 and 2 for each
SMSA.

Gastwirth and Smith (1972) have found that the lognormal
and displaced lognormal functions fail this test consistently.

The Gini coefficients granted by the lognormal and displaced
lognormal functions fell outside the Gastwirth bounds in every

SMSA, as can be seen in Tables 1 and 2. The gamma distribution




Table 1. 1960 incame parameters for each distribution function and gastwirth bounds.

S.M.5.A. (60) Gamma Beta Lognormal Displaced Lognormal Gastwirth

" F Gini l ‘ Gini M v Gint C M = Gini GU GL

Abilene, Tex 1.91 0.00031 0.27 1.59: 13,48  0.39 8.42 0.634 0.43  15046.25 9.94 0.030 .10 .35 0.3
Akron, Ohio 2.59 0.00034 0.24 2.07  12.46  0.34 8.73  0.500 0.38 5793.73 9.45 0.096 0.17 0.32 0.3
Albaany, Ca 1.68 0.00031 0.29 1.43 1%.17 0.41 8.25 0.756 0.46 435973.30 13.00 0.000  0.00 0.41 0.4
Albany, NY 2.32 0.00033 0.25 1.88  11.51 0.36  8.62 0.557 0.40 4907.84 9.33  0:1%20 0319 0.35 0.34
Albuquerzue, NM 2.08 0.00028  0.26 1.68 10,36 0,37 8.64 0.617 0.42 3049.67 9.14 0.197 0.25 0.37 0.36
Allentown, NJ 2.44 0.00036 0.24 1.97 15.50 0.36 8.60  0.495 0.38 2645.49 9.05 0.160  0.:2 0.34 0.33
Amarillo, Tex 2.02 0.00028  0.26 1.62 13.83  0.39 8.6l 0.572 0.41 3395.37 9.17 0.160  0.22 0.38 0.37
Ann Arbor, Mich 2.16 0.00026 0.26 1.70 9.09  0.37 8.76  0.602 0.42 6381.78 9.52 0.106  0.18 0.36 0.35
Ashville, KC 1.58 0.00028 0.29 1.34 17.581 0.43 8.26 0.749 0.46  69607.93 11.22 0.002 0.02 0.43 0.42
Atlanta, Ca 1.77 0.00025 0.28 1.44  10.54  0.40  8.54  0.706 0.45  12081.93 9.84 0.054  0.13 0.40 0.4
Atlantic City, NJ 1.86 0.00030 0,27 1.55 13.20 G.40 8.43 0.671 0.44 3765.05 9.10 0.156 0.22 0.39 0.3
Austin, Tex 1.64 0.00025 0.29 1.35  12.3h 0.A2 8.4 0.722 0.45  10672.78 9.72 0.057 0.13 0.42 0.4
3akersfield, Cal 2.05 0.00030  0.26 1.69 11.35  0.38 8.56  0.628 0.42 4331.86 9.24 0.150  0.22 0.37 0.36
Baltimore, Md 2.12 0.00029 0.26 1.71  11.24  0.37 8.64 0.603 0.42 5341.23 9.38 0.119  0.19 0.36 0.36
Baton Rouge, La 1.83 0.00027 0.28 1.51 10,32 0.39.  &53 0.707 0.45  26230.18 10.41 0.017 0.07 0.39 0.39
Bay City, Mich 2.55 0.00037 0.24 2.1% 1451 0.34  8.62 0,510 0.39 6787.51 9.47 0.079 0.16 0.32 0.3
Beaumont, Tex 1.90 0.00029 0.27 1.59  13.44 0.39 8.50  0.694 0.44 101891.40 11.59  0.001 0.02  0.37 0.3
Billings, Mont 2.40 0.00034 0.24 1.94 11.83  0.35  8.64 0.538 0.40 2919.45 9.11 0.173 0.23 0.3 0.3
Binghampton, NY 2.69 0.00037 0.23 2.15 12.55 0.34 8.69 0.470 0.37 2728.32 9.13 0.162 0.22 0.32 0.3
Birmingham, Ala 1.59 0.00026 0.29 1.34  11.85 0.42 8.38  0.802 0.47  22986.08 10.27 0.019 0.08 0.42 0.4
Boston, Mass 2.21 0.00027 0.25 1.72  10.44 0.37 8.75 0.553 0.40 1131.30  8.95 0.277 0.29 0.36 [1 5]
Bridgeport, Conn 2.56 0.00033 0.24 2.01 10.80  0.34 8.75 0.509 0.39 1333.11 8.98 0.239 0.27 0.33 0.3
Brockton, Mass 2.93 0.00043  0.22 2.37  15.80 0.32 8.65  0.428 0.36 1684 .84 8.95 0.175 0.23 0.31 0.3
Buffalo, N 2451 0.00034 0.24 2.01 11.69 0.35  8.69 0.519 0.39 3619.00 9.22 0.147 0.21 0.33 0.32

148




Table 1 (continued)

S.M.S.A. (60)

Lognormal Displaced Lognormal Gastwirth

Gini C M Gini 1 GL

=

[
i
|
[

Canton, Ohio 2. 0.00035

w
o
[

0.39 4314.13 9.27

=

0.33
35
38
42
37
41
35
35

35

Cedar Rapids, Iowa 0.00029

w

0.41 8911.42
.42 1586.
.50 6196 .04
.46 8837.
.45 9005.
W41 4733.
.41 4503,
.40 4928.
.47 4341
W42 5923
.48 5573
.45 10122.
.40 4629
.40 7808
W41 3787
.40 7045
.40 5637
.45 5608.
43 14259.58
.39 16704.51
.43 1867.05
.39 4876.22
-39 11287.62
L4b4 68441.12
-39 3960.26

Champaign, Il1 0.00028

w
o

Charlotte, SC 0.00027

=~

Charleston, W Va 0.00028
Charlotte, NC 0.00024
Chicago, Ill 2.2 0.00025
Cleveland, Ohio 0.00026
Colo Springs, Colo 0.00035
Columbia, SC 0.00028

36
42

Columbus, Ohio 0.00028
Corpus Chrisci, Tex 0.00025
Dailas, Tex 0.00023

©O ©o o0 o0ococo0o0o0o0o0o0

41
33
33

4

35
35
37
35
33
.38
0.33
0.33

Davenport, Ill 0.00033

=}

Dayton, Ohio 0.00031
Decatur, Il11 0.00033
Denver, Colo s 0.00029
Des Moines, Iowa 0.00030
Detroit, Mich 0.00027
Dubuque, Iowa 0.00031
Duluth, Minn 0.00039
El Paso, Tex 0.00031
Erie, Pa 0.00037
Eugene, Ore 0.00035

©O 0000000009000 000000900
© 0O 0 ©0O 900000900 000000000
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Evansville, Ind 0.00030
Fargo, ND 0.00035
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Table 1 (continued)

S.M.S.A. (60)

Fitchburg, Mass
Ft Lauderdale, Fla
Ft Wayne, lad

Ft Worth Tex
Fresno, Cal

Gary, Ind

Grand Rapids, Mich
Creat Falls, Mont
Green Bay, Uis
Greensboro, NC
Greenville, SC
Hamilton, Ohio
Harrisburg, Pa
Hartford, Cosnn
Honolulu, Ha
Houston, Tex
Huntington, Ky
Indianapolis, Ind
Jackson, Mich
Jacksonville, Fla
Jersey City, NJ
Kalamazoo, Mich
Kansas City, Kan
Kenosha, Wis

Knoxville, Tenn

.72
.58
.38
.97
.80
.64
.31
40
42
81
77
43
41
50
05
.75
74
18
39
.84
.68

N = RN F NN FE RN RNR = =N N

2.11
2.78
1.73

0.00041
0.00024
0.00031
0.00030
0.00027
0.00035
0.00031
0.00035
0.00034
0.00027
0.00031
0.00033
0.00035
0.00029
0.00025
0.00024
0.00030
0.00028
0.00033
0.00029
0.00038
0.00031
0.00028
0.00035
0.00030

(=S~ - T~ G~ R~ TR - T - ~ (O~ AT - T T~ - T~ S~ -]
e & 3 5
®

0.25
0.26
0.23
0.28

14.79
12.08
1221
13.60
11.83
1138
12.96
12.74
14.65
14.03
15.43
11.80
14.50
10.70

8.65
11.14
13.29
10.71
12.84
13.14
10.99
12.17
12.13
11.26
12.98

0.

0.

0
0
0

.519
-496
.633
-716
<753
.585
.532
.685
496
.543
+591
.476
.758

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

M

Displaced Lognermal

stwirth

GL

5444.29
17237.50
3825.89
3194.27
4781.14
3470.33
2361.46
16609.20
5724.57
8673.08
2830.92
1181.52
1267.18
14064.25
208923.70
6211.11
7697.98
30247.55
2652.82
4525.55
3536.91
2620.96
6102.50

@

-

-

=
W OV W YV VW O W VW N W ™MWV OV VW YV O VW © vV v

.96

.53

L4l
.07
.15

20
33
16
03
04
26
65
07
01
98
95
28
48
57
50
08
32

.20

15

.31

0.180
0.081
0.107
0.027
0.176
0.151
0.119
0.146
0.173
0.027
0.089
0.067
0.161
0.235
0.286
0.044
0.000
0.103
0.074
0.011
0.172
0.127
0.165
0.170
0.099

© 0O 0O 0000000000000 0 00000000
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w W
<

©O 00 0000000000000 0000000 oo
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Table 1 (continued)

S.M.S.A. (60)

Cini

Lake Charles, La 1.95 0.00032 0.27 1.66 8.41 0.646 0.43 33730.61 10.59
Lancaster, Pa 2.29 0.00034 0.25 1.86 8.58 0.539 0.40 2848.40 9.07
Las Vegas, Nev 2.32 0.00029 0.25 1.83 8.76 0.561 0.4 4004.70 9.:31
Lewiston, Me 2.69 0.00045 0.23 2.20 8.48 0.435 0.36 5667.53 9.30
Lawton, Ohio 2.03 0.00037 0.26 1.71 8.34 0.600 0.42 18418.65 10.07
Lexington, Ky 1.63 0.00024 0.29 1.35 8.46 0.741 0.46  12217.14 .81
Lima, Ohio 2.16 0.00033 0.26 1.81 8.52 0.592 0.41  21807.26 10.24
Lincoln, Neb 2.39 0.00036 0.24 1.94 8.58 0.511 0.39 3159.93 10
Little Rock, Ark 1.77 0.00030 0.28 1.48 8.37 0.706 0.45  26746.12 10.39
Loraine, Ohio 2.70 0.00038 0.23 2.21 8.65 0.489 0.38 4906.99 9.33
Los Angeles, Cal 2.06 0.00024 0.26 1.62 8.77 0.622 0.32 4974.09 9.40
Lowell, Mass 2.87 0.00043 0.23 2.34 8.62 0.444 0.36 5540.58 9.36
Lubbock, Tex 1.74 0.00025 0.28 1.40 8.51 0.676 0.44 7056.92 9.4

