Utah State University

Digital Commons@USU

All Graduate Theses and Dissertations Graduate Studies

5-1971

Estimating Agricultural Production Functions from Experimental
Data for Different Crops in Relation to Irrigation, Fertilization and
Soil Management in Northern Utah

Subramaniuam Swami Nathan

Follow this and additional works at: https://digitalcommons.usu.edu/etd

6‘ Part of the Agricultural Economics Commons

Recommended Citation

Nathan, Subramaniuam Swami, "Estimating Agricultural Production Functions from Experimental Data for
Different Crops in Relation to Irrigation, Fertilization and Soil Management in Northern Utah" (1971). All
Graduate Theses and Dissertations. 3019.

https://digitalcommons.usu.edu/etd/3019

This Thesis is brought to you for free and open access by
the Graduate Studies at DigitalCommons@USU. It has

been accepted for inclusion in All Graduate Theses and /[x\

Dissertations by an authorized administrator of /\

DigitalCommons@USU. For more information, please (l .()A]_ UtahStateUniversity
contact digitalcommons@usu.edu. /'g;m MERRILL-CAZIER LIBRARY


https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F3019&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1225?utm_source=digitalcommons.usu.edu%2Fetd%2F3019&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/3019?utm_source=digitalcommons.usu.edu%2Fetd%2F3019&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

ESTIMATING AGRICULTURAL PRODUCTION FUNCTIONS FROM
EXPERIMENTAL DATA FOR DIFFERENT CROPS IN RELATION
TO IRRIGATION, FERTILIZATION AND SOIL MANAGEMENT
IN NORTHERN UTAH
by

Subramaniam Swami Nathan

A thesis submitted in partial fulfillment
of the requirements for the degree

of
MASTER OF SCIENCE
in

Agricultural Economics

Approved:

UTAH STATE UNIVERSITY
Logan, Utah

1971



ACKNOWLEDGEMENT

It is with a great deal of pleasure and personal satisfaction that I take
this opportunity to express sincere thanks and appreciation to all those who
have advised and helped me in various ways in the completion of this thesis as
well as my Master of Science degree.

First of all, I wish to express my sincere appreciation to my major
professor, Dr. Herbert H. Fullerton, and committee member, Dr. Jay C.
Andersen, who first suggested the idea for my study and has repeatedly con-
tributed by giving more comprehensive suggestions and guidance as my study
progressed. [ would also like to thank the other members of my graduate com-
mittee, Dr. Roice H. Anderson, and Dr. Alvin R. Southard, who strongly
advised me to join the School of Graduate Studies and who have contributed
valuable aid to me in gaining my Master of Science degree.

Sincere appreciation is extended to Dr. Jay L. Haddock and Mr. John
A. Tribble who so willingly provided much assistance and guidance in this
study.

A special thanks should also go to Mr. Anthony C. Couloucoundis of
"C'" Ventures Inc., New York, and Miss Manon Kandiah of Cargo Boat Dispatch
Company Limited, Colombo, Ceylon, who sponsored and helped me to come to
the United States to continue with my higher studies. Words can not express my
gratitude to them for their immense help and encouragement.

___Subramaniam Swami Nathan



TABLE OF CONTENTS

ACKNOWLEDGMENTS & ¢ s smwy emeos smums s wwswimay nma s

LIST OF TABLES! & sz a@iis b @F s s s 6% 0 e 5686 = 0 6 54 #5850

LIST OE-BIGURES ¢ o o oo s o or o o a0 600 6030 6 o 58 o0 8 18 fog 80 8 701 o a1 & 38 io0 90 & 368 o

ABSTRACT o 550 w0 4 o 107 5 0w 01 6 08 k00 & % (0% 60005 8 8 @55 60 5 ¢

Discrepancies in Estimating and Interpreting

Controlled Field Experimental Results .. ... .........
Estimation of Different Types of Production Functions . . ...

METHODS AND PROCEDURES o: s 53 so v sows ens awoosawmass
Experimental Procedures . . . o .« s s oo oo v wwsionwewne
Statistical ABAIVEIS o v is s s s ni A ees soasa
Theoretical and Analytical Framework ...............

Model estimationis sis cews s sa a8ms s B e ia®d b5

Alternate Forms and Derivation of the Production Function. . . .

PRESENTATION OF DATA AND POSTULATED FUNCTIONAL

RELATIONSHIE' | 8 65 8.2 5 5 200 b sk B ol 5000 av o) o sshits 7 pufor B0 W03 Bone h im

Model Building Progran s 5 s 4w w v a6 6 @e 65 vwbessh @5
Development of Production Surfaces .................
Multiple Regression AnalySes . . ... .....eewuuneennn
Derivation of Three Types of Production Functions ..... ..

iii

sw W

v Vil

w5 A
o w A1

va 11

11

we AT



TABLE OF CONTENTS (Continued)

Page

Cobb=DoUgIAB w5 & 555 witsie, s @ % b 5 % & @ & w85 24

SOUATE BOOL w1 5% 526 a0 & 5 A0 6 508 58 4 30 0 8 o 00 8 78 A5 8 24

Polynomial e w6 6w s iy ¢ w w6858 %y e e 24

Bpecitication of the Model, « sz ssas eass swsis ss s s 1o w5 25
DISCUSSION OF THE RESULTS AND ECONOMIC IMPLICATION ...... 33
Economic Optima. ;sws swsss@meme o s ais 5@ @ s o €m s @065 33
SUMMARY AND CONCLUSIONS & . o voe s d 660 0080 o p 5 65 8 oo s o o o 8 42
CONCIUBIONS! . u: r a1 o5 0250 50 o0 ek 7 0 5t 101 4.8 900 8% 0031 50 70 5 200 0 ot ) 44
Limitations and Recommendations .. ............000... 45
LITERATURE CITED ¢ o v yusi s nswmmswns swws dsmsewss o5sss 48
APPENDICES 00w @ o5 o0 5 09060 508 G080 €58 886§ 095 0 6 5 0@ 5 3 535 5o 49
APDEAMIRIA, 5055 5 5 58 50k 3 5 40 ) i Bl R0 e s ) 8 e e - AT ol i 50
APPEITIR B o wx s w500 06 9 908 5 508 6 W8 &7 )RR BEE R Y 6 e 51
Appendix € . . i v v ittt s s s e e s e e s 52
APBEERED i a2 b 0K U mh e S T A B 53

APDENAIR B 5 5 w015 0008 1 555 9 500 6 s (5 51 88 58] BE 5 % LGS AT 6 54



Table

LIST OF TABLES

The average input and ouput prices for the year 1970 ... ..

Cobb-Douglas production surfaces estimated for potatoes,
sugar beets, peas, first and second year alfalfa ........

Square root production surface equation estimated for
first and second year alfalfa, potatoes, sugar beet
ANATPORB: e paicer o1 aits (v 7o1 w10 070 to8 141 43105 5m0 w1 o 5 0 o 1 505 51 15 1 45 ) o o (o

Polynomial production surface equation estimated for first
and second year alfalfa, potatoes, sugar beets and peas . . .

Estimated optimum rates of fertilizer use and water
application for first and second year alfalfa, potatoes,
sugar beets and peas ........

