
SSC14-V-9

Government-owned CubeSat Next Generation Bus Reference Architecture

Vincent Riot, Lance Simms, Darrell Carter, Todd Decker
Lawrence Livermore National Laboratory

7000 East Avenue, Livermore, CA 94550; 925-422-9798
riot1@llnl.gov

Jim Newman, Lara Magallanes, Jim Horning, David Rigmaiden

Space Systems Academic Group, Naval Postgraduate School
1 University Circle, Monterey, CA 93943; 831-656-2487

jhnewman@nps.edu

Meagan Hubbell, Dave Williamson
National Reconnaissance Office

14675 Lee Road, Chantilly VA 20150; (703)808-6892

ABSTRACT
The number of CubeSats and small satellites placed in orbit has been growing exponentially since 1999 as
demonstrated by more than 40 CubeSats being launched in the last quarter of 2013 from the USA alone. While
CubeSats were initially used for academic purpose and generally tailored towards technology demonstration, it has
become more evident that small satellites can play a role in some operational contexts such as earth observation,
space weather, or situational awareness, to name just a few. In the past, each institution involved in Small Satellites
has often designed their own proprietary system with regards to communication, software, avionics, and command
and control, with incremental improvements based on previous successes. While this may make sense in an
academic environment, where it provides students with a wide range of learning opportunities, it distracts teams
exploring scientific or operational missions from focusing primarily on the payload technology. Building upon
previous work funded by the National Reconnaissance Office (NRO) and known as the Colony I and Colony II bus
programs, the Lawrence Livermore National Laboratory (LLNL), in partnership with the Naval Postgraduate School
(NPS) is developing a CubeSat bus reference architecture and a set of minimum specifications useful for
government applications. The architecture has application to software, electrical, and mechanical interfaces and aims
at providing a flexible platform that can be endorsed by industry, supporting interchangeability of components while
retaining customization for payload integration. We intend to present the framework of the architecture and its first
embodiment in a flat satellite prototype.

INTRODUCTION
CubeSats and nano-satellites have increasingly become
a platform of choice for various proof-of-concepts
demonstrations and large distributed constellation
missions1. The development cycle for a simple CubeSat
is generally expected to be one to two years long2, but
this tends to be much longer when advanced
capabilities are implemented such as precise avionics,
high data-rate links, etc … While private enterprises3
have developed their own proprietary small-satellite
busses, they generally do not make them commercially
available. Government and educational programs are
heavily distributed across many institutions and
traditionally, each institution has worked on their own
bus and components to support their very specific
payload. This approach limits rapid payload and
technology demonstration cycles as a significant effort
has to be dedicated towards developing the overall bus

capabilities. Bus capabilities generally encompass the
following: structure and thermal management, power
system and solar panels, radio, attitude control and
determination system (ADCS), command and data
handling system (C&DH) as well as any deployment
mechanism related to any of those sub-systems. A
general mechanical, electrical and software standard is
expected to allow replaceability of each of those sub-
systems from various sources based on the complexity
needed for the mission under consideration. This allows
teams to focus on the payload and the mission, as well
as building a shared community heritage. The NRO,
LLNL and NPS are developing a CubeSat bus reference
architecture aimed at allowing interchangeability of
components and reducing design cycles.

Riot 1 28th Annual AIAA/USU
 Conference on Small Satellites

REFERENCE ARCHITECURE GOALS

Programatic goals
Previous work funded by the National Reconnaissance
Office (NRO) and known as the Colony I4 and Colony5
II bus programs were reviewed to guide the CubeSat
Next Generation Bus Reference Architecture effort
(CNGB). The main high level goals of the program
were summarized as follows:

• Ensure modular, non-proprietary solutions to
support open competition: this goal is intended
to promote detailed open documentation on
mechanical, electrical and software interfaces
that can be endorsed by industry. It also drives
the need for open-source firmware and
software.

• Enable mission flexibility at lower cost: this
goal pushes the need for bus configuration
flexibility with limited restrictions in
component location, access to space, orbital
regime, etc.

• Provide extensibility to larger form factor:
while the intent of this effort is focused on a
3U form factor, this goal drives the
architecture to not be locked to interfaces
heavily dependent on the mechanical form
factor.

