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ABSTRACT 

The Influence of Bulk Density on the Hydraulic Conductivity 

And Ha t er Content-Hatric Suction 

Relation of Two Soils 

by 

Rafael B. Andrade , Haster of Science 

Utah State University, 1971 

Hajor Professor : Ronald J. Hanks 
Depa rtment: Soils and Meteorology 

The influence of bulk density on saturated, unsaturated hydraulic 

conductivity , diffusivity and water con t ent was measured on undisturbed 

a nd disturbed soil samples of Vernal sandy loam and Nibley silty clay 

loam. Bulk density was changed by artificially compacting the samples. 

There was a very large decrease in hydrauli c conductivity and 

diffusivity as water content decreased as has been noted by many others . 

For the disturbed and compacted samples of the Vernal sandy loam, the 

water content was higher at .33 and 1.0 bar suction than for the dis-

turbed- uncompacted samples. The same general effect was noted for the 

undisturbed samples, but differences due to trea tmen t were small . The 

reverse was true at .05 bars. 

In the Nibley silty clay loam samples , water content was higher 

for the uncompacted than for the compacted samples a t all suctions 

applied. The effect of compaction on unsaturated hydraulic conductivity 

and diffusivity was not consistent. At the same value of water con t ent , 

both diffusivity and unsatura ted hydraulic conductivity were sometimes 

higher in the compacted samples, others lower than in the uncompacted. 

( 57 pages) 



I NTI'ODUCTION 

Water transfer in the soil is of prime concern to agriculture as 

well as to many other interests. In the hydrolol'ic cycle , r ain "ater 

infiltrates into the soil, some to be used by plants and animals, some 

to be evaporated and r e turned to the atmosphere, some to be stored in 

the soil and some to slowly trickle through the profile to supply streams, 

rivers, and underground aquifers . All these processes are strongly de­

pendent on the movement of water in the soil system. The term hydraulic 

conductivity (K), defined as the volume flux of water resulting from 

unit gradient in hydraulic potential, is thus a measure of the relative 

ease with which water moves in the soil. The hydraulic conducti.vity of 

a soil will usually be influenced by a change in any soil property, 

particularly by change in soil water content ( 6) . 

\fuen water flow is steady, often the case for saturated flow , water 

flow can be described by means of Darcy's law . However, when the soil 

is not saturated and flow is not steady, as in the case of many problems 

having agricultural importance, Darcy's law is not sufficient . Unsatu­

rated flow requires a knowledge of not only the hydraulic conductivity 

( 6-K), but also the water content-matric suction (6-h) relation as well 

as initial and boundary conditions . The soil water diffusivity (D) com­

bines these two terms. 

In steady flow the water content does not change with time . For 

unsteady flow , soil water content may change with time which will result 

i n change in hydraulic conductivity, matric suction and diffusivity. 

Water flow in a particular situation can be predicted from a knowledge 



of the 8-K and 8- h (thus 8-D) r e l ations of soil provided the approp r iate 

boundary conditions are imposed as described by Hanks et al . (1969). 

Measurements of 8- K and the 8-h r el ation has been reported by many 

inves t iga t ors . There is relatively little information about the effec t 

of changes in soil proper ties such as bulk density on these relations. 

This is the purpose of this study. 

Ob j ectives 

1. To measure the influence of changes in bulk density on the 

hydraulic conductivity - water content, diffus i vi t y-water conten t, and 

matric suction-water conten t relation for two soils . These measure­

men ts i nc lude disturbed and undisturbed soi l samples . 
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REVIEH OF LITERATURE 

This thesis is an attempt t o determine the effect of one aspect of 

soil struc ture (def ined as the arrangement of the so li d particles in the 

soil profile) on s oil ~<a t er properties. Any process which alters the 

arrangement of the ultimate particles of the soils will alter its struc­

ture and thus probably influence soil water flow as discussed by Low 

(1954) . This s tudy is limited to the inves tigation of one aspect of 

soil structure change , bul k densi t y, on soil water properties. 

Bulk density 

A soil property that is of great impo rtance is the bulk density, 

which is not an invariant quantity for a given soil . I t varies with 

structure cond itions of the soil, particularly those that relate to 

packing . For this reason, it is of ten used as a measure of soil struc­

ture. Bulk density changes associa ted wi th shrinking and swelling have 

been observed for many years. Changing mois ture con t en t is generally 

associated with bulk density changes . Box (1961) experimentally demon­

st rated that soil bulk density chang es influence the moisture re t ention 

in soils. 

Wate r content and suction 

The relationship of wate r content and matric suction have been 

widely studied. Rose (1966) pointed out that the relationship between 

water content and matric or suction is not unique and depends on 

hysteresis (the previous hystory of water adsorp t ion or desorption). 



Nevertheless, such relationships are of great significance and utility , 

even though they may be fairly complicated. 

4 

The application of a suc tion will extract water from saturated soil, 

more water being withdrawn as the suction is increased . Consequently, 

the greater the magnitude of the applied suction , the lower will be the 

water content of the soil at equilibrium. Thus, as the suction is 

increased, the remaining ~Yater is reduced and it is situated in effec­

tively smaller pores. The pore space may be pictured as irregularly 

shaped voids and channels covering a wide range of sizes. It is a par­

ticular feature of such porous systems that causes the equilibrium water 

conten t at any suction to depend on whether the system is drying or 

wetting , a phenomenon referred to as hysteresis . Thus, for any given 

matric suction, the water content of a soil will be greater on drying 

(desorption) than on wetting (absorption). The relationship between 

soil water content and soil matric suction have been extensively 

studied in a pressure plate apparatus whose construction and use were 

given by Richard and Fireman (1943), Richards (1947) and Reginato and 

Van Savel (1962). 

It is commonly assumed that bulk density remains constant, or that 

bulk density changes do not influence the soil matric suction- water 

content relation, Taylor (1962). Lauritzen and Stewart (1942) showed 

that an increase in bulk density at a given suction caused a decreased 

water content . It was also shown that bulk density changes were greatest 

through the middle section of the moisture range obtained, and tha t 

bulk density decreased gradually with both increasing and decreasing 

water content. Hirst (1949) suggested that the observed phenomenon 



of hysteresis may be explained in par t by changes in bulk density 

resulting from wetting and drying. 
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Box and Taylor ( 1962) demonstrated that the matric suction-soi l 

water r ela t ion depend on soil bulk densitv . The matric suction increased 

with bulk density at all water contents (by volume or weight). They 

concluded that t o clearly understand the expression used for matric 

suction , it is necessary to include a var i able for the influence of 

changi ng bulk density . 

Bulk density can be modi f ied by either disturbance or compaction . 

