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ABSTRACT 

Determination of the Expression Patterns of Bovine Non-Classical Major Histocompatibility 

Complex (MHC) Class I Proteins 

 
by 
 

Parveen Parasar, Doctor of Philosophy 

Utah State University, 2013 

 
Major Professor: Dr. Christopher J. Davies 
Department: Animal, Dairy and Veterinary Sciences 
 
 

My dissertation hypothesis is that bovine trophoblast cells express cell-surface and 

secreted non-classical major histocompatibility complex class I (MHC-Ib) proteins which inhibit 

NK cells and other leukocytes by binding to inhibitory receptors (e.g., LILRB1, LILRB2, 

KIR2DL4, and/or CD94/NKG2A). 

Extremely polymorphic and ubiquitously expressed classical MHC class I (MHC-Ia) 

proteins, which present foreign antigenic peptides to CD8+ T lymphocytes, are involved in 

acceptance or rejection of tissue grafts. Non-classical MHC class I (MHC-Ib) glycoproteins, such 

as Human Leukocyte Antigen-G (HLA-G) and murine Qa-2, are important modulators of the 

maternal immune system during pregnancy. MHC-Ib proteins are: (a) oligomorphic or 

monomorphic, (b) expressed in specific tissues under specific condtions, and (c) produced as 

surface and/or soluble isoforms due to alternative splicing. 

Third trimester-bovine trophoblast cells express both MHC-Ia and MHC-Ib proteins. The 

MHC-Ib proteins expressed by trophoblast cells during the third trimester of pregnancy are 

encoded by four bovine leukocyte antigen (BoLA) loci: BoLA-NC1, BoLA-NC2, BoLA-NC3, 

and BoLA-NC4. 
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Two MHC-Ia (N*01701 and N*01802) and three MHC-Ib (NC1*00501, NC3*00101 and 

NC4*00201) proteins showed cell-surface expression in transfection studies performed in murine 

P815 and human K562 cells. Two additional isoforms, NC1*00401 and NC2*00102, were not 

detected on the surface of these cells. Nevertheless, both class Ia proteins, N*01701 and 

N*01802, and five class Ib proteins, NC1*00401, NC1*00501, NC2*00102, NC3*00101, and 

NC4*00201, were detected in crude cell lysates on Western blots. Precipitation of proteins from 

culture supernatants showed that cell-surface MHC-Ia (N*01701 and N*01802) and MHC-Ib 

proteins (NC1*00501, NC3*00101, and NC4*00201) are shed from the surface of these cells into 

the media. The mechanism of shedding of these proteins is, however, not known. 

Monoclonal antibodies W6/32, IL-A88, H1A, H6A, H11A, H58A, and PT-85A 

recognized surface MHC-I isoforms with varying affinity. We were able to develop a sandwich 

enzyme-linked immunosorbent assay (ELISA) using either H1A or IL-A88 antibody as the 

capture antibody and the W6/32 antibody for detection. We produced monoclonal antibodies 

against cattle NC1*00501 and NC3*00101 proteins. One monoclonal antibody generated against 

BoLA-NC3*00101 was highly specific. Unfortunately, due to failure to clone the NC3*00101-

hybridoma, we no longer have an infinite source of this monoclonal antibody for NC3*00101. 

We eluted peptides from NC3*00101-transfected MHC-null K562 cells and identified peptides 

using liquid chromatography-mass spectrum (LC-MS) analysis. Analysis of peptide binding data 

using the SAS Proc mixed statistical program, suggested that the peptide EVTNQLVVL is a 

potential peptide ligand, which can be used to make tetramers for enumeration of antigen-specific 

leukocytes. 

 

 

(148 pages) 
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PUBLIC ABSTRACT 
 
 

Determination of the Expression Patterns of Bovine Non-Classical Major Histocompatibility 

Complex (MHC) Class I Proteins 

 
Parveen Parasar 

 
 

This project was funded by the United States of Department of Agriculture (USDA), 
which funds research aimed at improving production and animal health. The aim of this study 
was to advance knowledge of maternal immune tolerance to the fetus and mechanisms bovine 
non-classical MHC class I proteins employ to interact with immune cells and render them inert 
towards the fetus. 

 
 A fetus is a tissue graft inside the mother’s uterus yet must be accepted by the mother to 
maintain a successful pregnancy. Reproductive insufficiency and pregnancy failure are major 
causes of production loss in cattle, especially in cloned animals. Knowledge of the receptors that 
non-classical MHC class I proteins interact with may make it possible to improve reproductive 
efficiency in cattle. We have shown that three non-classical MHC class I proteins expressed 
during the third trimester, NC1*00501, NC3*00101, and NC4*00201, are expressed as cell-
surface isoforms. The other non-classical class I proteins, that we studied, NC1*00401 and 
NC2*00102, were not expressed on the surface of our cell lines and may be secreted or soluble 
proteins. The non-classical class I proteins expressed and/or secreted by embryos at different 
gestational stages can be detected using enzyme-linked immunosorbent assays (ELISA). We were 
able to produce a NC3*00101-specific monoclonal antibody for use in ELISA; however, we lost 
the cell line when we attempted to clone it. 
 

Understanding the patterns of expression of these proteins during different stages of 
pregnancy will help elucidate the association of these proteins with pregnancy success in normal 
and cloned cattle and will provide insights into mechanisms that prevent rejection of the fetus by 
the potentially hostile maternal immune system. To elucidate how non-classical class I proteins 
interact with white blood cells in the uterus, we initiated studies to identify NC3*00101-specific 
peptide ligands needed to make NC3*00101 tetramers, which can be used to understand 
interactions between MHC molecules and white blood cells. Understanding the interactions of 
non-classical class I proteins with maternal immune cells will reveal the mechanisms of 
inhibitory action that are used by class Ib proteins to suppress the maternal immune system and 
protect the fetus. 

 
This study helped to elucidate patterns of expression of cattle non-classical MHC class I 

proteins, which are important to maintain a favorable environment within uterus during 
pregnancy. 
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CHAPTER 1 

LITERATURE REVIEW 
 
 

 Pregnancy includes the complex steps of fertilization, cleavage of newly formed 

zygote by mitotic divisions to form the embryo (morula), blastocyst (blastula), and 

gastrula, and organogenesis resulting in a fully developed fetus. The average gestation 

time in cattle is 285 days. The blastocyst develops at ~7th day and hatches 8-9 days post-

conception. After gastrula formation (16-18th day post-conception) and elongation, 

embryo implantation begins at ~22 days and completes in ~40 days post-conception. 

Despite its allogeneic nature and its antigenicity, a fetus is carried to term with successful 

completion of each of these complex steps of pregnancy without being rejected by the 

maternal immune system. 

The Major Histocompatibility Complex (MHC) is the genetic region that encodes 

the transplantation antigens or MHC class I (MHC-I) and MHC class II (MHC-II) 

molecules, which are primarily involved in protecting the body against pathogens. 

Immunological recognition of pathogens includes proteolysis of foreign proteins into 

peptides, assembly of peptides on MHC-I and -II glycoproteins specialized for presenting 

the peptides on the cell-surface, and interaction of the MHC-I and MHC-II-peptide 

complexes with CD8 and CD4 T cell-receptors, respectively, leading to effector functions 

including subsequent killing or removal of the infected cells to clear the infection.  

Because MHC glycoproteins present peptides, they play an important role in the 

acceptance or rejection of the tissue grafts. A successful pregnancy requires that the fetal 

allograft remains unharmed by the mother’s potentially hostile immune system 

throughout pregnancy. In humans and mice, studies indicate that another class of 
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transplantation antigens, referred to as “non-classical MHC class I (MHC-Ib) proteins,” 

are expressed as alternatively spliced isoforms in fetal trophoblast cells and interact with 

inhibitory receptors on natural killer cells and other maternal leukocytes resulting in the 

inhibition of these cells. Examples of class Ib proteins are human leukocyte antigens 

(HLA)-E, -F and -G, Qa-2 in mice, Mamu-AG in Rhesus Macaques, and Paan-AG in 

olive baboons.  

After years of research on immune tolerance to the fetus during pregnancy, novel 

mechanisms of interaction of MHC-Ib proteins with receptors on maternal leukocytes 

have been identified in humans and mice. In cattle, identification of bovine leukocyte 

antigen (BoLA) class Ib proteins begs further research to investigate the mechanisms of 

bovine maternal-fetal immune-regulation during pregnancy and achievement of an 

immunologically tolerant state in the uterus. 

 
The Structure of MHC Glycoproteins 
 

Histocompatibility genes, which produce transplantation or histocompatibility 

antigens, were first discovered in mice [58]. This finding led to the identification of loci 

encoding human and mouse [59, 60, 110]. MHC class I antigens and successful organ 

transplantation in patients. The genes that encode MHC proteins and several other 

proteins with related functions are tightly linked in the MHC genetic region. The human 

MHC, human leukocyte antigen (HLA) complex, and mouse MHC, the H-2 complex, are 

located on chromosomes 6 and 17, respectively. The bovine MHC, which is known as the 

bovine leukocyte antigen “(BoLA) complex,” is located on bovine autosome 23. The 

genetic structure of BoLA was first described by Amerona and Stone (1978) and Spooner 

et al. [105, 106]. 
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There are two classes of MHC glycoproteins: MHC-I and MHC-II. Class I 

proteins comprise an alpha (α) polypeptide chain which is a large subunit of 44 kilo-

daltons (D) molecular weight (MW) that is non-covalently linked with a 12 kD-light 

chain called β2 microglobulin (β2m) to form a stable cell surface protein. The gene for the 

β2m is not located in the MHC region. MHC-II proteins are heterodimers composed of an 

alpha (α) and a beta (β) polypeptide chain. Class II molecules are expressed on 

professional antigen presenting cells (APCs) such as dendritic cells (DCs), macrophages 

and B cells. Class II molecules are not expressed on placental trophoblast cells and, 

therefore, will not be described in detail here. 

The general structure of the MHC in mammalian species is relatively conserved. 

The BoLA complex is divided into three regions - BoLA-I, BoLA-II and BoLA-III with 

different functions and roles. There are at least six classical MHC-I genes in the BoLA-I 

region which are expressed in a number of different combinations [11]. In addition, the 

BoLA-I region contains four non-classical BoLA-class I loci, NC1-NC4 [25]. 

BoLA-II was subdivided into BoLA-IIa and -IIb based on genetic mapping [5, 119]. The 

BoLA-IIa subregion contains the DR and DQ cluster of genes [4, 98]. The BoLA-IIb and 

BoLA-IIa subregions are about 15cM apart. The BoLA-IIb subregion includes the DMA, 

DMB, LMP2, LMP7 and TAP genes whose products are involved in antigen processing 

and transport [22, 66, 92]. The class IIb region also carries some other genes of unknown 

function such as DOA, DOB, DYA and DYB [66]. 

The BoLA-III region contains genes such as CYP21, BF, HSP70 and C4 which 

are not considered part of the MHC proper [6, 66]. Figure 1-1 shows the linkage map of 

bovine MHC genetic regions as reported earlier [3]. 
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Fig 1-1 Genetic linkage map of the major histocompatibility complex (MHC) region in 
cattle 
 
 
Classical (MHC-Ia) and Non-classical (MHC-Ib) MHC-I Proteins 
 

MHC-Ia proteins show ubiquitous expression. They are absent from mature 

erythrocytes of larger mammals such as humans and pigs but in rodents they are present 

on erythrocytes at low density. The MHC-Ia molecules are extremely polymorphic with a 

large number of alleles present in the population. These proteins are transmembrane 

glycoproteins and play an important role in immune regulation. 

MHC-Ib genes are monomorphic or oligomorphic and often possess premature 

stop codons, and/or putative non-classical amino acid motifs (IPI and VPI) in the 

transmembrane domain. Similar to class Ia genes, most class Ib genes have eight exons 

which encode the heavy chain. Exon 1 encodes the signal sequence that is cleaved after 

the newly synthesized protein is targeted into the endoplasmic reticulum (ER). Exons 2, 3 

and 4 encode the α1, α2 and α3 domains, which form the extracellular portion of the 

protein. The transmembrane domain is encoded by exon 5. Exons 6, 7, and sometimes 

part of exon 8 encode the cytoplasmic domain. In contrast to MHC-Ia proteins, non-

classical class I proteins (MHC-Ib) are expressed in specific tissues and under specific 

conditions. These proteins often have a truncated cytoplasmic domain. As a result of 
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alternative splicing, these proteins are produced as transmembrane and soluble isoforms 

[49].  The process of alternative splicing determines the secreted or lipid-linked nature of 

some class Ib molecules such as HLA-G (HLA-G2) and Qa-2 [50]. Alternative splicing 

of HLA-G or Qa-2 transcripts that eliminates or splices out exon 5, results in only 

secreted isoforms.  In contrast to class Ia molecules which require binding with a light 

chain or β2-microglobulin (β2m) for their cell-surface expression [51, 95, 115, 116], 

MHC-Ib proteins do not always require a light chain for their expression. Membrane-

HLA-G1 and soluble HLA-G5 associate with a light chain whereas membrane HLA-G2 

and –G3 and soluble HLA-G6 do not associate with a light chain or β2m [49]. 

 
Peptide Binding to MHC Glycoproteins 
 

MHC class I proteins bind peptides from intracellular pathogens and the animal’s 

own protein-derived peptides. The protein complexes are digested in the cytosol by 

proteasomes into 8-10 amino acid long peptides [71]. These peptides are accommodated 

in the peptide-binding cleft formed by the α1 and α2 domains of MHC-I proteins. The N-

termini of freshly synthesized MHC-I glycoproteins contain N-linked glycan. N-linked 

glycans are trimmed by Glucosidases I and II (GlsI/II) to a single terminal glucose 

residue, which allows the MHC-I protein to interact with chaperon proteins. After this, 

the first interaction is with calnexin (CNX), which allows β2m to bind with the MHC-I 

heavy chain. Calreticulin (CRT) then recruits the MHC- protein to the peptide loading 

complex (PLC) [94]. The PLC is formed by the transporter associated with antigen 

processing (TAP) heterodimer together with other proteins and chaperon molecules. 

Tapasin, Erp 57, and CRT in association with other chaperons in the PLC help to locate 

the MHC-I protein to the PLC. Peptides longer than 8-10 amino acids are trimmed by ER 
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aminopeptidases known as “ERAAP/ERAP1 and ERAP2.” Finally, tapasin-mediated 

editing results in preferential binding of approximately sized peptides in the peptide-

binding groove [28, 79, 80, 112]. The MHC-I-peptide complexes then move to the cell 

surface for recognition by T cell-receptors on CD8+ T lymphocytes. 

MHC-II glycoproteins bind peptides derived from endocytosed extracellular 

proteins. The α and β chains of class II proteins associate with the invariant chain (Ii 

chain) and the complex moves to a mature endosome via the trans-Golgi network (TGN). 

In mature endosomes, the invariant chain is cleaved by proteolysis to form the class II 

associated invariant chain peptide (CLIP) [18, 37, 55, 63, 78, 83, 109, 127]. Endocytosed 

proteins internalized by a cell from exogenous sources are degraded in increasingly acidic 

and proteolytic endosomal compartments of early and late endosomes, and lysosomes by 

acidic lysosomal proteases called cathepsins into peptides [123]. The MHC-II-related 

chaperons such as HLA-DM and HLA-DO are expressed in the ER and form complex. 

