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ABSTRACT 
The number of CubeSats and small satellites placed in orbit has been growing exponentially since 1999 as 
demonstrated by more than 40 CubeSats being launched in the last quarter of 2013 from the USA alone. While 
CubeSats were initially used for academic purpose and generally tailored towards technology demonstration, it has 
become more evident that small satellites can play a role in some operational contexts such as earth observation, 
space weather, or situational awareness, to name just a few. In the past, each institution involved in Small Satellites 
has often designed their own proprietary system with regards to communication, software, avionics, and command 
and control, with incremental improvements based on previous successes. While this may make sense in an 
academic environment, where it provides students with a wide range of learning opportunities, it distracts teams 
exploring scientific or operational missions from focusing primarily on the payload technology. Building upon 
previous work funded by the National Reconnaissance Office (NRO) and known as the Colony I and Colony II bus 
programs, the Lawrence Livermore National Laboratory (LLNL), in partnership with the Naval Postgraduate School 
(NPS) is developing a CubeSat bus reference architecture and a set of minimum specifications useful for 
government applications. The architecture has application to software, electrical, and mechanical interfaces and aims 
at providing a flexible platform that can be endorsed by industry, supporting interchangeability of components while 
retaining customization for payload integration. We intend to present the framework of the architecture and its first 
embodiment in a flat satellite prototype. 

INTRODUCTION 
CubeSats and nano-satellites have increasingly become 
a platform of choice for various proof-of-concepts 
demonstrations and large distributed constellation 
missions1. The development cycle for a simple CubeSat 
is generally expected to be one to two years long2, but 
this tends to be much longer when advanced 
capabilities are implemented such as precise avionics, 
high data-rate links, etc … While private enterprises3 
have developed their own proprietary small-satellite 
busses, they generally do not make them commercially 
available. Government and educational programs are 
heavily distributed across many institutions and 
traditionally, each institution has worked on their own 
bus and components to support their very specific 
payload. This approach limits rapid payload and 
technology demonstration cycles as a significant effort 
has to be dedicated towards developing the overall bus 

capabilities. Bus capabilities generally encompass the 
following: structure and thermal management, power 
system and solar panels, radio, attitude control and 
determination system (ADCS), command and data 
handling system (C&DH) as well as any deployment 
mechanism related to any of those sub-systems. A 
general mechanical, electrical and software standard is 
expected to allow replaceability of each of those sub-
systems from various sources based on the complexity 
needed for the mission under consideration. This allows 
teams to focus on the payload and the mission, as well 
as building a shared community heritage. The NRO, 
LLNL and NPS are developing a CubeSat bus reference 
architecture aimed at allowing interchangeability of 
components and reducing design cycles. 
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REFERENCE ARCHITECURE GOALS 

Programatic goals 
Previous work funded by the National Reconnaissance 
Office (NRO) and known as the Colony I4 and Colony5 
II bus programs were reviewed to guide the CubeSat 
Next Generation Bus Reference Architecture effort 
(CNGB). The main high level goals of the program 
were summarized as follows: 

• Ensure modular, non-proprietary solutions to 
support open competition: this goal is intended 
to promote detailed open documentation on 
mechanical, electrical and software interfaces 
that can be endorsed by industry. It also drives 
the need for open-source firmware and 
software. 

• Enable mission flexibility at lower cost: this 
goal pushes the need for bus configuration 
flexibility with limited restrictions in 
component location, access to space, orbital 
regime, etc. 

• Provide extensibility to larger form factor: 
while the intent of this effort is focused on a 
3U form factor, this goal drives the 
architecture to not be locked to interfaces 
heavily dependent on the mechanical form 
factor. 

• Drive the state-of –the art and meet demands 
of upcoming mission applications: this goal 
pushes the need to see ahead and support 
upcoming capabilities such as propulsion, fine 
pointing, high data rates, etc. In particular, it 
aims at adding enabling functionality covering 
both the technical aspects as well as the 
regulatory aspects (number and type of 
inhibits, safety concerns, radiation mitigations, 
etc.) of CubeSats. 

Technical goals 
Flowing from the programmatic goals as well as lessons 
learned from past CubeSat programs, several technical 
goals have been identified to be addressed by the 
CNGB architecture. In particular, the following 
requirements have been identified: 

• Mechanical interface shall support slip-in of 
components and payload to limit dis-assembly 
during integration. 

• Mechanical interface shall support mounting 
of components and payload at a wide range of 

locations. A 1cm granularity was deemed 
appropriate. 

• Side panels shall support maximum access to 
space and limit multi-use (magneto-torquer, 
sensors, etc.) 

• Staking of fasteners should be limited and 
alternate reversible locking should be used 
whenever possible to allow flexibility during 
integration. 