Croney and Coleman (1954) obtained curves in compressible soils com­

pacted to dif fe rent initial dry densities, which were dried from satu­

r a tion. In s uch soils increasing the dry density modified the pore size 

distribution and caused: a) a decrease in the amount of water held at 

low suctions , b) an increase in the air entry value, c) an increase in 

the amount of water held at high suctions . They concluded that com­

pacting the soils has the effect of partially closing the hysteresis 

loop between the wetting and drying curves. 

Recently, Hill and Sumner (1967) reported that in most soils 

in the plant available water range, moderate compaction res ulted in an 

inc rease i n water content at cons t ant matric suction. However, severe 

compaction which was readily achieved in sandy learns resulted in a 

decrease in wa t er content at cons tant matric suction. This effect was 

noticeable a t high soil water contents. They suggested that differences 

in void geome t ry and distribution between soil types accounted for the 

varied effect of bulk density changes on the matric suction-water content 

relation. 



Hydraulic conductivity 

The movement of fluids through capillary tubes was first studied 

by Poiseville (1 846) who found tha t the rate of flow is proportional to 

the hydraulic gradient . Darcy (1856) on the basis of investigations on 

the flow of wa ter through filter sands verified this obse rva t ion and 

suggested its application t o problems of water movement through water 

bearing material. 

6 

According to Gardner (1950) when the soil is saturated with water, 

the flow can be described by means of Darcy ' s law, however, when the 

~oil is not saturat ed , as in the case of many problems having agricul­

tural significance, Darcy's law in this simple fo rm is not sufficient to 

describe the f l ow. Gardner, and many other , have shown tha t the 

hydraulic conductivi ty decreased rapidly as the water content decreased . 

Chi lds (1957) stated that the hydraulic conductivity is very sharply 

reduced in the first stages of reduction of mois ture content . He 

attributed this r eduction to four separated effects . Firstly, a reduc­

tion of moisture content reduces the effec t ive porosity. Secondly, 

since a reduction of moisture content is brought about by an increase 

of suction and the largest pores are emptied of water a t the lowest 

suctions, (i . e. before the smaller), the more effectively conducting 

pores are put out of action in the earlier stages of unsatur ation. 

Thi r dly , the pores which have been emp t ied have to be avoided by the 

remaining path of flow which , therefore, becomes more tortuous as water 

removal proceeds. Fourthly, in soils which shrink, the increase of 

s uction which causes the removal of water from po res also reduces the 

size of the pores which remain full. 
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Philip (1957) also pointed out tha t as the soil water content de­

creased the hydraulic conductivi t y decreased ver y rap id l y. This is 

because the larger pores are emptied firs t, grea tly dec r easing th e cross 

section available f or the liquid flow . Amen ima (1960), working over a 

s uct ion range of .2 to 12 bars by using the press ure plate outflow tech­

nique , found that when water content-matric suc tion relations were 

essen t ially unaffected by aggregate size , hydr aulic conductivity was a 

function of volume tric water con t ent . However, if water content- matric 

suction relations were affected by aggregate size, t hen a t any given 

wat er content, conductivity values for a given aggregate size were 

inversely related to the suction corresponding to said water content. 

Soil water diffusivity 

Wh ere wa ter flow in soils is characterized by changing water content , 

hydrau l ic conductivity is not sufficient to characterize flow . The 8-K 

relation and the 8-h r elation must be known. Soil water diffusivity 

combines both of thes e properties . 

The diffusivity is not constant but depends on the soil properties 

and is s tron~ly dependent on the wat er con t ent. Bruce and Klute (1956) 

found that there may be a maximum i n the 8-D at a water content less than 

s atura tion. Stephen and Gardner (1963), reviewing the de riva tion of the 

dif fusivity equation for unsaturated flow of liquids in porous ma t erial, 

pointed out that diffusivity (D) is not a unique function of water con­

tent (8) . Failure of D to be un iq ue implies that either the suction 

func tion 8- h or the hydraulic conductivity func tion 8-K or both are not 

unique . This may occur because of hys t e resis or changes in soil prop­

erties with time . Hanks and Bower (1963) showed that infiltr a tion was 

governed to a large extent by the soil wa ter proper ties near saturation 
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and was little influenced by soil water properties at drier water con~ 

tents. Infiltration can be greatly influenced by a change in the 6-K or 

P-D, especially at high water contents . 

Hanks, Green and Larson (1 964), used a numerical method to estimate 

field infiltration . They found that the water flow theory may be used in 

combination with limited field measurements to provide estimates of 

infiltration for simulated conditions that are of practical interest but 

which are difficult to measure in the field. The method shows promise as 

a means of accounting for water effects in comparative studies involving 

ie ld measurements of infiltration under different management conditions. 

This method has been expanded to include many t ypes of f l ow by Hanks 

et al. (1 969). 



MATERIALS AND METHODS 

Soil samples 

Undisturbed and disturbed samples were taken at a depth of 12 

inches from two different kinds of soils , Nibley silty clay loam and 

Vernal sandy loam, whose particle size distribution is given in 

Table 1 . 

f able 1. Particle size distribution of Nibley silty clay loam and 
Vernal sandy loam 

Depth 

9 

inches Horizon % sand % silt % clay 

Nibley s ilty 
clay loam 7-11 Al2 3.9 59.3 36 . 8 

11-19 Bl2 3 . 5 59.6 36.9 

Vernal 
sandy loam 0-12 56 30 14 

12-24 48 29 23 

Vernal sandy loam . This sample was collected from the Utah State 

University Drainage Farm (Hullinger) at Vernal, Utah . This farm is 

located just west of the Vernal Airport, 1.5 miles south and 0.6 miles 

east of the Vernal City Center. This soil has not been classified yet, 

thus the name is not official and is used for convenience only . 

Nib lev silty clay loam. This sample was collected from the Utah 

State University South Farm located between Logan and Hyrum. This soil 
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has been classified but not published ye t.
1 

The information is avail-

able at Utah State University Soils and Meteorology Department. 

Treatments 

Undisturbed samples. Relatively undisturbed samples were obtained 

in the field in a metal cylinder that fit into the sampling tube described 

in the u.s.n.A. Handbook 60 (1954). The dimensions of the cylinders used 

were 3.5 em high by 5 em inside diameter. After the samples were taken 

the cy linders served as the soil retainers in the conductivity determin-

ations . 

Disturbed samples. Samples were collected from the field, air dried 

and sieved through a 2 mm sieve. A cylinder of the same dimension used 

to take undisturbed samples was filled with the soil for subseq uent 

analysis. 

Compacted samples . Undisturbed samples were submitted to a mechani -
. 2 

cal pressure of 908 gm/cm , by setting a weight of 18 . 160 kg on the soil 

core contained in the cyl inder of 19.6 cm
2 area. The compaction of dis-

turbed samples was obtained by partially fil ling the cylinder with soil, 

compac ting slightly, refilling and compacting successively until the top 

of the cylinder was reached. 