Estimated values of marginal productivity of each variable
input for different CroPS . . + .« w e o« soa s aimme omes s

Page



Figure

vi

LIST OF FIGURES

Page
Classical production function . . . . o v v v o v S AERREE R G 12
Main and two-way interaction effects of combination of
variables on sugar beet yields, 1954 ... ... ... 21
Illustration of unbounded, bounded solutions from marginal
value product and pricelines . . . ... .. ..o vv. ... wan B9
Main and two-way interaction effects of combinations of
variables on first year alfalfa yields, 1954 ..... 5 8 (52 5 v 247 Epfer AOL0
Main and two-way interaction effects of combinations of
variables on second year alfalfa yields, 1954 ........ v & 2s 1D
Main and two-way interaction effects of combinations of
variables on potato yields, 1954 ........cc00veeeeu... 52

Main and two-way interaction effects of combinations of
variables on pea yields, 1954 .. .........0.0u.. S e 53



vii

ABSTRACT
Estimating Agricultural Production Functions from Experimental Data
for Different Crops in Relation to Irrigation, Fertilization and
Soil Management in Northern Utah
by
Subramaniam Swami Nathan, Master of Science
Utah State University, 1971

Major Professor: Dr. Herbert H. Fullerton
Department: Agricultural Economics

Estimates of agricultural production functions from experimental data
for four different crops in relation to six variable inputs are calculated by this
study. There are four basic sections in the study. The first section covers
the review of production function concepts and the procedures and problems
that specifically pertain to this study. Also the importance of joint economic-
agronomic research efforts, methodologies and applications of agricultural
production functions are cited.

The second section includes the presentation data and postulated
functional relationships in estimating production functions. Model building
programs are used in developing three dimensional figures, which aid in the
selection of the appropriate model. A multiple regression model using
linear, non-linear and interaction terms is employed in deriving three pro-

duction function for each crop. The problem of selecting a "best' model



viii
from the above three models is solved on the basis of economic theory,
observed biologic physical production process, projected three dimensional
production surfaces and statistical analyses. The polynomial form was
selected as the "best' model for each crop.

The third section of this study analyzes the results and the economic
implications. Optimal rates of input use are determined. Qualification of
these results are required because of the non significant statistical relation-
ships including the F values of the regression coefficients and relatively low
coefficient of determination (RZ), and, also, because some optimal inputs
values did not seem reasonable relative to observed rates. Further statistical
analyses are carried out to determine the confidence interval for each input's
marginal productivity and this results in unbounded solutions. As an alterna-
tive, the above confidence interval problem is rephrased as a system of equal-
ities and solved simultaneously to obtain optimal input levels at the marginal
productivities maximum and minimum values and these estimates are shown
not to be confidence intervals.

Finally, in the fourth section of this study, summary and conclusions
are given. Also, limitation and recommendations to the study are discussed.

(63 pages)



INTRODUCTION

The estimation of an agricultural production function provides a basic
tool for economic analysis of the relationship between inputs and outputs.
Knowledge of the production function is essential for making sound farm manage-
ment decisions. Basically, the production function can be used to determine to
what extent output of a product can be increased by altering resource use levels
and combinations. In development applications, the magnitude of the production
coefficients serves as the basis for determining comparative advantage and
specifying an optimal pattern for regional or international trade. If the goal is
to maximize output from the available resource supplies, a production function
derived for a region, firm or crop, etc., with an associated estimate of the
marginal product schedule, can provide a basis or guide for attaining that goal
(assuming price competition in the resource market).

Recently, agronomic field and laboratory studies, in correlation with
output performance studies, were conducted by the Utah State Experiment Station
and the United States Department of Agriculture. These studies provide estimates
of output responses for alfalfa, canning peas, potatoes, and sugar beets using
varying levels and combinations of water and fertilizers. Estimates of variation
in yield response associated with the sequence of crop rotation and the mode of
water applications were also obtained.

Fertilizer and water applications play an important part in crop pro-

duction. Since crop production economics is of great importance today,



establishing more exact estimates of crop response to fertilizer and water
applications on a given soil should be a useful research area. In addition,
there is a need to know the rate at which inputs substitute for one another
in the production of a given yield, so as to have a basis for determining
least cost input combinations.

It should be possible to estimate production functions for the above-
mentioned crops. Such production functions should provide information which

will contribute to the optimization decision of input use.



OBJECTIVES OF THE STUDY

The main objectives of this study are to:

(a) Estimate the basic production functions from the experimental
data of the four crops (alfalfa, canning peas, potatoes, and sugar beets).

(b) Apply output and input prices to translate physical outputs and
inputs into monetary units.

(c) Calculate the value of the marginal product for each input.

(d) Determine the optimal levels and allocation of inputs.



REVIEW OF THE LITERATURE

This section, of the review of literature, will be devoted to the summa-
rizing certain concepts of the agricultural production functions, empirical
methods, and research which relates specifically to this type of study. The
subject area covered in this section includes discrepancies in estimating and
interpreting controlled experimental results in contrast to farm production,
along with the technical considerations of estimating the various types of pro-
duction functions and using regression analysis in selecting a production func-

tion.

Discrepancies in Estimating and Interpreting

Controlled Field Experimental Results

Davidson, Martin and Mauldin (1) suggest that field experiments are
the scientists' chief means of assessing animal and plant productivity potential.
The evidence assembled in this article indicates that farm yields are less than
experimental yields for important classes of farms and experiments. These
variations are the results of differences in the circumstances under which
experiments are conducted and those under which the farms are normally
operated. Scientists are able to perform the cultural operations at a precise

time and take maximum advantage of the environmental conditions because

the experiments are conducted on a small area, while the farmer works with



a larger acreage and smaller amounts of labor and capital per unit area. This
prevents him from completing his cultural operations at a precise time, as the
scientist does, and, thus, there is a tendency to perform operations at marginally
less favorable times, accounting for the reduced yields on farms. Logically the
extent of the reduction increases with the rise in crop acreage. Also, experi-
ments are designed to highlight differences between varieties and treatments.
Because experimenters are interested in isolating particular effects, they
commonly attempt to supply all other resources in luxurious abundance com-
pared to the farm's normal supply of these resources. Therefore, farm yields
can be expected to be less than experimental yields for these reasons, and

these reasons should be borne in mind by those who plan experiments and

interpret experimental results.

Estimation of Different Types of Production Functions

Heady and Dillon (4) illustrate several types of production functions:
Cobb-Douglas, quadratic, and square root. They consider certain concepts
and methods relating to the production and use of production functions in agri-
culture and methods of data collection. They explain the illustration of pro-
duction surfaces to the above-mentioned functions, as well as others, and the
problems choosing of alternative models. The authors suggest that in formu-
lating an economic model of the productive process, the logic of economic,
biologic, or physical processes of production have to be considered. Also,

they discuss the general type of recommendations from fitted production



functions including the economic analyses of marginal productivity theory,
optimum combination of resource input required for a specified output, and
the maximization of net revenues.

In the book Resources, Productivity Return to Scale and Scale and

Farm Size, Heady, Johnson and Hardin (5) discuss the technical problems
involved in estimating production functions. This discussion is useful in

the present study, as they explain that a conventional procedure is to predict
the total output or output surface with the use of regression analysis. From
the regression equation, the marginal product of individual resources can be
estimated from production function the first derivative of that particular
resource. Also, the marginal production relationships can be used to deter-
mine an optimum resource input allocation through a system of simultaneous
equations. This optimum allocation is determined by equating the resource
to product price ratio and the respective marginal product equations, equating
the value of the marginal product to the price of the resource.

Fox (6) utilized experimental data in an agricultural production function
to demonstrate the uses of multiple regression analysis. He analyzes several
different functional forms (linear, quadratic, and square root) and indicates
that a particular functional form might appear to give a better fit to the data.
Also, he notes that increases and decreases in total variance from one func-
tional form to another can be expected from the same basic population of both
the dependent and independent variables. Furthermore, he points out the

interesting feature of a controlled experimental design, that it is possible and



appropriate that the inter-correlation problem can be "designed-out'" and inter-
correlations reduced to zero.

Stritzel (9) develops an analysis similar to the present study. However,
in contrast to the data used in this study, he uses data derived from a controlled
experiment run over a four-year period. A unique feature of Stritzel's study is
the close cooperation between agronomist and economist in giving treatment to
both agronomic and economic questions. A variety of rates of variable inputs
are included in the experiment to provide an adequate basis for economic analysis.
This facilitates statistical analysis by eliminating such problems as intercorrela-
tion. A procedure for determining the best fitting equations to characterize
yield data was investigated. The procedure involved the selection of significant
variables by analysis of variance, subdividing the sum of squares of the signifi-
cant treatment variables into their linear, quadratic, square root, etc., com-
ponents on the basis of agronomic logic.