Lynchburg, Va 1.75 0.00029 0.28 1.49 8.37 0.710 0.45 73611.93 11.28
Macon, Ca 1.78 0.00030 0.28 1.51 8.39 0.726 0.45 38411.58 10.70
Manchester, NH 2.57 0.00039 0.24 2.08 8.59 0.467 0.37 3958.44 9.19
Memphis, Tenn 1.56 0.00026 0.30 1.31 8.35 0.786 0.47 134181.50 11.85
Meriden, Conn 3.02 0.00041 0.22 2.41 8.73 0.429 0.36 1504.40 9.00
Miami, Fla 1.61 0.00024 0.29 1.32 8.46 0.757 0.46 18792.59 10.13
Midland, Tex 1.88 0.00022 0.27 1.47 8.77 0.644 0.43  10427.84 9.79
Milwaukee, Wis 2.59 0.00032 0.24 2.02 8.79 0.488 0.38 2246.87 13
Minneapolis, Minn 2.36 0.00032 0.25 1.89 8.67 0.538 0.40 3973.96 25
Mobile, Ala 1.78 0.00030 0.28 1.52 8.38 0.726 0.45  30420.38 10.50
Montgomery, Ala 1.48 0.00025 0.30 1.26 8.31 0.864 0.49  41881.26 10.78
Muncie, Ind 2.22 0.00033 0.25 1.84 8.55 0.582 0.41  11613.63 9.79

.017
.048
.017
.151
.012
.102
.135
.083
.095
.002
.008
.109
.001
.189
.027
.066
.182
.145
0.011
0.007
0.044

©O 0O 0000000000000 O0 0 OO0 0o

0.38
0.35
0.35
0.33
0.37
0.42
0.35
0.34%
0.40
0.31
0.37
0.31
0.41
0.40
0.39
0.33
0.43
0.30
0.42
0.40
0.33
0.34
0.39
0.44
0.35

© 0O 00090090000 Oe 0000000000000
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Table 1 (continued)

S.M.S.A (60) Gamina Be:ta
- Gini g Gini B Gi Gini
Muskegon, Mich 2.58 0.00038 0.24 2.15 15.62 0.34 8.60 0.514 0.39 20780.23 10.21 0.016 0.07 0.32 0.31
Nashville, Tenn 1.63  0.00025  0.29 1.35 12.11 0.42  8.45  0.738  0.46  3514.52 9.09  0.184  0.24  0.42  0.41
New Bedford, Mass 2.28 0.00039 0.25 1.92 18.04 0.36 8.44 0.536 0.40 28224.66 10.43 0.008 0.05 0.35 0.34
New Britain, Conn 3.08 0.00041 0.22 2.43 13.00 0.32 8.75 0.411 0.35 438.64 8.85 0.255 0.28 0.30 0.30
New Haven, Conn 2.15 0.00027 0.26 1.69 11.32 0.38 8.73 0.568 0.41 2078.03 9.07 0.220 0.26 0.36 0.36
New Orleans, La 1.63 0.00025 0.29 1.34 12.35 0.42 8.44 0.739 0.46 8498.00 9.57 0.077 0.16 0.42 0.42
New York, NY 1.92 0.00023 0.27 1.50 9.40 0.39 8.72 0.642 0.43 2819.63 9.16 0.212 0.26 0.39 0.38
Newark, NJ 2.06 0.00023 0.26 1.58 8.42 0.38 8.82 0.615 0.42 2.68.12 9.15 0.220 0.26 0.37 0.37
Newport News, Va 2.20 0.00033 0.25 1.83  11.98 0.36 8.54 0.592 0.41 9029.87 9.64 0.064 0.14 0.36 0.35
Norfolk, Va 1.56 0.00027 0.30 1.35 11.9% 0.42 8.32 0.871 0.49 191565.00 12.19 0.000 0.01 0.4 0.40
Odessa, Tex 2.35 0.00034 0.25 1.94 13.72 0.36 8.61 0.560 0.40 10811.13 9.76 0.047 0.12 0.34 0.33
Ogden, Ut 2.91 0.00041 0.22 2.38  13.49 0.32 8.67 0.453 0.37 3382.97 9.18 0.134 0.2 0.30 0.30
Oklahoma City, Okla 1.86 0.00027 0.27 1.53 13.37 0.40 8.53 0.653 0.43 8171.30 9.57 0.076 0.15 0.39 0.38
Orlando, Fla 1.71 0.00027 0.28 1.42 13.24 0.41 8.43 0.694 0.44 11699.62 9.78 0.049 0.12 .41 0.41
Paterson, NJ 2.45 0.00028 0.24 1.86 8.93 0.35 8.86 0.519 0.39 2095.24 9.16 0.196 0.25 0.34 0.33
Peoria, Ill 2.34 0.00032 0.25 1.91 12.38 0.36 8.65 0.561 0.40 3961.90 9.24 0.141 0.21 0.34 0.33
Philadelphia, Pa 2.20 0.00039 0.25 1.75 10.74 0.37 8.68 0.579 0.41 2796.35 9.13 0.194 0.24 0.36 0.35
Phoenix, Ariz 1.91 0.00026 0.27 1.55 11.77 0.39 8.60 0.658 0.43 8321.27 9.60 0.079 0.16 0.38 0.38
Pittsburgh, Pa 2.22 0.00031 0.25 1.79 11.84 0.37 8.61 0.568 0.41 2359.60 9.03 0.211 0.25 0.35 0.35
Portland, Me 2.29 0.00034 0.25 1.87 16.38 0.37 8.56 0.516 0.39 -823.53 8.28 0.582 0.41 0.35 0.35
Portland, Ore 2.15 0.00029 0.26 1.74 12.85 0.37 8.65 0.582 0.41 13185.78 9.90 0.041 0.11 0.36 0.35
Provo, Ut 2.46 0.00040 0.24 2.05 12.78 0.34 8.50 0.528 0.39 5015.96 9.26 0.099 0.18 0.33 0.33
Raleigh, NC 1.56 0.00026 0.30 132 12,13 0.42 8.32 0.820 0.48 90587.25 11.48 0.002 0.02 0.42 0.42
Reno, Nev 2.14 0.00024 0.26 1.65 9.87 0.38 8.81 0.574 0.41 3242.89 9.25 0.170 0.23 0.37 0.36
Richmond, Va 1.88 0.00026 0.27 1.52  11.86 0.40 8.60 0.656 0.43 8665.64 9.63 0.075 0.15 0.39 0.38
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Table 1 (continued)

S.M.S.A. (60)

Garma Bata Displaced Lognormal

Gini M ( ] v Gini GU GL
Roanoake, Va 1.80  0.00028  0.28  1.50 15.88 0. 41 1. 44 0. 671 0.44 13443.85 9.96  0.028 0.09  0.39  0.39
Rochester, NY 2.47  0.00030  0.24 1.93 10.06 0.35 8.79 Q.52 0.39  5050.57 9.42  0.116 0.19  0.3%  0.33
Rockford, Il1 2.49  0.00033  0.26 2,00 12.12 0.35 8.71 Q.58 0.39  5126.68 9.38  0.109 0-18  0.33  0.32
Sacrameato, Cal 2.57  0.00032  0.24  2.02 10.42 0.34 8.79  0.507 0.39  3848.60 9.30  0.140 0.21  0.33  0.32
Saginow, Mich 2.27  0.00033  0.25  1.86 14.57 0.36 8.60 0,563 0.40 9580.66 9.67  0.055 0.13  0.34 0.3
st. Joseph, MO 2.15  0.00035  0.26  1.79 15.05 0.37  8.47 0,58 0.41 7578.46 9.47  0.065 0.14  0.36  0.35
St. Louis, I11 2.02  0.00037  0.26  1.64 11.81 0.38  8.63  0.g3; 0.43 4635.49 9.30  0.139 0.2L'  0.37  0.36
Salt Lake City, Utah 2,40 0.00033  0.24 1.91 13.07 0.36 8.68  0.s9 0.39 1827.64 9.00  0.213 0.26  0.34  0.34
San Anjelo, Tex. 1.54 0.00036 0.30 1.28 15.12 0.43 8.33 0. 728 0.45 18457.28 10.08 0.021 0.08 0.44 0.43
San Antonio, Tex 1.66  0.00028  0.29  1.40 15.20 0.42 8.35 0.7 0.45 11712.40 9.75  0.043 9.12  0.42  0.41
San Bernadino, Cal 2.18  0.00032  0.26  1.80 11.51 0.36  8.56  0.s094 0.41 3996.08 9.20  0.151 0.22  0.36  0.35
San Diego, Cal 2.03  0.00027  0.26  1.65 10.40 0.38  8.66  0.g4g 0.43 4966.45 9.35  0.136 0.2  0.37 0.3
San Francisco, Cal 2.13  0.00025  0.26  1.67 9.64 0.37 8.78  0.g05 0.42 4779.83 9.38  0.136 0.21  0.36  0.36
San Jose, Cal 2.40  0.00028  0.24  1.87 9.12 0.35 8.82 0,553 0.40 5037.88 9.43  0.120 0.19  0.34  0.33
Santa Barbara, Cal 2.02 0.00024  0.26  1.59 9.93 0.38 8.75 0.5 0.42 3388.60 9.23  0.180 0.24  0.38  0.37
Savannah, Ga 1.82  0.00032 0.28 1.55 12.39 0.39 8.3  0.792 0.45 122743.50 11.76  0.001 0.02  0.39  0.39
Scranton, Pa 2.19  0.00039  0.25 1.85 16.05 0.37 8.38  0.s6g 0.41 5273.94 9.23  0.084 0.16  0.35  0.35
Seattle, Wash 2.38  0.00029  0.25 1.88 10.89 0.36 8.76  0.535 0.39 7254.95 9.58  0.084 0.16  0.34% 0.3
Shreveport, La 1.54  0.00025  0.30  1.30 11.50 0.43  8.33  0.gy9 0.48 40041.95 10.74  0.007 0-05  0.43  0.43
Sioux, Iowa 1.92  0.00029  0.27  1.58 14.00  0.39  8.50  0.g35 0.43 6611.72 9.42  0.087 0.17  0.38  0.38
Sioux Falls, SD 2.28  0.00036  0.25  1.89 13.09  0.36  8.52  0.s563 0.40 5648.23 9.34  0.096 0.17  0.35  0.34
South Bend, Ind 2.55  0.00034  0.24  2.05 13.21  0.34 8.7l  0.504 0.38 6387.18 9.49  0.086 0.16  0.33 .32
Spokane, Wash 2.30  0.00033  0.25  1.87 12.97  0.36  8.62  0.541 0.40 4009.27 9.22  0.143 0.21  0.35  0.34
Springfield, Mo 1.90  0.00033  0.27  1.59 15.29  0.39 8.3 0.3 0.43 6556.65 9.34  0.073 0.15  0.39  0.38

Springfield, Ohio 2.36 0.00036 0.25 1.96 13.77 0.35 8.56 0.551 0.40 12157.49 9.82 0.039 0.11 0.34 0.33
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Table 1 (continued)

S.M.S.A. (60) Gamma Beta Lognormal )isplaced Lognormal f;as:uxr:n

Gini Gini M v Gini ( M v Gini GU GL

Steubenville, Ohio 0.00037 0.24 8892.25 6 . 0.32

1; 4354 ,46 23 = 0.37
Syracuse, NY 2. 0.00032 0.25 o . 4473.08
Tacoma, Wash 0.00032 0.25 . 5028.39
Tampa, Fla 0.00028 0.29 4 592379.60
Topeka, Kan 0.00032 0.25 = . 8465.74
Trenton, NJ 0.00027 0.26 = 0. 2187.30
Tuscon, Ariz 0.00029 0.27 5 7282.62
Tulsa, Okla 0.00024 0.28 . 10399.80
Tusclaoosa, Ala 0.00028 0.31