Unsaturat ed hydraulic conductivity and diffusivity 

Several methods were described for the measurement of the soil 

water diffusivity . Gardner (1956) proposed a method for calculating 

diffusivity from pressure plate outflow data . Subsequently, Miller and 

1A. Southard , Private Communication. Departmen t of Soils and 
Meteoro l ogy, Utah St a t e University (December 1970) . 
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and Elrick (1958) refined Gardner's method by accounting for non-

negligible membrane impedance. Rijtema (1959) added a variation to 

Miller and Elrick 's method, determining the total membrane impedance 

from the experimental outflow data for each pressure step applied. 

Jackson e t al. (1963) claimed that experimentally the outflow method 

appea r s readily adaptable to routine laboratory measurements. This 

method wo uld seem to be ideally suited for obtaining diffusivity on 

undisturbed soil cores. Data from Butijn and Wesseling (1959) and 

Kunze and Kirkham (1962) indicates, however, that the results obtained 

"Y this method may not be quantitatively acceptable. 

Doering (1965) developed a practical modification to Gardner's 

method for determining the diffusivity where only one equilibration is 

required for a given range of water content . The assumption of constant 

diffusivity over a range of water content is not needed to use this 

method . This method was used in the present study. 

The diffusivity was computed from: 

de 
X -

dt D 

The hydraulic conductivity was calculated from: 

K 
D 

- dh/d9 

Figure l shows the apparatus used. 

Before pressure was applied, the sample was wet up for at least 24 

hours on the ceramic plate. A very small pressure of 0.05 bar was 

applied t o the chamber t o cause the excess of water to be removed and to 

reach an equilibrium wate r content. Equilibrium was considered to have 



B 

/ 

D 

E 

A source of air 
B pressure air regulator 
C air pressure inlet tube 
D soil sample 
E ceramic plate 
F water outlet drain tube 
G mercury manometer 

p --~ 

Figure 1 . Diagram of equipment used to measure unsatura ted hydraulic conductivity and diffusivity. 

I-' 
N 
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reached when the outflm; from the plates had ceased for at least a 

period of 3 hours . All soils were subjected to a subsequen t matric 

suct ion of .33 and 1.0 bar. In this way the i nfluence of bulk density 

on the matric-water content relation could be s t udied in all the soils. 

A scaled buret was used to measure the outflow as a function of time . 

Af t er equilibrium at 1 . 0 bar had been established , the samples were 

removed from the pressure plate apparatus . The moisture content by 

weight was determi ned by the oven dry method . 

Sample calculation. The following example shows the calcula tions 

of unsaturated K and D based on the Doering's (1965) one-step method. The 

data from replication No . 1 of Vernal sandy loam und i s t urbed uncompacted 

sample. 

Table 2. 

e 

e - ef 

dS/dtxl0- 2 

from Fig 2 

dh/d 6 
from Fig 3 

Data col lected from Vernal sandy l oam undis t urbed uncompact ed . 
Replication No. 1 

.33 .32 .31 .30 .29 . 28 .27 .26 .25 

.11 .10 .09 .08 .07 .06 .05 . 04 .03 

- . 33 -.16 - . 083 -.044 -.025 -.017 -.013 - .0095 - . 053 

-150 -200 -275 -350 -400 -450 - 525 -750 -987 

d6 
X -= 

dt 

3 
- 49 x (-. 33x 10- 2 em 60 min) 

(3.14) 2(.11) cm3min x hour 

-1 
.059 em hour 

e f .22 

L 3.5 



.34 

.33 

.32 

. 28 t- I '\:t· 

dt 

2l ~-l 
.26 I 
.25 

. 24 

.23 

.22~~~~~~~~~7-~~~~~~~~L--L--L--L--L--L--L--L~ 
30 60 120 180 240 300 360 420 480 540 600 660 720 780 84 0 900 960 1020 1080 1140 1200 

Time - minutes 

Figure 2. 6 vs. t. Vernal s andy l oam, undisturbed uncompacted sample. .... 
~ 



I l . 34 

j-33 

r .31 

. 30 

I de 

j , 
.28 

-I -- - l. 27 

dh 
l 26 I 

. 25 

. 24 

. 23 

.22 

-1.0 . 33 - .OS 
h bars 

Figure 3. 8 vs . h. Ver nal sandy loam, undisturbed uncompacted sample. .... 
V> 



3 em --- x 
3 . 

- 49 x (-.16 xl0-2 

(3.14)
2

( .10) 

- 4.74 cm2hour-l 
- 200 em 

em m1n 

-1 
.023 em hour 

- 49 x (-.053 xl0- 3 

(3.14)
2

(.03) 

3 
em --- x 

3 0 

em m1n 

2 -1 
-.52 em hour 

-987 em 
-3 -1 

.53xl0 em hour 

60 min) 
hour 

60 min) 
hour 

2 -1 
4. 74 em hour 

2 - 1 
. 52 em hour 

The values obtained for the three applications at each specific 

16 

wate r content were plotted in a semilogarithmic paper, assuming a smooth 

curve; then the average of the three curves was taken. The value of 

d6/d t, which had a large influence in the values of D obtained, t ended 

to decrease with time. Since it is necessary to es timate graphically 

the slope of the rapidly changing curve, large errors were possible, 

especially a t low values of dS/dt and where 6 - Sf was small . This fact 

makes the method somewhat inaccurat e because the compu t ed values are 

highly dependent on t he measurements that may have considerable inherent 

errors. 

Sat urated hydraulic conduct i vity 

The hydraulic conductivity a t saturation was de t ermined following 

the method described by Klute (1965). 
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The soil samples were retained in a metal cylinder 5 em diameter 

and 3.5 em height, so that one dimensional flow could be obtained. The 

apparatus used for measurement of conductivity of saturated samples by 

the constant head method is shown in Figure 4 in cross section. One end 

of each sample was covered with a circular piece of cloth held in place 

by a rubber band. The sample, cloth-covered end down, was then placed 

in a tray filled with water to a depth just below the top of the samples 

and allowed to soak until comple tely saturated . The samples were then 

transferred to the rack. Flow was started by using a siphon to maintain 

a constant head of water over the sample. After the water leve l on top 

of the sample became stabilized, the volume of water that passed through 

the sample was measured each hour until a constant flow was obtained 

for each time interval. 

Sample calculation. Based on the diagram shown in Figure 4, the 

saturated hydraulic conductivity is computed from Darcy's law in one 

replication of Vernal sandy loam undisturbed uncompacted sample. 

K At 6H/6z 

Ql 32 3 em 

Q2 28 3 em 

Q3 26 3 em 

Q4 26 
3 

em 

Q5 26 
3 

em 

r 2 . 5 em 

h 3 .5 em 
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RESULTS AND CONCLUSIONS 

Water characteristic curves 

The computation of 8-K from measurements of 8-D curves requires 

curves of 6-h. Figure 5 (Table 3 in Appendix) gives the 6-h data for 

all the trea ted samples. 