DM-DO complexes co-transport to late endosomes, where DM catalyzes the replacement 

of the CLIP fragment in the MHC-II binding groove by exogenous peptides [26, 70, 73, 

74]. The DM protein regulates the binding of high-affinity peptides to MHC-II [100]. The 

MHC-II-peptide complexes move to the cell surface for recognition by the CD4+ T cells. 

 
MHC Glycoproteins and Transplantation 
 
 The process of recognition of self and foreign peptides by T lymphocytes was 

first studied in mice [128]. The findings demonstrated that cytotoxic T lymphocytes lyse 

virus-infected cells under specific immunological conditions. Virus-infected target cells 

are killed only when they carry the same MHC-I antigens as the immune T cells, which 

explains MHC-mediated restriction of T lymphocyte function. The researchers reported 
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that virus-infected cellular targets of cytotoxic T lymphocytes contain two parts, the viral 

antigen and the MHC-I antigen. Similar studies revealed that MHC-II antigens on APCs 

must be the same as the MHC-II proteins that primed the T lymphocyte in order for the T 

cells to recognize the antigens. They found that T helper cells only recognize antigens on 

the surface of APCs and the class II molecule is part of the antigenic complex recognized 

by the T helper cells [101, 113]. Therefore, the MHC molecules, both class I and II, 

govern the effector functions of cytotoxic and helper T cells, respectively. MHC-I and 

MHC-II polymorphism have been associated with susceptibility and resistance to many 

pathological conditions [21, 27]. Certain alleles are more frequent in one population than 

in another. One consequence of the MHC-I and MHC-II polymorphism is that when a 

diseased organ is replaced by transplantation of a healthy organ, the new organ may be 

accepted or rejected based on the degree of similarity between the class I and class II 

antigens on the cells of the donor and recipient tissues.  

It is helpful to understand the following terms that describe transplantation 

between animals: 

Autograft - A tissue graft where the tissue is transplanted back onto the original donor. 

Isograft - A graft between individuals of identical genetic composition (i.e. syngeneic 

individuals) such as identical twins or mice of the same inbred mouse line. 

Allograft – A graft between individuals of the same species but of different genetic 

compositions (i.e., allogeneic individuals) such as human to human and from one strain 

of mouse to another. 

Xenograft – A graft between members of different species (i.e., xenogeneic individuals) 

such as a graft from a monkey to human. 
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The greatest concern is with allografts because allografting is commonly practiced 

for treatment of many human disorders. Blood transfusions as well as skin, kidney, liver, 

and other organ transplants are all examples of allografts. An allogeneic skin graft is 

sloughed within 10 days due to the infiltration of the graft bed with lymphocytes, 

monocytes and a few plasma cells. The second time, a graft from the same donor is 

rejected much faster than the first time and there is more infiltration with 

polymorphonuclear leukocytes, lymphoid cells, and plasma cells, including thrombosis 

and acute cell destruction. Therefore, the second-set rejection is more severe than the 

first-set rejection. Grafts from new donors are rejected at the same rate as the original 

first-set rejection. The presence of immunological memory suggests that graft rejection is 

mediated by lymphocytes. Transplantation rejection can be prevented or delayed by 

matching the MHC class I and class II antigens of the donor and recipient. Another 

method of preventing graft rejection is to use immunosuppressive drugs that inhibit T 

lymphocyte activation. 

 
Fetal Allograft and Placentation in Cattle 
 

Despite its allogeneic nature, the fetal allograft is not normally rejected by the 

potentially hostile maternal immune system. The early embryo is made of blastomeres 

which are undifferentiated cells resulting from cleavage of the fertilized egg (zygote). 

After a series of divisions and compaction, the embryo forms a compact mass of 16-32 

blastomeres known as the morula. The morula develops into a fluid-filled hollow ball of 

over a hundred cells known as the blastocyst. A blastocyst has two distinctive tissues, the 

outer single-cell layer of trophectoderm or trophoblasts surrounding the fluid-filled cavity 

(blastocoel) which gives rise to extra-embryonic tissues and the inner cell mass gives rise 
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to the embryonic disc and eventually the embryo proper. Together with the somatic 

mesoderm, the trophoblast layer is referred to as the “chorion.” 

In cows, the gestation length is 285 days and the chorioallantois starts attaching to 

the gravid uterus at about 4 weeks of gestation. With the growth of extraembryonic 

membranes inside the uterine lumen chorioallantois starts to form “cotyledons” over 

specialized areas of the endometrium known as “caruncles.” The caruncular surface 

develops crypts and the apposing chorioallantois forms finger-like projections, which 

enter into the crypts, greatly enhancing the contact surface area between the endometrium 

and the trophoblast [97]. The combination of cotyledonary and caruncular tissues forms 

the “placentomes.” Placentomes are 10-12 cm long and 2-3 cm thick. The chorioallantois 

that develops and apposes with endometrium between placentomes is the 

interplacentomal chorioallantois. The chorioallantois, both cotyledonary and 

intercotyledonary, is responsible for nutrient uptake that provides for the fetal metabolic 

demands and fetal tissue growth. This type of placenta is known as a “cotyledonary 

placenta” and is found in ruminants. The majority of ruminant trophoblast cells is 

uninucleate and functions in nutrient exchange and metabolism. An important feature of 

the ruminant-placenta is the presence of binucleate cells (BNC) or giant trophoblast cells, 

which develop by acytokinetic mitosis of uninucleate trophoblast cells. Binucleate cells 

constitute 15-20% of the bovine trophoblast cells. Binucleate trophoblast cells fuse with 

uterine epithelial cells both in the placentomes and the interplacentomal region to form 

trinucleate cells, which are feto-maternal hybrids, throughout pregnancy [61, 124]. BNC 

secrete bovine pregnancy-associated glycoproteins (PAGs) [125], progesterone, 

transforming growth factor-β (TGF-β), and placental lactogen which act as local 
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immunomodulators to maintain pregnancy as well as help in the metabolism and 

development of placentomes [34, 75, 89, 90].  

Ruminant placenta is often referred to as “synepitheliochorial”. The bovine 

chorion (trophoblast) layer is in intimate contact with the maternal epithelium. The 

binucleate cells migrate toward the uterine epithelium and fuse with the epithelial cells, 

secreting their granules to the basal side of the uterus. These secretory granules provide a 

mechanism for transfer of MHC-I proteins to the maternal side of the placenta. The γδ-T 

cells also have been identified in the uterine epithelium during pregnancy in ruminants 

[64, 68, 85]. These cells may play a role in the development of the conceptus, 

immunosuppression, and placental detachment during parturition. 

 
The Role of MHC Class I Proteins in Reproduction 
 
 In most species, mature trophoblast cells do not express highly polymorphic 

classical class I protein [33, 40, 48]. Fetal allografts expressing classical class I proteins 

during the first trimester of pregnancy do not survive in the uterus [9]. In ewes, a study 

showed that intrauterine skin autografts were immunologically accepted, whereas the 

allografts were rejected [88].  

In cattle, trophoblast cells in interplacentomal, arcade, and villous/crypt regions 

possess unique MHC-I expression patterns. In normal pregnancy, cattle trophoblasts do 

not show MHC-I expression before 120 days of pregnancy. However, MHC-I expression 

by interplacentomal and arcade trophoblast cells during the last trimester in cattle is 

normal [23]. Cows carrying MHC-compatible pregnancies at term have reduced levels of 

immunoreactive interleukin-2 (IL-2), less apoptosis, less tumor necrosis factor-alpha 

(TNF-α) in macrophages, and reduced degranulation of binucleate trophoblast cells, 
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which is similar to the conditions seen with retained placenta [24]. In the third trimester 

of pregnancy, MHC class Ia and class Ib proteins are expressed in the interplacentomal 

and arcade regions [25]. The ratio of class Ia to class Ib gene expression varies 

extensively among pregnancies. About 34-79% of transcripts from interplacentomal 

trophoblast cells are encoded by class Ib genes. Gene sequence analysis led to the 

discovery of four bovine non-classical loci: BoLA-NC1, BoLA-NC2, BoLA-NC3, and 

BoLA-NC4. 

Normally, cattle have a greater number of lymphocytes in the non-gravid uterine 

horn than in the gravid horn. In early pregnancy, the endometrial lymphocytes decrease 

in number in sheep, pigs, and cattle [12, 57, 64, 122]. In 34-63 day old SCNT 

pregnancies, trophoblast MHC-I expression was widespread and accompanied by 

endometrial infiltration of CD3+ T lymphocyte that formed aggregates as compared to 

normal pregnancies [45]. This maternal lymphocytic response involved 80% CD4+ 

helper T cells, with the remaining cells comprised of equal numbers of CD8+ cytotoxic T 

cells and B cells with a minimal number of γ/δ-T lymphocytes (Davies unpublished). The 

large number of CD4+ T helper cells suggests that allogeneic trophoblast MHC-I proteins 

are processed by maternal antigen presenting cells (APCs) and that MHC-I derived fetal 

peptides are presented on maternal MHC class II proteins. This is an indirect recognition 

pathway, where recognition is restricted by the host MHC class II molecules that have 

bound peptides derived from an allogeneic MHC molecule [43]. Fetal antigens are 

probably carried towards the uterine endometrial epithelium by binucleate cells and 

released with the secretory granules after the BNC fuse with the uterine epithelial cells. 

Presentation of peptides derived from fetal MHC-Ia antigens triggers recruitment of Th1 
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cells and initiation of an inflammatory response involving release of tumor necrosis 

factor (TNF)-α, interleukin (IL)-1β, IL-12, and IFN-γ, which interferes with placental 

attachment and causes embryonic death. The success rate of nuclear transfer in cattle 

ranges from 0% to 10% [114]. 

These findings suggest that abnormal trophoblast MHC-I expression accompanied 

by lymphocytic infiltration of the endometrium causes early embryonic mortality of 

cloned fetuses. Therefore, appropriate expression of fetal MHC-I antigens at the bovine 

fetal-maternal interface is critically important for immunological acceptance of the 

allogeneic fetus by its mother. 

 
Non-classical MHC-I (MHC-Ib) Proteins and Tolerance to the Fetal-allograft 
 
 The mystery of immunological acceptance of the fetal allograft has been the focus 

of many studies. There are various mechanisms that induce maternal tolerance. These 

include production of TGF-β1 and interleukin-10 (IL-10) by the Treg subset of 

CD4+/CD25 cells, secretion of prolactin, gonadotropin and progesterone by both fetal 

and endometrial cells, and expression of high levels of complement regulatory proteins 

by fetal cells and expression of inhibitory members of the B7 and the TNF family of 

ligands [19, 49, 95]. Fetal cells also produce immunosuppressive cytokines, chemokines, 

and prostaglandins, which dampen T lymphocyte proliferation, and secrete the 

immunosuppressive hormone progesterone. Importantly, trophoblast cells regulate the 

expression of MHC-Ia and MHC-Ib proteins [23, 24, 25]. As mentioned earlier, villous 

trophoblast cells do not express class Ia and class II molecules. However, in cattle 

interplacentomal and arcade trophoblast cells express class I proteins during the second 
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and third trimesters of pregnancy. MHC-Ib proteins are uniquely expressed in human, 

mouse, rhesus macaques, baboons, and cattle trophoblast cells.  

 HLA-E, HLA-F, and HLA-G are human class Ib proteins and Qa-1 and Qa-2 are 

murine class Ib proteins are. Similar class Ib proteins studied in non-human primates 

include Mamu-AG in Macaca mulata and Paan-AG in olive baboons. HLA-G and Qa-2 

proteins have been studied most extensively for their role in maternal tolerance to fetal 

allografts [20, 35]. HLA-G is predominantly expressed on fetal extravillous trophoblasts 

[35, 62]. HLA-G provides inhibitory signals to NK cells, macrophages, monocytes, and 

lymphocytes by interacting with various inhibitory recetors expressed by leukocytes to 

induce immunosuppression and fetal survival [49]. These receptors are inhibitory 

leukocyte immunoglobulin-like receptors 1 and 2 (LILRB1/LIR-1/ ILT-2 and LILRB-

2/LIR-2/ILT-4), CD94/NKG2A, and killer-immunoglobulin-like receptor (KIR) 2DL4 

(KIR2DL4) [2, 7, 38, 65, 84, 86, 102, 104].  

Murine Q9 antigen (referred to as Qa-2) of the Qa-2 family of proteins is encoded 

at the Ped (preimplantation embryonic development) gene locus. It was recognized 

because of its role in embryonic development and reproductive tolerance. The murine Q9 

antigen is a functional homologue of HLA-G [20]. Both HLA-G and Qa-2 play a role in 

tumor surveillance via peptide presentation to CD8+ T cells [41]. HLA-G and Qa-2 can 

present a larger array of peptides than HLA-E and Qa-1 [54, 91, 111]. HLA-G can 

display restricted but still a diverse set of peptides [29, 52]. HLA-G has two free cysteine 

residues (Cys42 and Cys142) unlike most of other MHC-I alleles. Both soluble and cell-

surface HLA-G isoforms can exist as disulfide-linked dimer with intermolecular Cys42-

Cys42 disulfide bond. The HLA-G dimer has oblique orientation which exposes the 
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receptor-binding sites upward and more accessible. HLA-G dimer has much higher 

overall affinity toward LILRBs than the monomer because it has increased avidity for its 

ligand [15, 103]. The HLA-G dimer on the cell surface inhibits NK cells through LILRB1 

binding [42]. The peptide binding surfaces of each HLA-G monomer is too small to be 

accessible by T cell receptor; therefore, it cannot work as antigen presenting molecule for 

the T cell response. However, it can present LILR- and CD8- binding sites, which 

suggests that HLA-G dimers are important in immunosuppression. 

HLA-E and Qa-1 are orthologues and present peptides derived from the leader 

sequences of other class I molecules [16, 53]. HLA-E and Qa-1 play a role in the innate 

immune response as ligands for the receptors of the CD94/NKG2 family expressed by 

NK and T cells [17, 120]. In some bacterial and viral infections, class Ia proteins are 

downregulated. Due to non-availability of leader sequence, HLA-E and Qa-1 are not 

expressed properly. NK cells can detect and eliminate the compromised MHC deficient 

host cells [1]. 

Cattle have two MHC clusters that are equivalent to the human MHC-I beta and 

kappa blocks. The orthologous MHC-I region in cattle carries the heavy chain genes for 

BoLA-NC2, -NC3, and -NC4. The only expressed MHC-I gene in the orthologous human 

kappa block is HLA-E. In addition, this block contains six to eight MHC-Ia genes and 

expresses two to three MHC-Ia proteins. The cattle orthologo kappa block has one 

expressed MHC-Ib gene, BoLA-NC1 (Davies unpublished), that maps very close to 

HLA-E, which suggests that these genes can be true orthologs. 

 In Rhesus monkeys, an ortholog of HLA-G named “Mamu-G” was identified in 

trophoblast cells from a day-36 post-conception placenta [13]. This class Ib protein is 
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non-functional as it contained premature stop codons and frameshift mutations. 