Stockton, Cal 0.00029 0.27

0.34

1939.71
Tyler, Tex 0.00025 0.30 61567.61

Utica, NY 0.00036 0.24 . 5841.81
wWashington, D.C. 0.00025 0.25 11170.88
Waterbury, Conn 0.00036 0.23 - 976.92
Waterloo, Iowa 0.00034 0.24 . 6032.08
W. Palm Beach, Fla 0.00022 0.31

o o
w oW
-

2

18211.64
Wichita, Kan 0.00031 0.25 4330.08

Wilkesburg, Pa 0.00038 0.26 6693.85
Wilmington, Del 0.00025 0.26 5 5364.25
Worcester, Mass 0.00035 0.24 2205.62
Yorktown, Pa 0.00037 0.24 5852.38
Younston, Ohio 0.00034 0.24

W oW
S »ow

w

w
oW

S.
C.
0.
0
0.3
0.
0.
]

2821.85

w
©




Table 2. 1970 income parameters for each distribution function and gaSt_Wirth ?001135-

5.M.5.A. (70) Gamma Beta Lognormal Di Lognormal
= < Gini < Gini M v Gini (o} v
Abiline, Tex 1.99 0.00022 0.27 1.53 7.14 0.38 8.83 0.644 0.43 1450.74 9.04 0.338 0.32 0.38 0.37
Akron, Ohio 2.53 0.00020 0.24 1.81 4.97 0.33 9.21 0.549 0.40 -1846.42 8.84 0.725 0.45 0.33 0.31
Albany, Ga 1.72 0.00018 0.28 1.34 5.48 0.40 8.82 0.817 0.48 738.81 8.92 0.559 0.40 0.40 0.39
Albany, NY 2.43 0.00020 .24 1.75 5.05 0.34 9.18 0.561 0.40  -2951.78 8.46 1.220 0.57 0.34 0.32
Albuquerque, NM 1.90 0.00018 0.27 1.43 4.80 0.38 8.99 0.739 0.46 1836.50 9.25 0.390 0.34 0.38 0.37
Allentown, NJ 2.74 0.00024 0.23 1.96 5.93 0.33 il s 0.486 0.38 -539.56 9.06 0.446 0.36 0.32 0.31
Amarillo, Tex 2.18 0.00021 0.26 1.63 5.86 0.36 9.00 0.616 0.42 -451.87 8.90 0.572 0.41 0.36 0.35
Ann Arbor, Mich 2.30 0.00016 0.25 1.62 4.18 0.35 9.33 0.603 0.42 9.33 0.60 3.481 0.00 0.35 0.33
Ashville, NC 1.97 0.00022 0.27 1.53 6.28 0.38 8.83 0.689 0.44 206.38 8.82 0.531 0.39 0.38 0.37
Atlanta, Ca 2.04 0.00016 0.26 1.49 4.51 0.37 9.16 0.690 0.44  -2340.97 8.50 1.259 0.57 0.37 0.3
Atlantic City, NJ 1.90 0.00018 0.27 1.43 5.57 0.38 8.98 0.697 0.45 =-2782.05 7.55 3.061 0.78 0.39 0.38
Ausiin, Tex 1.87 0.00016 0.27 1.40 5.16 0.39 9.04 0.712 0.45 -1020.60 8.79 0.808 0.47 0.39 0.38
Bakersfield, Cal 2.00 0.00019 0.27 1.51 5.12 0.37 8.96 0.689 0.44 2814.40 9.34 0.305 0.30 0.38 0.36
Baltimore, Md 2.17 0.00018 0.26 1.59 4.70 0.36 9.15 0.655 0.43  -2199.38 8.59 1.076 0.54 0.36 0.34
Baton Rouge, La 1.85 0.00017 0.27 1.40 4.65 0.38 9.01 0.772 0.47 354.55 9.00 0.607 0.42 0.38 0.37
Bay City, Mich 2.58 0.00022 0.24 1.88 5.24 0.33 9.15 0.538 0.40 -939.72 8.94 0.590 0.41 0.33 0.31
Beaumont, Tex 2.05 0.00020 0.26 1.56 5.47 0.37 8.98 0.693 0.44 547.82 9.02 0.492 0.38 0.36 0.35
Billings, Mont 2.25 0.00021 0.25 1.68 5.90 0.36 9.01 0.593 0.41 159.16 9.01 0.484 0.38 0.36 0.34
Binghampton, NY 2.47 0.00022 0.24 1.80 5.21 0.34 9.10 0.552 0.40 -1928.07 8.61 0.947 0.51 0.24 0.32
Birmingham, Ala 1.76 0.00018 0.28 1.37 5.70 0.39 3.87 0.788 0.47 34.66 8.79 0.684 0.44 0.39 0.38
Boston, Mass 2.19 0.00016 0.25 1.56 4.50 0.36 9.27 0.617 0.42  =3426.44 8.30 1.627 0.63 0.37 0.34
Bridgeport, Conn 2.56 0.00019 0.24 1.79 4.63 0.33 9.30 0.536 0.40 =-3572.31 8.49 1.212 0.56 0.34 0.31
Brockton, Mass 2.90 0.00024 0.22 2.07 5.32 0.31 9.21 0.482 0.38 -2118.40 8.84 0.656 0.43 0.31 0.29
Buffalo, NY 2.46 0.00021 0.24 1.79 5.27 0.34 9.15 0.559 0.40 -2748.01 8.40 1.276 0.58 0.34 0.32
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Table 2 (continued) L R s
S.M.S.A. (70) Gamma Beta

Gini

Gini

Canton, Ohio

Cedar Rapids, Iowa
Champaign, Ill
Charlotte, SC
Charleston, W Va
Charlotte, NC
Chicago, I11
Cleveland, Ohio
Colo Springs, Colo
Columbia, SC
Columbus, Ohio
Corpus Christi, Tex
Dallas, Tex
Davenport, Il1l
Dayton, Ohio
Decatur, Ill
Denver, Colo

Des Moines, Iowa
Detroit, Mich
Dubuque, Towa
Duluth, Minn

El Paso, Tex

Erie, Pa

Eugene, Ore
Evansville, Ind

Fargo, ND

2.72
2.70
.10
1.56
1.96

~

o
=3

2.26
2.23
2.15
1.86
2.28
1.78
2.02
2.46
2.54
2.35
2.32
2.46
2.33
2.47
2.52
1.86
2.55
2.29
2.25
2.32

).00023
00023
00017
00017
.00020
00018
00016
00017
00020
.00018
00019
00018
00016
00021
0.00020
0.00020
0.00019
0.00020
0.00017
0.00022
0.00025
0.00020
0.00024
0.00021
0.00022
0.00021

o0 o 0o B b oo o o

0.23
0.23
0.26
0.30
0.27
0.26
0.25
0.25
0.26
0.27
0.25
0.28
0.26
0.24
0.24
0.25
0.25
0.24
0.25
0.24
0.24
0.27
0.24
0.25
0.25
0.25

1.96
1.95
1.48
1.25
1.50
1.51
1.61
1.61
1.60
1.42
1.66
1.38
1.48
1.80
1.81
1.72
1.67
1.76
1.66
1.81
1.90
1.43
1.87
1.70
1.69
1.70

5.37
4.89
4.94
5.50
5.17
4.29
4.49
5.55
5.39
4.97
5.47
4.85
5.28
4.71
5.37
4.91
5.13
4.18
5.66
6.44
5.69
6.39
5.79
5.79
5.65

0.32
0.32
0.37
0.41
0.37
0.37
0.35
0.35
0.36
0.38
0.35
0.39
0.37
0.34
0.33
0.35
0.35
0.34
0.34
0.34
0.34
0.39
0.34
0.35
0.35
0.35
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8.92
9.09
9.29
9.23
9.01
8.93
9.15
8.85
9.15
9.14
9.23
9.14
9.19
9.18
9.29
9.12
8.98
8.85
9.07
9.04
8.99
9.08

0.501
0.510
0.630
0.975
0.705
0.663
0.623
0.642
0.636
0.755
0.607
0.780
0.670
0.567
0.552
0.583
0.586
0.539
0.614
0.547
0.536
0.732
0.518
0.591
0.604
0.570

0.38
0.39
0.43
0.51
0.45
0.44
0.42
0.43
0.43
0.46
0.42
0.47
0.44
0.41
0.40
0.41
0.41
0.40
0.42
0.40
0.40
0.45
0.39
0.41
0.42
0.41

W41
.70
.89

49
38
85
43
80
95
46
79
92
08
98
51
94
83
55

.81

93
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0.875
0.293
0.530
0.453
0.459
0.549
0.965
1:253
0.521
0.920
0.742
0.358
0.605
0.350
1.079
0.538
1.059
0.696
0.970
0.310
0.326
0.468
0.646
0.513
0.519
0.515

0.32
0.32
0.37
0.40
0.37
0.37
0.35
0.35
0.36
0.39
0.35
0.40
0.38
0.33
0.33
0.34
0.35
0.34
0.34
0.34
0.33
0.39
0.33
0.35
0.35
0.35
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Table 2 (continued)
S.M.S.A. (70)

Lognormal
Gini i Gini M v Gini C

stwirth

GL

Fitchburg, Mass 0.00021 40
.45
38

42

1=}

Ft Lauderdale, Fla 0.40014
Ft Wayne, Ind 0.00022
Ft Worth, Tex 0.7:0020

4

40
39
.41
39
43
.43
40
40
.40
45
44
45
40
40
47

Fresno, Cal o 0.00018
Gary, Ind 0.00021
Grand Rapids, Mich 0.00021
Great Falls, Mont 0.00022
Green Bay, Wis 0.00022
Greensborc, NC 0.00019
Creenville, SC 0.00021
Hamilton,  Ohio 0.00022
Harrisburg, Pa 0.00021
Hartford, Conn 0.00018
Honolulu, Ha 0.00014
Houston, Tex 0.00017
Huntington, Ky 0.00021
Indianapolis, Ind 0.00020
Jackson, Mich 0.00020
Jacksonville, Fla 0.00017
Jersey City, NJ 0.00020

Kalamazoo, Mich 0.00019

© 9O 0000000090000 O00 00200

Kansas City, Kan 0.00019
Kenosha, Wis 0.00024
Knoxville, Tenn 0.00019
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Table 2 (continued) ol