Vernal sandy loam. All of the trea tments show the same general 

trend that the water content is highest where no compaction occurred 

at .05 bar , whereas the reverse is true at .33 and 1.0 bar . 

Undisturbed samples. The compaction treatment caused the same 

general effect as above but the difference due to treatment was small. 

20 

Disturbed samples. Compaction had a more marked effect on the 

disturbed than on the undisturbed samples. The wa ter content was about 

.04 greater in the compacted samples than the uncompacted samples. 

However, at .05 bar suction the difference of about .05, was reversed. 

This is in agreemen t with the results reported by Croney and Coleman 

(1954) . This indicates that the effect of compaction is to decrease the 

large pores and increase the smal l pores. 

Nibley silty clay loam. There was no general trend for all treat­

ments fo r this soil. 

Undisturbed samples. It is no t possible to make a comparison 

be t ween undisturbed compacted and uncompac ted samples because there was 

no outflow f rom the compacted samples . This may be attributed t o the 

higher water content of the samples at the time of compaction . Thus, 

the water content was constant as matric suction varied from . OS to 1.0 

bar . The samples were appar ently compac ted so much that all of the pores 



21 
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Figure 5. Water characteristic curves. 



were made suffic iently small that no water was removed up to 1 .0 bar 

suction . In Figure 5 the 6-h relation for these compacted samples is 

represented by a horizontal line. 

Disturbed samples. The water conten t of the uncompacted samples 

was greater than the compac t ed samples at all suctions applied . Thus, 

compaction for these samples caused a decrease in large and relatively 

small pores . The difference in the water content was greatest at the 

lowest suction. 

The difference in the behavior of these two soils can probably be 

a ttributed to the different particle size dis tribution which affected 

the void geome try and dis tribut ion as suggested by Hill and Sumner 

(1967). 

Unsaturated hydraulic conductivity and diffusivity 

22 

All the samples showed a large decrease in both conductivity and 

diffusivity as water content decreased. This i s in agreement with other 

repor ts, Gardner (1956) and Philip (1957) . 

Vernal sandy loam . In most cases, but not all, K was higher a t a 

given water content for the compacted compared to the uncompacted 

samp l es. 

Undisturbed samp l es . Figures 6 and 8 (Tables 4 and 5 in Appendix) 

show the values obtained for hydraulic conductivity and diffusivity for 

both uncompacted and compacted samples. The uncompacted · samples had a 

wider range of water content than the compacted samples for the same 

range of suction . The values of K and D a t the same water content were 

higher for the compac t ed samples than for the uncompacted samples, 

Disturbed samples . Figures 7 and 8 (Tables 6 and 7 in Appendix) 

show that the unsaturated values of K and D are greater for the 
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uncompacted samples than for the compacted samples at the same water 

content. This difference was about 50 percent for K, and about 30 percent 

for D. 

The values of K and D for the disturbed samples at a given water con­

tent also were greater than those for the undisturbed samples. This is 

possibly due to the effect of drying the large pores which confer high 

conduc tivity and are the continuous fissures which , t;.;hen emptied , consti­

tute effec tive barriers to flow from one aggregate to its neighbors. 

Also , the behavior of these samples may be a ttributed t o a reduction in 

the effective porosity as the water content is reduced. This is in 

agreement with Childs (1957). 

Nibley silty clay loam. Other than the expected large decrease in 

K and D as 8 decreased, there are no general trends evident for this 

soil. 

Undisturbed samples. Since it was not possible to accomplish this 

part of the experiment entirely (compacted undisturbed samples) the 

values obtained for the uncompacted samples only are given in Figures 

9 and 10 (Table 8 in the Appendix). Since there was no outflow at a 

suction up to 1.0 bar, the conductivity would be the same as the satu­

rated conductivity (essentially zero) indicated in Figure 9 as an arrow 

going down . 

Disturbed samples. Figures 9 and 10 (Table 9 and 10 in Appendix) 

show that there are few water contents common to both compacted and 

uncompacted samples. Extrapolation of the data indicates that K would 

be greater for the compacted samples than for the uncompacted samples. 

This tendency holds for all the values of water content. Here the D 

curves differ slightly f rom K. Although D (compacted) was greater at 
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the lower values of water content , the curves a re not parallel and would 

i ntercept if extrapolated. This tendency is similar to that of Ameni na 

(1960) for D and K. 

Saturated hydraulic conductivity 

Figure 11 (Tables 11 and 12 in Appendix) gives the average values 

of saturat ed K as influenced by time. The general trends for all the 

samples is to decrease the value of K wi th time until 5 hours aft er 

which there is little change in conductivity. The difference between the 

results of sa turated and unsaturated K are undoubtedly due to the higher 

wa ter content (and thus higher water conducting pore space) for the 

uncompacted than for the compacted samples. 

Vernal sandy loam. The changes in bulk density have a marked 

effect on all the samples treated. Saturated K was about 3 times 

greater for the uncompacted than for the compacted. In the undisturbed 

uncompacted samples a reduction of about 70 percent was measured, while 

in the disturbed compacted the reduction was about 65 percent. 

Nibley silty clay loam. The same behavior was noted for all the 

samples. However, it was not possible to get any outflow from the un­

disturbed compacted sample. In an attempt to see if t here was surface 

sealing after compaction, the surface of the soil was removed. St ill 

the flow was zero so the conductivity of this sample was assumed to be 

zero. The conductivity here also was greater for the disturbed than for 

the undisturbed samples in about 10 times. These results are in agree­

ment wi th that stated by Childs (1957). 
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SUMMARY AND CONCLUSIONS 

1. The objective of this study was to measure the influence of 

changes i n bulk density on the 8- K, 8-D and 8-h re lations for two soils. 

Both disturbed and undisturbed samples were tested. 

2 . The water con tent at matric suctions of .05, .33 and 1.0 bar 

was measured for all samples. Three replications were measured for each 

treatment. 

3 . Compaction has a marked effect on the 8-h relation for the 

disturbed samples of Vernal sandy loam. The water content was about 

.04 greater at .33 and 1 . 0 bar suction for the compacted samples than 

for the uncompacted. The reverse was true at .05 bar suction. For the 

undisturbed samples compaction caused the same general effect but the 

difference due to treatment was small. 

In t he Nibley silty clay loam samples, water content was higher for 

the uncompacted than for the compacted samples at all suctions app l ied. 

4. The effect of compaction on unsaturated K and D was not consis­

tent. At the same value of wa ter content , both diffusivity and conduc­

tivity were sometimes higher in the compacted samples, others lower than 

in the uncompacted samples. For all the samples a reduction in the 

values of K and D was measured as water content is reduced. 