Stritzel (9) concludes that no one algebraic form of equation will ade-
quately characterize the response function for any one crop under all soil and
climatic conditions. However, he also concludes that it is possible to establish
a generalized function under a given climatic condition and on a given soil for
a specific crop.

Pesek and Heady (8) discuss the procedures used in determining the
highest net return per dollar invested in fertilizer application in the field. The
fertilizer application rate, thus determined, represents both the economic

minimum rate and the lower limit that can be utilized in making agronomic



fertilizer recommendations. Calling the yield increase, Yl’ this output can

be expressed in the quadratic form,

Ylf- SX +tx2,

where x is the rate of fertilization, and s and t are constants., The cost of the

applied fertilizer can be expressed as
Y =m+rx,

where m is the fixed application unit area and r is the price ratio of the unit

of fertilizer to a unit of yield increase.



METHODS AND PROCEDURES

Experimental Procedures

The data used in the present study was derived from an experiment,
initiated in the spring of 1949 and continued over a period of eight years. It
was conducted on a calcareous Millville silt loam near Logan, Utah. Alfalfa,
canning peas, potatoes, and sugar beets were the crops used in rotation during
this period.

Soil tests were made with the following results: Millville silt loam
used in the study has a 2 percent surface slope in each of two directions (west
and south); the loam is derived from the dolomitic limestone; the profile is
uniform in texture to a depth of more than 20 feet. The pH varies from 7.9
to 8.2 and contains from 45 to 75 percent CaCO3 equivalent, increasing with
profile depth; the average moisture percentage at one-third atmosphere tension
is 21.0 and at 15 atmospheres is 8.7; the electrical conductivity (EC 103 @ 25 C)
of saturated extract varies from 0.35 to 0.52 millimlos per cm. ; and the cation
exchange capacity is 13.3, with calcium constituting 12. 4, sodium 0.4, and
potassium 0.5 milliequivalents per 100 grams of soil.

The irrigation water used in the experiment contains 1, 10, 85, and
240 pounds of potassium (K), sodium (Na), magnesium (Mg), and calcium (Ca)
respectively, per 24 acre inches of water. Land preparation, seeding, harvest-

ing, and experimental field plot design are described in detail by Haddock,
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Taylor, and Milligan (2) in their manuscript Irrigation, Fertilization and Soil

Management of Crops in Rotation. All peas yield data was adjusted to tender-

ometer reading of 105.0. For alfalfa, two cuttings of the first year and three
of the second year were obtained as yield data.

For the present study, the year 1954 was chosen out of the eight-year
experiment because the experiment was designed solely by agronomists, with
the object of agronomic evaluation studies. Therefore, only two rates of
fertilizer application were utilized. Also, the amount of residual nitrogen
and phosphorous in the soil was determined only for the years 1953 and 1956
after the harvesting of crops. Because two rates of fertilizer application and
the residual fertilizer data is not available throughout the experiment, it is
not possible to establish a consistent production function for all eight years
of the experiment, except for 1954. Therefore, for that year (1954) the
amount of the residual fertilizer in the soil, the amount of water applied, and

the methods of irrigation.

Statistical Analysis

Model building, analysis of variance, and multiple regression equations
were computed and selected using the Utah State University computer write-up
programs, Model Building (MODEL), Multivariate Data Collection Revised
(MDCR) and Stepwise Multiple Regression Revised (SMRR) for crop yields.

The regressions, together with the standard errors, inverse matrix, mean
squares, and coefficient of variation (Rz) were computed at the Department

of Applied Statistics and Computer Science of Utah State University.
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Theoretical and Analytical Framework

Model estimation

The term production function is applied to the physical relation between
resource inputs and a firm's product output. Product output is determined
partly by the quantities of resource inputs and partly by the farmer's production

techniques. This can be expressed in mathematical terminology as

Y=f@, b, c)

where output of goods is represented by Y and resource input is represented
by a, b, and c. The equation can be expanded readily to include as many

different resources as are used in the production of a given commodity.

Alternate Forms and Derivation of the Production Function

Consider the classical production function in Figure 1. It is assumed
that input per unit time can begin at 0 and be added in increments throughout
the range of the function. Marginal product is shown to be increasing, constant
and decreasing, depending upon the quantity of factor used (relative to the
magnitude of other factor inputs). If a farmer is operating in the rational
stage of production, he will not apply less input than that represented by
point d (stage 1). To do so would sacrifice a greater average product per
unit of input. Neither will the farmer use more factor inputs than repre-
sented by point e, since each unit of input used beyond this stage would

effect a decrease in total product (stage 2). Thus the rational farmer seeks
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Figure 1. Classical production function.

to operate in relatively small area on the production function between d' and e'.
This obviously reduces the range over which the predicting function is relevant
and diminishes the variance in the quantities of inputs applied. It is difficult
to establish a causal relationship between inputs and outputs within this
shorter range of the inputs. This small range becomes relevant when varia-
tion increases the standard error of regression coefficient and decreases the
reliability of the marginal product estimates (7).

Heady (3) discusses the analytical framework and methods for selecting
a production function. He suggests that the knowledge of biological and economic

factors aids in the selection, and also, that the algebraic form of the function,
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as well as the magnitude of its coefficient, will vary due to environmental con-
ditions, type of crop, variable resources, magnitude of inputs, etc. Hence,
to select the algebraic form of the function should be consistent with the above-
mentioned factors. By way of illustration, Heady discusses a few general types
of production functions. First, the Cobb-Douglas function, the most popular
algebraic form used in farm-firm production function analysis, may be gener-
alized as Y = axb, where Y is output, a is a constant, x is a variable input and
b defines the transformation rate when the magnitude of input x changes. The
production function merely states symbolically that the productive etfort output
depends upon the input used. In this case, only one input is used and output is
a function of the quantity of x applied.

The marginal product of x(MP) can be estimated as the first derivative
with respect to x of the production function.

b
MF‘=(—3‘Z = baxb_1 or b
dx x

The elasticity of production (EP) can be found directly from these

marginal values as follows:

x_ bax’ | x
= L
y = ax

AY
Ep =§ - f}-{z - = b

he
Hence, production elasticity may be estimated directly from estimated Cobb-
Douglas function as the b values of the equation. From the above computation,
it is also evident that the Cobb-Douglas function assumes a constant production

elasticity, or that successive equal input increments add the same percentage
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to output. The function allows either constant, increasing, or decreasing
marginal productivity depending upon the magnitude of b. If b equals one,
constant return to scale exists; if b is less than one, decreasing return to
scale exists; and if b is greater than one, increasing returns to scale are
indicated. Since b cannot at the same time be less than and greater than one,
both increasing and decreasing marginal product cannot hold for the same
function. The rate of decrease in the marginal product declines, but never
becomes zero. Given these properties, the Cobb-Douglas function cannot be
used satisfactorily for data where there are ranges of both increasing and
decreasing marginal productivity. Neither can it yield satisfactory estimates
for data which might exhibit both positive and negative marginal products
(stage 3 of production). Since a maximum product is never defined, the
Cobb-Douglas function may over-estimate the quantity of inputs which will
equate marginal revenue and marginal cost.

Besides the Cobb-Douglas, Heady (3) also indicates some other
possible combination of linear and non-linear terms, as well as cross product

terms in the equations as follows:

2 2
1) Y-a+b1x1 +b2x2—b3x1 —b4x2

.5+b X.5

(2) Y:a+b1x1+b2x2+b3x1 %9

2 2
+b2x2 ; bsx1 + b4x2 + b5x 574

(.5)Y:a+blx 155

1
In these estimates where Y is the total output, a is a constant, b's are the

coefficients, and x1 and XZ are the variable inputs.
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The polynomial equation (1) above with linear and squared terms has
a greater flexibility than the Cobb-Douglas function because it assumes no con-
stant elasticities of response, allowing the elasticity to change with greater
inputs. The function can be applied to all observations and allows diminishing
product, following a negative marginal product or declining total yield.