• Data and power interfaces shall provide 
multiple payload connections in order to 
reduce the need for break-out interface sub-
systems 

• Data interfaces shall allow sub-systems to 
communicate directly with each other when 
permissible. (Payload to ADCS, etc.) 

• Power interface shall provide maximum 
capability to payloads and sub-systems. 

• Software interface shall provide self-
documentation of the sub-systems capabilities 
for ease of integration. 

• Architecture should support at least three 
independent inhibits for advanced capability 
(propulsion, high power transmitters, etc.) 

• Architecture should support modes of 
operation able to support various failure modes 
(depleted battery at ejection, solar panel 
deployment failure, etc.) 

Each of these requirements have flowed down to the 
design and incorporated in the CNGB architecture. The 
following sections will describe the current CNGB 
architecture. 

MECHANICAL INTERFACE 
Various trades were evaluated to establish the baseline 
structure and mechanical interfaces. A tray concept 
implementing the full 10cm x10cm was studied, but 
was assessed to add un-necessary complexity on any 
spacecraft deployable attachment as it requires the tray 
enclosures to be custom designed to accommodate 
hinges or requires predetermined heights. Additionally, 
it was found that it limits integration of payload and 
subsystems of non-standard shapes and may drive high 
fabrication and assembly tolerances to meet all 
dispenser requirements. Monolithic structures (4 walls) 
were also studied, and, while providing the maximum 
volume space, they were deemed to limit access to 
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space and flexibility late in the integration process. The 
CNGB is therefore defining a mechanical interface 
based on a rail concept with a set of well-defined 
mounting locations. The mechanical interface also 
allows slip-in of sub-systems without the removal of the 
rails by implementing removable end-feet crossbar and 
side cross-bars. 

 

Figure 1: CNGB structure showed with end-feet 
crossbar removed on the right. 

The structure was designed such that once assembled it 
is fully symmetrical except for the fastener location. 
This allows components to be rotated by 90 degrees 
without affecting the fit. Standard mounting hardware 
has been designed to fasten the various sub-systems to 
the rail. 

 

Figure 2: CNGB structure mounting hardware. 
It should be noted that the crossbars can be placed 
anywhere along the rail to allow maximum flexibility or 
not used at all if a sub-system provides sufficient 
structural stiffness. Preliminary finite element analysis 
shows that adding a single simple sub-system in the 
rails can increase the natural frequency of the structure 
by 25%. 

The overall CNGB mechanical interface has been 
summarized into a stayclear definition as shown below 
in Figure 3. 

 

Figure 3: CNGB stayclear definition. 
Additionally the mounting locations have been captured 
in an interface definition drawing including basic rail 
dimension. Mounting is done using #2(.086)-56 UNC x 
0.3125 inch long x 82 degrees flathead cap screws, hex 
socket drive, A286 (iron base superalloy) stainless 
steel. 

 

Figure 4: CNGB Interface Definition. 
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Fasteners are locked using thread inserts, nominally 
Emhart Helicoil #2(.086)-56 x 0.172 inch long, Nitronic 
60 stainless steel. A trade-study was conducted 
regarding the choice of metric versus SAE fastener. 
SAE was down-selected as it provided more robust 
options for equivalent sizes. As an example a metric 
M2 fastener provides only 138kg of yield strength as 
opposed to 159kg yield strength for the equivalent SAE 
number 2 fastener. 

ELECTRICAL INTERFACE 
An extensive trade-study has been conducted to 
evaluate various leading data interfaces. Assessment 
factors included link rate, flow control, signal integrity, 
number of wires, number of slaves, number of masters, 
topology, heritage, etc. Various data interfaces 
spanning from PC104 to Bluetooth as well as traditional 
serial links were evaluated. The two leading contenders 
were CAN and RS485. The CAN standard is compliant 
with ISO 11898-1:2003 and ISO 11898-2:2003 and has 
been down-selected as the CNGB data standard as it 
offers the link layer definition by providing support for 
error checking, bus arbitration (multi-slave/multi-
master support) and builds upon an extensive heritage 
in the harsh automotive industry. 

In addition to the underlying CAN interface protocol, 
the data interface has been defined to require the 
following to comply with the CNGB architecture: 

• Interface shall be self-powered per the CAN 
bus standard (5V) and require 50mW to 
350mW or less. Power from the interface shall 
not be used to power any other functionality in 
the sub-system. 

• Interface shall implement a standby mode 
when not in use. Nominal standby current shall 
be 200uA. 

• Data Interface shall implement the following: 

o Power enable control for each power 
source from the power busses. 

o Telemetry temperature as well as 
voltage and current monitoring of the 
module from the power busses 

o In-system programming to any 
programmable devices on the sub-
system. 

o Up to three real-time interrupts logic 
for hard, real-time requests. Interrupt 
lines shall be active low open 

collector to allow all modules to 
receive or send an interrupt. Pulse per 
second (PPS) interrupt type and 
wake-up interrupt shall conform to 
the pinout if used. 