5. The effect of compaction on saturated K was very consistent . 

For all the samples treated, there was a reduction in the values of K 

with an increase in bulk density. For the Vernal sandy loam , a reduc­

tion of 70 percen t was measured in the und isturbed compacted, while 

in the disturbed compacted the reduction was about 65 percent. For the 



Nibley silty clay loam, in the undisturbed compacted samp l es K was 

assumed to be zero so there was a red uction of 100 pe r cent , while for 

the dis t urbed compacted samples , the reduction was abou t 76 percent. 

32 

6 . The me t hod used present ed the advantage t hat i t can be conducted 

very easi l y using available equipment in a rou tine manner. The method 

has the disadvantage that it is not highly accurate . The computed 

values are highly dependent on the measurements that may have consider­

able inherent errors . 
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Table 3. Effect of soil compac t ion on bulk density and water content 

Average Soil suction Average 
Soil Treatment bul k density bars e 

Vernal Undisturbed 
sandy loam uncompacted 1. 43 .os .33 

.33 . 26 
1.0 . 22 

Undisturbed 
compacted 1. 63 .OS . 32 

. 33 . 27 
1. 0 . 23 

Disturbed 
uncompacted 1. 29 .os .39 

. 33 . 2S 
1.0 . 22 

Disturbed 
compacted 1. 4 7 . 05 . 37 

.33 . 32 
1.0 .28 

------------------------------------------------------------------------
Nibley silty Undisturbed 
clay loam uncompacted 1. 39 . 05 .47 

. 33 .42 
1.0 . 39 

Undisturbed 
compacted l.S2 .05 . 42 
(Assumed . 33 .4 2 
values) 1.0 . 42 

Disturbed 
uncompac t ed 1.09 .os .48 

. 33 .39 
1.0 .36 

Disturbed 
compacted 1. 29 .OS . 36 

.33 . 30 
1.0 .27 
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Table 4. Vernal sandy loam. Data collected for the calculation of 
unsaturated K and D. Soil condition: Undisturbed, 
uncompacted 

Replication 
1 
2 
3 

h 

. 33 .06 

. 32 . 08 

. 31 . 11 

. 30 .15 

.29 . 21 

.28 . 26 

. 27 . 32 

. 26 .40 

.25 . 50 

. 22 1.0 

. 33 .06 

. 32 .08 

. 31 .11 

.30 .15 

.29 .19 

. 28 .23 

. 27 .29 

.26 .38 

.25 .44 

.22 1.0 

.33 .07 

.32 .09 

.31 .10 

.30 .13 

.29 .1 7 

.28 . 21 

. 27 . 28 

.26 .37 

. 24 1.0 

e .24 

D .35 

Kxl0- 3 .35 

.25 

.45 

. 56 

pd 
1.40 
1.45 
1.44 

. OS bar 
. 33 
.33 
. 34 

ReElication No. 1 

d8/d t dh / d8 

-.33 xlQ-2 -150.0 
-.16 xl0- 2 - 200.0 
-.08 3 - 2 - 275.0 x10_2 -.044 xl0_ 2 - 350.0 
-.025 x10_2 -400 . 0 
-.017 x10_2 - 450 . 0 
-.013 x10_2 -525.0 
-.0095xl0_ 2 -750 . 0 
-.0053xl0 -987 .0 

ReElication No . 2 

-.16 xl0- 2 -200.0 
-.11 -2 -200.0 x10_2 -.08 3 xlO -225.0 
- .043 x10-2 -275.0 
-.025 xl0-2 -325.0 
-.018 xlQ-2 -400.0 

-2 -550.0 -. 014 x10_2 - .010 x10_2 - 812.5 
-. 004 2x 10 - 1,100.0 

ReElication No. 3 

- .095 XlQ-2 -125.0 
-.055 x10-2 -150.0 
-.037 -2 -175.0 x10_2 - .025 xlO -225.0 
-.018 xl0- 2 -300.0 
-.013 - 2 -375.0 x10_2 -.009 x10_2 -600.0 
-.0039 Xl0 -975.0 

Average K and D 

. 26 .27 .28 .29 . 30 

.59 .74 . 99 1. 30 1. 70 

.90 1.4 2 . 3 3 .6 5 . 5 

.33 bar 
.27 
. 26 
.26 

D 

8.94 
4.74 
2. 70 
1.62 
1. 02 

. 84 

.72 

. 66 

.5 2 

4.32 
3.24 
2.70 
1.56 
1.02 

.84 

.78 

.72 

.41 

3.12 
2 . 04 
1.56 
1.20 
1.02 

.96 

.84 

.57 

.31 .32 
2.21 3.08 

9.0 14.2 

K 

1 bar 
.22 
.22 
.24 

.059 

. 023 

.010 

.0046 
.0026 
.0018 
.0014 
.00094 
. 00053 

.021 

.016 

.012 

. 0058 

.0032 

.0022 

.0015 

.00091 

.00037 

.025 

.013 

. 0090 

.0055 

.0035 

.0025 

.0014 

.00059 

.33 
3.8 

22 . 0 
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Table 5. Vernal sandy loam . Data collected for calculation of unsatu­
rated K and D. Soil condition: Und i sturbed, compacted 

Replication 

. 34 

. 33 

.32 

.31 

. 30 
29 

. 2 7 

.29 

.28 

. 27 

. 26 

.25 

.24 

.23 

.21 

. 30 

.29 

.28 

.27 

. 26 

.25 

.24 

.23 

.21 

D 

1 
2 

h 

.10 

.17 

.25 

.33 

. 49 

.65 
1.0 

.07 

.11 

. 17 

.25 

.33 

.47 

.63 
1.0 

.09 

.12 

.16 

.21 

. 27 

.33 

.50 

.68 
1.0 

.23 

.37 

. 24 

. 49 

.47 

pd 

1. 64 
1. 57 
1. 70 

.05 bar 

.35 

. 30 

. 31 

ReJ:>li ca tion No. 

d9/dt dh/d 8 

- .16 Xl0- 2 
- 425 . 0 

-.027 x10- 2 -600 . 0 
- . 017 xl0- 2 

-750 .0 - 2 - 875.0 -. 010 x10_
2 -.005 x10_
2 - 1 ,100.0 

-.0022 xl0 - 1,450.0 

ReJ:>lica tion No . 

-.16 xl0- 2 - 250 .0 
-.14 xl0- 2 

-350.0 
-.055 xlQ-2 -450.0 
-.03 3 -2 -675 . 0 x10_

2 -.019 xlO -900.0 
-.012 xl0- 2 

- 1,050.0 
- .007 xlQ-2 -1,450.0 

ReJ:>lication No . 