• Drive the state-of –the art and meet demands
of upcoming mission applications: this goal
pushes the need to see ahead and support
upcoming capabilities such as propulsion, fine
pointing, high data rates, etc. In particular, it
aims at adding enabling functionality covering
both the technical aspects as well as the
regulatory aspects (number and type of
inhibits, safety concerns, radiation mitigations,
etc.) of CubeSats.

Technical goals
Flowing from the programmatic goals as well as lessons
learned from past CubeSat programs, several technical
goals have been identified to be addressed by the
CNGB architecture. In particular, the following
requirements have been identified:

• Mechanical interface shall support slip-in of
components and payload to limit dis-assembly
during integration.

• Mechanical interface shall support mounting
of components and payload at a wide range of

locations. A 1cm granularity was deemed
appropriate.

• Side panels shall support maximum access to
space and limit multi-use (magneto-torquer,
sensors, etc.)

• Staking of fasteners should be limited and
alternate reversible locking should be used
whenever possible to allow flexibility during
integration.

• Data and power interfaces shall provide
multiple payload connections in order to
reduce the need for break-out interface sub-
systems

• Data interfaces shall allow sub-systems to
communicate directly with each other when
permissible. (Payload to ADCS, etc.)

• Power interface shall provide maximum
capability to payloads and sub-systems.

• Software interface shall provide self-
documentation of the sub-systems capabilities
for ease of integration.

• Architecture should support at least three
independent inhibits for advanced capability
(propulsion, high power transmitters, etc.)

• Architecture should support modes of
operation able to support various failure modes
(depleted battery at ejection, solar panel
deployment failure, etc.)

Each of these requirements have flowed down to the
design and incorporated in the CNGB architecture. The
following sections will describe the current CNGB
architecture.

MECHANICAL INTERFACE
Various trades were evaluated to establish the baseline
structure and mechanical interfaces. A tray concept
implementing the full 10cm x10cm was studied, but
was assessed to add un-necessary complexity on any
spacecraft deployable attachment as it requires the tray
enclosures to be custom designed to accommodate
hinges or requires predetermined heights. Additionally,
it was found that it limits integration of payload and
subsystems of non-standard shapes and may drive high
fabrication and assembly tolerances to meet all
dispenser requirements. Monolithic structures (4 walls)
were also studied, and, while providing the maximum
volume space, they were deemed to limit access to

Riot 2 28th Annual AIAA/USU
 Conference on Small Satellites

space and flexibility late in the integration process. The
CNGB is therefore defining a mechanical interface
based on a rail concept with a set of well-defined
mounting locations. The mechanical interface also
allows slip-in of sub-systems without the removal of the
rails by implementing removable end-feet crossbar and
side cross-bars.

Figure 1: CNGB structure showed with end-feet
crossbar removed on the right.

The structure was designed such that once assembled it
is fully symmetrical except for the fastener location.
This allows components to be rotated by 90 degrees
without affecting the fit. Standard mounting hardware
has been designed to fasten the various sub-systems to
the rail.

Figure 2: CNGB structure mounting hardware.
It should be noted that the crossbars can be placed
anywhere along the rail to allow maximum flexibility or
not used at all if a sub-system provides sufficient
structural stiffness. Preliminary finite element analysis
shows that adding a single simple sub-system in the
rails can increase the natural frequency of the structure
by 25%.

The overall CNGB mechanical interface has been
summarized into a stayclear definition as shown below
in Figure 3.

Figure 3: CNGB stayclear definition.
Additionally the mounting locations have been captured
in an interface definition drawing including basic rail
dimension. Mounting is done using #2(.086)-56 UNC x
0.3125 inch long x 82 degrees flathead cap screws, hex
socket drive, A286 (iron base superalloy) stainless
steel.

Figure 4: CNGB Interface Definition.

Riot 3 28th Annual AIAA/USU
 Conference on Small Satellites

Fasteners are locked using thread inserts, nominally
Emhart Helicoil #2(.086)-56 x 0.172 inch long, Nitronic
60 stainless steel. A trade-study was conducted
regarding the choice of metric versus SAE fastener.
SAE was down-selected as it provided more robust
options for equivalent sizes. As an example a metric
M2 fastener provides only 138kg of yield strength as
opposed to 159kg yield strength for the equivalent SAE
number 2 fastener.