Heady continues to explain that another alternative is the equation (2)
with linear and square root terms where one expects extremely large marginal
products at lower input rates, followed by a long range of small and fairly con-
stant marginal products. This square-root function may provide a useful form
of the production relationship, but for marginal products of medium magnitude
for low rates of input, followed by an early maximum in total product, it may
be advisable to select the squared terms as in equation (1).

In addition to the terms used in Heady's equations (1) and (2), Fox (6)
discusses the uses of an additional cross product term to these respective
equations. In equations (1) and (2), the properties of second degree parabola
in both the variables are to show that the effects of inputs X, and x2 are
strictly additive. But to test the hypothesis that a unit of input X, would be
more effective in raising the yield if some input of X, were also used, rather
than none, then one may have to include an additional term which contained
both X and X, in a joint or cross product form such as XX, Or x15x2 2 to

the respective equations (1) and (2). Use of an additional cross product term

is shown in equation (3).
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Heady concludes by saying the problem is choosing which of the above
alternative functions is "more appropriate' than others for the desired types
of economic analysis. Direct statistical tests (analysis of variance and F tests)
are available for determining whether a significant reduction in variance is
obtained by including one more or less terms in an equation, such as the cross
product or square root functions. However, direct tests are not available for
choosing between widely used functions like Cobb-Douglas, cross product or
square root functions, etc. Therefore, it is advisable that one use his logic
and knowledge of the subject matter, as well as such statistical criteria as
the greatest coefficient of determination or the smallest deviation from the
regression in making this subjective decision. Furthermore, plotting the
derived quantities against the sample observations may aid the choice and

selection.
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PRESENTATION OF DATA AND POSTULATED

FUNCTIONAL RELATIONSHIP

The following methods were used to identify functional relationships
between the inputs or independent variables and output yields or dependent
variables for each crop. Independent variables used in this study were the
amount of nitrogen residual (NR) and phosphorous residual (PR) in the soil,
the amount of fertilizer nitrogen (NA) and fertilizer phosphorous (PA) added
to the soil, and the amount of irrigation water applied (W). Methods of irrigation
(M) was used as an independent variable for sugar beets, peas, and potatoes.
In the data, set M = 1 for sprinkler and M = 0 for furrow irrigation. Further-
more, no fertilizers of nitrogen and phosphorous were applied to first and
second year alfalfa. In equation form, the input-output relationship is depicted
by equation (4) for sugar beet, pea and potatoe crops, and equation (5) for
first and second year alfalfa respectively.

(4) Y =f(NR, NA, PR, PA, M. W)
() Y =f(NR, PR, W)

6) df(NR, PR ----- ) _ Cost of the respective resource input

dNR Price of output of the respective crop

Y, the output of yield for sugar beets, peas and potatoes, was measured in tons
per acre, pounds per acre and bushels per acre respectively, while the output
of first and second year alfalfa was measured in tons per acre. The inputs in

equation (4) and (5), the residual and applied fertilizers, were measured in
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pounds per acre and the irrigation water applied was measured in acre
inches.

In equation (6), above, the optimum rate of resouces input was calcu-
lated by taking partial derivatives of Y with respect to each input. Each partial
derivative or marginal product equation was set equal to the input cost ratio to
the output crop price.

The cost of inputs such as applied fertilizers (nitrogen and phosphorous)
and irrigation water were obtained from dala compiled by the Economic Research
Institute of Utah State University. Average market prices for the year 1970 were
chosen. These input and output prices are given in Table 1.

It is assumed that the value of residual nitrogen and phosphorous in
the soil is the same price as the applied fertilizers. This assumption and price
adjustment for the current fertilizer application will receive more complete

discussion in the results and summary section.



Table 1. The average input and output prices for the year 1970

Price of Price of
Price of Fertilizer Price of Fertilizer
Nitrogen Nitrogen Phosphorous Phosphorous Cost of
Residual Applied Residual Applied Irrigation
(NR) (NA) (PR) (PA) Water (W)
Crops Prices Per Pound Per Pound Per Pound Per Pound Acre Inches
First year $24.00 0.10¢ - 0. 09¢ == s = 0.80¢%
alfalfa per ton F = 0.40¢
Second year $24. 00 0.10¢ - 0.09¢ . S = 0.80¢
alfalfa per ton F = 0.40¢
Sugar Beets $17. 00 0.10¢ 0.10¢ 0.09¢ 0.09¢ S = 0.80¢
per ton F = 0.40¢
Potatoes $1.56 0.10¢ 0.10¢ 0.09¢ 0. 09¢ S = 0.80¢
per bushel F =0.40
Peas $0. 06 0.10¢ 0.10¢ 0.09¢ 0.09¢ S = 0.80¢
per pound F = 0.40¢

&5 = sprinkler irrigation.
F = Furrow irrigation.

6T
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ESTIMATION OF PRODUCTION FUNCTIONS

Model Building Program

The estimated production surfaces are used as an aid in selecting the
appropriate model for the production function. Hurst's model building program
was used to gain a visual perspective of the effects on each crop yield at different
levels and combinations of resource use. The procedure divides the observation
for each variable and combination of variables into minimum, maximum, and
then five given interval lengths from minimum to maximum. At the same time,
the corresponding mean output for all combination groups is given. That is,
these output means were computed along with the number of observations for
each class interval of each input X in pairwise combinations. This allows
simplifying three-dimensional figures which illustrate the main effect and two-

way interaction effects of combinations of variables on crop yield.

Development of Production Surfaces

The model building program, as discussed above, was used to develop
three-dimensional surfaces for each crop and pairwise input combinations. An
illustration of this, in Figure 2, depicts sugar beet production surfaces; the
production surfaces for the first and second year alfalfa, potatoes and peas
are shown in Figures 4 to 7 in the Appendix (A, B, C, and E). Examination
of Figure 2 indicates that independent positive input increments increased out-

put. Also, there was a strong interaction effect between the rates of
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nitrogen-phosphorous and phosphorous-water use, illustrating that the joint
action was more effective in increasing the yield than if only one input was
used. In Figure 2 (a), holding nitrogen levels constant at intervals from 112.4
to 245, 6 pounds per acre and at the same time varying phosphorous levels, it
was observed that output increased at a decreasing rate. There was an appar-
ent significant increase in yield at higher levels of phosphorus input. Hence,
this cross section of the production surface appears to be in stage 2 of produc-
tion. Similarly by interchanging these two variables, it was observed that
from the phosphorous levels of 42.0 to 82.0 pounds per acre, the production
surfaces appeared to exhibit increasing and constant rates and would appear
to be in stage 1 or early stage 2. Then at the constant phosphorous level of
102. 0 pounds per acre and varying the levels of nitrogen, the production
surface appears to be increasing at a decreasing rate with a significant increase
in yields. Interaction effects observed between the inputs of nitrogen-water and
phosphorous-water use can be interpreted similarly from Figure 2 (b and c).