-.11 xl0- 2 -250.0 
-.066 xl0- 2 

- 275 .0 
- .037 

- 2 
- 325 .0 x10_2 - .023 x10_

2 
-400 .0 

-.015 x10_
2 

-600. 0 
-. 011 x10_

2 -875 .0 
- .0064xl0_

2 
-1, 150. 0 

- . 0019xlQ -1, 725.0 

Ave r age K and D 

.25 . 26 .27 .28 

1 

2 

3 

. 29 

8 . 33 bar 

.31 

.25 

. 25 

D 

6.06 
1.14 

.90 

. 66 

. 45 

. 28 

5.28 
5 . 28 
2 .40 
1. 74 
1. 74 
1.02 

. 90 

3 . 24 
2 . 16 

.38 

.96 

. 78 

.72 

.56 

.24 

. 30 .31 

. 65 . 87 1 . 14 1.59 2 .09 2 . 84 3 .81 

. 87 1.5 2 . 7 4 . 8 8 . 4 15.0 27.0 

1 bar 

K 

.013 

. 27 

. 21 

.21 

.0019 

. 0012 

. 00072 

. 00042 

.00018 

.021 

.015 

. 0054 

. 0025 

. 0013 

.0010 

.00063 

.012 

.0078 

.004 2 

.0025 

.0013 

.000 78 

.00051 

.00014 
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Table 6 . Vernal sandy loam . Data collected for the calculation of 
unsatura t ed K and D. Soil condition: Disturbed, uncompacted 

Replication 

. 37 

.36 

.35 

. 34 

. 33 

.32 

. 31 

.30 

. 29 

.28 

. 27 

.26 

. 24 

.22 

. 37 

.36 

. 35 

. 34 

. 33 

.32 

. 31 

.30 

.29 

.28 

. 27 

.26 

.24 

.208 

l 
2 
3 

h 

. 05 

.06 

. 07 

.09 

.11 

.13 

.15 

.18 

.20 

.23 

.28 

.33 

.60 
1.0 

.06 

.06 

.07 

. 08 

.09 

.11 

.13 

. 15 

.17 

.19 

. 22 

.26 

.33 
1.0 

pd 

l. 28 
l. 29 
l. 32 

.05 bar 

.385 

. 392 

.407 

Replication No . l 

d8/dt dh/d8 

- 50.0 
- 75 .0 
-110. 0 
- 125.0 
-140.0 
-165.0 
-190.0 
- 195.0 
-215.0 
- 290 .0 
-435.0 
-635.0 

-1, 250. 0 

Replication No. 2 

- 50 .0 
- 60.0 
- 65 .0 
- 85.0 
- 100.0 
- 125. 0 
-145.0 
-150.0 
- 160.0 
-160.0 
- 200.0 
- 255.0 
- 300.0 

. 33 bar 

D 

. 264 

.2 47 

.266 

2 . 33 
1.87 
1.51 
1.18 
1.19 
1.20 
l. 31 
1.28 
1.15 
1.31 
1.09 

.93 

. 87 

4.25 
3.83 
3 .64 
3 .91 
3 . 36 
3 . 28 
3.18 
2.40 
l. 72 
1.80 
1.4 7 

.83 

. 93 

e l bar 

K 

.221 

.208 

. 236 

. 046 

.025 

.013 

.011 

.0085 

. 0072 

.0069 

.0065 

.0053 

.0044 

.0025 

.0013 

.00070 

.085 

.063 

.056 

.046 

.033 

.026 

.021 

.016 

.010 

.011 

.0073 

.0032 

. 0031 



Table 6. Continued 

h 

. 37 .06 

. 36 .06 

. 35 . 07 

.34 . 08 

. 33 .10 

.3 2 .11 

. 31 . 13 

.30 .15 

.29 .18 

.28 . 23 

. 27 .29 

. 26 .33 

.25 .49 

.236 1.0 

.24 . 26 

D .86 1. 06 

Kxl0-3 1.3 2.5 

Re2lication No . 

d8/dt dh/de 

-3. 3 xl0-3 - 50 . 0 
-2. 2 xl0-3 - 60 . 0 
- 2.0 - 3 - 80.0 x10_3 - 1.8 xto_, -110 . 0 
-1. 6 x10_

3 
-115 . 0 

-1. 4 xl O -1 25 . 0 
- 1.1 -3 - 150 .0 x10_3 - .90xl0_3 - 205 . 0 

. 42xl0_3 -275.0 
- . 25 xl0_3 - 375 . 0 
- .15xl0_3 -550.0 

.11x10_
3 -775.0 

- .06xl0 -1 , 025 . 0 

Aver age K and D 

.28 . 30 . 32 . 34 

1.33 1. 66 2.10 2.66 

4.6 8.7 16.0 31.0 

3 

.36 

3 .40 

61.0 

D 

5.16 
3.70 
3.60 
3 . 54 
3 .49 
3 . 35 
3.00 
2. 76 
1.50 
1.08 

. 82 

. 80 

. 66 

K 

.10 

.061 

.045 

. 032 

.030 

. 027 
·.020 
.013 
. 0055 
.0029 
.0014 
. 0010 
. 00063 

41 
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Table 7. Vernal sandy loam. Data collected for calculation of unsatu­
rated K and D. Soil condition: Disturbed, compac t ed 

Replication 

. 32 

. 31 

.30 

.29 

.28 

. 27 

.26 

. 24 

.36 

.35 

.34 

.33 

.32 

. 31 

.30 

. 29 

. 26 

. 41 

. 40 

.39 

.38 

.37 

.36 

.35 

.33 

e 

D 

1 
2 
3 

Kxl0- 3 

h 

.10 

.17 

.25 

.33 

.43 

.54 

. 68 
1.0 

.05 

.13 

. 20 

. 26 

.33 

.42 

. 51 

. 61 
1.0 

.07 

.10 

.13 

.17 

. 21 

. 27 

.33 
1.0 

. 27 

.47 

.55 

.28 

.57 

.77 

pd 

1. 48 
1.46 
1.41 

. 05 bar 

.33 

.36 

.432 

ReElication No . 1 

d6/dt dh/d 6 

-1.1 x !O=~ -410.0 
- .66xl0_

3 -525.0 
.55xlo_

3 -575.0 
- .42xl0_

3 
-310.0 · 

- .27 xl0_
3 -825.0 

.16x!0_3 -880.0 
- .06xlO -1,200.0 

ReElication No. 2 

-1.2 X l0=~ -425.0 
- .95 xl0_

3 -4 7 5 . 0 
.75xl0_3 -550 . 0 

- . 65xl0_3 -600.0 
- .45xl0_3 -650.0 

. 25xl0_
3 -725.0 

- .16x!0_3 -850.0 
- .05xlO - 1,175.0 

ReElication No . 3 

-.34 x!0-3 -175.0 - 3 - 200 . 0 -. 20 Xl0_3 -.13 x10_3 -250.0 
-.083 xl0_

3 - 325 .0 
-.05lxl0_3 -3 50.0 
-. 033xl0_3 - 575.0 
-.025xl0 - 1,750.0 

Average K and D 

. 30 .32 . 34 .36 . 38 

. 82 1.21 1. 76 3 .03 4.56 

1.5 3.0 6.2 12.0 20 .0 

. 33 bar 

.293 

.325 

.3 53 

D 

3 .01 
2.06 
2.00 
1.83 
1.47 
1.16 

.65 

2.62 
2.31 
2.05 
2.03 
1.64 
1.09 

.87 

.37 

.93 

.62 

.47 

.36 

.27 

.24 

. 27 

K 

1 bar 

. 245 

. 28 

.337 

.0073 

.0039 

.0034 

.0059 

.0017 

. 0013 

.00054 

.0061 

.0048 

.0037 

.0033 

.0025 

.0015 

.0010 

.00031 

. 0053 

.0031 

.0018 

.0011 

. 00077 

.00041 

. 00015 
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Table 8 . Nibley silty clay loam . Data collected for calculation of 
unsaturated K and D. Soil condition: Undisturbed, 
uncompacted 