ELECTRICAL INTERFACE
An extensive trade-study has been conducted to
evaluate various leading data interfaces. Assessment
factors included link rate, flow control, signal integrity,
number of wires, number of slaves, number of masters,
topology, heritage, etc. Various data interfaces
spanning from PC104 to Bluetooth as well as traditional
serial links were evaluated. The two leading contenders
were CAN and RS485. The CAN standard is compliant
with ISO 11898-1:2003 and ISO 11898-2:2003 and has
been down-selected as the CNGB data standard as it
offers the link layer definition by providing support for
error checking, bus arbitration (multi-slave/multi-
master support) and builds upon an extensive heritage
in the harsh automotive industry.

In addition to the underlying CAN interface protocol,
the data interface has been defined to require the
following to comply with the CNGB architecture:

• Interface shall be self-powered per the CAN
bus standard (5V) and require 50mW to
350mW or less. Power from the interface shall
not be used to power any other functionality in
the sub-system.

• Interface shall implement a standby mode
when not in use. Nominal standby current shall
be 200uA.

• Data Interface shall implement the following:

o Power enable control for each power
source from the power busses.

o Telemetry temperature as well as
voltage and current monitoring of the
module from the power busses

o In-system programming to any
programmable devices on the sub-
system.

o Up to three real-time interrupts logic
for hard, real-time requests. Interrupt
lines shall be active low open

collector to allow all modules to
receive or send an interrupt. Pulse per
second (PPS) interrupt type and
wake-up interrupt shall conform to
the pinout if used.

• Data Interface shall use a 9-pin dual row nano-
D connector (male connector on the module
and female on the cable harness). Unused
connectors shall have a protective cap
mounted using the mounting hardware.

Table 1: CNGB Data Interface

Pin Number Pin Name

1 Interface Power (5V)

2 CAN-

3 Interface Ground

4 Interrupt 1 (reserved for PPS if present)

5 Interrupt 2 (reserved as wake-up signal for
interface standby mode requests)

6 Interface Ground

7 CAN+

8 Interrupt 3

9 Interface Power (5V)

Nano-D connectors have been selected for this
architecture as various vendors currently provide
compatible connectors (Omnetics Connector Corp.,
Glenair Inc., Axon Cable SAS, etc.). In addition their
robustness has been proven in the space industry on
large and small programs alike.

Table 2: CNGB Power Interface

Pin Number Pin Name

1, 2, 3, 4, 5, 6, 7, 8 Ground

9, 10, 11, 12, 13, 14, 15 12V regulated

A 12V regulated power distribution has been selected to
accommodate high power distribution while still
allowing a wide selection of electronics components.
Nano-D connectors support gauge 30 wires, which are
rated for 1A and will not cause self-fusing in vacuum,
while providing a voltage drop of less than 1% at 12V
for cable length relevant to 3U CubeSats. Each CNGB
power interface is rated for 6A and uses a dual row 15-
pin nano-D connector (male connector on the module
and female on the cable harness).

The CNGB architecture defines two data busses and
two power busses. Each module implementing a
connection to a data bus or a power bus must provide
two connectors per corner on opposite sides of the
board to allow for daisy chaining. The locations of the
connectors are defined per a standard PCB drawing.

Riot 4 28th Annual AIAA/USU
 Conference on Small Satellites

Figure 5: CNGB Standard PCB definition.
While complying with the standard PCB outline is not
required, the location of the connectors in use must be
followed to allow using the dedicated routing volume.
It should be noted that, at the bare minimum, one data
interface (Two dual row 9-pin nano-D connectors) and
one power interface (Two dual-row 15-pin nano-D
connectors) must be implemented.

A trade was done to assess the benefit of implementing
a daisy chaining at the board level versus fabricating a
custom multi-drop cable harness. The daisy chaining
was selected as it allows a simple unique cable type,
which lowers the cost and increases reliability. In
addition, the presence of two connectors per interface
on each board provides easy monitoring access to the
overall interface during integration and test.

Figure 6: CNGB wire harness daisy chaining in the
dedicated routing volume example.

