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Chip-scale Spacecraft

Chipsats have

I Low-cost manufacture and
launch

I Mass producible

I Synergistic missions
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Trajectory Control

Chip-scale propulsion has unique
challenges

I Low power

I Limited mass budget

Some solutions:

I Lorentz force augmentaiton

I Electrodynamic tethers

I Solar sailing
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Solar Sails
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Chipsats and solar sailing

Chipsats are natural solar sails

I Rigid body

I Surface area to mass ratio

I Manueverability
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Solar Radiation

Light can interact with a material in a number of ways, varying
with wavelength

I Specular reflection

I Diffuse reflection

I Apsorption

I Transmittance
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Specular reflection
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Diffuse reflection
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Solar Radiation Pressure (SRP)

~PSR =
W

c
r̂ (1)

W is the solar energy flux and c is the speed of light

~FSR = 2PA cosα ∗
[(

2ηsr cosα +
2

3
ηdr

)
n̂ + (ηab + ηdr )êS

]
(2)

where ηsr ,ηdr , and ηab are the specular reflection, diffuse reflection,
and absorption coefficients, and ηsr + ηdr + ηab = 1
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Active solar sailing

Solar sails can adjust SRP force

I Surface shape

I Light interactions

For chip-scale spacecraft

I Electrochromic coatings

I MEMs adjustible mirrors

12 / 27



Introduction to Sprites
Solar Sails

Design Space
Conclusion

Electrochromic Materials

Design Space
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Electrochromic Materials

Force with an adjustible mirror

~Fnet = 2PA cosα ∗
[(

2ηsr cosα +
2

3
ηdr

)
n̂ + (ηab + ηdr )êS

]
+ 2PAm cos2 αmn̂m (3)
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Electrochromic Materials

Available force given optical parameters
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Electrochromic Materials

Effect of increasing specular reflection at the cost of
absorption, force direction
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Electrochromic Materials

Effect of increasing specular reflection at the cost of
absorption, relative force magnitude
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Electrochromic Materials

Effect of increasing specular reflection at the cost of
diffuse reflection, direction
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Electrochromic Materials

Effect of increasing specular reflection at the cost of
diffuse reflection, magitude
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Electrochromic Materials

MEMs Actuated Mirrors

Currently available:

I Texas Instruments DLP chipset has a large array of mirrors
with ±15 degree discrete motion.

I Mirrorcle technologies has a two-axis mirror chip, with analog
motion. Their integrated mirror sizes currently range from .8
to 1.7 mm with ± 5 degree.
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Electrochromic Materials

Pinwheel configuration.

~τnet = Σ~ri × ~Fmi (4)

For a chip scale spacecraft, this
can allow roughly

I Torque 1.5 × 10−13 Nm

I Spin-up time to 3 rpm 9 hr

I Slew 1 deg/min
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Electrochromic Materials

Electrochromic Materials

I IKAROS liquid crystal panels switch
between specular and diffuse reflection

I Tungsten-oxide electrochromic windows
are switchable between .6-.05
transmittance in the visible band, with
applied voltages of 3-5 V

I Antimony-based films can switch between
around .7 reflectance and zero
transmittance to .1-.3 reflectance and .5
transmittance
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Electrochromic Materials

Chipsat with electrochromic panels at each corner

I Torque 1 × 10−12 Nm

I Slew 10 deg/min
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Conclusion
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Challenges

I Space environment

I Chipsat scale
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Rewards

I High agility solar sails

I Control of attitude-orbit coupling

I Chipsat swarm dynamics
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Questions?
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