Replica tion 

e 

.44 

.43 

. 42 

.41 

.40 

.38 

.48 

.47 

.46 

. 45 

.44 

.43 

.42 

. 40 

. 45 

.44 

. 43 

. 42 

.41 

.39 

D 

1 
2 
3 

Kx10-3 

h 

.06 

.09 

.15 

.23 

.33 
1.0 

.10 

.15 

.21 

.29 

. 33 

.51 

.68 
1.0 

.14 

.22 

.33 

.48 

.71 
1.0 

.40 

.19 

.12 

.41 

. 27 

. 23 

pd .05 bar 

1.38 
1.45 
1.34 

. 45 

.so 

.466 

ReJ!lication No. 1 

d6/d t dh/d6 

- .2 XlQ-3 - 200.0 -3 -325.0 -. 11 x10_3 -. 05 x10_
3 -500 .0 

-. 026 xl0_3 
-725.0 

- .019xlO -1, 225.0 

ReJ!l ication No . 2 

-. 41 xl0-3 -3 25.0 
-. 25 xl0-3 -400.0 
-.16 -3 -500.0 x10_

3 - .11 x10_3 -675.0 
- .084x10_

3 - 850.0 
-.060x10_3 - 1 ,125 .0 
-.032x10 - 1 ,350.0 

ReJ!lica t ion No . 3 

- 3 -550.0 -. 25 x10_3 -.13 x10_3 -7 25 .0 
-. 081x10_3 -1,000 .0 
-.04l x10_3 -950.0 
- .021x10 -1,750.0 

Ave r age K and D 

.42 .43 . 44 .45 

.38 . 53 .77 1.10 

. 81 . 95 1.96 4.2 

.46 

1.68 

9 . 3 

.33 bar 

D 

.40 

.44 

.43 

. 99 

. 60 

.38 

.25 

.28 

1.50 
1.02 

.78 

.60 

.60 

.56 

. 42 

1. 70 
.72 
.60 
. 36 
.30 

.4 7 

2.43 

20 . 5 

K 

1 bar 

.388 

.402 

. 397 

.0049 

. 0019 

.00072 

. 00030 

. 00018 

.0046 

.0026 

.0015 

.00096 

.00072 

.00048 

.00030 

. 0022 

.0010 

. 0006 

.00042 

. 00012 
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Table 9. Nibley silty clay loam. Data collected for calculation of 
uns atura ted K and D. Soil condition: Disturbed, uncompacted 

Repli cation pd . 05 bar . 33 bar 1 bar 

1 1.09 .so .392 .366 
2 1.11 .48 . 419 .364 
3 1.09 . 48 . 38 .35 

------------------------------------------------------------------------
ReElicat i on No. 1 

h d9/ dt dh/d 9 D K 

. 48 .06 -1.1 -3 -100.0 2. 73 .027 Xl0_3 . 47 . 07 - . 83 x10_
3 -100.0 2.25 . 022 

. 46 . 09 - . 66 x10_
3 

-125 . 0 1.96 . 015 
. 45 .11 - .39 x10_3 -150.0 1.29 . 0086 
.44 .13 - .25 xl0_

3 
-225.0 . 93 .0041 

.4 3 .15 - . 17 xlO - 225 . 0 .72 . 0032 

. 42 .19 . 12 -3 - 250.0 .59 .0023 - x10_3 . 41 .22 - .094 xl0_3 -275 . 0 .56 .0020 

.40 . 27 .072xl0_3 -350 . 0 .53 .0015 

. 39 .33 - .049xl0_3 -750.0 .48 . 00064 

.38 .48 - . 028xlO -1, 350.0 . 41 .00030 

. 366 1.0 

ReElication No. 2 

.48 .05 -1.6 xlQ-3 -125.0 3.97 .031 

.47 . 07 -1.0 - 3 - 200.0 2. 71 .013 x10_
3 . 46 . 11 - . 83 xl0_3 -250.0 2. 47 .0099 

.45 . 14 - .71 x10_
3 

- 300 . 0 2 . 35 .0078 
. 44 .19 - . ss x10_3 -400.0 2.05 .0051 
.43 . 25 - . 33 x10_3 - 475.0 1.40 . 0029 
.42 .31 - .19 x10_3 -550.0 .94 .0017 
. 41 .33 - .16 x10_3 -650. 0 .95 .0014 
.40 .4 8 - .11 xl0_3 - 750.0 .82 . 0010 
.39 .59 - . 079xl0_

3 
-850 . 0 . 78 .00092 

.38 .71 - .036xl0 -1 ,000.0 .53 .00053 

. 36 1.0 

ReElication No . 3 

. 47 .OS -1.6 xlO- ) - 25.0 3.97 .159 

.46 .06 -1.3 - 3 -110.0 3.52 .032 x10_3 . 45 .08 -1.1 x10_
3 

-150.0 3.28 .021 
. 44 .10 - .90 x10_3 - 165.0 2. 76 .016 
. 43 .12 - . 80 x10_3 - 180.0 2. 98 .016 
. 42 . 15 - . 62 x10_

3 
- 250.0 2 . 64 . 010 

.41 .19 - . 30 x10_3 
-345.0 1.49 .0043 

.40 . 24 - .19 xl0_3 - 250.0 1.13 .0048 

. 39 .31 - .18 x10_
3 

-575.0 1.34 . 0023 
. 38 .33 - .095xl0_3 

-800.0 . 94 . 0011 
.37 .52 - . osoxl O -1 ,200 .0 1.49 .0012 
.35 1.0 
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Table 9 . Continued 

Average K and D 

. 37 . 38 .40 . 42 .43 . 44 .45 .46 .47 

D .60 . 71 .96 1. 34 1. 61 1. 90 2 . 25 2 . 65 3.21 

Kxl0- 3 . 57 . 87 1.8 3 . 8 s.s 8.4 12 . 0 18 . 0 28 . 0 
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Table 10. Nibley silty clay loam . Data collected for calculation of 
unsaturated K and D. Soil condition: Disturbed, compacted 

