

Optical Time Transfer for Future Disaggregated Small Satellite Navigation Systems

John W. Conklin*, Nathan Barnwell, Leopoldo Caro, Maria Carrascilla, Olivia Formoso, Seth Nydam, Paul Serra, Norman Fitz-Coy

UF FLORIDA

*jwconklin@ufl.edu

Background and Motivation

- Precision time transfer to space important for:
 - Satellite nav systems, e.g. GPS ($\Delta x = c \Delta t$)
 - International time standards
 - Test of general relativity
 - Satellite encryption/authentication
- Technique: exchange of light pulses
 - Optical frequencies less affected by ionosphere relative to RF (~ 1/f²)
 - European T2L2 (2008) was hosted payload
- CHOMPTT Objectives:
 - <200 psec time transfer error
 - <20 nsec clock drift after 1 orbit
 - Real time clock update

Gravity Probe A (1976)

CHOMPTT: CubeSat Handling Of Multisystem Precision Time Transfer (NS-8)

Application to Navigation

Disaggregated Navigation System Using

John W. Conklin, 2014 Small Satellite Conference, Logan, UT

- Improved time transfer accuracy
- Robust against signal interference/jamming
- Disaggregated Nav System:
 - Command station performs time transfer to timing satellite
 - 2. Navigation satellites synced to timing satellite using RF
 - 3. End-users determine location and time from navigation satellites

Optical Precision Time-transfer (OPTI) Overview

John W. Conklin, 2014 Small Satellite Conference, Logan, UT

Atomic Clocks (Microsemi)

Characteristic	Chip Scale Atomic Clock (CSAC)	Miniature Atomic Clock (MAC)
Standard	Cesium	Rubidium
Allan Deviation (time error)	3.3x10 ⁻¹² @ 6000 sec (20 nsec)	9.5x10 ⁻¹³ @ 6000 sec (6 nsec)
Power	0.12 W	5 W
Mass	35 g	85 g
Size (LxWxH)	40.64 x 35.31 x 11.42 mm	51 x 51 x 18 mm

10 psec Event Timer

- Time-to-digital converter measures fine time
 - Measurement based on propagation delay •
 - Autonomous temperature compensation using DLL •
 - Low power (132 mW)
 - 10 ps single shot accuracy (12 ps measured)
- MSP430 microcontroller course time

OPTI Laboratory Demonstration

Measured Performance

Clock difference (2 CSACs) measured using OPTI breadboard

Timing Error Budget

John W. Conklin, 2014 Small Satellite Conference, Logan, UT

OPTI Flight Instrument

The CHOMPTT 3U CubeSat

UHF turnstile, GPS antennas CDH (MSP430) GPS receiver, UHF/VHF radio Batteries Power distribution system ADACS interface electronics

ADACS

Interface electronics High voltage, TEC controllers Event timers, clock counters CSAC MAC

OPTI

Retroreflector and light collectors

Rendered View of the CHOMPTT Satellite

Concept of Operations

John W. Conklin, 2014 Small Satellite Conference, Logan, UT

Laser Communication

- 2-Pulse Position Modulation (2 slots per pulse)
- Synchronization string provides phase, rate, & masks SLR delays
- Fine time required only for first 'timing' pulse

Status and Future

- EM of OPTI fabricated, currently under test
- High altitude balloon launch, Sept. 2014 (Sage Cheshire)
- OPTI integrated into CHOMPTT satellite bus, 2015
- Qualification testing at NASA KSC
- ELaNA launch
 - 2016-2017
- SLR collaborators
 - NGSLR managed by NASA GSFC, MD
 - Starfire optical range at Kirtland AFB, NM

16/16

Backup slides ...

Optics & Light Detection

- PLX retroreflector
 - 25 mm diam, 50° FOV
 - Space capable
 - Avalanche photodetectors (2)
 - Si (532 nm, 1064 nm): 500 ps rise
 - InGaAs (1064 nm): 140 ps rise
- Light collection
 - Light collected by optical fiber terminating on nadir face
 - 12° max incidence
 - GRIN lens focuses light onto APD

APD

APD electronics

John W. Conklin, 2014 Small Satellite Conference, Logan, UT

SLR Emulator

Space Segment

Timing Error Budget (MAC)

John W. Conklin, 2014 Small Satellite Conference, Logan, UT

Timewalk Correction 0.00E+00

- •
- Solution: Time both rising and falling edges of pulse

0.5 V to 2.5 V

3

22/16