For each crop, the following observations were made: (a) Production
surfaces tended to rise more rapidly as the fertilizers and water rates were
increased when inputs were considered pairwise, acknowledging their joint
effect. (b) These interaction effects exhibit the complementary nature of the
resource inputs. (c) Some surfaces do not clearly indicate interaction effect

due to the lack of observations.
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Multiple Regression Analyses

Six variables were included in the multiple regression program for the
crops potatoes, sugar beets and peas. Only three variables were included for
the first and second year alfalfa crops, since no nitrogen or phosphorous was
applied. Further, irrigation methods (M = 1 sprinkler and M = 0 for furrow)
were not considered for these crops. Furthermore, in all regressions, as
there was a range of intervals for the amounts of water application (W) and
residuals of nitrogen (NR) and phosphorous (PR), linear and nonlinear terms
were included. In contrast, the application of nitrogen (NA) and phosphorous
(PA) only linear terms were used, since there were only two application
rates (NA = 0 and 80 pounds per acre; PA = 0 and 44 pounds per acre). Hence,
this program was designed to evaluate the contribution which each group of
variables made towards explaining crop yield changes. Statistics generated
by this program included calculated regression coefficients, coefficient of
multiple determination (Rz), degrees of freedom (DF), and significance

levels for each coefficient.

Derivation of Three Types of Production Functions

Three types of input-output response coefficients were estimated as
discussed above. The production functions included were the estimated Cobb-
Douglas, square root and polynomial forms. All included linear terms but
differed variously by using exponents representing powers of 0.5 and 2.0, the

first with powers of 0.5 termed a square root equation and the latter termed
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a polynomial. The results for each of the three production function equations,

as estimated for first year alfalfa are as follows:

Cobb-Douglas

(6) 1ny = In 1.406 + 0.052 InNR + 0. 032 InPR + 0.016 InW
(0. 030) (0. 016) (0. 066)

Square root

(7) Y =-33.08 - 0.150 NR + 0.023 PR + 0.285W
(0.127) (0.026) (0. 488)

~0.001 NRPR + 0.005 NRW + 0.003 PRW

(0.0008) (0. 042) (0. 002)
+6.085 NR"*® - 1.377 PR""% + 9.307 w"'?
(5.910) (2.701) (11. 286)
; : : . .5 0.
+0.154 NR"® PR ® — 1.151 NR®"® w5 + 0. 002 PR®® W'+
(0.363) (0. 983) (0.63)

Polynomial

(8) Y =10.9054 - 0.0139 NR + 0.0046 PR - 0.2261 W
(0. 015) (0.014) (0.133)

- 0.000002 NR? - 0.00006 PRZ - 0.0021 W>
(0. 00002) (0. 00004) (0.002)

- 0.000008 NRPR + 0.0005 NRW + 0. 0002 PRW
(0.00005) (0.0003) (0.0003)

Y is the output of first year alfalfa,
NR is the nitrogen residual in the soil, and

W is the water applied.
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Specification of the Model

This type of study calls for a production function or surface which is
convex from above as in Figure 1, and which exhibits decreasing marginal
productivity of the variable inputs. Two such functions are the equations of
square root (7) and polynomial (8) with the properties of 2.0 and 0.5 degree
parabola in all the variables (except the variables of applied fertilizers of
nitrogen, and irrigation methods). Furthermore, these two equations have
interaction terms included and are more effective in depicting the type of pro-
duction relationship expected and tended to be consistent with the plotted pro-
duction surfaces. The Cobb-Douglas function is less flexible in terms of
elasticity and being homogenous degree one, it exhibits constant return to
scale. Therefore, one should choose either the square root or the polynomial
model depicting input-output relationships typical of stages 1 and 3 of the
classical production function.

Analysis of regression and statistical results for all crops are shown
in Tables 2-4. In the estimated polynomial equation, it was noted that if the
linear terms have a negative coefficient, then the nonlinear term of the respec-
tive input should be positive and vice versa. This implies positive but not
necessarily constant returns, and stage 1 and stage 3 of production are possible.
For all crops, neither the polynomial nor the square root functions exhibits a
superior fit, whether evaluated in terms of significance of the coefficients,
coefficients of determination (RZ), or F values. Also, the polynomial form

is characterized by a linear marginal product. Because no other functional



Table 2.

Cobb-Douglas production surfaces estimated for potatoes, sugar beets, peas, first and second year alfalfa

_ [a
lny = 1na + bllnx1 * b2lnx2 -bnlnxn
Potatoes Sugar Beets Peas
Regression  Calculated Regression Calculated Regression Calculated
Independent  Coefficient F Value Coefficient F Value Coefficient F Value
Variable Bi on Bi DF Bi on Bi DF Bi on Bi DF
1na -3.922 - 255 2.271 ) 255 8.468 = 255
InNT 0.031 0.235 1 -0.019 0.164 Y -0.168 8. 276b il
InPT 0.139 11. 375b 1 0.249 54. 675b 1 -0.008 0.043 1
InW 0.391 73. 165b 1 0.614 48, 827b 1 0.212 0.228 1
R2 = 0.2434 3 R2 = 0.2810 3 R2 = 0.1175 3

92



Table 2. Continued

First Year Alfalfa

Second Year Alfalfa

Regression Calculated Regression Calculated
Independent Coefficient F Values Coefficient F Values
Variable Bi on Bi DF Bi on Bi DF
a 1.406 255 0.375 255
_ [&; b
InNR 0.052 3.016 1 0. 069 4.094 i
b b
1InPR 0.032 3.782 1 0.028 4.508 1
InW 0.016 0.056 1 0.342 i 7 063b i
R2 =0.0271 3 R2 = 0.0929 3
a y
bFunctlonal form.
cOn all production surface equation tables, indicates that these are significant at 5 percent levels of probability.
dIndicates significant at 10 percent levels of probability.

Significant at 25 percent levels of probability.

L2



Table 3. Square root production surface equation estimated for first and second year alfalfa, potatoes, sugar beet

and peas
First Year Alfalfa Second Year Alfalfa
Regression Calculated Regression Calculated
Independent Coefficient F Value Coefficient F Value
Variable Bi on Bi DF Bi on Bi DF
a -33. 080 - 255 -44, 40 -- 255
NR -0.150 1.39% 1 0.084 0.57 1
PR 0.023 0.75 1 -0.302 2.18% 1
w 0.285 0.34 1 -1.392 1.349 1
NRPR -0.001 T 1 0.001 2. 209 1
NRW 0.005 1.71 1 -4.005 1.07 1
PRW 0.0003 0.02 1 0.008 1.56% 1
NR'5 6.085 1.06 1 -4.769 1.02 1
PR ~1:877 0.26 1 11.081 3.07° 1
w? 9.307 0.68 1 13.341 0.82 1
NR'°PR*® 0.154 0.18 1 -0.296 3.46° 1
NR" W' -1.151 1.379 1 1.351 1.78¢ 1
PR "W ° 0.002 0.001 1 -1.496 2.149 1
rZ = 0.1438 12 RZ = 0.1438 12

82



Table 0. Coutinued
Potatoes Sugar Beets Peas
Regression Calculated Regression Calculated Regression Calculated
Independent  Coefficient F Value Coefficient T Value Coefficient F Value
Variable Bi on Bi DF Bi on Bi DF Bi on Bi DF

a -1684. 340 - 255 -1802.390 - 255 3240.370 i 255
NR -10.781 1.69d 1 -2.428 3.59b il -14.916 077 1
NA -0.141 0.27 1 -0.021 0.01 1 -8.018 4, 84b 1
PR -11.208 6. 80P 1 -0. 066 6.03b 1 -25.690 0.02 1
PA 0. 007 0.0002 1 0.587 0.97 1 4,968 0.54 i
M 4.943 0.62 i 6.126 1.16 1 -165.97 0.24 1
w -0. 005 57.31 1 -30.748 11.31b 1 612.178 9. 86b |
NR- 5 163.399 1.39d 1 66.689 3.69C 1 484. 077 0.44 1
PR'5 78.289 0.89 1 166.020 12.44b il 371.497 0.561 1
w5 296. 769 8.41b 1 383. 450 12.99b 1 -2787. 080 1.84d 1
NR'SPR'S 5.455 0.36 1 -2.901 1.20 1 -7.836 0. 04 1
NR'SW’5 T 71 0.62 1 0.339 0. 004 1 -70.511 0.24 1
PR:°W-5 17.572 8.09b 1 -6.527 0.99 1 42.510 0.53 1
NAPA 0. 002 0.09 1 0. 0005 0. 06 1 -0.079 1.98d 1
NAW 0.001 0.01 1 0. 027 0.04 1 0. 717 3.42¢ 1)
PAW -0.038 1.50d il -0.011 0.02 1 -0.165 0. 05 1