Replication 

1 
2 
3 

h 

. 38 . 05 

. 37 .05 

.36 .07 

.35 .11 

.34 .15 

.33 .23 

. 32 .33 

. 297 1.0 

. 35 .os 

. 34 .07 

.33 .1 2 

.32 .17 

.31 .25 

.30 .33 

.29 . 44 

. 28 . 60 

.26 1.0 

. 37 .05 

.36 .os 

.35 .06 

. 34 . 09 

. 33 .13 

.32 .19 

. 31 . 27 

. 30 . 33 

.29 .55 

.28 1.0 

. 27 

D . 41 

Kx10- 3 .16 

. 28 

. 45 

.23 

pd 

1.30 
1. 30 
1. 29 

.05 bar 

.38 

. 35 

. 37 

ReQlication No. 

d6/dt dh/d e 

- .33 - 3 - 140.0 x10_3 -.23 x10_
3 -215.0 

-.18 x10_
3 -275.0 

-. 13 x10_
3 -375.0 

-. 098xl0_
3 -625 . 0 

-. 06lxl0_3 - 925.0 
- . 03lxl0 -1,750.0 

ReQlication No. 

-.34 x10- 3 -165.0 
- .26 -3 - 275.0 xl0_

3 -. 19 x10_3 - 350 . 0 
-.16 x10_3 - 450.0 
-.11 x10_3 -575.0 
-.089xl0_3 -775.0 
-. 05l xl0_3 -1,050.0 
- .033 xl0 -1,350.0 

1 

2 

ReQlication No. 3 

-.33 xl0-3 -100 . 0 
-. 29 x1(; -125 . 0 
- .24 x10_

3 - 150 . 0 
-.19 x10_

3 
- 245 .0 

-.13 x10_
3 

- 400 . 0 
- .10 x10 -550.0 - 3 - 700.0 -.08 x10_

3 - .07 x10_3 -1 ,050 . 0 
-. 018x10 - 2,300.0 

Average K and D 

.30 . 32 .34 

.54 .66 . 80 

. 36 

. 99 

.so 1.0 2 . 4 5.3 

. 33 bar 

. 32 

. 30 

. 30 

D 

1.09 
. 762 
. 670 
. 646 
.584 
. 454 
. 308 

1.12 
.960 
. 809 
. 795 
. 656 
.663 
.526 
. 492 

1.09 
1.08 
1.02 

.94 

. 77 

.74 

.79 

. 69 

. 26 

.37 

1.08 

8 .1 

1 bar 

K 

.297 

.261 

. 28 

.0078 

.0035 

.0024 

.0016 

.00090 

.00048 

.00012 

.0067 

.0034 

.0022 

.0017 

.0011 

.00084 

.00048 

.00036 

.010 

.0086 

.0067 

. 0038 

. 0019 

.0013 

.0010 

. 00066 

.00011 
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Table 11. Average saturated K for Vernal sandy loam samples 

Treatment Q1 Kl Q2 K2 Q3 K3 Avera!(e Average e 
K pd sat. 

Undisturbed 32 .882 80 2.20 64 1. 76 1. 61 
uncompacted 28 . 772 70 1. 93 45 1. 24 1.31 

26 . 717 70 1. 93 40 1.10 1. 24 
26 .717 so 1.37 38 1.04 1.04 
26 .717 45 1. 24 35 .965 . 974 1.43 . 47 
26 .717 45 1. 24 35 .965 . 974 
26 . 717 45 1. 24 35 . 965 . 974 

Undisturbed 14 .371 18 .461 15 . 397 . 409 
compacted 12 . 307 17 .435 14 .358 .36 6 

12 .307 15 .384 12 .307 . 328 
12 .307 15 . 384 12 . 307 .324 
11 .282 15 . 384 12 . 307 . 318 
11 . 282 14 .379 11 .282 .303 
11 .282 13 .333 11 .282 .299 1.63 .39 
11 .282 13 . 333 11 . 282 . 299 
11 . 282 l3 . 333 11 .282 . 299 

Disturbed 71 1. 95 68 1.87 82 2.26 2.02 
uncompacted 71 1. 95 75 2 . 06 85 2.34 2.11 

70 1.93 73 2.01 80 2. 20 2.04 
7l 1. 95 70 1.93 80 2.20 2.20 
72 1. 98 70 1. 93 80 2.20 2. 03 1.29 .52 
72 1.98 70 1.93 80 2 . 20 2.03 
72 1.98 70 1. 93 80 2.20 2.03 
72 1. 98 70 1.93 80 2.20 2 . 03 

Disturbed 27 .744 24 .661 28 .772 . 725 
compacted 30 . 827 20 . 551 27 . 744 . 707 

30 . 827 24 .661 27 . 744 . 739 
33 .910 24 .661 26 . 717 . 762 
33 . 910 23 . 634 26 . 717 . 758 
25 .689 24 . 661 25 . 703 . 684 
31 .854 25 . 68 9 26 . 717 . 753 
31 . 854 24 .661 26 .717 . 744 1.47 . 45 
31 .854 24 . 661 26 . 717 . 744 
31 . 854 24 .661 26 . 717 . 744 
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Table 12. Average saturated K for Nib ley silty clay loam samples 

Trea t ment Ql Kl 02 K2 Q3 K3 Ave r age Average 
K Pd sat . 

Undisturbed 6 . 165 9 . 261 10 . 286 . 237 

uncompacted 5 .137 7 .206 10 . 275 . 210 

5 . 137 11 . 303 9 .264 . 237 

5 .137 8 .234 9 .264 . 211 

4 .124 8 .234 8 .242 . 200 1.39 .49 

4 .124 8 .234 8 . 242 . 200 

4 . 124 8 . 234 8 . 242 . 200 

Disturbed 95 2.61 104 2.86 88 2 . 42 2.63 

uncompacted 97 2.67 100 2. 75 87 2. 39 2.60 

97 2 . 67 98 2. 70 84 2 . 31 2 . 56 

93 2. 56 97 2 .67 82 2 . 26 2. 49 

90 2 . 48 95 2. 61 82 2. 26 2 . 45 1.09 .59 

90 2. 48 95 2. 61 82 2 . 26 2.45 

90 2.48 95 2 . 61 82 2 . 26 2 . 45 

90 2 . 48 95 2 . 61 82 2.26 2.45 

Disturbed 50 1. 37 57 1. 57 54 1.48 1.47 

compacted 52 1.43 56 1.54 54 1. 48 1. 48 

48 1. 32 52 1.43 51 1.40 1.38 

46 1. 26 50 1.37 49 1. 35 1. 32 

45 1. 24 50 1. 37 48 1.32 1. 31 1. 29 .5 2 

45 1. 24 50 1. 37 48 1. 32 1. 31 

45 1. 24 50 1. 37 48 1.32 1. 31 

45 1. 24 50 1.37 48 1.32 1. 31 

Undisturbed 
compac t ed No outflow 1.52 .42 
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