

Success by 1000 Improvements Flight Qualification of the ST-16 Star Tracker

Tom Dzamba, John Enright (Ryerson University) Doug Sinclair (Sinclair Interplanetary) Ronny Votel (Skybox Imaging Inc.) Ilija Jovanovic, Geoffrey McVittie (Ryerson University)

> Small Satellite Conference Utah State University August 7, 2014

Background and Motivation

- SkySat-1 launched November 21, 2013 carrying two ST-16 star trackers.
- Sensor performance was significantly worse than expected.
- Skybox, SI, and RU embarked on a flight qualification campaign to restore sensor performance.
- This paper discusses:
 - Fault diagnosis procedures
 - Key improvements to sensor algorithms and our star catalog

Sinclair Interplanetary ST-16 Star Tracker

Accuracy	< 7 arcsecs CB < 70 arcsecs Roll		
Availability	> 99.9%		
Mass	≈ 90g		
Size	59 x 56 x 31.5 mm		
Power	< 0.5W avg		

Key Specifications of the ST-16

Problem Diagnosis

Problem Diagnosis

Baffles and Stray Light

- Many sources of non-stellar light.
- Difficult to test logic on the ground.
- Flexible processing framework:
 - Adaptive Threshold Logic
 - Region of Interest Calibration
 - Large, Bright, Object Rejection
- Telemetry still showed problems.
- Analysis led to three additional improvements:
 - Star Cluster Rejection
 - Tight Matching Tolerance
 - Strict Solution Acceptance Criteria

Star cluster formed by vane reflection

Onorbit Recalibration

- ST-16 utilizes 11 camera model parameters
 - Initially determined in lab
 - Refined on orbit
- Recal. improved performance
 - still not to expected values.
- Analysis of telemetry led to two problems with our approach:

- Some parameters were weakly-separable leading to steep minima
- Chromatic aberration caused a star-color-based dependence on focal length.

Need for Better Rate Estimates

- The ST-16 detector uses an electronic rolling shutter (ERS)
- Time offset between rows
- Compensation requires ω
- ω found from stars pos. in subsequent images
- Telemetry showed significant errors in the rate estimates.
- Mitigated by additional logic enabling longer sampling intervals.

	δt	Rate Err (× 10^{-3} deg)			
		σ_{χ}	σ_y	σ_{z}	
Single Reading (night sky)	0.1	3.89	4.03	39.6	
Single Reading (on-orbit)	0.1	17	13	175	
Reading-to- Reading (calculated)	0.5	3.40	2.60	35.0	
Sparse Dataset (calculated)	40	0.042	0.032	0.438	
Sparse Dataset (on-orbit)	40	0.211	0.168	0.614	

Rate Estimator Performance

Catalog Repopulation

- Problems with our catalog:
 - Some stars we detected were not part of the ST-16 catalog.
 - Patterns formed by some stars differed from their definitions.
- Selection based on visual mag.
- Misrepresents expected response.
- New catalog:
 - Brightness determined by weighting color channels.
 - Selection based on expected response, and density of scene.

ST-16 Quantum Efficiency

Handling Difficult Stars

- Particular stars were still not being matched due to errors between their expected and actual positions.
 - Proper Motion
 - Binary Stars
- Binary star systems were handled in three ways:
 - Apparent Binaries: Excluded from catalog.
 - Equally Bright Binaries: Binary system treated as single star, with position approximated as the magnitude weighted average.
 - Differently Bright Binaries: Binary system treated as single stars with position approximated as position of brightest star.

Conclusions

- The flight qualification campaign made several improvements to sensor processing.
- These were successful in restoring expected performance:
 - Availability: >98%, Accuracy: 10.0, 23.0, and 74.0 arcsecs.
- Would have benefited from better allocation of qualification resources between sim, lab, and night-sky tests.
- Future improvements: smart centroid windowing (at rate), online recalibration, better rate estimation.
- A follow-on to the ST-16, the ST-16RT is currently being developed using a custom lens design with better chromatic performance.

Thank you for your time.

Questions?

Space Avionics and Instrumentation Laboratory

28th Annual AIAA/USU Conference on Small Satellites