SOFTWARE INTERFACE
The software architecture is expected to support
hardware interchangeability, be compatible across a
broad range of computing platforms (from small micro-
controllers to multi-core large processors) and allow for
an open source model. In addition, it is expected that
computing resources in a CubeSat or small satellite will
be distributed across various physical locations. A good
match for addressing these constraints is the already
existing Space Plug-and-play Avionics (SPA)
architecture6 developed as the foundation of the U.S.
Department of Defense (DoD) Operationally
Responsive Space (ORS) initiative. The Space
Dynamics Laboratory (SDL) has developed a reference
implementation7 of the SPA Standards called the SPA
Services Manager (SSM). The SPA architecture allows
the creation of a distributed network and supports
component discovery and registration as well as health
and status reporting. The hardware interface is
abstracted using the Applique Sensor Interface Module
(ASIM), which can easily be implemented either in a
micro-controller or in a full-fledged processor. For
CNGB, ASIMs implement the CAN link layer and
provide all the services required by the SPA network.

Figure 7: CNGB software architecture.
SPA provides plug-and-play capability by making use
of the extensible Transducer Electronic Data Sheet
(xTEDS), which is an extension of the IEEE 1451.4.
Each device or module on the network must have an
xTEDS (usually residing in the ASIM for physical
devices) describing the capabilities and available
commands to other components in the system. As
shown in Figure 7, the CNGB architecture builds on the
SPA network and defines various SPA component
types:

• Functional Modules: these SPA modules
describe high level capabilities expected to be
found in a spacecraft. They are generally
software only modules relying on Logical
Modules for data and control. They are the
modules providing high level mission

Riot 5 28th Annual AIAA/USU
 Conference on Small Satellites

commands to a user. It is expected that these
modules do not know about the actual
hardware available and execute high level
control algorithms. Fully integrated capability
such as a fully stand-alone ADCS sub-system
can provide functional module capability.

• Logical Modules: these SPA modules describe
logical capabilities in the network. They
attempt to decouple the physical sensors,
actuators or systems and provide the logical
measurements or commands to Functional
Modules. These modules can be software only
modules or physical devices when well
partitioned.

• Hardware Devices: these SPA modules are
directly tied to a physical device. These
devices must implement an ASIM to connect
to the SPA network.

One should note that each SPA component on the
network can provide one or more functionality types
depending on the level of integration provided by the
hardware.

One should also note that to comply with the electrical
architecture, each module implementing a hardware
device must provide an xTEDS providing at least the
CNGB interface capability as follows.

 <Interface name="CNGBDataInterface">
 <Variable name="Time" units="Seconds" format="FLOAT64"/>
 <Variable name="Voltage" units="Volts" format="FLOAT32"/>
 <Variable name="Current" units="Amperes" format="FLOAT32"/>
 <Variable name="Temperature" units="Celsius" format="FLOAT32"/>
 <Variable name="PowerFault" format="UINT08">
 <Drange name="ThresholdBatteryState">
 <Option name="No Fault" value="0"/>
 <Option name="Generic Fault" value="1"/>
 <Option name="Redundancy Fault" value="2"/>
 <Option name="Regulation Fault" value="3"/>
 </Drange>
 </Variable>
 <Variable name="PowerState" kind="PowerState" format="UINT08">
 <Drange name="ThresholdBatteryState">
 <Option name="On" value="0"/>
 <Option name="Off" value="1"/>
 </Drange>
 </Variable>
 <Notification>
 <DataMsg msgArrival="EVENT" name="CNGBDataInterface_Status"/>
 <VariableRef name="Time"/>
 <VariableRef name="PowerFault"/>
 </Notification>
 <Command>
 <CommandMsg name="PowerOn" description="turn on device"/>
 </Command>
 <Command>
 <CommandMsg name="PowerOff" description="turn off device"/>
 </Command>
 <Request>
 <CommandMsg name="CNGBDataInterface_GetTelemetry"\>
 <DataReplyMsg name="CNGBDataInterface_Telemetry">
 <VariableRef name="Time"/>
 <VariableRef name="Voltage"/>
 <VariableRef name="Current"/>
 <VariableRef name="Temperature"/>
 <VariableRef name="PowerFault"/>
 <VariableRef name="PowerState"/>
 </DataReplyMsg>
 </Request>
 </Interface>

TESTING RESOURCES
Testing tools have been considered in the architecture
design to facilitate integration and test by developers
making use of the CNGB architecture. In particular, a
simple set of commercial, off-the-shelf tools can be
assembled to provide bench top testing of all CNGB
compliant modules. This setup allows direct data
connection from any laptop or desktop and consists of a
DB9 to nano-D adapter cable, a USB-to-CAN adapter
(USBmodul1 from Systec, PCAN-USB from PhyTools,
etc.) and the Monarch Studio GUI provided by SDL.
Note that for lower level direct CAN access, various
commercial software packages are available free of
charge and are compatible with most USB-to-CAN
adapters (PCAN-View is the most popular). Also, some
CAN controller integrated circuits such as the
AT89C51CC03 from Atmel can be re-programmed
directly through the CAN interface using this tool
chain, allowing convenient in-system reprograming
access to most modules.