Therefore, it is encoded by a pseudogene. Another non-classical molecule expressed 

exclusively in rhesus monkey placenta, Mamu-AG, shares functional similarities with 

HLA-G [14]. It has both membrane and soluble isoforms as a result of alternative 

splicing [93]. 

 
Peptide Presentation by Non-classical MHC-I Proteins 
 
 Human and murine class Ib proteins have been extensively studied for their 

peptide-presenting characteristics. Generally, class Ib molecules have peptide-presenting 

capacity, which varies among all the expressed class Ib molecules [29, 99]. Compared to 

class Ia molecules, class Ib molecules present a far narrower range of peptides, which 

correlates well with their narrow tissue distribution. HLA-G molecules present nonamer 

peptides, which are similar to those of class Ia molecules. The anchor residues for HLA-

G are isoleucine (I) or leucine (L) at position 2, proline (P) at position 3, and leucine at 

position 9. HLA-G has a preference for non-anchor residues. For instance, position 1 is 

generally positively charged and position 7 is a hydrophobic amino acid residue in most 

of the ligand motifs [87]. Therefore, HLA-G glycoproteins which present the specific 

sequence motif with the consensus sequence XI/LPXXXXXL resemble classical MHC 

class I proteins [96]. Because HLA-G interacts with NK cell inhibitory receptors and 

provides a signal peptide for increased expression of HLA-E, it inhibits the NK cells that 

express C-type lectin like inhibitory receptors [76, 77]. 

The murine class Ib molecule Qa-2 binds with specifically histidine-containing 

nonapeptides (9-amino acids long) with two anchor residues, Histidine (H) at position 7 

and Leucine, Isoleucine (I) or Phenylalanine (F) at position 9 [91]. Positions 2, 3, 5, and 6 
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are auxiliary anchors occupied by aliphatic residues. This suggests that a relatively small 

number of nonapeptides fit the Qa-2 motif compared to the large number of peptides that 

bind to other class I proteins; however, Qa-2 binds with a large array of endogenous 

peptides [54, 91].  

Peptide binding information is helpful to determine the physiological and 

immunological role of class Ib proteins, which are expressed in tissues under specific 

conditions. The peptide motif for BoLA class Ia protein, BoLA-N*01701, has been 

identified [8, 39], but BoLA-Ib peptide motifs have not yet been identified.  

 
Bovine MHC-Ib (BoLA-Ib) Proteins 
 
 Transcripts from four bovine non-classical class I loci, BoLA-NC1, BoLA-NC2, 

BoLA-NC3 and BoLA-NC4 were identified [25] in third trimester-interplacentomal and 

arcade region trophoblast cells. Amino acid alignment of class Ia and class Ib alleles at 

the four BoLA-NC loci revealed that all of the BoLA-Ib alleles possess characteristic 

features such as limited or no polymorphism, putative non-classical amino acid motifs 

(IPI, VPI or VLI) in the transmembrane domain, differential splicing in the 

transmembrane domain, and/or premature stop codons.  

The BoLA-NC1 locus encodes seven alleles. The NC1*00101 allele has already 

been described [46]. NC1*00201 (AH19), NC1*00301(AH12), and NC1*00401(AH11) 

were identified by Davies et al. (2006) [25]. Most recently NC1*00501, NC1*00601, and 

NC1*00701 alleles have been identified (Davies et al. unpublished). Multiple NC1 splice 

variants with partial or complete deletion of exon 5, which encodes the transmembrane 

domain, have been identified. Examples include NC1*00101 SV, NC1*00201, 

NC1*00202 SV, and NC1*00401 
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(http://www.ebi.ac.uk/ipd/mhc/bola/nomenclature.html). These splice variants suggest 

that both membrane-bound and soluble isoforms are encoded at this locus.  

The NC2 locus exhibits minimal polymorphism with only three closely related 

alleles identified: NC2*00101 [36], NC2*00102 [25], and NC2*00103 (Davies et al. 

unpublished).  

NC3 and NC4 were new loci identified by Davies et al. (2006) [25]. The NC3 

locus appears to be monomorphic and encodes an allele NC3*00101 that has an early 

stop codon resulting in a truncated cytoplasmic domain. Four alleles have been identified 

at the NC4 locus: NC4*00101 (AH12), NC4*00201 (AH11), NC4*00202 and 

NC4*00301. The NC4 locus may not be expressed in all haplotypes. The variation in the 

ratio of expression of classical to non-classical gene expression in trophoblast cells 

appears to be influenced by the haplotype composition of the fetus. Haplotypes that have 

a higher ratio of non-classical class I expression may be associated with higher 

immunological acceptance of the fetal allograft. 

 
Receptors for MHC-Ib Ligands 
 
 MHC-Ib proteins interact with inhibitory and activating receptors expressed on 

maternal leukocytes and direct the actions of the leukocytes. NK cell receptors are 

encoded at two genetic regions, the natural killer complex (NKC) and the leukocyte 

receptor complex (LRC). The NKC on bovine Chr5, murine Chr6, and human Chr12 

encodes killer cell lectin-like receptors such as inhibitory and activating members of the 

CD94/NKG2 receptor family. These are expressed as heterodimers; CD94 combines with 

various NKG2 isoforms to form functional receptors. The NKG2A isoforms have 

immunoreceptor tyrosine-based inhibitory motifs (ITIM), whereas NKG2B and NKG2C 
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isoforms have immunoreceptor tyrosine-based activating motifs (ITAM). Human HLA-E 

interacts with CD94/NKG2A, B, and C receptors [17, 49, 50, 82]. Similarly, murine Qa-1 

binds with CD94/NKG2C and CD94/NKG2E activating receptors on NK cells [67, 121]. 

There are two CD94 genes, seven NKG2A genes, and one NKG2C gene expressed in 

cattle [10]. In rodents, the NKC also encodes the Ly49 family of receptors [126]. The 

Ly49 receptors are homodimeric type-II C type lectin-like molecules [30]. In cattle, a 

single Ly49 locus has been identified that is polymorphic and produces three alternatively 

spliced Ly49 receptors. These receptors were reported to be inhibitory as reported earlier. 

They therefore may act as inhibitory receptors for NK cells [32, 72]. 

The other genetic region, the LRC present on bovine Chr18, human Chr19, and 

murine Chr7, encodes three types of receptors: the killer immunoglobulin-like receptors 

(KIR), the leukocyte immunoglobulin-like receptors (LILR), and the leukocyte-

associated immunoglobulin-like receptors (LAIR). The KIR in primates are functional 

homologues of the Ly49 receptors in rodents [56, 81, 115]. Both KIR in primates and 

Ly49 receptors in rodents are highly polymorphic with unique combinations of alleles 

expressed on NK cells in different individuals [117, 118].  Killer Immunoglobulin-like 

receptors recognize mostly MHC-Ia proteins [72]. In cattle, multiple KIR members have 

been demonstrated [107, 108]. Soluble HLA-G binds with KIR2DL4 present on NK cells 

and activates the NK cells. KIR2DL4 is predominantly localized in endosomes. Soluble 

HLA-G is thus endocytosed to interact with KIR2DL4. Interaction between sHLA-G and 

KIR2DL4 activates a proangiogenic response, which supports a role for soluble HLA-G 

in augmenting vascularization early in pregnancy. KIR2DL4 possesses structural 

elements associated with both the activation and inhibition of NK cells [81]. In addition 
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to HLA-G, human trophoblasts express HLA-C, but not HLA-A or -B [69]. HLA-G and 

HLA-C binding with KIR on human NK cells promotes conversion of maternal spiral 

arteries into blood and nutrient-supplying channels to the placenta [44]. 

 
Summary 
 
 There is extensive literature on the role of MHC-Ib proteins in inducing maternal 

immune tolerance to the fetus. This literature is the basis for my research to better 

understand the mechanism of immune regulation at the maternal-fetal interface during 

bovine pregnancy. Fetal-allografts are immunologically accepted in normal pregnancies. 

Evidence of expression of class Ib molecules by human and murine trophoblast cells and 

their role in inducing immune tolerance by reacting with the inhibitory receptors 

expressed on different leukocytes have been reported. Therefore, cattle class Ib proteins 

are potentially key players in immunomodulation at the maternal-fetal interface. 

Identification of the expression patterns of the bovine trophoblast class Ib proteins and 

their peptide binding motifs will help identify pathways these proteins use to maintain 

maternal immunological tolerance to fetus. 

 
Research Impact and Applications 
 
 This research project is based on the hypothesis that cattle MHC class Ib proteins 

are produced as surface and/or secreted isoforms and they interact with maternal NK cells 

and other leukocytes to provide an immunological state within the uterus favorable for 

maintenance of the fetus. 

 The research addressed the following specific aims: 
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1) Determine which bovine class Ib proteins are produced as transmembrane 

proteins and/or secreted isoforms. 

2) Develop or identify monoclonal antibodies specific for BoLA-Ib proteins 

3) Determine peptide motifs recognized by BoLA-Ib proteins and to make BoLA-Ib 

tetramers to identify the maternal leukocytes that express receptors that bind BoLA-Ib 

proteins. 

 Development of an enzyme-linked immunosorbent assay (ELISA) to measure 

secreted MHC-Ib proteins in embryo and trophoblast culture supernatants and cattle 

serum is important because secreted MHC-Ib proteins may be a biomarker for fetal 

health. Once the importance of class Ib proteins in maintaining pregnancy has been 

established, these proteins may offer a tool for preventing immune-mediated abortions in 

naturally bred and cloned cattle. 

 Identification of the BoLA-Ib peptide motifs will facilitate BoLA-Ib tetramer 

production. The BoLA-Ib tetramers can be used to identify and sort lymphocytes that 

react with cattle MHC-Ib proteins so that their inhibitory and activating receptors can be 

characterized. 
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CHAPTER 2 

EXPRESSION OF BOVINE CLASSICAL (BoLA-Ia) AND NON-CLASSICAL 

(BoLA-Ib) CLASS I PROTEINS IN MOUSE P815 AND HUMAN K562 CELLS 

 
Abstract 
 
 During the third trimester of pregnancy in cattle, interplacentomal trophoblast 

cells express both classical (BoLA-Ia) and non-classical (BoLA-Ib) MHC class I 

proteins. To investigate whether these proteins are expressed as surface or secreted 

proteins, we cloned protein-coding DNAs in the pcDNA 3.1 mammalian expression 

vector and sequenced the inserts to identify plasmids to transfect murine P815 and human 

K562 (MHC null) cultured cells. Stably transfected P815 and K562 cell lines were 

stained with H1A and W6/32 antibodies, respectively, to detect expression of the proteins 

by flow cytometry. We identified two bovine classical (N*01701 and N*01802) and three 

non-classical (NC1*00501, NC3*00101, and NC4*00201) proteins on the cell surface. 

Other non-classical proteins (NC1*00401 and NC2*00102), which may be released or 

secreted by cells into their surrounding extracellular spaces (soluble or secreted proteins), 

do not exhibit cell surface expression. The surface expressing cells were sorted and 

enriched. Both classical and non-classical proteins were precipitated from the cell culture 

supernatant using ammonium sulfate. The cell lines with surface expressing BoLA-Ia and 

BoLA-Ib proteins shed and/or released more MHC-I proteins into the culture 

supernatants than unsorted non-surface expressing cell lines. Transfected cells were lysed 

and histidine tagged proteins were purified using nickel affinity column chromatography. 

Western blot analysis with an anti-V5 antibidy demonstrated the presence of MHC-I 
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heavy chains in all of the transfected cell lines. These data confirm that bovine class Ib 

molecules NC1*00501, NC3*00101, and NC4*00201 are expressed as surface isoforms. 

 
Introduction 
 

The MHC, the genetic region that encodes the proteins responsible for tissue graft 

compatibility [21], encodes MHC class I (MHC-I) and MHC class II (MHC-II) 

glycoproteins. There are two subclasses of MHC-I proteins. MHC-Ia proteins are 

membrane-bound isoforms that are expressed in all nucleated cells of the body and 

present intracellular pathogen-derived peptides or the animal’s own peptides on the cell 

surface for immune recognition by CD8 T cells. With the discovery of HLA-G [12], 

another category of MHC-I proteins referred, non-classical class I (MHC-Ib), was 

recognized. MHC-Ib molecules are less polymorphic, possess specific molecular motifs 

in their transmembrane domains and contain premature stop codons. These features make 

MHC-Ib proteins important immunomodulatory molecules which may induce 

immunotolerance during pregnancy. MHC-II proteins are expressed only on professional 

antigen presenting cells (APCs) which present extracellular pathogen-derived peptides on 

the cell surface for recognition by CD4 T cells. 

An allogeneic transplant is a tissue graft from a genetically distinct member of the 

same species. A fetus carrying half of its genome from the father is a semi-allogeneic 

tissue inside the uterus, yet it circumvents the maternal immune system. Many studies 

performed on humans, mice, and non-human primates reveal that both fetal and maternal 

mechanisms contribute to the immunological tolerance of the mother to the fetus. 

Placental lactogen, progesterone, prostaglandins and other immunomodulatory hormones 

as well as chemokines synthesized by uterine cells, including T-regulatory cells and 
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trophoblast cells, contribute to tolerance [17, 19, 38]. Non-classical class I molecules 

produced by fetal trophoblast cells interact with inhibitory receptors expressed by T-

lymphocytes and natural killer (NK) cells to inhibit these immune cells, thus protecting 

the conceptus from maternal immune attack [1, 3, 11, 12, 17, 19, 23, 32]. The human 

class Ib molecule HLA-G interacts with leukocyte inhibitory receptors such as leukocyte 

immunoglobulin-like receptors 1 (LILR1) and LILR2 to induce immunosuppression [6, 

19, 36].  HLA-G also upregulates expression of ILT2, ILT3, ILT4 and KIR2DL4 in 

APCs, NK cells and T cells, which protects the HLA-G expressing tissues from immune 

cell attack [26]. Qa-2, a mouse class Ib molecule and functional homolog of HLA-G, 

controls the rate of cleavage and survival of mouse preimplantation embryos [6]. 

Alternative splicing is a mechanism for generating protein diversity in non-

classical major histocompatibility complex class I (MHC-Ib) molecules. Alternative 

splicing produces membrane and soluble isoforms. In humans, differential mRNA 

splicing of HLA-G results in synthesis of membrane isoforms, HLA-G1, -G2, and -G3 

and soluble isoforms, HLA-G5 and –G6 [12, 19]. Similarly, murine Qa-2 encodes two 

soluble isoforms, S1 Qa-2 and S2 Qa-2 [6], mamu-AG in rhesus monkeys encodes 

membrane-bound isoforms Mamu-AG1, Mamu-AG2 and Mamu-AG3 [4], and Paan-AG 

in baboons encodes four membrane isoforms, Paan-AG1, -AG2, -AG3 and -AG4, and a 

soluble isoform, sPaan-AG1 [22]. Alternatively spliced variants of bovine class Ib 

protein, BoLA-NC1 have also been found (Davies unpublished). However, splice 

variants of BoLA-NC2, -NC3, and -NC4 have yet to be positively confirmed. This is the 

first study to investigate the surface expression and/or secretion of BoLA-Ib proteins. 

Here we report that the bovine class Ib molecules NC1*00501, NC3*00101, and 
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NC4*00201 are expressed as cell surface proteins. However, membrane expression of the 

bovine class Ib proteins NC1*00401 and NC2*00102 was not detected. 