R% = 0.5219 12 R = 0.3928 12 R? = 0.2345 12

aFunctional form.
On all production surface equation tables, indicates that these are significant at 5 percent levels of probability.
Indicates significant at 10 percent levels of probability.
Significant at 25 percent levels of probability.
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Table 1. Dolynomial production surfacc cquation cotimated for first and sccond ycar alfalfa, potatocs, sugar beets

and peas
First Year Alfalfa Second Year Alfalfa
Regression Calculated Regression Calculated
Independent Coefficient F Value Coefficient F Value
Variable Bi on Bi DF Bi on Bi DF
a 10.9054 - 255 -3.4023 = 255
NR -0.0139 0.913 1 0.0043 0.0169 1
PR 0.0046 0.104 1 0.0659 6. 846b 1
w -0.2261 2. 889C 1 0.4946 1.048 1
2 d
NR -0.000002 0.011 1 -0.000009 2.097 1
2 c d
PR -0.00006 3.358 1 -0.00003 2.553 1
2 d
w -0.0021 1.965 ik -0.0069 0.729 1
NRPR -0.000008 0.028 1 -0.0002 0.425 1
NRW 0.0005 2. 357d 1 0.0005 0. 233 il
PRW 0.0002 0.541 1 -0.0015 3.624 1
R2 =.0469 9 R2 =0.1243 9

0¢



Table 4. Continued

Potatoes Sugar Beets Peas
Regression Calculated Regression Calculated Regression Calculated
Independent  Coefficient F Value Coefficient F Value Coefficient F Value
Variable Bi on Bi DF Bi on Bi DF Bi on Bi DF
a -397.202 -- 255 -428.481 s 255 2,949.668 = 255
NR =3.055 0.83 i) 1.897 25 1€ 1 8.149 0.169 1
NA -0.131 0.23 1 -0.0411 0.002 i -8.363 5.173b 1
PR 7.562 6.03P 1 7.177 15.2P 1 14. 973 0.729 1
PA -0.031 0.006 il 0.580 0.92 1 4.731 0.482 il
M 4.523 0.51 1 5.619 0.96 1 -206.664 3.629b 1
w 52.008 21.53P 1 24.374 18.2P 1 -136. 10 0.556 1
NR2 -0.018 0.92 i -0.004 2.84;C 1 -0.026 0.233 1
PR2 -0.070 10. 03P 1 -0.039 7.70P 1 ~0.100 3.121¢ 1
w2 =04:879 67.08 i =0, 361 13.2b 1 12. 800 3.378C 1
NRPR 0.0094 0.09 ik -0 011 1.70d i -0. 033 0.059 i
NRW 0.042 0.55 1 -0.002 0.008 2 -0.472 0.142 1l
PRW 0.121 5.01 1 -0.047 0.90 1 0.306 0. 247 1
NAPA 0.0021 0.150 1 0.0005 0. 05 i -0.082 2. 035d 1
NAW -0.0002 0.002 1 0.004 0.07 T 0.749 3.672C 1
PAW =0,033 1.143 il -0.011 0,16 4 -0.141 0.038 il
R2 = 0.5103 12 R2 = 0.3832 12 Rz = 0.2272 12
ka)Functional form.
COn all production surface equation tables, indicates that these are significant at 5 percent levels of probability.
dIndicates significant at 10 percent levels of probability.

Significant at 25 percent levels of probability.

I8
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form exhibited superior fit and interpretation of the polynomial equation (8)
was somewhat easier, it was chosen as the form to be used in deciding economic
optimum for the first year alfalfa crop, as well as polynomial equation for all

crops considered in this study.
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DISCUSSION OF THE RESULTS AND ECONOMIC IMPLICATION

Economic Optima

The relationship derived from the above polynomial equation (8) (see
p. 24) provides a basis for determining the optima input usage rates. Mar-
ginal productivity of each input in equation (8) is estimated to determine these
input optimum rates. This is done by taking the first derivatives of the esti-
mated production function with respect to NR, PR and W. Similarly derived
estimates of the marginal productivity equations for other crops are shown
in Table 6 of Appendix E. To obtain the estimates of input usage optimum
rates, each marginal equation (9, 10 and 11) were set equal to the ratio of

input price to output price and the system of equations as follows:

dy _ _10
9) dNR 0.0139 + 0.000004 NR - 0.000008 PR + 0.0005 W 2400

dy B A0
(10) S5g = -0-0046 - 0.000008 NR - 0.00012 PR + 0.0002 W = 70
11) dY_ _ _0.2261 + 0.0005 NR + 0.002 PR - 0.0042 = 12—
@ g : ’ ’ : 2400

Data used in setting up the necessary price ratios for the system of
equations were listed and their sources discussed in the earlier section of data
presentation (pp. 17-18). Solving simultaneously the above system of equations,

the optimum amounts were: nitrogen residual (NR) = 159.43 pounds per acre,
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phosphorous residual (PR) = 71.97 pounds per acre, and the amount of irrigation
water to be applied (W) = 38. 74 acre inches. Similarly, optimum inputs amounts
were determined for all other crops considered in this study and these results
are shown in second row of each crop strata in Table 5.

It was observed that some of the optimum input rates were much larger
or smaller than expected, while some were negative which could reasonably be
expected to be positive. For instance, the estimated optimum of large, small
and negative results was observed for the crops as follows: (a) potatoes - NA =
354. 96 pounds per acre, (b) water = 4.75 acre inches and W = 13.55 acre inches,
(c) sugar beets - NA = -78. 81 pounds per acre. Results of this nature suggest
that further investigation into the estimated optimum rates is needed. Therefore,
to check these results, further statistical analyses were carried out, including
the estimation of probable minimum and maximum marginal physical productivi-
ties for each input. This system of equations was then used as a linear program
problem. Using the confidence method, minimum and maximum marginal

physical productivity for each of the inputs were determined as follows:

[b-to<6)’ L<B<b it @’b1 =.90
(Minimum) (Maximum)
where b = coefficient value of each marginal productivity,
t = test values taken at (= 95 percent, and
b/b = standard error for each coefficient.
In this way, minimum and maximum bounds were set on each inputs marginal

productivity. These respective bounds may be said to be greater than or equal



Table 5.
sugar beets and peas

Estimated optimum rates of fertilizer use and water application for first and second year alfalfa, potatoes,

Nitrogen Phosphorous Amount of
Residual in Nitrogen Residual in Phosphorous Water
Soil (NR) to be Applied Soil (PR) to be Applied to be Applied
Pounds (NA) Pounds Pounds (PA) Pounds Inches
Crop Per Acre Per Acre Per Acre Per Acre Per Acre
First year Alfalfa
Est. at Max. MPP's? -104.18 — 142.35 - -7 99
Estimated Optimum 159.43 = 71,97 == 38.74
Est. at Min. MPP'Sb 1398.35 == -1281.31 - -953. 86
Second year Alfalfa
Est. at Max. MPP'sa 1138.55 e 203.11 o= -17:12
Estimated Optimumb 63.49 -- 25428 -- 33.00
Est. at Min. MPP's -58.13 o -223.77 — 17.37
Potatoes
Est. at Max. MPP’sa -1884.66 -149. 05 120.63 -135.46 49.73
Estimated Optimum 134.65 354. 96 84.49 86.10 25.29
Est. at Min. MPP's ~178.18 -592.45 19.‘_3 13 -252.36 34.89




Table 5. Continued

Nitrogen Phosphorous Amount of
Residual in Nitrogen Residual in Phosphorous Water
Soil (NR) to be Applied Soil (PR) to be Applied to be Applied
Pounds (NA) Pounds Pounds (PA) Pounds Inches
Crop Per Acre Per Acre Per Acre Per Acre Per Acre
Sugar Beets
Est. at Max. MPF"Sa -3749.74 -1672637.0 -2353.67 22028464.0 12445. 69
Estimated Optimum 64.19 -78.81 74.72 73.59 13.55
Est. at Min. MPP'Sb -118.81 866.16 565.03 725.77 -212.43
Peas
Est. at Max. MPP'Sa -174.80 -601.73 -189.01 1304. 28 -7:59
Estimated Optimumb 48.28 31.22 52.36 -78.89 4.75
Est. at Min. MPP's 85.29 -114.63 -225.11 -86.39 9. 06

*Estimated at maximum marginal physical product.
**Estimated at minimum physical product.