The distributed capability of the SPA network also
allows testing in simulated environments where some
modules can reside physically outside the spacecraft.
This allows distributed development teams to test
interfaces with the rest of the system remotely via any
network (current SSM supports Ethernet). Neighbor
modules can also be simulated in software for test
purposes and added to the spacecraft SPA network
(through the umbilical network interface or on the test
processor). This feature allows development of higher
level C&DH capabilities without the need for actual
hardware.

Finally the use of an open source Linux based operating
system for full-fledged processors (used for C&DH and
any other processing intensive module) allows software
to be developed and tested on virtual machines with
endless possibilities to interconnect through a SPA
network. This allows software development to be
conducted without the need to physically reprogram the
non-volatile storage until the final version is ready.

SUMMARY
The CNGB architecture builds upon past CubeSat bus
programs and provides the flexibility and transparency
needed for community as well as industry endorsement.
This program aims at providing the framework
necessary to develop a base of interchangeable
commercial products that can be selected to tailor a
CubeSat or small satellite design for a specific
application with a reduced need for custom
development. This program also provides the
foundation for a software base that can grow and be
enriched as programs contribute to the available

Riot 6 28th Annual AIAA/USU
 Conference on Small Satellites

capabilities implemented. CubeSat development teams
can choose to comply with the software architecture,
electrical architecture, mechanical architecture or any
combinations based on their needs. The CNGB
architecture also provides flexible test tools for agile
development, integration and testing.

ACKNOWLEDGMENTS
This work was performed under the auspices of the
U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-
07NA27344. LLNL-CONF-655896.

REFERENCES
1. A. Marinan, A. Nicholas, K. Cahoy, "Ad Hoc

CubeSat Constellations: Secondary Launch
Coverage and Distribution," accepted for
publication, IEEE Aerospace Conference, 2013.

2. H. Heidt, J. Puig-Suari, A. Moore, S. Nakasuka,
R. Twiggs, “CubeSat: A new Generation of
Picosatellite for Education and Industry Low-
Cost Space Experi-mentation”, Proceedings of
the Thirteenth Annual AIAA/USU Small Satellite
Conference, Logan, UT, August 2000.

3. DECLAN BUTLER, "Many eyes on Earth:
Swarms of small satellites set to deliver close to
real-time imagery of swathes of the plan",
Nature, Vol 505, 9 January 2014

4. Stephen Arnold, James Armstrong, Clark Person,
Michael Tietz, "QbX - The CubeSat
Experiment", 26th Annual AIAA/USU
Conference on Small Satellites

5. Maj David “Dutch” Shultz, Capt Rebecca A.
Unruh, David C. Williamson, Col John Anttonen,
"Colony: A New Business Model for Research
and Development", 24th Annual AIAA/USU
conference on Small Satellites

6. American Institute of Aeronautics and
Astronautics (AIAA) Standard, “Space Plug-and-
Play Avionics (SPA) Satellite Data Model
(SDM),” Draft Version 1.1.1_20080715 DLL,
July 2008

7. Craig J. Kief and Brian K. Zufelt, "Trailblazer:
Proof of Concept CubeSat Mission for SPA-1",
AIAA Infotech, 29-31 March 2011, St. Louis,
Missouri, USA

Riot 7 28th Annual AIAA/USU
 Conference on Small Satellites

	Government-owned CubeSat Next Generation Bus Reference Architecture
	ABSTRACT
	INTRODUCTION
	REFERENCE ARCHITECURE GOALS
	Programatic goals
	Technical goals

	Mechanical INTERFACE
	ELECTRical INTERFACE
	SOFTWARE INTERFACE
	TESTING resources
	SUMMARY
	Acknowledgments
	References