Most mammalian trophoblastic cells do not express polymorphic, classical, MHC-

I molecules [10, 18]. However, cattle interplacentomal and arcade trophoblast cells 

normally express BoLA-Ia molecules during the third trimester of pregnancy [9]. MHC-

Ia expression during the last trimester triggers the release of the placenta during 

parturition [8, 16]. Interplacentomal trophoblast cells from late pregnancy expressed 

classical (BoLA-Ia) and non-classical (BoLA-Ib) genes at varying levels depending on 

the specific MHC class I haplotypes carried by the conceptus [7]. Comparatively, 

trophoblast cells expressed more MHC class I transcripts encoded at non-classical loci 

than peripheral blood mononuclear cells (PBMC). However, all of the classical genes 

expressed in PBMC were also expressed in trophoblast cells. 

We propose that bovine trophoblast cells express cell surface and secreted non-

classical MHC-I proteins. To investigate this hypothesis, we used the murine 

mastocytoma cell line P815 (ATCC TIB-64) and the human MHC-null cell line K562 

(ATCC CCL-243) to express cattle class I proteins. Cells were transfected with bovine 

transgenes encoding classical and non-classical class I proteins. Post-transfection analysis 

of cell surface expression was performed by flow cytometry. Secreted proteins in culture 

supernatants were precipitated by ammonium sulfate precipitation and then detected 

using Western blots. 
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Materials and Methods 

Samples 

Full-length MHC-I cDNA was reverse transcribed from interplacentomal 

trophoblast-RNA, cloned in the pCR II TOPO vector (Invitrogen), and stored at -80°C as 

part of a previous study [7]. These were the initial samples used in the current study. 

 
Subcloning of Classical and Non-Classical MHC Class I Genes 
 

We amplified classical (N*01802 and N*01701) and non-classical (NC1*00401, 

NC1*00501, NC2*00102, NC3*00101 and NC4*00201) class I alleles from the AH11 

haplotype using Platinum Pfx DNA polymerase (Invitrogen) and subcloned them into the 

pcDNA3.1 One Directional V5-His mammalian expression vector (Invitrogen) to express 

the protein with a 3’ 6x His tag and a V5 epitope. Fifty µL PCR reactions were prepared 

by adding 1 U Taq DNA Polymerase (proofreading), 0.8 µM of each primer (listed 

below), 2.0 mM MgSO4, 0.2 mM dNTPs, 1X optimized PCR buffer, and 2 µL of the 

diluted (1:1000) cDNA from the pCR II TOPO clone. PCR amplification was carried out 

using an Eppendorf Master cycler (Brinkmann) with the following parameters: 1 min 30 

sec at 94ºC; 25 cycles of 30 sec at 94ºC, 15 sec at 60ºC and 90 sec at 68ºC; 10 min at 

68ºC; hold at 4ºC. PCR products were purified with the QIAquick PCR Purification Kit 

(Qiagen) and product size was confirmed using 1% agarose gel electrophoresis. Purified 

DNA was ligated into the pcDNA 3.1 expression vector for 5 min at room temperature, 

transformed into TOP10F’ One Shot Competent Escherichia coli (Invitrogen), and plated 

on LB agar containing 100 µg/mL ampicillin. There was no blue/white screening. 

Consequently, insert size in isolated colonies was checked by PCR amplification of lysed 

bacteria with T-7 forward and BGH reverse sequencing primers, which bind to sites 



41 
 

within the vector, followed by agarose gel electrophoresis. Only clones with inserts of the 

expected size were considered for further evaluation. One forward and two reverse 

amplification primers were used: 

Forward primer (BoC1FP-E1B) ACCATGGGGCCGCGAACCCTC 

Reverse primer (BoC1RP-3’A) GATGAAGCATCACTCAGTCCCC 

Reverse primer (BoC1RP-E7A) TTTAGGAACCGTGAGAGACACATC 

By using two different reverse primers, clones with the normal stop codon 

(reverse primer BoC1RP-3’A) and clones expressing a 3’ 6x histidine tag and a V5 

epitope (reverse primer BoC1RP-E7A) were produced. 

 
Sequencing of Subclones 
 

Correct size subclones were sequenced using T-7 forward and BGH reverse 

sequencing primers and subclones with full-size insert were selected for expression. For 

all the alleles, clones from multiple cell preparations were sequenced. Plasmids were 

purified using a QIAprep spin Miniprep Kit (Qiagen), and sequenced in both directions 

using a BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems) and ABI 

Prism 3100 DNA Analyzer (Applied Biosystems). Sequence analysis was done using 

Lasergene SeqMan  II software (DNASTAR, Inc.) to trim vector sequences and 

generate MHC class I consensus sequences. The ClustalW method of Lasergene Meg-

Align software (DNASTAR, Inc.) was used to align sequences. 

 
Cell Lines and Transfection 
 

P815 cells are mast cells derived from a DBA/2 strain-mouse (Mus musculus) 

with a mastocytoma. The majority of these cells grow in suspension with some (<5%) 
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adherent cells. Cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM) 

(Caisson Laboratories) with 10% bovine calf serum (Hyclone), 2mM L-glutamine 

(Hyclone) and penicillin 100 units/ml and streptomycin 100 µg/ml (Hyclone) at 37°C, 

5% CO2.  

The K562 cell line (CCL-243) is an MHC null cell line originated from a person 

with chronic myelogenous leukemia. These cells grow in suspension and were grown in 

Iscove’s Modified Dulbecco’s Medium (IMDM) (Fisher Scientific) supplemented with 

10% bovine calf serum, 100 units/ml Penicillin and 100 µg/ml Streptomycin (Hyclone) at 

37°C, 5% CO2. Both cell lines were obtained from American Type Culture Collection 

(ATCC, USA). 

Cells were transfected with subclones of either a classical or non-classical MHC 

class I gene in the pcDNA3.1 vector using Lipofectamine 2000 (Invitrogen) transfection 

reagent. Untransfected cells were used as a negative control. Beta-galactosidase supplied 

with the vector kit was expressed in P815 cells as a transfection positive control. Briefly, 

plasmids from the correct subclones were isolated using a QIA plasmid Mini Prep kit 

(Qiagen). Plasmids carrying cDNA for N*01802, N*01701, NC1*00401, NC1*00501, 

NC2*00102, NC3*00101 and NC4*00201 were used. Cells were washed 1x with 

DMEM or IMDM (without serum or antibiotics) and resuspended at 1x106 cells/ml. For 

the transfections, 2 ml of cells (2x106 cells) were plated per well in a 6-well tissue culture 

plate and incubated at 37°C, 5% CO2.. Four micrograms of plasmid DNA was diluted to 

250 µl in DMEM and mixed gently. Lipofectamine was mixed gently before use, and 

then 10 µl was diluted in 250 µl of DMEM or IMDM and incubated for 5 min at room 

temperature. The diluted DNA was combined with diluted Lipofectamine (total volume = 
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500 µl) and mixed gently. The mixture was incubated for 20 min at room temperature. 

After the 20 min incubation, 500 µl of the complex (plasmid + Lipofectamine) was added 

to each well containing cells and mixed gently. Cells were incubated at 37°C, 5% CO2 for 

3 hours and then 5 ml of DMEM or IMDM with 10% bovine calf serum was added to 

each well. Transfected cells were incubated for 24 to 48 hours prior to selection of stable 

transfectants by addition of G418 (Invivogen) antibiotic (500 µg/ ml). After two weeks in 

selective media the transfectants were screened by flow cytometry. 

 
Flow Cytometry 
 

The following monoclonal antibodies were used in the analysis. The anti-human 

MHC-I monoclonal antibody W6/32, which recognizes MHC class I heavy chains 

associated with human or bovine beta-2-microglobulin (β2m), was used as a negative 

control for MHC-null K562 cells and as a positive control for mouse P815 cells because 

they express mouse class I proteins that bind bovine β2m present in the culture medium. 

ColiS205D1 (IgG2a), which is specific for Escherichia coli antigen, was used as an 

isotype negative control. The anti-bovine MHC class I monoclonal antibody H1A was 

used to detect bovine MHC class I heavy chains. Other anti-bovine MHC class I 

antibodies that were also used included: H6A, H11A, H58A, PT85-A, and IL-A88. All of 

the monoclonal antibodies were obtained from the Monoclonal Antibody Center at 

Washington State University, Pullman, WA. Fluorescein isothiocyanate (FITC) 

conjugated anti-mouse IgG antibody (KPL) was used as a secondary antibody. For 

staining, cells were resuspended in fluorescence buffer (FB; PBS with 0.1% Sodium 

Azide, 1% bovine serum albumin) and incubated with primary antibody (15 µg/ml) for 

15 min. Cells were washed twice with FB and then incubated with secondary antibody 
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for 15 min. All incubations were performed at 4°C. Cells were washed twice and fixed in 

PBS with 1% formaldehyde or paraformaldehyde. One million cells were stained for each 

sample. Cells were analyzed using a Becton-Dickinson FACSAria II fluorescence 

activated cell sorter (FACS) equipped with FACS Diva software. The FACSAria II was 

also used to sort the transfected cells to enrich the high expressing cells. 

 
Western Blot 
 

The high sensitivity Western Breeze Chemiluminiscence Kit (Invitrogen) with 

Alkaline Phosphatase (AP) conjugated anti-mouse secondary antibody was used to 

perform Western blots. Ten microliters of cell lysate or purified dialysate was added to 5 

µl 4x LDS sample buffer (Invitrogen) and 5 µl deionized water. Twenty microliters of 

each sample was heated at 70°C for 10 min and 15 µl was loaded on a NuPAGE® Novex 

4-12% Bis-Tris Gel (Invitrogen). After 30 min of electrophoresis at a constant voltage of 

200V, proteins were transferred to a polyvinylidene difluoride (PVDF) membrane 

(Invitrogen) using a XCell SureLock® Mini-Cell and XCell II™ Blot Module Kit 

(Invitrogen). Transfer was performed for 80 min at a constant voltage of 30 Volts. 

Membranes were blocked with blocking buffer provided with the Western Breeze Kit and 

stained with anti-V5 antibody or AP conjugated anti-V5 antibody (Invitrogen) as per the 

instructions provided by the manufacturer. Chemiluminiscence was detected by exposing 

Blue X-ray film (ISC Bioexpress) to the blots for different exposure times. 
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Purification of Recombinant Histidine Tagged Proteins 
 

Transfected P815 and K562 cells were grown in T75 cell culture flasks (Corning) 

to harvest ~100 x 106 cells. Cells were harvested by centrifuging at 1500 RPM for 10 min 

at RT. Cells were washed in ice cold PBS, pH 7.2 and lysed in lysis buffer (50 mM Tris, 

pH 7.8, 150 mM NaCl, 1% Nonidet P-40). Lysis was performed by incubating the cells 

for 1 hour at 4°C. One micromole protease inhibitor cocktail (Sigma) for mammalian cell 

extracts and 1mM PMSF (Phenyl Methane Sulfonyl Fluoride) were also added to the 

suspension. Cells were centrifuged at 10,000 RPM for 10 min at 4°C and the supernatant 

was filtered using 0.2 µM filters and stored in sterile tubes at -20°C until used for 

purification.  

HisGraviTrap Columns (GE Healthcare) were used to purify histidine-tagged 

proteins. The manufacturer’s recommended purification procedure was followed. After 

loading lysate to the column, it was washed 4 times with wash buffer with 40 mM 

imidazole. Elution was performed with elution buffer containing 500 mM imidazole. 

Purified eluates were stored at -20°C. Eluates with specific strong bands were pooled and 

dialyzed against phosphate buffer solution (20 mM Sodium Phosphate, 500 mM NaCl, 

pH 7.4) using 20 kD molecular weight cut-off (MWCO) Slide-A-Dialysis cassettes 

(Pierce). To prevent precipitation and to maximize the stability of the protein, 50 mM 

charged amino acids L-Arg and L-Glu were added to all purification buffers and dialysis 

buffers [15]. Dialysates were centrifuged at maximum speed for 10 min at 4°C and the 

supernatant was recovered in a fresh tube. The dialysates were concentrated using 

vivaspin-20 concentrators with 30 KD MWCO membranes (VIVASPIN). Concentrations 

of dialysates were measured using a BCA protein assay kit (Thermo Scientific). 
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Ammonium Sulfate Precipitation 
 

Thirty percent ammonium sulfate (AS) was used to precipitate proteins in the 

culture supernatants (exhausted media) from the cultured transfected cells. The required 

quantity of ammonium sulfate was calculated using the EnCor Biotechnology Inc. 

webpage (http://www.encorbio.com/protocols/AM-SO4.htm). Salt was added slowly 

while stirring the supernatant. Precipitation was performed at 4°C for 1 hour. The 

suspension was centrifuged at 10,000 x g for 10 min at 4°C to pellet the insoluble 

precipitated material. The supernatant was poured off and the pellet was dissolved in a 

mixture of 50% phosphate buffer with 50 mM L-Arg and L-Glu, pH 7.2 and 50% DMSO. 

 
Results 
 
Subcloning and Sequencing Analysis 

Most of the subclones had inserts with the correct sequences in the correct 

orientation and contained the C-terminal 6x Histidine tag and V5 epitope in-frame. The 

following alleles from the AH11 haplotype were expressed in the two cell lines: 

N*01701, N*01802, N*01701, NC1*00401, NC1*00501, NC2*00102, NC3*00101 and 

NC4*00201. 

 
Evaluation of Cell Surface Expression by Flow Cytometry 
 

In order to determine which bovine class Ib proteins were expressed on the cell 

surface, selected and stably transfected cell lines were stained and analyzed using flow 

cytometry. W6/32, which reacts with the MHC class I heavy chains associated with β2m, 

was positive on untransfected P815 cells as these cells express mouse class I proteins. On 

the other hand, W6/32 antibody was negative on untransfected K562 cells because this 
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cell line does not express MHC antigens. ColiS205D1 showed no reactivity with any of 

the cell lines and served as a negative control antibody for both the P815 and K562 cells. 

Monoclonal antibody H1A recognizes bovine class I heavy chains. H1A antibody reacted 

with P815 cells expressing N*01701, N*01802, NC1*00501 or NC3*00101 proteins, 

whereas it did not recognize P815 cells expressing the other bovine non-classical class I 

proteins (Figure 2-1).  The same pattern was seen with the H6A, H11A, H58A, PT-85A 

and IL-A88 antibodies. 