9¢
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to (for the upper bound) and less than or equal to (for the lower bound) the
ratio of the respective variable input to crop price. Furthermore, establish-
ing bounds on marginal productivity implies a set of bounds on the optimal
resources allocation. Such a bounded solution will establish at least a 90 percent
confidence interval on optimal use rates, however, because the joint probability
distributions of the interaction terms are ignored (the distributions are con-
sidered completely dependent), the actual confidence level may be greater than
90 percent. For instance, it falls within the probability limits that one of the
coefficients may be at the lower bound. However, to say that the marginal
physical product is at the lower bound implies that all of the coefficients are at
the lower bound simultaneously. Unless the distribution of the coefficients are
completely dependent, the probability that all the coefficients would be at the
lower bounds simultaneously would be much less than 90 percent. Therefore,
the 90 percent confidence interval may be a much smaller interval than the
calculated interval.

Hence, these systems of equations were treated as a linear program-
ming problem, and an attempt was made to solve the system of bounded equa-
tions. This is illustrated for first year alfaifa as follows:

Marginal productivity of the input NR at maximum:

DPriceof NR

(12.0) 0.0103 + 0.00006 NR + 0.00026 PR + 0.0005 W > Price of alfalfa

Marginal productivity of the input NR at minimum:

Price of NR

12, -0.038 ‘ =0 . ————
(12 1) 0.038 + 0.00008 NR - 0.003 PR + 0.0003 W < Price of alfalia
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Marginal productivity of the input PR at maximum:

Price of PR

(13.0) 0.037 - 0.000004 PR + 0.00026 NR + 0.0008 2 Price of alialis

Marginal productivity of the input PR at minimum:

Price of PR

(13.1) - 0.028 - 0.0013 PR - 0.0003 NR + 0. 0004 = Price of alfalfa

Marginal productivity of the input W at maximum:

Price of W

(14.0) -0.0061 + 0.0056 W + 0.0005 NR + 0.0008 PR = Price of alfalfa

Marginal productivity of the input W at maximum:

Price of W
Price of alfalfa

(14.1) - 0.446 - 0.0006 W + 0.0003 NR + 0.0004 PR <
Solving the above sets of equations by the linear programming method
resulted in an unbounded solution, perhaps the marginal value product (MVP)
which is more than likely either horizontal or positively inclined to the X axis.
Such cases are illustrated in Figure 3 (a) and (b). In either case, no solution
exists unless arbitrary input constraints are imposed, since the marginal value
product (MVP) does not intersect the resource supply or price line. In the
case of Figure 3 (a), this would occur when the marginal productivity is con-
stant; whereas in Figure 3 (b), the marginal productivity is increasing typical
of stage 1 of the production. To get a bounded solution, the marginal value
product should be negatively sloped as shown in Figure 3 (c), consistant with a
case where the production function increases at a decreasing rate as would occur
in stage 2 of production. Obviously, therefore, the unbounded solution could
have been caused due to some of the inputs in stage 1 of production.
Although the confidence interval is at least 90 percent, the unbounded

solution may be for a much higher confidence interval and to establish an exact
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Price ‘Prlce

MVP

MVP
Price Price

or marginal cost

Input Input

(@) (b)
| Price
N
Price
MVP
R, #= Input
(c)

Figure 3. Illustration of unbounded, bounded solutions from marginal
value product and price lines.
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90 percent confidence interval, methods of stochastics programming would
have to be used. However, no attempt was made to do this. . Within the
framework of this present problem, one would say that the estimated marginal
physical products implied no bounds on the optimal resources allocation.

Because no implied bounded solutions were determined, it may be
useful to find out what some of these possible solutions are. Hence, three
sets of solutions were determined as follows: (a) solution of the optimum was
dctermined at the estimated marginal productivity, (b) solution of the optimum
was determined at the maximum estimates of marginal productivity, and (c)
solution of the optimum was determined at the minimum estimates of marginal
productivity. These results are given in rows 1 and 3 of each crop strata in
Table 5.

However, these solutions at the maximum estimates of the marginal
productivity and the minimum estimates of the marginal productivity are not
confidence intervals, but merely possible solutions. For instance, it was
noted that some estimated optimum solutions were between two negative solu-
tions of the maximum and minimum estimates marginal productivity, implying
that in an equation, an increase in the value of coefficient may cause the sclu-
tion value to decrease from the original equation solution, while in the same
equation, a decrease in the value of coefficient can cause the solution to
decrease compared to the original solution. These types of solutions could

be expected and can be illustrated by the following system of equations:

1
Material derived from unpublished notes of John A. Tribble, Depart-
ment of Economics, Utah State University, Logan, Utah.



41

(15.1) Estimated at Maximum MPP -a'x + b' =d

(15.2) Estimated optima ax + b =d

(15.3) a''x +b"' =d
Equation (15.2) is assumed to be the estimated optima at marginal productivity,
where x is the variable input, and a and b are the coefficients of the marginal
productivity. By equating these to d, the price ratio, the increase and decrease
in the value of the coefficients from the original equation (15.2) can be shown
for equations (15.1) and (15.3) as follows: (1) a'>a<a'" (2) b'>b<b'". Also,
the assumed numerical values taken are: [a'=3]>[a=1]<[a''=-1]and
[b'=2]>[b=1]< [b = 0]. Substituting in and solving the respective equations,
the estimated solutions are as follows:

At estimates of maximum marginal physical productivity, from equation

_chb'+d_-2+1 -1

15..1), x ' = 3 = 3

At the estimates of marginal physical productivity, from equation (15.2),

At the estimates of minimum marginal physical productivity, from

h' +
equation (15.3), x =% =9 e

Therefore, the above solutions indicate that it may be possible to obtain
negative solutions at both the estimates of maximum and minimum marginal

physical productivity.



42

SUMMARY AND CONCLUSIONS

Estimation of an agricultural crop production function provides a basic
tool for an economic analysis, as well as for farm management decisions.
Fertilizers and water applications play an important part in crop production.
Since the economics of crop production is very important today, a need exists
to determine to what extent product output can be increased by altering levels
and combinations of water and fertilizers, and, also, to identify the optimal
use of them. In addition, there is a need to know the rate of which inputs
substitute for one another in the production of a given yield, in order to establish
a basis for determining least-cost input combinations.

The Utah State Experiment Station and United States Department of
Agriculture conducted agronomic field and laboratory studies in correlation
with output performance studies. These studies provided estimates of output
response for alfalfa, canning peas, potatoes and sugar beets using varying
levels and combinations of water and fertilizers. The main objectives of this
study were to:

1. From the experimental data made available, estimate the production
functions for the four crops.

2. Apply output and input prices to translate physical outputs and inputs
into monetary units.

3. Calculate the value of the marginal product for each input.

4. Determine each input's optimal levels and allocation.
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Six inputs were employed for the potatoes, sugar beets and canning
peas, whereas, for the first and second year alfalfa, only three variable
inputs were employed. A model building program was used with these variable
inputs and corresponding output data to obtain three dimensional production
surfaces in pairwise combination of inputs to each crop's corresponding mean
output. These production surfaces aided in selecting the production model.