S.M.S.A. (70) Gamna Beta Lognormal Displaced Lognormal Gastwirth

= i Gini g Gini N Gini c M v Gini Gl cL

Lake Charles, La 1.88  0.00020  0.27  1.47 5.40 0.38 8.8  0.763  0.46  2204.91  9.16  0.359  0.33  0.38  0.36
Lancaster, Pa 2.55  0.00022  0.24  1.85  5.93 0.3  9.12  0.528  0.39 -3170.45  8.25  1.406  0.60  0.33  0.32
Las Vegas, Nev 2.31  0.00019  0.25 1.67 4.60 0.3  9.18  0.604  0.42  1756.66  9.38  0.323  0.31  0.35  0.33
Lewiston, Me 2.44  0.00025  0.24  1.84  8.30 0.3 8.95  0.503  0.38  -553.32  8.73  0.476  0.37  0.35 0.3
Lawton, Okla 1.94  0.00022  0.27 1.53 6.33 0.38 8.77 0.728  0.45  2440.38  9.13  0.256  0.28  0.37  0.36
Lexington, Ky 2.07  0.00018  0.26  1.54  5.14  0.37  9.06  0.651  0.43 -1318.17  8.73  0.860  0.49  0.37  0.36
Lima, Ohio 2.56  0.00023  0.24  1.88 5.62  0.33  9.08  0.536  0.40 ~-1172.69  8.83  0.639  0.43  0.33  0.31
Lincoln, Neb 2.48  0.00022  0.24 1.79  5.66 0.3  9.11  0.522  0.39  -791.46  8.95  0.576  0.41  0.34  0.33
Little Rock, Ark 1.94  0.00020  0.27  1.49  5.90  0.38  8.90  0.703  0.45 892.05  9.02  0.456  0.37  0.38  0.37
Loraine, Ohio 2.89  0.00024  0.22  2.07 5.35 0.31  9.20 0.487  0.38 -1379.85 8.97  0.528  0.39  0.31  0.29
Los Angeles, Cal 1.97  0.00015  0.27  1l.44  4.37  0.37  9.19  0.704  0.45 -1288.77  8.87  0.797  0.47  0.35  0.36
Lowell, Mass 2.80  0.00023  0.23 2.0l  4.89  0.31  9.19  0.514  0.39 -2855.50  8.55 1.008  0.52 0.3l  0.29
Lubbock, Tex 1.81  0.00017  ©0.28 1.38 5.95 0.39  8.93  0.717  0.45 -269.96  8.88  0.633 0.4 0.0 0.39
Lynchburg, Va 2.17  0.00021  0.26  1.64 6.13  0.36  8.97  0.610  0.42 -17.06  8.92  0.522  0.39  0.36  0.35
Macon, Ga 1.89  0.00019  0.27 1.45 5.13  0.38 8.92  0.733  0.45 -293.97 8.79  0.730 0.4 0.38  0.37
Manchester, NH 2.54  0.00023  0.24 1.86 5.95 0.34  9.09  0.529  0.39 -1429.23 8.78  0.683  0.44 0.3 0.32
Memphis, Tenn 1.69  0.00017  0.29  1.31  5.30 0.40  8.89  0.828  0.48  1646.72  9.12  0.451  0.37  0.4C  0.39
Meriden, Conn 2.92  0.00024  0.22 2.07 5.07 0.31 9.22 0.480  0.38 74.91  9.22  0.368  0.33  0.31  0.29
Miami, Fla 1.64  0.00014  0.29  1.24  4.96  0.41  9.03  0.816  0.48 =-1964.99  8.35  1.531  0.62  0.42  0.41
Midland, Tex 1.96  0.00015  0.27  1.43  4.69  0.38  9.15  0.695  0.44  1430.80  9.32  0.386 0. 0.3 0.37
Miiwaukee, Wis 2.59  0.00020  0.24  1.83  4.94  0.33  9.24  0.531  0.39 -2076.31 8.82  0.757  O. 0. 0.31
Minneapolis, Minn 2.62  0.00019  0.24 1.83  4.85  0.33  9.29  0.514  0.39 -3795.06  8.30  1.527 0. 0.3 0.31
Mobile, Ala 1.73  0.00019  0.28 1.37 5.89  0.40 8.79  0.819  0.48  2950.36  9.21  0.296  O. 0. 0.38
Montgomery, Ala 1.62  0.00017  0.29  1.27  5.27  0.41  8.82  0.857  0.49  1687.99  9.09  0.457 0. 0. 0.40
Muncie, Ind 2.40 0.00022 0.24 1.76 5.77 0.35 9.08 0.564 0.40 -1105.70 8 0.645 0. 0. 0.33




Table 2 (continued)
S.M.S.A. (70)

Lognornal Displaced Lo
Gini

Muskegon, Mich 0.00023 0.24 .88 5.6 R : B <5 0.40 -1313.
0.00018 0.27
0.00022 0:-25
0.00023 0.23
0.00016 0.26
0.00015 0.29
0.00013 0.28
0.00014 0.26
0.00020 0.26
0.00019 0.27
0.00022 0.25

- 0.00022 0.24
0.00019 0.26
0.00018 0.27
0.00015 6.25
0.00021 0.24
0.00018 0.25
0.00018 0.26
0.00021 0.25

Nashville, Tenn 0:44 1341.

0.42 -1229.
0.38 -1382.
0.44 -2761.
0.50 -605.
0.47 -1150.
0.44 -3702.
0.44 978.
0.47 -345.
0.41 1978.
0.40 -1902.
0.43 =919.
0.45 -1620.
0.41 -4738.
0.39 -1103.
0.42 583.
0.43 555.
0.41  -2210.
0.40 -2651.
0.41 -2144.
0.42 -297.
0.45 1529.
0.41  =1243.
0.42  -2067.

New Bedford, Mass
New Britain, Cenn
New Haven, Conn
New Orleans, La
New York, NY
Newark, NJ
Newport News, Va
Norfolk, Va
Odessa, Tex
Ogden, Ut
Oklahoma City, Okla
Orlando, Fla
Paterson, NJ
Peoria, Il1
Philadelphia, Pa

Phoenix, Ariz

NN RN NN HERNRNRN DN RBBRDRNN -~

Pittsburgh, Pa

Portland, Me 3 0.00022 0.24

Portland, Ore 0.00019 0.25
Provo, Ut 0.00024 0.25
Raleigh, NC 0.00017 0.27
Reno, Nev 0.00017 0.25
Richmond, Va 0.00019 0.26
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Table 2 (continued)

S.M.8.A. (70)

Gamma

Lognormal
L Gini

Rochester, NY
Rockford, T1l
Sacramento, Cal
Saginow, Mich
St Joseph, Mo
St Louis, Mo
Salt Lake City, Ut
Angelo, Tex
Antonio, Tex
Bernadino, Cal
Diego, Cal
Francisco, Cal
San Jose, Cal
Santa Barbara, Cal
Savannah, Ca
Scranton, Pa
Seattle, Wash
Shreveport, La
Sioux City, Iowa
Sioux Falls, SD
South Bend, Ind
Spokane, Wash
Springfield, Mo
Springfield, Ohio

.00021
.00019
.00021
.00018
.00020
.00024
.00018
.00020
.00019
.00018
.00018
.00017
.00015
.00018
.00018
.00018
.00025
.00019
.00018
.00020
.00023
.00022
0.00020
0.00020
0.00022
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-1678.4
-3241.
327,
-1472.
-776.
-493.
1164.
=-2752.74
-293.73
77.64
-852.44
-47.59
-2522.07
1360.86
-2261.46
-545.54
-1210.04
-2716.54
1645.01
554.58
1483.28
-519.06
-1350.39
-1436.72
-1508.73

60

.53
21
77
.98
.74
26
<39
74
85
7
.05
60
.43
.54
.61
67
71
07
05
19
04
.67
86
8.76
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Table 2 (continued)

$.M.5.A. (70)

Gamma

Steubenville, Ohio

Stockton, Cal
Sy

racuse, NY
Tacoma, Wash
Tampa, Fla
Topeka, Kan
Trenton, NJ
Tuscon, Ariz
Tulsa, Okla
Tuscaloosa, Ala
Tyler, Tex
Ctica, NY
Washington, D.C.
Waterbury, Conn
Watterton, [owa
W. Palm Beach, Fla
Wichita, Kan
Wilkesburg, Pa
Wilmington, Del
Worcester, Mass
Yorktown, Pa

Youngstown, Ohio

0.00024
0.00018
0.00019
0.00019
0.00019
0.00021
0.00017
0.00018
0.00019
0.00018
0.00020
0.00022
0.00013
0.00020
0.00022
0.00013
0.00021
0.00025
0.00018
0.00022
0.00023
0.00022

(T~ - - T~ T - T~ - Y- T~ T —~ Y T - T~ - T - (- T 7

Lognormal

w own
S
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0.41
0.41
0.39
0.38
0.40

C

-263.2
-2542.
-1184.

-936.

-132.
-3405.

-361.

1815.

1067.

2122.
-2229.
-3949.
-2185.

1532.
=1722.

-204.

2589.
-3534.
-2182.
-3198.
-2032.

Displaced Lognormal
M N

96
91
.51
.80
62
.93
.26
.89
.26
.90
.19
.54
.38
.84
.26
50
00
24
11
75
20
70
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function also consistently fails the Gastwirth test for each SMSA.
The beta function produces Gini coefficient which generally fall
between the upper and lower Gastwirth bounds, and even when the
Gini is outside the bounds, the coefficient is substantially
closer to one or the other of the bounds than any of the other
functional forms. The Gastwirth test indicates that, for the
purpose of this study, the beta is the appropriate estimation

function.




CHAPTER III
THE THEORETICAL AND EMPIRICAL MODELS

In an attempt to measure the impact of water quality controls
on family incame distribution, there are two sectors presented

in the model: the production sector and the distribution sector.

The Production Sector
It is useful to consider effluent emission as simply one
more input in the production process. The theory of production
is concerned with the optimum allocation of factors of production
(including the effluent emission) that minimizes the total cost
for each output. Thus, define ¢ (y, w, r, e) as the cost functj_on7
which will yield the minimum cost at which output y can be
produced given factor prices w (wage), r (rental rate of capital),

and e (cost of waste discharge). Suppose that the output price

(p) and factor supplies (L and K) are exogenously determined.
Under campetitive conditions, the producer achieves an optimal
output by setting his marginal cost equal to the exogenous output

price, i.e.

7Dt.lalit:y principles in the theory of cost and transformation
functions have been developed in detail by Hall (1973) and
McFadden (1975). However, Shephard (1970) established this dual
determination of production functions from cost curves, Uzawa (1964)
formulated explicitly the conditions for cost curves that are
derived from neoclassical production process by a minimization

of total cost.




dc (y,w, r, e)
1 C ; W, T, =
) y(y w, r, e) 5y

gives the equilibrium condition in the commodity market.

=P

The partial derivative of the cost function with respect

to the price of a factor yields the derived demand for that factor.

- _dcly,w, r, e
2) C, W, W, x, e o and
3) ¢, v, wr, =L Wre

are the demand functions for labor and capital. Since factor
supplies are assumed to be determined exogenously, the wage and
rental rates are determined in the factor market. This market
equates factor demands and supplies, in that:

4) Cw (y, w, r, e =1L and

8) Cr (y, w, r, e =K

Now, a system of three

(1), (4), and

simultaneous equations,
(5), with three unknowns, y, w, and r, can be solved implicitly

as follows:

6) y

7) w

f (L, K, P,e) ,

]

g (L, K, P, e)

8) r=h(Ll K, P, e)

Consider the effect of the imposition of water quality controls

on production. The campetitive conditions tend to change factor

prices and the output level. The rates of change may not be

equal.

The total differentials of equations (1), (4), and (5) can
be written as:

9 =C__dy + dw + dr + C__ de
) A S ye




19) dL=Cwydy+wadw+erdr+cwde
11) dK=Crydy+cmdw+crrdr+crede
All the variables are first differences. The three endogenous

variables, dy, dw, and dr, are functions of the four exogenous

variables, dp, dL, dK, and de.

12) dy = F (dp, dL, dK, de)
13) dw = G (dp, dL, dK, de)
14) dr = H (dp, 4L, dK, de)

The data limitations are significant in the analysis. An
additional assumption to simplify the three-equation system to
two equations with fewer variables will make the analysis more
tractable.

It is assumed that dr = 0; that is dp, dL, dK, and de are

interdependent mathematically.