K562 cells expressing N*01701, N*01802, NC1*00501, NC3*00101 and 

NC4*00201 were positive with W6/32 (Figure 2-2). H1A, H6A, H11A, H58A, PT-85A, 

IL-A88 were also positive on K562 cells transfected with these proteins. Twenty-four 

hour post-transfection expression was <20% compared to untransfected cells which 

increased to ~40% after selection with G418 for 2 weeks. Therefore, we used FACS to 

sort the positive stably transfected cells to enrich transgene expression. Sorting of 

transfected P815 cells was done using cells stained with the H1A antibody. Transfected 

K562 cells were sorted on the basis of staining with W6/32. Sorted cells were cultured in 

appropriate media for one week and rechecked on the flow cytometer to determine the 

post-sort MHC-I expression level. N*01701, N*01802, NC1*00501, NC3*00101, and 

NC4*00201 positive cell lines were enriched to more than 90% expression of the proteins 

after sorting. Due to the lack of surface expression of the NC1*00401 and NC2*00102 

non-classical class I proteins, we were not able to sort the cell lines expressing these 

transgenes (Figures 2-1 and 2-2). The results of the class I monoclonal antibody 

screening of the transfected cell lines using flow cytometry are summarized in Tables 2-1 

and 2-2. 
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Fig. 2-1: Flow cytometric analysis of murine P815 cells transfected with cattle MHC 

class Ia and class Ib transgenes. ColiS205D1 and W6/32 were used were used as negative 

and positive controls, respectively. Three anti-bovine MHC-I monoclonal antibodies 

were used: H1A, IL-A88, and PT-85A. As shown, the BoLA-NC1*00401, BoLA-

NC2*00102, and BoLA-NC4*00201 class Ib proteins did not exhibit surface expression 

on P815 cells. On the other hand, BoLA-Ia proteins, N*01701 and N*01802, and BoLA-

Ib proteins NC1*00501 and NC3*00101 proteins were expressed on the cell membrane 

of transfected P815 cells.  
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We noticed that the antibodies tested varied in their affinity for different proteins. In 

addition, there was considerable variation in the level of expression of the bovine MHC-I 

proteins. The classical N*01701 protein was expressed at the lowest level and the non-

classical NC3*00101 protein was expressed at highest level in both P815 and K562 cells. 
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Fig. 2-2: Flow cytometric analysis of BoLA-Ia and -Ib expression on transfected human 

MHC-null K562 cells. Untransfected cells served as a negative control.  W6/32, H1A, 

H6A, H11A, and PT-85A antibodies were used to detect bovine class I proteins. As 

shown, BoLA-NC1*00401 and BoLA-NC2*00102 class Ib proteins did not exhibit 

surface expression on K562 cells. BoLA-Ia proteins, N*01701 and N*01802, and BoLA-

Ib proteins NC1*00501, NC3*00101, and NC4*00201 proteins were expressed on the 

surface of transfected K562 cells. 
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Detection of Protein Expression by Western Blotting 

To confirm that the transgenes were translated in the host cells, we performed 

Western blotting of the crude cell lysates using an anti-V5 antibody (Invitrogen), which 

recognizes the V5 epitope. We also tested an antibody directed against the C-terminal His 

tag (Invitrogen) but this antibody did not work. A cell line transfected with β-

galactosidase was used as a positive control and had a 120 kD band as expected. A lysate 

from untransfected cells was used as a negative control. All of the bovine class Ia and 

class Ib proteins were identified in lysates from transfected cells with the anti-V5 

antibody. The bands were all approximately 45 kD in size as determined with the Magic  
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Table 2-1 Reactivity pattern of monoclonal antibodies on P815 cells transfected with 

cattle MHC-I genes 

Antibody Untransfected 
P815 Cells 

Transfected P815 Cells 

N*01701 N*01802 NC1*00401 NC1*00501 NC2*00102 NC3*00101 NC4*00201 

ColiS205D1 - - - - - - - - 

W6/32 ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ 

IL-A88 - +++ ++++ - ++++ - ++++ - 

H1A - +++ ++++ - ++++ - ++++ - 

H6A - ++ ++++ - +++ - ++++ - 

H11A - ++ ++++ - +++ - ++++ - 

H58A - +++ ++++ - +++ - ++++ - 

PT-85A - +++ ++++ - ++++ - ++ - 

 

 

 

Table 2-2 Reactivity pattern of monoclonal antibodies on K562 cells transfected 

with cattle MHC-I genes 

Antibody Untransfected  
K562 Cells 

Transfected K562 Cells 

N*0170
1 

N*01802 NC1*00401 NC1*00501 NC2*00102 NC3*00101 NC4*00201 

W6/32 - ++++ ++++ - ++++ - ++++ ++ 

H1A - +++ ++++ - +++ - ++++ ++ 

H6A - +++ ++ - ++ - ++++ ++ 

H11A - +++ ++++ - ++ - ++++ ++ 

H58A - +++ ++++ - ++ - ++++ ++ 

PT-85A - +++ ++++ - +++ - ++ + 
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Mark (Invitrogen) ladder. The NC1*00401 protein, which has a complete deletion of the 

transmembrane domain, was slightly smaller than the other MHC class I proteins. 

Sometimes there were non-specific protein bands seen in the crude lysates of the 

transfected cells, but these bands disappeared after purification of the proteins with His 

GraviTrap Columns (GE Healthcare; Figures 2-3 and 2-4). 

 

Fig 2-3: Purified proteins from transfected murine P815 cells 

 

Fig 2-4: Purified proteins from transfected human MHC null K562 cells 
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Assessment of Protein Secretion by Ammonium Sulfate Precipitation 

Ammonium sulfate precipitation was performed on exhausted media from all of 

the cultured cell lines.  Precipitated protein pellets were dissolved in 50% phosphate 

buffer with L-Arg and L-Glu amino acids and 50% DMSO and processed to run on 

Western blots. MHC class I proteins in the culture supernatants were detected by Western 

blotting with anti-V5 antibody (Figures 2-5 and 2-6). Strong bands were present for all of 

the surface expressed MHC class I proteins: N*01701, N*01802, NC3*00101, and 

NC4*00201 (only in K562 cells). This suggests that the class I proteins are being shed 

from the cell membrane at a significant rate. There was a clear but fairly weak band for 

NC1*00401, which lacks the transmembrane domain, in the supernatant from K562 cells, 

suggesting that this may be a secreted isoform. The NC2*00102 protein apparently 

remained trapped inside the cells as it was not detected in the culture supernatants.  

 

Fig 2-5: Ammonium sulfate-precipitated proteins from transfected murine P815 cell-

culture supernatants 
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Fig 2-6: Precipitated proteins from transfected human K562 cell-culture supernatants 

 

Discussion 

We performed transfection experiments to identify proteins encoded by two 

classical and four non-classical genes. Our experiments showed that the two classical 

isoforms, N*01701 and N*01802, and the non-classical isoforms, NC1*00501, 

NC3*00101, and NC4*00201, are surface or membrane proteins expressed on the cell 

surface. Immunoblotting experiments with proteins precipitated from culture supernatants 

showed that these proteins are also shed or released from the cell membrane. 

NC1*00401, which lacks a transmembrane domain, was secreted at a noticeable but low 

level by transfected K562. The NC2*00102 protein was not expressed on the cell 

membrane or secreted by either of the transfected cell lines that were tested. Detection of 

the MHC class I proteins by flow cytometry and Western blots provides clear evidence 

that the classical and non-classical MHC class I transcripts isolated from third-trimester 

interplacentomal trophoblast cells are translated into proteins.  
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We do not have monoclonal antibodies that are specific for the bovine non-

classical class I proteins. We are currently in progress to produce monoclonal antibodies 

to NC3*00101 protein by direct immunization of mice with transfected cell lines. We 

could not detect surface expression of NC1*00401 and NC2*00102 with W6/32, H1A or 

the other antibodies that were tested. A previous transfection study done with 

NC2*00101 showed no surface expression with ILA-88 [13]. NC1*00401 does not have 

a transmembrane domain [7], hence we did not expect this protein to be expressed on the 

cell surface. NC4*00201, which was not expressed on the surface of P815 cells, showed 

surface expression on K562 cells. It is likely that human β2m can associate with this 

protein thereby allowing peptide binding and cell surface expression, while murine β2m 

does not form a functional heterodimer with this bovine MHC class I heavy chain. 

Expression of membrane bound and secreted forms of BoLA-Ib proteins is 

important because these proteins may inhibit maternal leukocytes by interacting with 

inhibitory receptors expressed by the leukocytes. Membrane bound and secreted class Ib 

proteins, such as HLA-E, -F, and -G in humans, Qa-2 in mice, and Mamu-E in rhesus 

monkeys, interact with receptors such as LILRB1, LILRB2, KIR2DL4 and 

CD94/NKG2A expressed by maternal leukocytes and inhibit their cell-lysis properties [1, 

2, 6, 14, 17, 19, 20]. Membrane bound HLA-G isoforms as well as soluble isoforms play 

an immunosuppressive role in human pregnancy. Membrane isoforms induce suppression 

of CD4+ T cells and NK cells [25, 31]. It also has been reported that T cells and NK cells 

are rendered immunosuppressive by the transfer of membrane patches containing HLA-G 

from APCs or tumor cells [5, 31]. The soluble HLA-G1 isoform induces maternal fetal 

tolerance by inducing apoptosis of activated CD8 T cells [24, 37] and down-regulating 
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CD4 T cell proliferation [29]. It has been reported that sHLA-G inhibits NK cell-

mediated cytotoxicity [30, 32, 33, 35]. It is possible, that secreted or shed cattle class Ib 

molecules act as soluble immunosuppressive factors during pregnancy. 

There is nothing known about the role of class Ib proteins in cattle. The surface 

expressed BoLA-Ib proteins, secreted NC1*00401, and even NC2*00102 may interact 

with inhibitory receptors expressed by maternal leukocytes and provide inhibitory 

signals. Consequently, it is important to conduct studies to identify the leukocytes and 

inhibitory receptors that interact with BoLA-Ib proteins. To identify bovine class Ib 

glycoproteins in trophoblast cell culture supernatants, there is a need for monoclonal 

antibodies to these proteins. 

We were not able to see NC2*00102 protein on the cell surface. In humans, HLA-

E does not bind with the peptides derived from intracellular proteins. Instead they bind 

with peptides derived from other HLA class I signal sequences as required for cell 

surface expression [3, 27, 28, 34]. It is possible that NC2*00101 is a homologue of 

human HLA-E and requires a specific peptide or leader peptide for its cell surface 

expression. 

In summary, we have identified that cattle class Ia proteins, N*01701 and 

N801802, and class Ib proteins, NC1*00501, NC3*00101, and NC4*00201, are the 

surface expressing proteins whereas, NC1*00401 and NC2*00102 proteins, are not 

expressed on the cell-surface.  
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CHAPTER 3 

SCALE-UP OF BoLA-NC3*00101 PROTEIN EXPRESSION IN MOUSE P815 

CELLS USING A PITCHED-BLADE 

 
Abstract  
 

In an attempt to express and isolate BoLA-NC3*00101, a bovine non-classical 

MHC (Major Histocompatibility Complex) class I protein (class Ib), the mouse 

mastocytoma cell line P815 was transfected with the NC3*00101 transgene. The 

transfected cells were checked for expression by flow cytometry and positive stable 

transfectants were sorted using a fluorescence activated cell sorter (FACS). A large 

amount of purified protein is required to immunize and boost the host for several months 

to produce monoclonal antibodies. To avoid the use of a large number of cell culture 

flasks and shorten the time to obtain a sufficient quantity of protein, stably transfected, 

BoLA-NC3*00101 expressing cells were grown in a pitch-blade bioreactor. One week of 

culturing in a pitched-blade bioreactor yielded a large cell mass, which was used to 

isolate and purify the protein. 

 
Introduction 
 

Transplantation antigens were discovered as molecules responsible for acceptance 

or rejection of tissue grafts in mice [1]. The acceptance or rejection depends on the 

degree of similarity among these antigens on the cells of the donor and recipient animals. 

The genetic region encoding the most important proteins for tissue graft compatibility is 

called the major histocompatibility complex (MHC). The MHC encodes two types of 

highly polymorphic cell surface glycoproteins, the MHC class I (MHC-I) and MHC class 
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II (MHC-II) proteins, which present peptide antigens to T lymphocytes. MHC-I proteins 

have two subsets, classical (MHC-Ia) and non-classical (MHC-Ib). MHC-Ia proteins are 

expressed on all nucleated cells in the mammalian body. Consequently, any tissue graft 

will express class Ia proteins and thus the recipient will react to the graft. In addition, 

class Ia proteins are extremely polymorphic or highly variable in the population, 

therefore tissue graft donor-recipient pairs are rarely MHC-matched [2]. MHC-Ia proteins 

are usually expressed as membrane bound isoforms and interact directly with the T cell 

receptor. In contrast, class Ib proteins are expressed in specific tissues or organs and their 

expression may or may not be conditional. They are less polymorphic and have few 

variants; therefore they do not induce a transplant rejection. MHC-Ib proteins are 

expressed as membrane-bound and soluble isoforms.  

A tissue graft from another member of the same species is known as an allogeneic 

transplant. A fetus is an allogeneic tissue that resides inside the maternal uterus during 

pregnancy. The MHC genetic region of cattle is known as the bovine leukocyte antigen 

(BoLA) complex. Bovine trophoblast cells (the cells that form the outer membrane of the 

placenta and attach the embryo to the uterine wall) express four non-classical MHC class 

I genes, BoLA-NC1, -NC2, -NC3 and -NC4 [3]. These class Ib proteins are believed to 

play an important role in protecting the fetal tissue graft from hostile maternal immune 

attack throughout pregnancy. Both class Ia and Ib proteins help protect cells against 

attack by natural killer (NK) cells. MHC class I deficient cells are usually susceptible to 

NK cell-attack and macrophage killing [4]. 

To study whether the bovine non-classical class I proteins are expressed as cell 

surface and/or soluble isoforms, P815 (mouse mastocytoma) cells were transfected with 
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the transgenes encoding these proteins. The mouse P815 cell line is a transfection 

competent cell line that has been used for expressing a variety of MHC class I proteins, 

including HLA-B27 [5]. Transfected P815 cell lines have been used as immunogens to 

immunize mice to produce monoclonal antibodies against HLA-B27 and other HLA-B 

antigens [5]. In other studies P815 cells have been transfected with equine [6, 7] and 

bovine MHC class I protein-encoding transgenes [3, 11]. 

Transfection studies revealed that BoLA-NC3*00101, was expressed on the cell 

surface whereas the other three bovine MHC-Ib proteins (BoLA-NC1*00401, 

NC2*00102 and NC4*00201) were not expressed as cell-surface isoforms as determined 

with flow-cytometric analysis of transfected P815 cells (Parasar et al. in preparation). 

The other three MHC-Ib proteins are probably expressed as secreted isoforms. Our 

objective was to produce monoclonal antibodies against bovine MHC-Ib proteins and 

utilize the antibodies to detect soluble MHC-Ib proteins in trophoblast culture 

supernatants and serum from pregnant cows. Since NC3*00101 protein is expressed on 

the cell surface as a membrane bound protein, it was possible to sort the positive and 

stable NC3*00101 transfectants using FACS. Scale-up in a bioreactor was used to 

achieve higher cell mass and isolate more protein in shorter time than in issue culture 

flasks. 