• Data Interface shall use a 9-pin dual row nano-
D connector (male connector on the module 
and female on the cable harness). Unused 
connectors shall have a protective cap 
mounted using the mounting hardware. 

Table 1: CNGB Data Interface 

Pin Number Pin Name 

1 Interface Power (5V) 

2 CAN- 

3 Interface Ground 

4 Interrupt 1 (reserved for PPS if present) 

5 Interrupt 2 (reserved as wake-up signal for 
interface standby mode requests) 

6 Interface Ground 

7 CAN+ 

8 Interrupt 3 

9 Interface Power (5V) 

Nano-D connectors have been selected for this 
architecture as various vendors currently provide 
compatible connectors (Omnetics Connector Corp., 
Glenair Inc., Axon Cable SAS, etc.). In addition their 
robustness has been proven in the space industry on 
large and small programs alike. 

Table 2: CNGB Power Interface 

Pin Number Pin Name 

1, 2, 3, 4, 5, 6, 7, 8 Ground 

9, 10, 11, 12, 13, 14, 15 12V regulated 

A 12V regulated power distribution has been selected to 
accommodate high power distribution while still 
allowing a wide selection of electronics components. 
Nano-D connectors support gauge 30 wires, which are 
rated for 1A and will not cause self-fusing in vacuum, 
while providing a voltage drop of less than 1% at 12V 
for cable length relevant to 3U CubeSats. Each CNGB 
power interface is rated for 6A and uses a dual row 15-
pin nano-D connector (male connector on the module 
and female on the cable harness). 

The CNGB architecture defines two data busses and 
two power busses. Each module implementing a 
connection to a data bus or a power bus must provide 
two connectors per corner on opposite sides of the 
board to allow for daisy chaining. The locations of the 
connectors are defined per a standard PCB drawing. 
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Figure 5: CNGB Standard PCB definition. 
While complying with the standard PCB outline is not 
required, the location of the connectors in use must be 
followed to allow using the dedicated routing volume. 
It should be noted that, at the bare minimum, one data 
interface (Two dual row 9-pin nano-D connectors) and 
one power interface (Two dual-row 15-pin nano-D 
connectors) must be implemented. 

A trade was done to assess the benefit of implementing 
a daisy chaining at the board level versus fabricating a 
custom multi-drop cable harness. The daisy chaining 
was selected as it allows a simple unique cable type, 
which lowers the cost and increases reliability. In 
addition, the presence of two connectors per interface 
on each board provides easy monitoring access to the 
overall interface during integration and test. 

 

Figure 6: CNGB wire harness daisy chaining in the 
dedicated routing volume example. 

SOFTWARE INTERFACE 
The software architecture is expected to support 
hardware interchangeability, be compatible across a 
broad range of computing platforms (from small micro-
controllers to multi-core large processors) and allow for 
an open source model. In addition, it is expected that 
computing resources in a CubeSat or small satellite will 
be distributed across various physical locations. A good 
match for addressing these constraints is the already 
existing Space Plug-and-play Avionics (SPA) 
architecture6 developed as the foundation of the U.S. 
Department of Defense (DoD) Operationally 
Responsive Space (ORS) initiative. The Space 
Dynamics Laboratory (SDL) has developed a reference 
implementation7 of the SPA Standards called the SPA 
Services Manager (SSM). The SPA architecture allows 
the creation of a distributed network and supports 
component discovery and registration as well as health 
and status reporting. The hardware interface is 
abstracted using the Applique Sensor Interface Module 
(ASIM), which can easily be implemented either in a 
micro-controller or in a full-fledged processor. For 
CNGB, ASIMs implement the CAN link layer and 
provide all the services required by the SPA network. 

 

Figure 7: CNGB software architecture. 
SPA provides plug-and-play capability by making use 
of the extensible Transducer Electronic Data Sheet 
(xTEDS), which is an extension of the IEEE 1451.4. 
Each device or module on the network must have an 
xTEDS (usually residing in the ASIM for physical 
devices) describing the capabilities and available 
commands to other components in the system. As 
shown in Figure 7, the CNGB architecture builds on the 
SPA network and defines various SPA component 
types: 

• Functional Modules: these SPA modules 
describe high level capabilities expected to be 
found in a spacecraft. They are generally 
software only modules relying on Logical 
Modules for data and control. They are the 
modules providing high level mission 
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commands to a user. It is expected that these 
modules do not know about the actual 
hardware available and execute high level 
control algorithms. Fully integrated capability 
such as a fully stand-alone ADCS sub-system 
can provide functional module capability. 

• Logical Modules: these SPA modules describe 
logical capabilities in the network. They 
attempt to decouple the physical sensors, 
actuators or systems and provide the logical 
measurements or commands to Functional 
Modules. These modules can be software only 
modules or physical devices when well 
partitioned. 