H (dp, dL, dK, de) = 0

Thus, dp can be written in terms of dL, dI(,anddea,sothat

a system of two equations can be constructed:

15) dy = F (dL, dK, de)

16)

dw = G (dL, dK, de)

8'I‘he assunption implies that the ratio of payments for
capital to capital stock is constant over time. The elimination
of the price variable, while possibly detrimental to the analysis,
is necessary because data for price indices for all SMSA's does not
exist. Only for a few selected SMSA's are these indices published.
With accurate price data, the three equation model could be
utilized.
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The two equations describe the impacts of water quality
controls on changes in output and wage rate. These equations
form the production sector of the model. The other sector of

the model deals with the distribution effects of dy and dw.

The Distribution Sector

Friedman (1953), Becker and Chiswick (1966) have made
attempts to connect the functional distribution of incame with
the personal distribution of income. Newhouse (1969) also developed
a more operational theory to predict incame distribution among
areas. He focused his attention on the industry mix as a variable
of crucial importance in determining incame distribution. For
this study, family income is assumed to be the crucial consideration.

A rather specific concept of family incame is used: a
family's income equals total payments received from owned labor
and capital in the production process. It is assumed that there
ig only one campetitive wage rate and rental rate in the model.
The labor and capital inputs are homogeneous. The distribution
of labor and capital is different fram family to family. Thus,
17) Yi =WL; + rk; where

Yy = incame of family i

W = wage rate

Li = labor of family i
r = rental rate
K. = capital of family i

It is this definition of incame -- the sum of factor

payments to a family -- which is used.
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Bquation (17) implies that

Y. =WZI L, +r K,
At . S
s 8 i i

Thus, the sum of family incame can be calculated from w,
r, the sum of labor factors, and the sum of capital factors.
Given that w and r are campetitively determined, the distribution

of Y, is a function of w, r, the distribution of L;, and the

distribution of Ki' Assume that Yi’ Li’ and Ki each exhibit
some distribution function. Let Ip, Ld and Kd be vectors of
parameters of density functions that describe the distribution
of family income, labor factors, and capital factors, then

Ip =f (w, r, Id, Kd)

The total differential of this function can be written as:
18) de =g (dw, dr, did, dkd)

Thus, the change in Ip is a function of changes in w, r,
Id, and Kd.

To aid in the analysis, a rather simple model of water
quality control impact on functional incame redistribution is
constructed.

Assure that there is an aggregate production function with
labor input (L), capital input (K), and a homogeneous input

which will be called waste disposal ().’ Therefore:

9Waste disposal is defined as the production residual or a

negative input which is the untreated portion of disposal. For
further discussion, see Dwight R. Lee, "Efficiency of Pollution
Taxation and Market Structure," Journal of Environmental Economics
and Management 2, pp. 69-72 (1975).
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9 =q (L, K, e)
where q is continuous, twice differentiable, and strictly convex
as a result of diminishing marginal rate of technical substitution
between inputs. The equation is actually a surface showing all
possible combinations of different inputs capable of producing
a given level of output, namely G- Given that e is exogenously
determined, specific isoquants can be graphed in two dimensions

as shown in Figure 2.

L
e
Ly
B
e L aNG, SN e II : g; =q4@;: k | e,)
D ' 1 |2
'_III:qO=q(L,K|e2)
e e e e |
L :
)
| I:q1=q(L,K|el)
|
| |
|
|
|
|
| |
0 K, K, S K

8

Figure 2. Effects of waste disposal




Isoquant I and isoquant II are the same output level,

namely . but with different waste disposal requirements. Note
that e, < e. The additional inputs, L1L2 and K1K2’ at point B
are used for reducing the amount of waste from e, toe,. In
other words, the shift of isoquant I to isoquant II is due to
the additional cost of reducing waste effluent. However, the
two isoquants may not be parallel to each other, since the marginal
rate of technical substitution between L and K changes fraom A
to B. Isoquant III satisfies the cost constraint as isoquant I,
butwithe2 <elandq0 <qp-

The cost constraint is defined as:

C =wL + rK

Total cost (C) equals the sum of wage payment and rental

payment of capital. The straight line tangent to isoquant I

and isoquant III, shown in Figure II, is the cost constraint.

The triangle A0C1C2 is the maximum feasible cost for production

of the society. Optimum production is achieved where the cost

constraint is tangent to the isoquant. Thus, the optimum output

level is lowered framq; =q (L, K | e)) to gy =q (L, K | e)),

if the environment (effluent) requirements are raised from ey

to e,- The input cambinations for point A and point D are

different, although the total cost stays the same. One of the

impacts of effluent regulation is to change the factor shares of

production.

Water quality control can have either a positive or

a negative distributional impact on input factors.




BEquation (18) describes the relationship between changes
in family incame distribution and changes in factor distributions
between families:

de =g (dW, dr, did, DKd)

The empirical problem is measuring the distribution of
labor and capital among families.

Backer and Chiswick (1966) explained why income distributions
take various shapes, yet their approach cannot predict the
distribution of factors among families. Newhouse's model (1969)
indicates the direction to be pursued. Based on the assumption
of a constant industry wage structure, he estimated the proportion
of jobs in every income class in each industry.

The following linear model provides a possibility to measure
the distribution of labor and capital indirectly.

Define the indentity

Jn g ALn bL + Akn bk

Jn = the percentage of families with relatively few
labor or capital forces in the nth area

ALn= the percentage of families with labor incame in
the nth area

Akn= the percentage of families with capital incame
in the nth area

= the percentage of families with relatively few
labor factors

= the percentage of families with relatively few
capital factors

Note that bL (the percentage of relatively low labor incame
families) and by (the percentage of relatively low capital income

families) are good approximations for Ld and Xd since wage
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rate and rental rate are exogenous, Changes in the distribution

of labor and capital factors between families may change the

relative percentage of families with different amounts of factors.

A regression analysis of J, on ALn and Akn will give simultaneous

estimators of bL and bk Thus:
bL=l (Jn’ ALn’ Akn) "
and bk =k (Jn’ ALn’ Akn)

Furthermore, ALn can be approximated by a fraction formed fram

wages and salaries as the numerator and total value-added as the deno-

minator. Akn will be approximated by l—ALn for simplicity. This

assumption implies that the average productivity of labor per unit

equals the average productivity of capital per unit for the family.

Note that it is not necessarily true that the productivities

of capital and labor are equal. The average units of labor and
capital per family may be different. Thus, the total differentials
of bL and bk can be simplified as:

dbL = 1o (dJn, dAm)
and dhk ko (dJn, dALn)

Using dbL and dbk to approximate did and dKkd, given that

dbL and dbk are functions of dJl,1 and dALn’ equation (18) is
equivalent to:
19) de =h (dw, dr, 43, dA; )

Furthermore, changes in the percentage of families with
relatively few labor or capital factors would intuitively coincide

with changes in the total output. The former is not easy to

measure, while the latter is usually available fram regional




data. Therefore, it is convenient to substitute dy for dJn

in equation (19).

Thus:

a1, =h (@, dr, &, da) 10

Equation (20) is an empirically useful construct. Changes

in the distribution of incame can be explained by changes in

factor payments, changes in total output and changes in factor

share. Theoretically, the distribution of family income is

dependent on labor incame, capital income, total value-added,

and the share of labor or capital income.

Changes of family income distribution can be measured by
11

shifts of Lorenz curve ~ of income distribution. The Lorenz

curve corresponding to any random variable X (family incame

level) with cumlative distribution function F (X) and finite

ff)’ Fo(pat

1

mean y = / xdF (X) is defined tobe L (p) = u_
o <p<1. Note that L (p) is the fraction of total incame that
the holders of the lowest pth fraction of incame possess. de
is helpful in describing changes of the cumilative distribution
function F (X). If incame distributions in all areas have the

same functional form and with the same parameters, the value of all

statistical measures of inequality would everywhere be the same.

10For simplicity, dALn is written da.
llA general definition of the Lorenz curve see Kendall and Stuart
(1969) , and Gastwirth (1971). The standard definition mathematically
is written as,

(Bidt,
1 SR (R,
u
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But, a statistical distribution with different parameters will predict

different forms of distribution, though the Gini coefficient or

quantiles may be no different.

Thus, changes in the parameters of the cumilative distribution

function, F (X), are used as a measure of changes in distribution

of family income.

For the case of beta density, do and dp are the elements of

de, and equation (20) can be rewritten as two equations.

21) do = o (dw, dy, da, dp)

22) do = p (dw, dy, da, do)

Note that, since the two parameters in the distribution

function are functionally

related, changes in each parameter is

included in the equation for the other. Since dr is assumed
to be zero, equations (21) and (22) do not include dr as an

exogenous variable.

The Model

Several empirical problems were encountered in the research
effort. Data for important variables were missing so that
surrogate variables consistent with the available data had to
be selected. The water quality data had a broad range of
variables, so that indices had to be developed for each state.
The data limitations were significant in the analysis.

The structural equations were developed from production
to distribution hypotheses and from the relationships between

appropriate variables and the distribution parameters.




The empirical model as proposed is in four equations:
dw = G (dL, dK, de)
dy = F (dL, dK, de)
do = ¢ (dw, dy, da, dp)
dp = p (dw, dy, da, do)
dw, dy, dc. and dp are endogenous variables; dL, dK, de, da are
exogenous variables in the model. The model may be also represented

by a structural flow chart as in Figure 3.

&=  [E]
foo® ot
Y

Figure 3. The enpirical model

The exogenous variables are on the first row, the second
and third rows are for endogenous variables. Note that all the
endogenous variables have input flows fram exogenous and/or endo-
genous variables. The structural flow provides a logic of the
theory to evaluate the distribution impacts of water quality
controls.

The model is assumed to be linear, so that the equation
system is:

23) dw=a1+bld[.+cldk+dlde+El

dy=a2+b2dL+c2dk+d2de+E2
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25) du=a3+b3dw+c3dy+d3da+m3dp+E3

26) do

a4+b4dw+c4dy+d4da+m4do+E4
where ajs bl' Cyr dl, and mj stand for the parameters to be
estimated (i =1, 2, 3 and 4, j = 3, 4). Ei stands for the
stochastic disturbance for four equations.

So far as the identification problems are concerned, equation
(23) and (24) are over-identified and equation (25) and (26) are
just-identified. Thus, indirect least squares estimation yields
results which may not be consistent. Two stage least squares
method (2SLS) is a very useful all-purpose technique for simultaneous

model, and the parameters estimated are consistent.




CHAPTER IV

WATER QUALITY INDICES

The remaining modeling problem is to empiricise water

quality controls in order to quantify de in this model. Since

cost data are not available for various levels of quality

constraint over all SMSA's for all industries, it is assumed

that the level of cost are monotonically related to the levels,

Thus, indices

or strengthening, of water quality standards.

of water quality controls are proxies for de.