To date there is no report of any monoclonal antibody that can differentiate the 

bovine NC3*00101 protein from other bovine MHC-I proteins. Availability of an 

NC3*00101 specific monoclonal antibody will greatly assist in determining the level of 

NC3*00101 protein expressed on the surface of trophoblast cells at different stages of 

pregnancy and the amount of protein secreted in trophoblast cultures. In order to isolate a 
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sufficient amount of NC3*00101 protein to immunize mice for antibody production, a 

high number of P815 cells expressing bovine NC3*00101 protein was required. A 

bioreactor is an efficient, well-established, specialized, simulated biologically active 

environment. Growing cells in a bioreactor yields a far greater cell mass in a shorter time 

without affecting the integrity and quality of the cells or their products. Pitched-blade 

impellers have flat blades that are set at a 45° angle so that they provide simultaneous 

radial and axial flow. Combined radial and axial flow produces better mixing and 

promotes a high oxygen transfer rate. Animal and plant cells often have low resistance to 

shear [9]. Pitched-blade impellers are low shear blades that cause less cell damage and 

provide gentle and smooth mixing of the cells in culture. This type of impeller is widely 

used with mammalian, insect and other shear sensitive cell-lines growing in suspension 

[10]. Because of these characteristics, we decided to grow transfected P815 cells 

expressing NC3*00101 in a pitched-blade bioreactor. 

 
Materials and Methods 
 
Cell Line 

The P815 cell line is a mast cell line derived from a DBA/2 strain-mouse (Mus 

musculus) with a mastocytoma. The majority of these cells grow in suspension with some 

(<5%) adherent cells. Cells were cultured in Dulbecco’s Modified Eagle’s Medium 

(DMEM) with 10% bovine calf serum at 37°C and 5% CO2. The cell line was obtained 

from American Type Culture Collection (ATCC, USA). 
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Transfection and FACS Sorting of Stable NC3*00101 Transfectants 
 

The BoLA-NC3*00101 coding sequence was amplified from complementary 

DNA (cDNA) using specific primers (Forward primer 

CACCATGGGGCCGCGAACCCTC and reverse primer 

GATGAAGCATCACTCAGTCCCC). The pcDNA3.1 directional TOPO expression 

vector (Invitrogen) was used for cloning the cDNA and expressing the protein in 

mammalian P815 cells. Positive clones were sequenced and full-length NC3*00101 clone 

was selected for transfection. Plasmid was purified using a QIA plasmid Mini Prep kit 

(Qiagen). Lipofectamine 2000 (Invitrogen) was used to transfect P815 cells with the 

pcDNA3.1 plasmid. This vector allows for expression of a specific protein with a V5 

epitope and a C-terminal polyhistidine (His-His-His-His-His-His) fusion tag. The V5 

epitope permits easy detection of recombinant protein by Western blot with anti-V5 

antibody and the polyhistidine tag allows rapid purification on nickel-chelating resin, 

which binds His-tagged proteins. 

To transfect, the cells, 2 x 106 cells (1x 106 cells/ml of DMEM) were plated per 

well in a 6-well tissue culture plate and incubated at 37°C with 5% CO2. Four µg of 

plasmid DNA was diluted to 250 µl in DMEM and mixed gently. Lipofectamine was 

mixed gently before use, and then 10 µl was diluted in 250 µl of DMEM and incubated 

for 5 min at room temperature. The diluted plasmid DNA was combined with diluted 

Lipofectamine (total volume = 500 µl), mixed gently and incubated for 20 min at room 

temperature. An aliquot of 500 µl of plasmid and Lipofectamine was added to each well 

containing cells and medium and mixed gently. Cells were incubated at 37°C, 5% CO2 

for 3 hours, then 5 ml of DMEM with 10% bovine calf serum was added to each well. 
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Transfected cells were incubated for 24 to 48 hours prior to addition of G418 antibiotic 

(500 µg/ml; Invivogen) to select for stable transfectants. After two weeks in selective 

media the transfectants were screened using flow cytometry. 

The flow cytometry staining procedure was as follows. One million cells were 

resuspended in fluorescence buffer (FB) [Phosphate Buffered Saline (PBS) with 0.1% 

sodium azide, 1% bovine serum albumin] and incubated with primary antibody for 15 

min. The H1A monoclonal antibody was used for labeling the NC3*00101 protein and an 

irrelevant antibody, ColiS169A, which does not recognize the mouse P815 cells or the 

bovine class I protein, was used as a negative control. Both monoclonal antibodies were 

obtained from the Monoclonal Antibody Center at Washington State University, Pullman, 

WA. Cells were washed twice with FB and then incubated with a fluorescein labeled 

anti-mouse IgG (Heavy+Light) secondary antibody for 15 min. All incubations were 

performed at 4°C. Cells were washed twice and fixed in PBS with 1% formaldehyde. 

Cells were analyzed using a BD Biosciences FACSAria II flow cytometer equipped with 

Diva software for data acquisition and analysis.  

Prior to culturing the cells in the bioreactor, Fluorescence Activated Cell Sorting 

(FACS-sorting) was performed with the FACSAria II to isolate a subpopulation of cells 

expressing a high level of NC3*00101 protein. The cells were stained with the H1A 

monoclonal antibody as described above but were not fixed in fluorescence fixative. The 

sorted high-expressing cells were grown in T75 flasks until they reached a sufficient 

number to seed the bioreactor.  

 

 



70 
 

Culturing of Sorted NC3*00101-Transfectants in the Pitch-Blade Bioreactor 

Sorted NC3*00101 cells were grown in T-75 flasks at a seeding concentration of 

1 x 106 cells/ml until a sufficient number of cells were obtained. Cells were harvested 

from eight T-75 flasks by centrifugation at 1000 RPM (500 g) for 10 min at room 

temperature. Cells were stained with Trypan Blue (0.4% solution) and enumerated with a 

Countess Automated Cell Counter (Invitrogen). The cells used to seed the bioreactor had 

a viability of ≥95%. 

A New Brunswick Scientific Celligen®310 stirred tank bioreactor vessel with 5 

liter capacity (3.5 L working volume) was used for culturing the cells. Because of the 

shear sensitivity of the mouse P815 cells, a pitched-blade impeller was selected for this 

experiment (Figure 3-1). The bioreactor vessel was installed on the control station. The 

vessel was filled with PBS before autoclaving and the pH probe was calibrated before 

vessel sterilization. The sterile assembly was taken to a laminar flow hood and the PBS 

was replaced with 3.5 liters of sterile prewarmed (37°C) DMEM supplemented with 10% 

bovine calf serum, 2 mM L-glutamine and 2 mM penicillin-streptomycin using a 

peristaltic pump. The reactor was seeded with 2 x 105 cells/ ml and the dissolved oxygen 

(DO) probe was calibrated. Cell viability was monitored by counting sample of cells 

daily using a Countess Automated Cell Counter (Invitrogen). The BioFlo 310 cascades 

were used to control DO and pH levels. After three days of cell growth the culture was 

collected into sterile bottles and cells were harvested by centrifugation at 2000 g for 10 

min at 4°C. The process parameters and cascade loops are shown below. 
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Fig 3-1 Pitched-Blade Bioreactor 

 

Process Parameters 

Air 4-Gas mixture (Air, O2, CO2, N2) 
Temperature` 37°C 
Gas Flo 0.5 slpm 
Agitation 35 rpm 
pH 7.2 
Dissolved Oxygen (DO) 50% 

 

Cascade Loops 

From To Start Set 
Point 

DO Start 
Output % 

End Set 
Point 

DO End 
Output% 

DO DO 0.0 50 100% 100 
pH pH 0 25 100% 100 

 

Purification of NC3*00101 Protein 

Cells were kept on ice during lysis. One ml of 1X lysis buffer (50 mM Tris-HCl, 

pH 7.4; 150 mM NaCl with 1 mM mammalian protease inhibitor cocktail (Sigma), 1 mM 

PMSF) was added per 1 x 107 cells. Cells were incubated at 4°C for 1 hour with rotation. 

The suspension was then centrifuged at 10,000 g for 15 min at 4°C to remove insoluble 
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material and nuclei. The supernatant containing protein was collected in fresh tubes and 

stored at -20°C until processed for protein purification. 

His-GraviTrap Columns (GE Healthcare) were used to purify the histidine tagged 

protein. After loading lysate on the column, it was washed 4 times with wash buffer with 

40 mM imidazole. Elution was performed with elution buffer containing 500 mM 

imidazole. Purified eluates were stored at -20°C. Eluates with specific bands on Western 

blots were pooled and dialyzed against phosphate buffer solution (20 mM sodium 

phosphate, 500 mM NaCl, pH 7.4) using 20 kilodalton (kD) MWCO Slide-A-Dialysis 

cassettes (Pierce). To prevent precipitation and to maximize the stability of proteins 50 

mM charged amino acids, L-arginine and L-glutamate were added to all the purification 

buffers and dialysis buffers [8]. Dialysates were centrifuged at maximum speed for 10 

min at 4°C and the supernatant was recovered in a fresh tube. The dialysates were 

concentrated using Vivaspin-20 concentrators with 30 KD MWCO membranes 

(Vivaproducts). The concentration of each fraction was measured using a BCA protein 

assay kit (Thermo Scientific). 

 
Western Blotting 
 

Western blots were performed with a highly sensitive Western Breeze 

Chemilluminiscence Kit (Invitrogen). Ten µl of NC3*00101 protein was mixed with 5 µl 

LDS sample buffer (Invitrogen) and 5 µl deionized water and heated at 70°C for 10 min. 

Fifteen µl of denatured protein was loaded in each lane of a NuPAGE® Novex 4-12% 

Bis-Tris Gel (Invitrogen). After 30 min of electrophoresis at a constant voltage of 200 V, 

proteins were transferred to a polyvinylidene difluoride (PVDF) membrane (Invitrogen) 

using an XCell SureLock® Mini-Cell and XCell II™ Blot Module Kit (Invitrogen). 
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Transfer was performed for 80 min at a constant voltage of 30 volts. Membranes were 

blocked with blocking buffer provided with the Western Breeze Kit and stained with AP 

conjugated anti-V5 antibody (Invitrogen) as per the instructions recommended by the 

manufacturer. Blots were evaluated by exposure of Blue X-ray film (ISC Bioexpress) for 

different exposure times. 

 
Results 
 
Flow Cytometric Analysis of Transfected Cells and Sorting 

Less than 20% of newly transfected P815 cells expressed BoLA-NC3*00101 

protein that could be detected by immunostaining and flow cytometry. Growth in G418 

antibiotic was used to select stable transfectants. Following two weeks of selection 

approximately 50% of the cells expressed immunoreactive NC3*00101 protein. 

Following FACS sorting with an anti-bovine MHC class I monoclonal antibody (H1A), 

98.4% of the cells expressed the bovine MHC class I protein. NC3*00101-transfected 

cells after sorting with H1A antibody had anexpression of 98.4%. The pre-sorting and 

post-sorting data are presented in Figure 3-2. 

 
Growth of Cells in Pitched-Blade Bioreactor 
 

NC3*00101-transfected cells grew with a doubling time of 24 hours. The reported 

doubling time for this cell line is 18-22 hours. pH was maintained by utilizing CO2 from 

the pH cascade. The total number of cells harvested was 3 x 109 cells after 3 days of cell 

growth. This was an adequate number for isolation of enough purified NC3*00101 

protein for immunization of 10 mice and subsequent screening of the hybridoma-

supernatants by enzyme-linked immunosorbent assay (ELISA). 
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Fig 3-2: Flow cytometric analysis of murine P815 cells transfected with an expression 

vector encoding the bovine NC3*00101 protein. Positive, stably transfected cells 

were sorted by FACS on the basis of H1A monoclonal antibody staining. 

 

Isolation of BoLA-NC3*00101 Protein 

The concentrations of BoLA-NC3*00101-crude cell lysate and purified 

concentrated protein sample were 1.9 mg/ml and 0.5 mg/ml, respectively. This was 

adequate for the downstream immunization and screening of the hybridoma supernatants 

using ELISA. 

 
Western Blot 
 

A Western blot was performed to detect the specific protein in the crude cell 

lysate and the purified protein sample. The blot was probed with an antibody that 

recognizes the V5 epitope at the C-terminal end of the protein. Untransfected cell lysate 

was used as a negative control. Beta-galactosidase protein (120 kD) isolated from cells 

transfected with the beta-galactosidase control plasmid was used as a positive control. 
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The bovine NC3*00101 class I protein was detected as a 45 kDa band in the crude lysate 

and the purified concentrated sample (Figure 3-3). 

 

Fig 3-3 BoLA-NC3*00101 protein (45kD) specifically recognized by anti-V5 

antibody 

 
Discussion 
 

The pitched-blade bioreactor was useful in the scale-up of P815 cell growth and 

protein production. The product quality did not change as measured by SDS-PAGE and 

subsequent detection with Western blotting. It is evident from the trends in DO and pH 

values that P815 cells, like CHO cells [12], utilize large amounts of oxygen for 

respiration in their early exponential growth phase and thus, acidify the media. Later 

during the proliferation phase the pH establishes equilibrium, followed by an elevation in 

pH indicating a stationary and death phase. A high pH value at 72 hours indicates high 

alkalinity, which possibly is marker of lack of nutrients and cell death. 

Stirred tank bioreactors have been used for culturing hybridoma cells in 

suspension for monoclonal antibody production [13]. Mouse P815 cells grow well in 
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vessels with pitched-blade impellers at moderate agitation rates. Shear sensitivity of 

mammalian cells has been an important issue for scaling up production but advances in 

technology have helped overcome this limitation.  

This study resulted in successful scale-up in production of murine P815 cells 

expressing BoLA-NC3*00101 protein using sophisticated, automated bioreactor process 

control machinery in batch-culture. This study demonstrated the feasibility of growing 

FACS sorted murine P815 cells in a large vessel without loss of protein quality or cell 

viability. Bioreactors are an efficient means by which difficult cells can be cultured under 

controlled conditions to maintaining cell health and increase productivity.  

The non-classical MHC class I proteins are important immunoregulatory 

molecules at the maternal-fetal interface. With the generation of antibodies against these 

glycoproteins it will be possible to quantify the level of secretion of these proteins at 

different stages of pregnancy. With the protein produced in the bioreactor we were able 

to produce hybridomas that secrete monoclonal antibodies to the NC3*00101 protein. 

Therefore, our findings show that pitched-blade bioreactor is a useful tool to scale-up the 

expression of BoLA-NC3*00101 protein by culturing the transfected cells on a large 

scale. 
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CHAPTER 4 

PRODUCTION OF MONOCLONAL ANTIBODIES FOR BoLA-NC3*00101 AND 

NC1*00501 PROTEINS 

Abstract 

We previously identified that cattle classical (MHC-Ia) proteins, N*01701 and 

N*01802, and three non-classical (MHC-Ib) proteins, NC1*00501, NC3*00101, and 

NC4*00201, are expressed on the cell surface. Other cattle non-classical proteins, 

NC1*00401 and NC2*00102, are not expressed on the cell surface and may be secreted 

or soluble in nature. To detect secreted or soluble class Ib isoforms produced by bovine 

embryos and trophoblast cells and to determine the level of expression of class Ib 

immunoregulatory molecules during pregnancy, we immunized mice and developed 

monoclonal antibodies for two class Ib proteins, BoLA-NC1*00501 and NC3*00101. 

Large numbers of P815 cells expressing NC1*00501 and NC3*00101 proteins were 

grown in multiple T75 flasks and/or a pitched blade bioreactor. The polyhistidine or 6X-

histidine-tagged proteins were isolated using His-Gravi trap nickel affinity column 

chromatography and were used as immunogens in mice. Monoclonal antibodies were 

produced at Washington State University (WSU) Monoclonal Antibody Center. 