A multiple regression model using linear, non-linear and interaction
terms was employed in deriving three production functions for each crop.
These terms were used on the basis of varying rates of input applications and
what was observed from the three dimensional figures. Cogg-Douglas, square-
root and polynomial functions were estimated for each model and the respective
statistics analyzed. The problem of selecting a "best' model from the above
three models was solved on the basis of economic theory, observed biologic
physical production processes and observing the three dimensional production
surfaces and statistical analyses. The polynomial form was selected as the
"best'" model for each crop.

Marginal productivity for each input for the different crops was calcu-
lated by taking first derivatives of each crop's polynomial function and with
respect to their variable inputs. Using these, optimal rates of input were
determined by equating them to the ratio of the input price to crop price and
solving simultaneously. Input and output prices for the year 1970, as compiled
by The Economic Research Institute, were used in this study. Qualifications
of the results were required because of the non-significant statistical relation-

ships including the F values of the regression coefficients and relatively low
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coefficients of determination (Rz) and also because some "'optimal inputs
values did not seem reasonable relative to observed rates.' Further
statistical analyses were carried out to determine the confidence interval
(minimum and maximum) for each inputs marginal productivity.

These marginal productivity estimates were used to establish a system of
inequalities of marginal physical product and price ratio (input-output price
ratio).  Then an attempt was made to use this system as a linear program-
ming problem to solve for upper and lower bounds on the optimum levels of
inputs. This resulted in unbounded solution. As an alternative, the above
problem was rephrased as a system of equalities, and solved simultaneously
to obtain optimal input levels at the marginal productivities maximum and
minimum values. These estimates at minimum and maximum values are not

confidence intervals.
_Conclusions

Analysis of regression and statistical results including the F values
of regression coefficients and coefficients of determination (Rz) for all crops
gave mixed results and signal the necessity of giving careful qualification to
any results obtained. For example, the highest coefficient of determination
(R2 =0.5103) was for the crop potatoes and lowest (R2 = 0. 0469) was obtained
for first year alfalfa. Together with these low coefficients of determination
(Rz), the results of the linear programming problem tend to further mitigate

the significance of the results. Of the three possible optimum solutions (at
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the minimum, estimated, and maximum marginal physical product), confidence
in the estimated values were very low; however, the estimated optimum values
of water input for the first and second year alfalfa were more effective in
depicting the type of results expected and tended to be consistent with this
inputs' average use. In other instances, the optimum values of inputs were
found to be somewhat higher or lower than expected. The estimates would
not be recommended for making policy decision, except in full recognition of
their obvious limitations.

Despite the lack of general applicability of the results, the approach
taken to estimate the different production functions and the economic analyses
carried out were judged to be the correct one. Therefore, one could make
further suggestions for establishing a more useful policy making tool; these

are discussed in the following section of limitations and recommendations.

Limitations and Recommendations

One limitation is that experiments carried out in this study have been
specifically designed to provide answers to agronomic questions and have not
been a joint effort on the part of agronomists and economists to provide eco-
nomic answers.

For instance, only two rates of each fertilizer application were inclu-
ded, which did not provide an adequate basis for economic analysis. Economic
analysis would have been considerably improved if a variety of fertilization and

so0il moisture rates had been included in the experiment, because under such



46
conditions, the input-output relationships could have been observed more
clearly and possibly a better estimate of the production surfaces could have
been obtained. Some further refinements which would have improved the
analysis concern the treatment of fertilizer residuals. Instead of assuming a
uniform residual (based on one year's residual), measurements of the residual
at the end of each year should have been made. The output value attributable
to this residual in future production could then be discounted to determine the
present output value (present and future). As the study was conducted, the
value of the residual (or potential output which could be produced with it) at the
end of production year was considered to be equal to zero. Measuring the
residual at the end of each production year and discounting would make it
possible to estimate production function for each experimental period year. !

Concerning the economic aspects of the problem, there was the possi-

bility that the model was improperly specified. This specification problem can

il . .
Present value of future income streams is equal to the sum of the
discounted income increments:

0
-t
P.V. 27 y . @2
T f=o /T4

when P.V.r is the present value in time period T, e 18 the income
increment in time period T + t, and r is an interest rate. P.V.r is the
present value of an application of fertilizers. Y. is the income generated
from an application of fertilizer in time period T to production in time period
T +t. tis the rate of interest charged to farmers for business loans. The
difficult item to measure is >/T+t' For a fertilizer like nitrogen we might
expect that this income increment would vary in cycles as with a nitrogen
cycle, whereas, for a fertilizer such as phosphorus the income increment
should decrease by a certain percentage each year.
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take two forms. First, perhaps not all the relevant variables were accounted
for. For instance, weather differences, some undetected physical factors
could have accounted for output differences. Second, the form of production
functions might have been a type not investigated, (constant elasticity,
polynomial production function of higher powers, etc.) Further investigation
might consider these different types of production functions.

The above considerations point up the need to conduct some part of
fertility and water application research within a framework that would lead to
some useful agronomic and economic analysis. This thesis study provides

evidence of the necessity for joint agronomic-economic investigations.
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Appendix A

Yieid tons per acre

&

4. Main and two-way interaction effects of combinations of variables
on first year alfalfa yields, 1954.
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Appendix B
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Figure 5. Main and two-way interaction effects of combinations of variables
on second year alfalfa yields, 1954.



Appendix C
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Figure 6. Main and two-way interaction effects of combinations of
variables on potato yields, 1954.
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Appendix D
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Figure 7. Main and two-way interaction effects of combinations of variables
on pea yields, 1954,



Table 6. Estimated values of marginal productivity of each variable input for different crops

First Year Alfalfa
MPP” - NR = -0. 0139
MPP - PR = 0.0046
MPP - W = -0.2261
Second Year Alfalfa
MPP - NR = 0.0043
MPP - PR = 0.0659
MPP - W = 0.4946
Potatoes

MPP - NR = 3.055
MPP - NA = -0.131
MPP - PR =7.562
MPP - PA = -0.031

MPP - W = 32.008

-0.000004 NR

-0.000008 NR

+0.0005 NR

-0.000018 NR

-0.0002 NR

+0.0005 NR

-0.036 NR

+0.0094 NR

+0.042 NR

+0.0021 NA

-0.0002 NA

-0.000008 PR
-0.00012 PR

+0.0002 PR

~0.0002 PR
-0.00006 PR

-0.0015 PR
+0.0094 PR
+0.0021 PA

-0.140 PR

+0.121 PR -0.033 PA

+0.0005 W

+0.0002 W

-0.0042 W

+0.0005 W

-0.0015 W

-0.0138 W

+0.042 W

-0.0002 W

+0.121 W

-0.033 W

A4

o XIpUo
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Table 6. Continued

Sugar Beets

MPP - NR = 1.397
MPP - NA = -0. 041
MPP - PR= 7.177
MPP - PA = 0.580
MPP - W = 24,374
Peas

MPP - NR = 8.149
MPP - NA = -8, 363
MPP - PR = 14. 973
MPP - PA = 4.730

MPP -W = -136.109

-0.0084 NR

-0.011 NR

-0.0022 NR

-0.052 NR

-0.033 NR

-0.472 NR

+0.0005 NA

+0.0036 NA

-0.082 NA

+0.749 NA

-0.011 PR
-0.078 PR
-0.047 PR
~0.033 PR
-0.200 PR

+0.306 PR

+0.0005 PA

=0.011 PA

-0.082 PA

-0.141 PA

+0.

+0.

+25

.0022 W

.0036 W

. 047 W

011 W

LT22 W

LAT2 W

749 W

306 W

141W

.604 W

a
MPP--refers to the marginal physical productivity of the respective input.
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