THE WATER QUALITY INDICES

Water quality controls in each state exist for five different
classifications of uses: agricultural, industrial, recreational,
fishery, and municipal. Each classification has specific controls
or levels for 14 different criteria.lz"l'hese classifications can
be treated as a series of treatments in an analysis of variance,
for which the experimental design is written mathematically as:

Y. .=u+aoa, +e..
ij 1 1]

where i is the classification (i = 1,...,5)
and j is the criteria (j = 1,...,14)

and Yij = the jth criteria for the ith classification

12'I'hese criteria include temperature, BOD, specific metals,
dissolved oxygen, phosphorus, nitrogen, etc.
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u = population mean
a; = the adjustment for water quality for the ith classification

eij = disturbance term
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The entire model in matrix form can be written:

X
Yoy LR R R e
el :

1,14 1 0 1,14
51 R : €21
Y, 14 o

H
e ey &

%3

o +

3
Yo in] = 1o L

4
v : o
41 o

\ 5,
4,14 : ke 0
Y51 : SR
Y S N T O e
5,14 / [ 514

(70 X 1) (70 X 6) (6 X 1) (70 X 1)
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=u+a

The first equation, +te might be interpreted

b % 1
as the temperature (j=1) of agricultural water (i=1l), where the

temperature cannot exceed the mean water temperature, plus oy

the adjustment for agricultural water quality control levels, and

an unobservable disturbance term. is not an absolute term;

Sl
rather, it is the ratio of the criterion divided by its mean

among 50 states. The model is linear with all ij equal to one

or zero.

Clearly, the ranks of the matrices are:

R(X) = 6, and R(X'X) < 6,

hence (X'X) is a singular matrix. Regression analysis cannot

be performed to estimate parameters. Assume:

U1=U+Oll

Hy =1+ o,
Hy = w4 ag
u4=u+a4
u5=u+a5

in order to reduce the 6 parameters to 5 by linear combination.
XR can be estimated since R(X) = 5. The following useful relations
can be derived:

Y=x8 +e

E(Y) = E(XB +e) = XB + E(e) = X8

Y is a linear unbiased estimate of X8
where Y = Xé

X'XR is also an estimable function. Therefore, the linear

unbiased estimate of X'XB is X'Y.




U MU MU MU MM e ™

E(Y;.) E(Ylll + ¥1,2 + oue F Yl,M)

= 14 (p+o

1

=14 Hy

E(YZ') = E(YZ,l + Y2,2 * enim T Y2,14)

= 14 (uta,)

= 14 Mo

= E(Y3,l + Y3,2 + oo b Y3,l4)

= 14 (1:+u3)
= 14 M3

E(Y,.) = E(Y4,1 Yy gt e ¥ Y4Il4)
= 14 (u+u4)
=14 Hy

E(YS.) = E(Ys,l + Y5’2 + eee * Y5,14)
= 14 (utag)

14 Mg
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as the five indices of water quality for five different water uses.
These are the simple arithmetic means of the relative

stringency of each status controls, derived fram calculated

observations. The empirical model used only u,, standard for

industry, as variable.
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CHAPTER V
RESULTS AND CONCLUSIONS

There were two main objectives of this research: First, to
test the various distribution functions in order to determine
which was more appropriate for estimating incame distribution
changes; and second, to examine the impacts of water quality controls
on income distribution using an empirical model relating the
parameters of the chosen distribution function to variables
which were expected to influence incame distribution, including
water quality controls. Once the beta function was selected as
the appropriate form and the water quality indices were generated,

an empirical test of the theoretical model was devised.

Data Collection

Data were collected for all SMSA's fram several sources.
The data for the incame distributions and the variables in the
empirical model, excluding water quality parameters, were obtained
fram the 1960 and 1970 Census of Population (U.S. Bureau of the
Census, 1963, 1973, 1974, 1975) and the 1970 City and County
Data Book (Inter-University Consortium, 1972). Some data were
not campatible as between years, so that original date tapes were
obtained fram the Bureau of the Census and the data were reorganized
in order that campatibility was achieved. For example, income

distribution groupings were different fram 1960 to 1970, and it
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was necessary to utilize the more precise groupings for 1960 data
fram the data tapes in order to construct a 13-group distribution
for 1960 comparable to the 1970 data. The SMSA's were then
grouped in order to campare 1960 and 1970 classification. One
hundred seventy-two SMSA's were listed in both years with little
or no change in spatial designations fram 1960 to 1970. Several
SMSA's were eliminated in that either the SMSA's were created
between the two years, or the 1960 SMSA had been significantly
enlarged or cambined with other SMSA's.

Data for water quality controls were collected fram the
Regional offices of the Environmental Protection Agency. Com-—
pilations of each state's quality requirements were available
from most regions. The Central Region data were collected fram
each state's legal documents concerning water quality parameters.
A final aggregation of water quality standards by state and use
type was made and where only qualitative parameters existed for
standards (criteria or classification) adjustments were made to
reflect average or similar quantitative parameters for other
states. Each SMSA in a given state is assumed to be subject to
that state's standards. Local standards were not available
for SMSA's.

The enforcement of these water quality standards was not
fully implemented by 1970. Not until 1972 and 1973 did water
quality controls actually became widely applied. However, it is

assumed that industries and other producers reacted to these

controls as if enforcement was extant in all cases. The expectation
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of enforcement was likely incorporated into industrial management

plans, since the passage of PL 92-500 and its amendments were

indicative of future requirements. As long as businesses acted

as if these controls were a fact, the impact is identical. Not

until the 1980 Census will a full test of the impact be possible,

since annual data for incame distribution for SMSA's is not

available.

Empirical Results

Empirical results were mixed and samewhat difficult to

interpret. However, same areas for further research are suggested.

The initial results of the empirical test were generated

fram two stage least squares regression using the 172 SMSA's as

the sample. Results are:

dw = 46.9636 + 46.4261dL + 0.285903dk +
(2.15139) (2.06815) (0.376160)

0.0675268de + e
(1.79224)
D-W = 1.9951

dy = 4.5593 + 5.29848dL + 0.259906dK -
(11.0147) (12.4476) (18.0338)

0.00138651de + e,
(-1.94071)
DWW = 1.9847

do = 8.31796 - 0.136232dw + 6.57754dy +
(2.64887) (-0.221938) (2.4035)

0.014609da + 3.22756dp + ey
(0.302029) (2.04246)

D-W = 2.2500
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dp = -2.57717 + 0.042209dw ~ 2.03793dy -
(2.1073) (0.21215) (=1.73873)

0.00452633da + 0.309831do + e,
(-0.286802) (2.04246)

D-W = 2.2500

Numbers in parenthesis are values of the student t-Statistic,
and D-W is the Durbin-Watson Statistic.

A statistical problem exists with regard to the interpretation
of the t-statistic of the two stage least squares (2SLS) estimators.
For single equation models, the distribution of coefficient
estimator is normally distributed and the t value can be derived
from the assumption of a normal distribution of the stochastic
disturbance term. Since the small sample properties of simultaneous
equation systems are unknown, except for the most simple cases
(two equations, two or three unknowns), it is assumed that these
sanmple sizes are sufficiently large to approach asymptotic

13 Further, it is doubtful that the distributions

distribution.
which have been generated for the simple cases for testing
hypotheses asymptotically approach the t-distribution. Thus,
the signficance of the t-statistics is doubtful. However, the
common practice in the literature is to treat the results as
if a student's t was appropriate, and is the approach used in
this regression analysis.

One empirical problem was perhaps more critical. It is clear

13ZSI_S estimator of the parameter vector is consistent and
asymptotically normally distributed. See Henri Theil, Principles
of Econometrics (John Wiley & Sons, Inc. 1971), pp. 497-499.
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that the 1960-1970 decade was one in which broad public programs
and defense expenditures increased enormously, and public policy
changes in many ways which might have affected changes in incame
distribution more than water quality controls. 2Among these
policies would be tax changes and public expenditure shifts.

In order to eliminate as many of these campounding factors as
possible, the SMSA's were grouped, using factor analysis, into
more or less homogenous factors. In order to group the SMSA's,

a O-type analysis was required. This analysis uses a transposed
matrix, so that the SMSA's become the factors which are grouped
while the variables, which are normally grouped in a factor
analysis, became the independent observations or cases. Because
the SMSA's were considered as the variables and exhibited a wide
variation in the demographic characteristics, which were the
cases, standardization for several of the demographic characteristics
were required. Standardization was performed prior to transposing
the matrix.

The number of cases on which the Q analysis was performed
exceeded the number of SMSA's in both 1960 and 1970. One hundred
and twenty-nine characteristics were identified as relevant
to the factoring of SMSA's. In order to perform the statistical
procedures, the number of cases must exceed the number of variables,
similar to the conditions required for a solution to multiple
equation systems. It was necessary, therefore, to divide the SMSA's
into smaller groups. This was done on the basis of population.

For 1960, a division was made between SMSA's over and under
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250,000 population. For 1970, four divisions were made based on
population: under 150,000; 150,001 to 250,000; 250,001 to 500,000;
and over 500,000. Data for all the characteristics were taken

fram the Census of Populations for each year and from the City

and County Data Book.

The groupings were picked fram the Rotated Factor Matrix
factors with an element greater than the absolute value of .50
with relatively low loadings on other factors. If an SMSA

seemed to load on more than one factor it was eliminated from

the analysis. The rotation was based on the verimax criterion,

was orthogonal, and used the correlation matrix. The trace of

that matrix was the squared multiple correlation coefficients.

A listing of the results of the factor analysis for 1960 and 1970
may be found in appendix C and D.

Compilation of SMSA's which remained in the same factor for
both 1960 and 1970 was accomplished. The results were not usable,
since no more than seven to ten such SMSA's could be found in
any one factor. Since the number of variables in the regression
equations exceeded the number of observations, a further consolidation
of SMSA's was required. The consolidation was performed by
eliminating same of the population breakdown for 1970, and
cambining the factors, so that population groupings for both years
were two: over 250,000 and under 250,000. Factor analysis in
these two categories yielded two groups with 20 and 16 observations

(SMSA's). Table 3 is a list of these SMSA's by population group.




Table 3 Two groups of SMSA's by factor analysis

GROUP 1 GROUP 2

Birmingham, Ala. Baton Rouge, La.

Bay City, Mich.

Cleveland, Ohio

Columbia, S. C. Cedar Rapids, Iowa

Davenport, Ill. Charlotte, S. C.

Corpus Christi, Tex.

Detroit, Mich.

Houston, Tex. Decatur, Ill.

Jackson, Mich.

Huntington, W. V.

Kalamazoo, Mich.

Jacksonville, Fla.

Knoxville, Tenn. Kenosha, Wis.

Memphis, Tenn. Lexington, Ky.

Little Rock, Ark,

Milwaukee, Wis.

Minneapolis, Minn. Macon, Ga.
Mobile, Ala. Meriden, Conn.
New Orleans, lLa. Montgomery, Ala.
Newark, N. J. Muncie, Ind.
Norfolk, Va. Savannah, Ga.

Paterson, N. J.
Rochester, N. Y.
San Antonio, Tex.

San Francisco, Calif.




Regressions were run on these two groups; results of these
four regressions are:

Group 1:

dw = 226.040 + 227.771dL -~ 1.78205dk +
(2.95727) (2.89463) (-0.629111)

0.012274de + e
(0.158857)
D-W = 1.8514

dy = 5.34166 + 6.11155dL + 0.229265dk -
(3.11627) (3.46337) (3.60908)

0.0013866de + e
(-0.800246)

D-W = 2.2177

do = -257.065 + 10.6816dw - 193.143dy -
(-0.0677277) (0.0678556) (~0.0670327)

68.5915da - 2.0884dp + e
(-0.0689206) (-0.129725)

D-W = 1.9492

dp = -123.092 + 5.11471dw - 92.4837dy -
(-0.0825492) (0.0814406) (-0.0814365)

32.8441da - 0.478835dc + e,
(-0.0844671) (-0.129725)

dw = 164.573 + 167.607dL - 3.2500dk +
(2.09227) (2.06146) (-1.05591)

0.0187123de + e
(0.119158)

D-Ww = 1.7338
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dy = 3.35136 + 3.91518dL + 0.433578dk -
(1.98311) (2.24128) (6.55653)

0.00631038de + e

(-1.87033) .