Screening of sera from immunized mice and culture supernatants from hybridomas was 

done by flow cytometry and enzyme linked immunosorbent assay (ELISA). Our 

objectives are to use the monoclonal antibodies to develop an ELISA that can be used to 

detect soluble MHC-Ib proteins from embryos and trophoblast cells and to use the 

monoclonal antibodies in immunohistochemistry to examine the regulation of MHC-Ib 

expression at the maternal-fetal interface. 
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Introduction 

An antibody recognizes a specific linear or conformational “epitope” on the 

antigen. While conformational epitopes are dependent on the tertiar structure of the 

protein, linear epitope remains intact when the protein is denatured. Polyclonal antibodies 

or antisera collected from an animal immunized with a specific antigen contain antibodies 

with different specificities and epitope affinities. Monoclonal antibodies are produced by 

progeny from a single ancestral B cell from an immunized animal and recognize a single 

epitope. B cells from the spleenor a lymph node of an immunized animal are harvested 

and cultured in vitro. However, antibody producing B cells have limited life span. B cells 

are, therefore, immortalized by fusing them with myeloma cells. Kohler and Milstein [9] 

were the first investigators to synthesize “hybridomas” by fusion of mouse myeloma and 

mouse spleen cells from an immunized donor mouse. Monoclonal antibodies are purified 

from hybridoma culture supernatants or ascitic fluid. Once a hybridoma cell line is 

established via single cell cloning, it can be frozen and stored in liquid nitrogen for an 

indefinite period. Monoclonal antibody (mAb or MoAb) production technology not only 

enables researchers to isolate a specific antibody from an immunized animal but also 

allows scientists to produce specific antibodies in large quantity in vitro.  

By virtue of their single epitope specificity, monoclonal antibodies decrease 

background noise and cross-reactivity with non-specific antigens and give reproducible 

results. Use of a mAb allows for efficient affinity purification of the target antigens. 

Monoclonal antibodies are used in various diagnostic tests to detect minute quantity of 

antigens such as hormones, enzymes, drugs, toxins etc. For instance, in human medicine 

detection of human chorionic gonadotropin (hCG) in urine or serum is used for 
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pregnancy diagnosis and an ELISA test is used to diagnose AIDS. Rodents are routinely 

used to produce monoclonal antibodies. Other animals are not commonly used because of 

difficulties in establishing immortalized cell lines by hybridoma formation, viral 

transformation or reprogramming [10, 11, 15]. 

Our objective is to use the mAb against bovine MHC class Ib proteins to develop 

ELISA that can be used to detect secreted or soluble BoLA-Ib proteins in: serum from 

pregnant cows, culture supernatants from in vitro derived embryos, and culture 

supernatants from cultured trophoblast cells from different terms of pregnancy. Surface 

expressed bovine MHC class Ib NC1*00501 and NC3*00101 purified proteins were used 

to immunize mice. Sera and hybridoma secreting mAbs were tested by ELISA and flow 

cytometry to check their specificity. 

 
Materials and Methods 
 
Cell Lines and Transfection  

The murine mastocytoma P815 cell line was obtained from American Type 

Culture Collection (ATCC, USA). Cells were cultured in Dulbecco’s Modified Eagle’s 

Medium (DMEM) with 10% bovine calf serum, 100 units/ml penicillin, and 100 µg/ml 

streptomycin (Hyclone) at 37°C and 5% CO2. Cells were transfected with bovine MHC 

class I proteins. Coding sequences for BoLA-NC1*00501 and NC3*00101 were 

amplified from complementary DNA (cDNA) using the specific specific primers shown 

below:  

Forward Primer CACCATGGGGCCGCGAACCCTC 

Reverse Primer for NC1*00501 GATGAAGCATCACTCAGTCCCC  

Reverse Primer for NC3*00101 GGCACTGTCACTGCTTGCAGTCTG 
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The pcDNA3.1 directional TOPO expression vector (Invitrogen), which expresses 

the protein with a C-terminal polyhistidine tag and a V5 epitope, was used for cloning the 

cDNA. Subclones were sequenced and NC1*00501 and NC3*00101 subclones were 

selected to transfect P815 cells. Cells were transfected using our previously described 

method [13]. Transfected cells were fluorescently labeled using specific mAb and 

analyzed by flow cytometry to check initial expression. Transfectants were selected with 

G418 antibiotic (InvivoGen) and stably transfected cells were sorted using a BD 

FACSAria II fluorescence activated cell sorter (FACS). Sorted, high expressing 

NC1*00501 and NC3*00101 cells were cultured in multiple T150 flasks for antigen 

production. For large-scale antigen production, cells were sometimes grown in a pitched-

blade bioreactor. Sorted NC1*00501 cells were cultured in multiple T150 flasks. 

 
Purification of NC1*00501 and NC3*00101 Proteins 
 

Cells were lysed in lysis buffer (50 mM Tris-HCl, 150 mM NaCl with 1 mM 

mammalian protease inhibitor cocktail (Sigma), 1 mM PMSF; pH 7.4) with 1 x 107 

cells/ml. After an hour-incubation at 4°C, the supernatant was collected by centrifugation 

at 10,000 g for 15 min at 4°C. 

 Specific histidine-tagged NC1*00501 and NC3*00101 proteins were purified 

using His-GraviTrap Columns (GE Healthcare) as previously described [13]. Eluates 

which had specific protein bands on Western blots were pooled and dialyzed against 

phosphate buffer solution (20 mM Sodium Phosphate, 500 mM NaCl, pH 7.4) using 20 

kilodalton (kD) molecular weight cut-off (MWCO) Slide-A-Dialysis cassettes (Pierce). 

To prevent precipitation and to maximize the stability of proteins, 50 mM charged amino 

acids, L-arginine and L-glutamate, were added to all the purification buffers and dialysis 
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buffers [8]. Dialysates were centrifuged at 12100 RPM for 10 min at 4°C and the 

supernatant was transferred to a sterile tube. Dialysates were concentrated using 

Vivaspin-20 concentrators with 30 KD MWCO membranes (Vivaproducts). The 

concentration of each fraction was measured using a BCA protein assay kit (Thermo 

Scientific). 

 
Immunization 
 

Antibodies to BoLA-NC1*00501 and NC3*00101 proteins were produced at the 

monoclonal antibody center at WSU, Pullman using the protocol described by Hamilton 

and Davis [6]. Three mice per antigen were hyperimmunized with purified antigen in 

Ribi’s Adjuvant (Sigma-Aldrich). Each mouse had four immunizations each with 50 ug 

antigen/mouse. Because titer was low with initial immunizations with purified antigens, 

subsequent immunizations were done with P815 cells transfected with NC1*00501 and 

NC3*00101 cells and mice were boosted with the purified antigens. A final booster dose 

of antigen was given intravenously through the tail vein three days before the fusion of 

spleen and myeloma cells. 

 
Fusion 
 

For each antigen spleen cells were collected and pooled from three mice. Spleen 

cells (~1 x 108) were fused with 4 x 107 X63 Ag8.653 myeloma cells [8]. Fused cells 

were resuspended in growth medium containing hypoxanthine aminopterin and 

thymidine (HAT) medium and cultured in ten 96-well culture plates. We received three 

live cultures (A, B, and C) of each of the NC1-19, NC1-21, and NC1-40 hybridomas 
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which were grown and supernatants were collected and screened by flow cytometry and 

ELISA. 

 
Flow Cytometry  
 

Flow cytometry was used to test hybridoma supernatants for the presence of 

specific antibodies by indirect ELISA and flow cytometry [1]. For screening by flow 

cytometry, NC1*00501 and NC3*00101-transfected cells were stained using culture 

supernatants and a fluorescein conjugated anti-mouse IgG (H+L) secondary reagent. 

Staining was evaluated using a FACSAria II flow cytometer. Untransfected P815 cells 

were used as a negative control. Positive hybridomas were expanded in 12-well culture 

plates. Two ampoules of each positive hybridoma line were cryopreserved. Positive 

cultures were cloned, and the clones were expanded and cryopreserved. Supernatants 

from the clones were collected at the time of cryopreservation and characterized by 

ELISA, flow cytometry, and Western blotting. 

 
ELISA 
 

ELISA plates (CoStar Inc.) were coated with antigen at a concentration of 16 

µg/ml in ELISA binding buffer (0.05M Tris, pH 9.5) and incubated overnight at 4°C. 

Plates were washed with 1 X ELISA wash buffer (10X Wash Buffer: PBS with 1.4 M 

Sodium Chloride, 0.5% Tween 20, 1% of 20% Sodium Azide) and blocked for 2 hours at 

37°C using blocking buffer (Binding buffer with 0.3% Bovine serum albumin, BSA). 

Plates were washed four times prior to addition of antibodies. Monoclonal antibodies 

H1A, W6/32, H6A, and H11A were used at 1 µg/ml with 100 µl used per well. The 

NC1*00501 and NC3*00101 hybridoma supernatants were tested at 1:1 and 1:100 
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dilutions of NC1*00501- and NC3*00101-hybridoma culture supernatants in dilution 

buffer I (PBS with 0.3% BSA and 0.05% Tween-20). The secondary antibody goat anti-

mouse-biotin was used at 1:10000 dilution in dilution buffer I with 100 µl used per well. 

Plates were incubated at 37°C for 1 hour. After washing the plate four times, the 

streptavidin-AP diluted 1:1000 in dilution buffer II (PBS with 0.3% BSA) was added and 

incubated for 1 hour at 37°C. Finally, freshly made pNPP solution in substrate buffer (50 

mM Potassioum carbonate; 2 mM Magnessium Chloride) was added to the wells and 

incubated at 37°C. The optical density (OD) at 405 nm was measured at 15 min intervals 

from 15 min up to an hour. Data were plotted with time on the X axis and OD on the Y 

axis. 

For Sandwich ELISA, plates were coated with antibodies or hybridoma culture-

spernatants overnight at 4°C. After blocking the plate, purified cattle class I antigens 

were added. A biotinylated W6/32 antibody was used as detection antibody. In other 

studies capture (sandwich) ELISA are routinely used to detect the soluble class I proteins 

[3, 4, 5, 7, 14]. 

 
Production of Exhausted Hybridoma Culture Supernatants 
 

Exhausted culture supernatants for the NC3*00101 antigen were prepared at 

Washington State University while exhausted culture supernatants for the NC1*00501 

antigen were prepared at Utah State University. Cells were thawed, enumerated and 

cultured in a 6-well plate at a seeding concentration of 1 x 106 cells/ml in RPMI with 1% 

Zap Hybridoma supplement (InVitria). After 1 week of culture, cells were transferred to a 

T25 flask. When the cells were ~90% confluent, they were transferred to T75 flasks. 

Multiple T75 flasks were inoculated with 5 million cells in 50 ml of culture medium and 
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cultured at 37°C at 5% CO2 for a week by which time the media was exhausted and cells 

had died. The exhausted supernatants containing antibodies were collected by 

centrifugation at 1500 RPM for 10 min. 

 
Antibody Isotyping 
 

The NC3*00101- and NC1*00501-hybridoma culture supernatants were screened 

using an ELISA murine antibody isotyping kit (Pierce) to determine the isotypes of the 

antibodies. H1A, W6/32 and IL-A88 were used as positive controls. 

 
Results 
 
Establishment of High-Expressing Transfected Cell Lines 

Less than 20% of newly transfected P815 cells expressed BoLA-NC1*00501 or 

NC3*00101 proteins that could be detected by flow cytometry. Growth in G418 

antibiotic was used to select stable transfectants. Following two weeks of selection 

approximately 25-50% of the cells expressed immunoreactive NC1*00501 or 

NC3*00101 proteins. Following FACS sorting with an anti-bovine MHC class I 

monoclonal antibody (H1A), 92.3% of NC1*00501 and 98.4% of NC3*00101 cells 

expressed the bovine MHC class I protein. Pre-sort and post-sort data are presented in 

Figure 4-1. 

 
ELISA Screening 
 
Antibodies against NC1*00501  

First Fusion: Supernatants NC1-19, NC1-21, and NC1-40 had positive reactivity 

sin the initial screening ELISA (data not shown). The NC1-19 supernatant had stronger 

reactivity than other two supernatants. Exhausted supernatants were produced and used to 
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test the monoclonal antibodies against all of our cloned MHC class I proteins. These 

supernatants reacted with all of the cattle MHC class I proteins but had higher affinity for 

NC1*00501 protein (Figure 4-2). NC1-19, which appeared to be strong in ELISA, did not 

appear to be a true clone in isotyping assay (Figure 4-2). 

 

 

Fig 4-1: Presort and post sort analysis of NC1*00501 and NC3*00101 transfectants 

 

NC3*00101 

First Fusion: NC3*00101-specific antibody secreting hybridomas were screened 

by ELISA and flow cytometry at WSU. Twelve positive NC3 hybridoma colonies were 

found positive from the first fusion. NC3-4 and NC3-9 were slightly positive in ELISA.   
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Second Fusion: From the second fusion of spleen cells with myeloma cells, one 

positive hybridoma (NC3 supernatant 2) clone was selected and the supernatant was sent 

to us for secondary screening. NC3-02 clone had a specific and positive reactivity with 

NC3*00101 protein as determined by ELISA (Figure 4-3).            

 

Fig 4-2: ELISA screening of anti-NC1*00501 exhausted supernatants 
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Fig 4-3: ELISA screening of NC3*00101 supernatants. Note that NC3 supe 2 has a 

specific reaction with NC3*00101 protein as shown in the last line graph with the crossed 

purple line of NC3 supe 2. 



90 
 

Third Fusion: From the third fusion, 7A and 7B supernatants were positive in 

initial screening but they were non-specific and reacted with all other class I proteins 

(Table 4-1). 

 
Table 4-1: The summary of ELISA results of NC1 and NC3 supernatants 
 
mAb N*01701 N*01802 NC1*00501 NC3*00101 

H1A - ++++ ++ +++ 

W6/32 - +++ ++++ - 

IL-A88 neat ++++ ++++ - ++++ 

IL-A88 1:10 ++++ ++++ - ++++ 

NC1-19A 1:10 +++ ++ ++++ +++ 

NC1-19A 1:100 - - - - 

NC1-21A 1:10 - - - - 

NC1-21A 1:100 - - - - 

NC1-40A 1:10 ++ + +++ + 

NC1-40A 1:100 + - ++ +/- 

NC3-supe 2 - - - ++++ 

NC3-1 - - - - 

NC3-2 - - - - 

NC3-3 - - - - 

NC3-4 + + + + 

NC3-5 - - - - 

NC3-6 - - - - 

NC3-7 - - - - 

NC3-8 - - - - 

NC3-9 ++++ ++ ++ ++++ 

NC3-10 - - - - 

NC3-11 - - - - 

NC3-12 - - - - 
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Flow Cytometry  
 
NC1*00501 

In the initial screening of NC1 serum from immunized mice, we saw a strong 

NC1-specific response. However, it also produced a weak response to untransfected P815 

cells. In the first fusion one NC1 hybridoma was positive; however, there was no 

outgrowth after transfer to the 12-well plate. The second fusion yielded positive 

hybridomas whose expanded supernatants were tested with flow cytometry. 

