Active Solar Sail Designs for Chip-Scale Spacecraft

Lorraine Weis, Mason Peck

Outline

Introduction to Sprites

Solar Sails

Design Space

Conclusion

Introduction to Sprites

Chip-scale Spacecraft

Chipsats have

- Low-cost manufacture and launch
- Mass producible
- Synergistic missions

Trajectory Control

Chip-scale propulsion has unique challenges

- Low power
- Limited mass budget

Some solutions:

- Lorentz force augmentaiton
- Electrodynamic tethers
- Solar sailing

Solar Sails

Chipsats and solar sailing

Chipsats are natural solar sails

- Rigid body
- Surface area to mass ratio
- Manueverability

Solar Radiation

Light can interact with a material in a number of ways, varying with wavelength $% \left({{{\boldsymbol{x}}_{i}}} \right)$

- Specular reflection
- Diffuse reflection
- Apsorption
- Transmittance

Specular reflection

Diffuse reflection

Solar Radiation Pressure (SRP)

$$\vec{P}_{SR} = \frac{W}{c}\hat{r} \tag{1}$$

W is the solar energy flux and c is the speed of light

$$\vec{F}_{SR} = 2PA\cos\alpha * \left[\left(2\eta_{sr}\cos\alpha + \frac{2}{3}\eta_{dr} \right) \hat{\boldsymbol{n}} + (\eta_{ab} + \eta_{dr}) \hat{\boldsymbol{e}}_{S} \right]$$
(2)

where η_{sr} , η_{dr} , and η_{ab} are the specular reflection, diffuse reflection, and absorption coefficients, and $\eta_{sr} + \eta_{dr} + \eta_{ab} = 1$

Active solar sailing

Solar sails can adjust SRP force

- Surface shape
- Light interactions
- For chip-scale spacecraft
 - Electrochromic coatings
 - MEMs adjustible mirrors

Electrochromic Materials

Design Space

Electrochromic Materials

Force with an adjustible mirror

$$\vec{F}_{net} = 2PA\cos\alpha * \left[\left(2\eta_{sr}\cos\alpha + \frac{2}{3}\eta_{dr} \right) \hat{\boldsymbol{n}} + (\eta_{ab} + \eta_{dr}) \hat{\boldsymbol{e}}_S \right] + 2PA_m\cos^2\alpha_m \hat{n}_m \quad (3)$$

Electrochromic Materials

Available force given optical parameters

Electrochromic Materials

Effect of increasing specular reflection at the cost of absorption, force direction

Electrochromic Materials

Effect of increasing specular reflection at the cost of absorption, relative force magnitude

Electrochromic Materials

Effect of increasing specular reflection at the cost of diffuse reflection, direction

Electrochromic Materials

Effect of increasing specular reflection at the cost of diffuse reflection, magitude

MEMs Actuated Mirrors

Currently available:

- Texas Instruments DLP chipset has a large array of mirrors with ±15 degree discrete motion.
- Mirrorcle technologies has a two-axis mirror chip, with analog motion. Their integrated mirror sizes currently range from .8 to 1.7 mm with ± 5 degree.

Electrochromic Materials

Pinwheel configuration.

$$\vec{\tau}_{net} = \Sigma \vec{r_i} \times \vec{F}_{mi}$$
 (4)

For a chip scale spacecraft, this can allow roughly

- \blacktriangleright Torque $~1.5\times10^{-13}~\rm Nm$
- Spin-up time to 3 rpm 9 hr
- ► Slew 1 deg/min

Electrochromic Materials

- IKAROS liquid crystal panels switch between specular and diffuse reflection
- Tungsten-oxide electrochromic windows are switchable between .6-.05 transmittance in the visible band, with applied voltages of 3-5 V
- Antimony-based films can switch between around .7 reflectance and zero transmittance to .1-.3 reflectance and .5 transmittance

Electrochromic Materials

Chipsat with electrochromic panels at each corner

- \blacktriangleright Torque $~1\times 10^{-12}~\textrm{Nm}$
- Slew 10 deg/min

Conclusion

- Space environment
- Chipsat scale

Rewards

- High agility solar sails
- Control of attitude-orbit coupling
- Chipsat swarm dynamics

Questions?