D-W = 1.8728

do = -3.26151 + 1.38029dw - 0.603032dY -~
(-0.107055) (0.55197) (-0.0281348)

2.66631da + 0.632859dp + e
(-0.309605) (0.183512)

D-W = 1.5055

dp = 5.15362 - 2.18105dw + 0.952869dY +
(0.0742601) (-0.149562) (0.,0254715)

4.21312da + 1.58013do + e

(0.135429) (0.183512) 4

D-W = 1.5055

T™e interpretation of the results is somewhat difficult,

even though same results do appear consistent among all regressions.
The results for three different sample sizes are summarized
in Table 4. The first colum is for dependent variables, and the
first row is for independent variables. All signs for the parameters
are listed in the table. For the first two equations, the results
are fairly consistent except for dk in dw. For 172 SMSA and Group 1,
the coefficients for dk are not significant although they are
different in sign.

dL is significant in explaining dw and dY. The higher the
labor productivity is, the higher the wage rate and the output
level are. Like dL, dk has a positive effect on dY; nevertheless
dk may have a negative effect on dw. Raising up the rental rate

of capital may possibly contract the wage rate of labor input.




Table 4 FEmpirical results of the coefficient signs

Equation Set dh dK de dw dy da do do Sample Size

& + 172
20
16

172
20
16

(t) = (=) &
(=) (=) ()
(=) (+) ()

The signs in parenthesis were not significant from
t-test. Significant levels are interprested as
&5 |1.7]

a. Significant at t > [1.0]
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Regressions in Group 2 showed this result.

The coefficients of de for 172 SMSA's were significant.
After reducing the probability that de's were proxies for other
variables, the results were clifferent. For Growp 1 (with 20
SMSA's), none of the coefficients for de is significant; for Group
2 (with 16 SMSA's), de is significant only in explaining dY and
the effect is negative in sign. It is reasonable that the higher
quality the policy demanded the lower the output would turn
to be.

Most of the coefficients for the rest of the two equations,
do and dp, were not significant. This could be seen in Table 4.
Nete that dY was significant in the equation for do and dp and
different in sign. Thus, raising up the quality standards seemed
to equalize the distribution of incame through the reduction in
total output.,

do and dp were positively correlated. Thurow (1972) pointed
out, increase in the first parameter of the beta distribution,
do, leads to a less equal distribution. Increase in the second
parameter, dp, leads to a more equal distribution, ceterus paribus.14
Thus, changes in distribution could involve changes in both of

the two parameters.

l4’1‘1’\15 is true only if the estimated Lorenz curve falls below
the 45 degree equal distribution line. If the curve lies above
that line the opposite is true. The estimations for the beta
parameters for the data indicate that the ILorenz curve is, in all
cases, below the 45 degree line. See appendix E for examples.




The wage variable was consistently not significant in the

beta distribution parameters'estimates., Significance of the

industrial controls in the wage regression equation has no effect

on incame distribution.

were also run for both

Two single equation regressions15

do and dp. Results were:

For 172 observations:

do = 48.5239 + 49.0454dL - 0.486286dk -
(3.5767) (3.59847) (-0.992422)

0.091472de + 0.0125824da + e
(=3.99408) (0.543517)

D-W = 1.8515

dp = 4.76825 + 5.92465dL - 0.626845dk -
(0.634562) (0.766692) (-2.42924)

0.0235944de + 0.00538978da + e,
(-1.8608) (0.435599)

DW = 2.1036
For Group 1:

do = 199.52 + 202.804L - 3.56391dk - 0.116525de +
(1.76487) (1.72163) (=0.80698) (-1.31718)

0.18808da + e
(0.0660757)
DW= 2.172

dp = -118.93 - 120.926dL + 2.85695dk + 0.0437597de -
(-2.42541) (-2.35789) (1.45077) (1.03557)

0.414005da + e
(-0.312148)

15All exogenous variables were taken as independent variables,
while do and dp were dependent variables. Ordinary least squares
method was used to estimate the coefficients for each of the two

equations,




D-W = 1.6530

For Group 2:

do = 248.200 + 257.677dL - 6.27415dk - 0.0178135de -
(2.88985) (2.82495) (-1.52739) (-0.137059)

3.12838da + e

(-1.38411) !

DW = 1.8915

dp = 43.7808 + 46.9425dL - 2.0594dk -
(0.667199) (0.681117) (-0.80839)

0.0603245de - 0.628l6lda + e
(-0.831851) (~0.44608)

DW = 2.2411

The results have the same signs and significant variables

as the simultaneous equation esimations. Of course, these

equations are somewhat misleading in that the simultaneity of

their determination is lost, and therefore, results are somewhat
ambiguous.

Given the reservations concerning both the conceptual model's
structure and the interpretation of the empirical results, policy
prescriptions appear rather inappropriate. Clearly, there have
been changes in the income distribution in SMSA's from 1960 to
1970, as indicated by the changes in the beta distribution
functions' parameters. Without a more extensive data collection,
the casuality of these changes is not easy to test, even though
water quality controls are significant variables in same of the

regressions.
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SUMMARY AND CONCLUSIONS

In general, there is a need for much more study of the
problems concerned with income distribution. The efficiency and
equity in the optimal supply of envirommental quality is of broad
interest nowadays. This study tried to examine empirically 1)
the analytical tools as suggested as estimators of incame distri-
bution and 2) their applicability to a econamic model of water
quality controls.

The lognormal, displaced lgonormal, gamma, and beta distribution
functions:were considered as appropriate approximations for
income distribution functions. The Gastwirth upper and lower
bound test for Gini coefficient was applied as a fitness measure
and the beta function was clearly superior to the other forms
from the SMSA data.

A simultaneous equation econametric model was constructed,
based upon hypotheses about production and distribution. Water
quality controls were introduced to the model as a negative input
in the production process. Based on the duality principle in
the theory of cost and transformation function, a cost function,
which yields the minimum cost given the output level and factor
prices, was defined. Equilibria in commodity and factor markets
were also assumed. Thus, a theoretical bridge connecting the
water quality policy with output level and factor payments was

campleted.




Factor incames were assumed to be the basis of the family

incame, and payments to labor and capital were used in the model.

The link between family incame and factor payments is the pricing

of factors of production and the distribution of benefits of

factors between families.

The model indicated changes in factor prices and total output

resulting fram the imposition of water quality controls on

production. Meanwhile, the consequent effects on family income

distribution fram those changes in factor payments and output

level were tested in a simultaneous equation system.

The simultaneous equation regression results are not signifi-

cantly conclusive about the effects of water quality controls

on income distribution.

It does appear that water quality
parameter may effect the wage payment and total output, if the
parameter was not in fact a surrogate for other excluded variables
in the econamic system. The effect of wage changes on income
distribution was not significant. Changes in total output appeared
to be the most significant in the distribution equations. Theoreti-
cally, increases in factor inputs should increase the output level;
in the empirical test, changes in output were positively related
to changes in labor and capital inputs. Furthermore, the output
elasticity of labor seemed greater than that of capital as
implied by the coefficients estimated.

Results also indicated that changes in labor supply affected
changes in wage rate, but changes in capital supply did not.

Changes in capital supply may indirectly affect the family

incame distribution through changes in output. Specifically,
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increases in capital supply may lead to increases in output and
less equal distributoin of incame. The imposition of environmental
constraints may decrease output, and cause a more equal distribution
of incame as a result. While these results are not intuitively
obvious, same are similar to those obtained by Thurow, and most
of the coefficient signs appear consistent among regressions. Single
equation regressions of the exogenous variables on the distribution
parameters yielded similar results.

Better data are required for more complete and accurate
analysis. In order to draw more positive conclusions about
specific impacts of water quality policy, the model could be
applied to areas in which detailed industrial and distribution
data are available.

The principle thrust of the research was to develop a
model which would provide a systematic analysis of the impact
of water quality policy. The methodology used does provide a
means to organize the camplexity of econamic causality with respect
to income distribution change. Factor parameters, total output,
water policy, family income, and other variables were included
in an econamic model of incame distribution which was subject to
econametric analysis. It appears that this type of systematic
econametric approach can be fruitful in analyzing incame distribution
change. Further research in regions where detailed data are

available is indicated as an additional test of the methodology.
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The following program was used to generate the parameters of the

lognormal and displaced lognormal distribution:
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The following program was used to generate the parameters of

the gamma and beta densities.
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1960 Factor Analysis for SMSA's,

Appendix C.

1960 SMSA's-Over 250,000

Factor 1 (21)

Factor 2 (20) Factor 3 (11)

Atlanta, Ga. Akron, Ohio Charleston, W.V.

Canton, Ohio Denver, Colo.

Beaumont, Tex.

Birmingham, Ala. Chicago, Ill. El Paso, Tex.

Flint, Mich,

Buffalo, N,Y.

Davenport, Iowa

Charlotte, N.C. Dayton, Ohio Huntington, W.V.

Chattanooga, Tenn. Johnstown, Pa.

Ft. Lauderdale, Fla.

Cleveland, Ohio Grand Rapids, Mich. Sacramento, Calif.

San Jose, Calif.

Columbia, S.C. Greensboro, N.C.

Utica, N.Y.

Lansing, Mich.

Erie, Pa.

Jacksonville, Fla. Los Angeles, Calif. Washington, D.C.
Findervill, Tenn. Miami, Fla. Wilkes-Barre, Pa.
Menphis, Tenn. New York, N.Y.

Milwaukee, Wisc. Peoria, Ill.

Mobile, Ala. New York, N.Y.

Nashville, Tenn. Salt Lake City, Ut.

Newark, N.J. San Francisco, Calif.

Norfolk, Va. Syracuse, N.Y.

Patterson, N.J. Toledo, Chio

Rochester, N.Y. Wilminton, Del.

San Antonio, Tex. Youngstown, Ohio

Shreveport, La.




Continued. SMSA's Over 250,000

Factor 5 (6) Factor 6 (5) Factor 7 (8)
Bridgeport, Conn. Baltimore, Md. Ft., Worth, Tex.
Hartford, Conn. Portland, Ore. Miami, Fla.
New Haven, Conn. Seattle, Wash. Orlando, Fla.
Providence, R.I. Spokane, Wash. Phoenix, Ariz.
Springfield, Mass. Tacoma, Wash. San Bernandino, Calif.
Worcester, Mass. San Diego, Calif.
Tampa, Fla.

Tuscon, Ariz.

Factor 8 (6) Factor 9 (7)

Albuquerque, N.M. Dallas, Tex.

Allentown, Pa. Fresno, Calif. Factor 10 (4)

Erie, Pa. Jersey City,

Houston, Tex.

Harrisburg, Pa. Kansas City, Mo. Newark, N.J.

Lancaster, Pa. Oklahoma City, Okla. Paterson, N.J.

Reading, Pa. Tulsa, Okla. Trenton, N.J.

Wichita, Kan,

Factor 11 (4)

Factor 12 (2)

Bakersfield, Calif. Cincinnati, Ohio

Columbus, Chio Louisville, Ky.

Gary, Ind.
Indianapolis, Ind.

Cities not Grouped (7)

Detroit, Mich,

Albany, N.Y.

No Cities

Boston, Mass.

Honolulu, Haw.

New Orleans, La.