• Hardware Devices: these SPA modules are 
directly tied to a physical device. These 
devices must implement an ASIM to connect 
to the SPA network. 

One should note that each SPA component on the 
network can provide one or more functionality types 
depending on the level of integration provided by the 
hardware.  

One should also note that to comply with the electrical 
architecture, each module implementing a hardware 
device must provide an xTEDS providing at least the 
CNGB interface capability as follows. 

 <Interface name="CNGBDataInterface"> 
  <Variable name="Time" units="Seconds" format="FLOAT64"/> 
  <Variable name="Voltage" units="Volts" format="FLOAT32"/> 
  <Variable name="Current" units="Amperes" format="FLOAT32"/> 
  <Variable name="Temperature" units="Celsius" format="FLOAT32"/> 
  <Variable name="PowerFault" format="UINT08"> 
   <Drange name="ThresholdBatteryState"> 
    <Option name="No Fault" value="0"/> 
    <Option name="Generic Fault" value="1"/> 
    <Option name="Redundancy Fault" value="2"/> 
    <Option name="Regulation Fault" value="3"/> 
   </Drange> 
  </Variable> 
  <Variable name="PowerState" kind="PowerState" format="UINT08"> 
   <Drange name="ThresholdBatteryState"> 
    <Option name="On" value="0"/> 
    <Option name="Off" value="1"/> 
   </Drange> 
  </Variable> 
  <Notification> 
   <DataMsg msgArrival="EVENT" name="CNGBDataInterface_Status"/> 
    <VariableRef name="Time"/> 
    <VariableRef name="PowerFault"/> 
  </Notification> 
  <Command> 
   <CommandMsg name="PowerOn" description="turn on device"/> 
  </Command> 
  <Command> 
   <CommandMsg name="PowerOff" description="turn off device"/> 
  </Command> 
  <Request> 
   <CommandMsg name="CNGBDataInterface_GetTelemetry"\> 
   <DataReplyMsg name="CNGBDataInterface_Telemetry"> 
    <VariableRef name="Time"/> 
    <VariableRef name="Voltage"/> 
    <VariableRef name="Current"/> 
    <VariableRef name="Temperature"/> 
    <VariableRef name="PowerFault"/> 
    <VariableRef name="PowerState"/> 
   </DataReplyMsg> 
  </Request> 
 </Interface> 

TESTING RESOURCES 
Testing tools have been considered in the architecture 
design to facilitate integration and test by developers 
making use of the CNGB architecture. In particular, a 
simple set of commercial, off-the-shelf tools can be 
assembled to provide bench top testing of all CNGB 
compliant modules. This setup allows direct data 
connection from any laptop or desktop and consists of a 
DB9 to nano-D adapter cable, a USB-to-CAN adapter 
(USBmodul1 from Systec, PCAN-USB from PhyTools, 
etc.) and the Monarch Studio GUI provided by SDL. 
Note that for lower level direct CAN access, various 
commercial software packages are available free of 
charge and are compatible with most USB-to-CAN 
adapters (PCAN-View is the most popular). Also, some 
CAN controller integrated circuits such as the 
AT89C51CC03 from Atmel can be re-programmed 
directly through the CAN interface using this tool 
chain, allowing convenient in-system reprograming 
access to most modules. 

The distributed capability of the SPA network also 
allows testing in simulated environments where some 
modules can reside physically outside the spacecraft. 
This allows distributed development teams to test 
interfaces with the rest of the system remotely via any 
network (current SSM supports Ethernet). Neighbor 
modules can also be simulated in software for test 
purposes and added to the spacecraft SPA network 
(through the umbilical network interface or on the test 
processor). This feature allows development of higher 
level C&DH capabilities without the need for actual 
hardware.  

Finally the use of an open source Linux based operating 
system for full-fledged processors (used for C&DH and 
any other processing intensive module) allows software 
to be developed and tested on virtual machines with 
endless possibilities to interconnect through a SPA 
network. This allows software development to be 
conducted without the need to physically reprogram the 
non-volatile storage until the final version is ready. 

SUMMARY 
The CNGB architecture builds upon past CubeSat bus 
programs and provides the flexibility and transparency 
needed for community as well as industry endorsement. 
This program aims at providing the framework 
necessary to develop a base of interchangeable 
commercial products that can be selected to tailor a 
CubeSat or small satellite design for a specific 
application with a reduced need for custom 
development. This program also provides the 
foundation for a software base that can grow and be 
enriched as programs contribute to the available 
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capabilities implemented. CubeSat development teams 
can choose to comply with the software architecture, 
electrical architecture, mechanical architecture or any 
combinations based on their needs. The CNGB 
architecture also provides flexible test tools for agile 
development, integration and testing. 
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