Factor 4, 13, 14 Des Moines, Iowa

Qmaha, Neb.




Continued.

1960 SMSA's under 250,000

Factor 1 (22) Factor 2 (17) Factor 3 (14)

Altoona, Pa.

Austin, Tex.

Albany, Ga.

Bay City, Mich. Atlantic City, N.J. Cedar Rapids, Iowa

Charleston, S.C. Billings, Mont. Ft. Smith, Ark,

Evansville, Ind. Ft. Wayne, Ind.

Decatur, Ill.

Gadsden, Ala.

Porham, N,C. Fargo, N.D,

Great Falls, Mont. Lynchburg, Va.

Hamilton, Ohio

Jackson, Mich. Huntsville, Ala. Madison, Wisc.

Jackson, Mass. Lawton, Okla. Monroe, la.

Kenosha, Wisc. Midland, Tex. Rockford, Il1l.

San Angelo, Tex.

Lima, Ohio Norwalk, Conn,

Little Rock, Ark. Odessa, Tex. South Bend, Ind.

Ogden, Ut.

Texarkana, Tex.

Lorain, Ohio

Montgomery, Ala. Scranton, Pa. Tuscaloosa, Ala,

Muncie, Ind. Sious Falls, S.D, Tyler, Tex.

Muskegum, Mich. Wheeling, W.V. Factor 5 (4)
York, Pa. St. Joseph, Mo.
Factor 4 (12) Sioux City, Iowa
Brokton, Mass. Springfield, Mo.
Falls River, Mass. Terre Haute, Ind.

Fitchburg, Mass.

Lawrence, Mass.

Lewiston, Maine New Britany, Conn.
Lowell, Mass. Pittsfield, Mass.
Manchester, N.H. Portland, Maine

New Bedford, Mass. Waterbury, Conn.




Continued. Under 250,000

Factor 8 (2)

Factor 6 (4) Factor 7 (2)

Lincoln, Neb,

Durham, N.C. Macon, Ga,

Greensboro, N.C.

Topeka, Kan. Newport-News, Va.

Greenville, S.C.

Winston-Salem, N.C. Factor 10 (2) Factor 11 (2)

Brownsville, Tex. Ann Arbor, Mich.

Champaign, Ill.

Factor 9 (3) Stanford, Conn.

Colorado Springs, Colo.

Las Vegas, Nev. Factor 13 (1) Factor 14 (1)

Reno, Nev. Galveston, Tex. Amarillo, Tex.

Cities not Grouped
Ashville, N.C.

Factor 12 (2)

Laredo, Tex.

Santa Barbara, Calif.

West Palm Beach, Fla. Augusta, Ga. Lexington, Ky.

Baton Rouge, La. Lubbuck, Tex.
Factor 15 (3) Columbus, Ga. Mariden,Conn.
Abilene, Tex. Corpus Christi, Tex. New ILondon, Conn.
Amarillo, Tex. Eugene, Ore. Pensecola, Fla.
Wichita Falls, Tex. Green Bay, Wisc. Roanoke, Va.
Kalamazoo, Mich. Saginow, Mich.
Lake Charles, la. Springfield, Ill.
Waco, Tex. Stockton, Calif.

No Cities Factors 16 & 12




Appendix D. SMSA's 1970 Over 500,000

Factor 1 (16)

Rotated Factor Scores

Factor 2 (7)

4 Anaheim

7 Birmingham
12 Cleveland

22 Greensboro
23 Hartford

27 Jacksonville
32 Memphis
35 Minneapolis
36 Nashville

37 New Orleans
38 Newark

40 Norfolk
43 Paterson

54 San Francisco
57 San Francisco
58 San Jose
Factor 5 (12)

1 Arbor

15 Dayton
18 Ft. Lauderdale
20 Gary

21 Grand Rapids

28 Jersey City

3 Allentown, N.J.
5 Atlanta, Ga.
9 Buffalo
46 Pittsburgh
48 Providence
60 Springfield
68 Washington D.C.
Factor 6 (2)
47 portland, Ore.
59 Seattle
Factor 9 (5)
10 Chicago
17 Detroit
30 Los Angeles
38 New York

44 Philadelphia

33 Miami

50 Rochester
61 Syracuse
62 Tampa

63 Toledo

65 Youngstown

Factor 3 (7) Factor 4 (5)

8 Boston 11 Cinncinati

14 Dallas 24 Honolulu
19 Ft. Worth 36 Indianapolis
25 Houston 31 Louisville
29 Kansas City 52 St. Louis
41 Oklahoma City

45 Phoenix

Factor 7 (2) Factor 8 (4)

6 Baltimore 13 Columbus

49 Richmond 16 Denver

42 Omaha

Factor 10 (3)

51 Sacramento 53 Salt Lake
55 San Bernadino

56 San Diego

Factor 11 (1) Factor 12 (0)

34 Milwaukee




Continued.

SMSA's 1970 Between 250,000 & 500,000 (60)

Factor 1 (20) Factor 2 (16)

1 Albuquerque, N.M.

4 Austin, Tex.

Factor 3 (6)

12 Charlotte, N.C.

3 Augusta, Ga.

6 Baton Rouge, La.

25 Harrisburg, Pa.

9 Bridgeport, Conn. 13 Chattanooga, Tenn. 34 Lorain, Ohio

10 Canton, Ohio 24 Greenville, S.C. 39 Orlando, Fla.

11 Charleston, S.C. 26 Huntington, W,V. 53 Tulsa, Okla,

14 Columbia, S.C, 28 Johnstown, Pa. 55 W. Palm Beach, Fla.
15 Corpus Christi, Tex. 30 Lancaster, Pa. Factor 6 (2)

16 Davenport, Iowa 32 Las Vegas, Nev. 13 Des Moines, Iowa
19 El1 Paso, Tex. 35 Madison, Wisc. 21 Flint, Mich.

27 Jackson, Miss. 40 Oxnard, Calif. Factor 7 (2)

29 Knoxville, Tenn. 42 Reading, Pa, 43 Spokane, Wash.
33 Little Rock, Ark. 44 sSalinas, Calif. 50 Tacoma, Wash.

36 Mobile, Ala. 45 Santa Barbara, Calif. Factor 8 (0)

37 New Haven, Conn. 52 Tuscon, Ariz, Factor 9 (0)

41 Peoria, Ill, 57 Wilkes-Barre, Pa. Factors 10-13 (0)
43 Rockford, Ili, 60 York, Pa.

46 Shreveport, la. Factor 5 (4)

47 south Bend, Ind. 5 Bakersfield, Calif.

51 Trenton, N.J. 7 Beaumont, Tex.

59 Worchester, Mass. 23 Fresno, Calif.

Factor 4 (3) 56 Wichita, Kan,

18 Duluth, Minn. Not Factored (7) 22 Fort Wayne, Ind.

49 Stockton, Calif, 2 Appleton, Wisc. 31 Lansing, Mich.

54 Utica, N.Y. 8 Binghampton, Pa. 38 New Port News, Va.

20 Erie, Pa. 58 Wilmington, Del.




Continued. SMSA's 1970 Between 150,000 & 250,000 (50)

Factor 1 (8) Factor 2 (6) Factor 3 (7)

3 Beoran, Mass. 2 Atlantic City, N.J. 20 Lexington, Ky.

13 Ft. Smith, Ark. 17 Huntsville, Ala. 21 Lima, Ohio

19 Lawrence, Mass. 30 New Bedford, Mass. 29 Muskegon, Mich,

23 Lowell, Mass, 34 Raleigh, N.C. 33 Racine, Wisc.

37 Salem, Ore. 40 Scranton, Pa. 36 Saginaw, Mich.

42 springfield, Mo. 50 Wheeling, W.V. 43 Springfield, Ohio

46 Terre Haute, Ind. 45 Steubenable, Ohio

49 Waterbury, Conn.

Factor 4 (4) Factor 5 (3) Factor 6 (7)

22 Lincoln, Neb. 4 Cedar Rapids, Iowa

27 Medesto, Calif.

26 McAllen, Tex. 38 Santa Rosa, Calif. 8 Columbus, Ga.

41 Springfield, Ill. 48 vallejo, Calif. 10 Eugene, Ore.
42 Topeka, Kan. 18 Kalamazoo, Mich.
Factor 7 (1) Factor 8 (3) 25 Macon, Ga.

11 Evansville, Ind. 7 Colorado Springs, Co.28 Montgomery, Ala.

Factor 10 (3) 12 Fayetteville, N.C. 39 Savannah, Ga.

1 Ann Arbor, Mich. 44 Stanford, Conn. Factor 9 (1)

5 Champaign, Ill. Factor 11 (1) 35 Roanoke, Va.

9 Durham, N.C. 14 Galveston, Tex. Factor 12 (1)

Not Factored 15 Green Bay, Wisc.

6 Charleston, W.V.
16 Hamilton, Ohio
29 Lubbuck, Tex.

31 New London, Conn.

32 Pensacola, Fla.




Continued, SMSA's 197Q Under 150,000

Factor 1 (12) Factor 2 (6) Factor 3 (3)

5 Anderson, Ind. 10 Bloomington, Ind. 18 Dubque, Iowa

7 Bay City, Mich, 13 Brownsville, Tex. 27 La Crosse, Wisc.

14

Bryan, Tex, 15 Columbia, Mo. 59 Sioux, Falls, S.D.

17 Decatur, I1l. 23 Gainsville, Fla. Factor 6 (6)

25 Jackson, Mich. 29 layfayette, Ind. 19 Fall Rider, R.I.

26 Kenosha, Wisc. 60 Tallahasse, Fla. 33 Lewiston, Maine

31 Laredo, Tex, Factor 5 (7) 35 Manchester, N.H.

36 Mansfield, Ohio 21 Fitchburg, Mass. 38 Midland, Tex.

40 Muncie, Inc. 44 Odessa, Tex.

28 Layfayette, la.

42 New Britian, Conn. 30 Lake Charles, la. 50 Portland, Maine

56 San Angelo, Tex. 37 Meriden, Conn,

Factor 7 (3)

64 Vineland, N.J, 39 Monroe, La. 55 St. Joseph, Mo.
Factor 4 (6) 49 pittsfield, Mass. 58 Sioux City, Iowa
1 Abilene, Tex. 52 Tuscaloosa, Ala. 65 Waco, Tex.

2 Albany, Ga. Factar 8 (5) Factor 9 (3)

3 Altoona, Pa. 22 Gadsen, Ala. Norwalk, Conn.
12 Bristof, Conn. 46 Owensburo, Ky. 52 Pueblo, Colo.

16 Danbury, Conn. 48 Pine Bluff, Ark. 53 Reno, Nev.

41 Nashua, N.H. 61 Texakana, Tex. Factor 12 (5)
Factor 10 (3) 63 Tyler, Tex. 8 Billings, Mont.
66 Waterloo, Iowa Factor 11 (1) 11 Boise, Id.

67 Wichita Falls, Tex. 4 Amarillo, Tex. 20 Fargo, N.D.

68 Wilmington, N.C. 24 Great Falls, Mont.

54 Rochester, N.Y.




Factor 13 (2)

Factor 14 (2)

Not Factored

34 Lynchburg, Va.

47 Petersburg, Va.

45 Ogden, Utah

57 Sherman, Tex.

6 Ashville, N.C.
9 Biloxi, Miss.
32 Lawton, Okla,

51 Provo, Utah




Distribution Parameters and the Lorenz Curve
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