First Fusion: One supernatant NC1-19 had a detectable activity but it reacted 

with other cell lines including untransfected P815 cells. As shown in Table 4-2, 11 of the 

supernatants (#24, #25, #27, #28, #30, #33, #34, #36, #38, #40 and #41) appeared to have 

a low titer against NC1*00501 protein.  They all seemed to be the mixed population. We 

rescreened all supernatants with 1:1 and 1:10 dilutions of supernatants. The titer of 

antibody in all anti-NC1 supernatants was likely low. NC1-19A and 40A reacted more 

strongly with untransfected P815 cells than with NC1*00501-transfected cells (Figure 4-

4). 

 
NC3*00101 
 

First Fusion: None of the twelve sera was positive. 

Second Fusion: Supernatants of NC3-1 and NC-9 hybridomas reacted with all 

cattle MHC-I proteins with a weak reactivity to untransfected P815 cells which suggests 

that these supernatants may have reacted with unknown cell-cycle antigen on mouse 

P815 cells as mice were immunized with transfected P815 cells. We did not see any 
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specific reactivity in the NC3-9 supernatant. Consequently, we did not clone NC3-1 and 

NC3-9 hybridomas.  

          

 

Fig 4-4: Flow-cytometry staining of culture supernatants of NC1*00501-hybridomas. 

 

Third Fusion: From the third fusion of spleen cells, initial screening produced 

ten NC3 positive clones. However, only two of them expanded. These were frozen. We 

received supernatants of NC3-1, NC3-2 and NC3-3 from the third fusion. The NC3-2 

supernatant looked very promising and positive on NC3*00101-transfected cells even at 

1:100 dilution (Figure 4-5). We decided to clone the NC3-02 clone from the third fusion. 

Cloning of the NC3-02 hybridoma cell line was attempted twice at WSU, but the cell line 

was not cloned or rescued. More fusions were attempted but all the clones had non-
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specific reactivities. From the third fusion we cultured NC3-2 (A, B, C, D, E, F), NC3-4 

(A, B, C, D, E, F), NC3-7 (A, B), and NC3-8 (A, B, C, D, E, F) cell lines and tested them 

by flow cytometry. 7A and 7B supernatants reacted with the NC3*00101-transfected cell 

line but they also reacted with untransfected P815 cells with the same intensity. 

 

 

Fig 4-5: Flow-cytometry staining of culture supernatants of NC3*00101-hybridomas. 

Note that BoLA-NC3*00101-NC3-Supernatant 2 neat has a specific positive response 
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Antibody Isotyping 
 

All NC3*00101 and NC1*00501-hybridoma culture supernatants secreted IgG1 

isotypes of immunoglobulins. As expected H1A, W6/32, and IL-A88 antibodies were of 

IgG2a isotypes. All samples tested were found to have kappa light chains (Table 4-2).  

 

Table 4-2: Summary of Isotyping of NC1*00501 and NC3*00101 supernatants 

mAb Isotype Light Chain 

H1A IgG2a Kappa 

IL-A88 IgG2a Kappa 

W6/32 IgG2a Kappa 

NC1-19A IgG1 Kappa 

NC1-21A IgG1 Kappa 

NC1-40A IgG1 Kappa 

NC3-2 original IgG1 Kappa 

NC3-5 IgG1 Kappa 

NC3-6 IgG1 Kappa 

NC3-9 IgG1 Kappa 

NC3-10 IgG1 Kappa 

NC3-11 IgG1 Kappa 
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Discussion 

The report of bovine monoclonal antibody to red blood cell antigen was published 

by Tucker et al. 1987 [16]. Monoclonal antibodies against cattle MHC-I, IL-A88 and IL-

A19, were produced at International Laboratory for Research on Animal Diseases 

(ILRAD), Kenya. In one study, researchers noticed that the MHC-I specific antibodies 

recognized MHC class I heavy chain on Western blot [2]. We tested H1A, H6A, H11A, 

PT-85A antibodies but they did not work on Western blot. It is reported that in non-

reducing Western blotting conditions, they may all react with the light chain (Beta-2 

microglobulin) [12]. 

To develop ELISA to detect secreted proteins from trophoblast cell culture 

supernatants, we attempted to develop monoclonal antibodies against two bovine class Ib 

molecules, NC1*00501 and NC3*00101. We were able to produce a hybridoma cell line 

which secreted NC3-specific antibodies. Unfortunately, the NC3-2 hybridoma, which 

produced specific and high-titer anti-NC3*00101 antibody, was not recovered and thus 

we failed to retain the positive hybridoma. We were able to use the NC3-2 original 

supernatant in ELISA as a capture antibody for NC3*00101 protein. 

In the future, we need to perform more fusions and screenings of hybridomas to 

produce a positive hybridoma that is more stable and able to secrete specific antibodies in 

the supernatant. The use of transfected murine P815 cells as immunogens may also be 

one of the considering factors as the hybridoma supernatants reacted with untransfected 

cells when tested on flow cytometry. Using an MHC-null cell line such as human K562 

and/or another host animal for immunization are parameters to consider for future 

projects to produce cattle class Ib specific antibodies. 
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CHAPTER 5 

IDENTIFICATION OF THE PEPTIDE MOTIFS OF CATTLE NON-CLASSICAL 

MHC-I (BoLA-NC3*00101) PROTEIN 

 
Abstract 
 

We eluted and identified peptides which bind to the peptide binding groove of the 

NC3*00101 protein. We used a MHC-null K562 cell line, which only expresses the 

transgene. K562 cells were transfected with the bovine transgene coding for NC3*00101 

protein and grown on a large scale. Peptides were released and eluted using mild acid 

treatment. After purification with reverse phase high pressure column chromatography 

(RP-HPLC) and mass-spectroscopy (MS) the peptide sequences were identified. 

Sequences were matched with the mammalian database of National Center for 

Biotechnology Information (NCBI). Candidate peptide-sequences were identified by 

creating sequence logos (http://weblogo.berkeley.edu/logo.cgi) and comparing with 

human non-classical class I specific peptide ligands. Candidate peptides were tsted for 

their specificity in refolding assays and peptide binding assays. Our results indicate that 

peptide EVTNQLVVL is potential peptide ligand of NC3*00101 protein as identified by 

peptide binding assay and statistical analysis using mixed procedure of statistical analysis 

software (SAS). 

 
Introduction 
 

There are two types of major histocompatibility complex class I (MHC) proteins, 

classical (MHC-Ia) and non-classical (MHC-Ib) class I glycoproteins. Class I proteins 

bind with intracellular pathogen-derived peptides or the animal’s own peptides and 
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present these peptides to the cell surface for cytotoxic T cell-receptor interaction. Self-

peptides normally do not elicit a cytotoxic T-response owing to their tolerance to self-

antigens. In bacterial, viral, and other infections, peptides produced from the foreign 

pathogen are subsequently loaded onto peptide binding grooves of MHC-I glycoproteins 

for presentation on the cell surface and immunological recognition by class I restricted 

cytotoxic T cells. Thus, an infected cell with a foreign peptide in the MHC-I peptide-

binding groove is recognized and destroyed by cytotoxic T cells.  

Binding of peptides to the peptide binding groove is critically important for the 

expression of MHC-I proteins on the cell-surface. Class I specific peptides are 8-10 

amino acid long. These peptides tighly bind in the groove with their N- and C- termini 

buried interacting with MHC residues. Side chains of peptide amino acid residues interact 

with corresponding MHC residues to form pockets that vary in shape and location 

depending on the allelic forms of the MHC molecules [31]. MHC-Ia proteins have been 

studied to a significant extent in terms of their peptide presentation characteristics. 

Extremely polymorphic MHC-Ia proteins present a vast array of peptides to T cells. On 

the other hand, MHC-Ib proteins bind with a narrow range of peptides. Human MHC-Ib 

proteins, human leukocyte antigen (HLA)-E and HLA-G display more restricted sets of 

peptides than classical HLA-A, -B, and -C antigens. HLA-E binds peptides derived from 

leader sequences from certain HLA class I leader sequences [3, 4, 21, 22]. HLA-G binds 

naturally processed endogenous peptides [6, 23]. HLA-F is uniquely expressed as empty 

MHC-I protein [10]. The murine class Ib molecule Qa-2 binds nonapeptide which has a 

histidine as an anchor residue at P7 [18]. 
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MHC-Ib proteins are important immunomodulatory proteins which interact with 

immunoglobulin-like receptors, LILRB1 and LILRB2, and inhibit immune cells [1, 2, 9, 

13, 14, 15, 24, 28, 35]. Soluble HLA-G isoform, HLA-G1 induces maternal fetal 

tolerance uterus by inducing apoptosis of activated CD8 T cells [9]. It also inhibits NK 

cell-mediated cytotoxicity [25, 29, 30, 34]. 

The MHC of cattle, bovine leukocyte antigen (BoLA), encodes class Ib proteins at 

four loci, BoLA-NC1, -NC2, -NC3, and -NC4. It is known that class Ib proteins undergo 

alternative splicing so as to produce membrane and secreted isoforms. During the third 

trimester of pregnancy, cattle trophoblast cells express both class Ia and class Ib protein. 

The characteristic features of BoLA-Ib proteins are less polymorphism (monomorphic or 

oligomorphic), putative class Ib amino acid motifs (IPI, VPI or VLI) in their 

transmembrane domains and/or premature stop codons, and surface and/or soluble 

isoforms due to alternative splicing in the transmembrane domain [5]. Transfection 

studies revealed that BoLA-Ia proteins, N*01701 and N*01802, and BoLA-Ib proteins, 

NC1*00501, NC3*00101, and NC4*00201, are expressed on the cell-surface. 

NC3*00101 protein is expressed at a high level compared to other BoLA-Ib proteins, and 

is an important immunoregulatory molecule. It is important to investigate peptide motifs 

that bind with NC3*00101 protein to understand the mechanism of immune tolerance of 

this protein during pregnancy. 

Endogenous peptides associated with MHC-I proteins can be identified using 

reported methods [33]. MHC-I bound peptides can be acid extracted from whole cells [7, 

8, 31, 32, 33, 36, 37] or they can be acid-eluted from purified MHC-I molecules [6, 7, 8]. 

Although the elution of peptides from purified MHC-I proteins gives better results, citrate 
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shock or mild acid-elution can also be a method of choice when a MHC-I specific 

antibody capable of working in immunoprecipitation is not available.  

 We transfected a K562 cell line with a cattle NC3*00101 transgene and used the 

citrate shock method to elute peptides after mild acid treatment of transfected cells. 

Peptides were purified using chromatography and analyzed by liquid chromatography 

mass-spectroscopy (LC-MS) to identify sequences of peptides extracted from 

NC3*00101-transfected K562 cells. 

 
Materials and Methods 
 
Cell Lines and Culture Conditions 

The MHC-null cell line K562 (ATCC CCL243) is a lymphoblastic cell line 

derived from a person with chronic myelogenous leukemia (CML). Cells were cultured 

and maintained at 37°C and 5% CO2 in Iscove’s Modified Dulbecco’s Medium (IMDM) 

(Fisher Scientific) with 10% heat-inactivated bovine calf serum (Hyclone), 100 units/ml 

penicillin and 100 µg/ml streptomycin (Hyclone) in a humidified incubator. 

 
Flow Cytometry 
 

The BoLA-NC3*00101 gene was amplified (Forward primer 

CACCATGGGGCCGCGAACCCTC and reverse primer 

GGCACTGTCACTGCTTGCAGTCTG) and cloned in the pcDNA3.1 mammalian 

expression vector. Subclones were sequenced to confirm the size of insert and full length 

subclones were used to isolate the plasmid using a Qia-prep kit (Qiagen). Cells were 

transfected with the subclones of the NC3*00101 gene in the pcDNA3.1 vector using 

Lipofectamine 2000 (Invitrogen) transfection reagent. Untransfected cells were used as a 
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negative control. Four micrograms plasmid DNA was used to transfect 2 x 106 cells using 

the method described in the chapter 3. For staining, cells were resuspended in 

fluorescence buffer (FB; PBS with 0.1% sodium azide, 1% bovine serum albumin) and 

incubated with anti-MHC class I monoclonal antibody W6/32 (15µg/ml) for 15 min. 

Cells were washed twice with FB and then incubated with secondary antibody for 15 

min. All incubations were performed at 4°C. Cells were washed twice and fixed in PBS 

with 1% formaldehyde or paraformaldehyde. One million cells were stained for each 

sample. Cells were analyzed using a Becton-Dickinson FACSAria II fluorescence 

activated cell sorter (FACS) equipped with FACS Diva software. The FACSAria II was 

also used to sort the transfected cells to enrich the high expressing cells.  

For FACS sorting, cells were stained in IMDM medium using the method 

described above. Stable NC3*00101 transfectants of K562 cells were cultured in T150 

flasks and monitored by counting the cells and visualizing daily under a microscope.  

 
Mild-Acid Elution of NC3*00101-Peptides 
 
 Stably transfected and highly expressing NC3*00101-transfectants were 

harvested (~1 x 109 cells) by centrifuging cells at 2000 xg at 4°C for 10 min. Cells were 

washed twice with phosphate buffered saline (PBS) by spinning each wash at 2000 xg for 

5 min. Cells were incubated on ice for 5 min. Ice-cold citrate shock buffer (0.131 M citric 

acid, 0.066 M Na2HPO4, and 150 mM NaCl, pH 3.3) was added to cells at 1 ml/108 cells. 

Cells were resuspended and incubated on ice for 5 min. Cells were spun down to remove 

the cell debris and supernatant was collected in a sterile 15 ml centrifuge tube (Corning). 

Cells were centrifuged at 15000 RPM for 30 min to clear the supernatant of the 

precipitated material to avoid the blockade of centrifugal filters in the subsequent 
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procedure. In the meantime, 3 kD MWCO centrifugal filters (Amicon) were washed with 

50% methanol and liquid chromatography-mass spectrometry (LC-MS) grade-water 

(Optima) by centrifuging filters at 4000 RPM for 30 min. Clear supernatant from citrate-

treated cells was added to the filter and centrifuged at 4000 RPM for 30 min. Flow 

through containing peptides lower than 3 kD size was collected and pooled. The pooled 

flow through was vaccum concentrated to 500 µl and purified using reverse-phase-high 

pressure liquid chromatography (RP-HPLC) C18 Zip Tip (Millipore). Peptide extractions 

were performed in three replicates each of ~1 x 109 cells and analyzed by mass-assisted 

laser desorption ionization (MALDI) mass spectroscopy for initial analysis of mass-

spectra to identify the presence of peptides and potential m/z peaks of interest. Synthetic 

peptide (YPAIPVLQI), which is the reported peptide motif of cattle class I antigen 

BoLA-A11 or N*01701 protein (http://www.ebi.ac.uk/ipd/mhc/bola/index.html) [11, 12] 

was ordered from Genscript and used as a positive control reference peptide for the 

MALDI protocol. 

 
MALDI and LC-FT MS/MS 
 

MALDI and liquid chromatography Fourier Transform (LC-FT) MSMS analyses 

were carried out at the mass spectrometry and proteomics core facility, University of 

Utah, Salt Lake City. Briefly, peptide samples were spotted using the dried-droplet 

method. The matrix, α-cyano-4-hydroxy cinnamic acid (CHCA), was prepared in 

water/acetonitrile [50:50] with 0.1 % trifluoroacetate (TFA) by thoroughly mixing the 

matrix powder with 0.5 mL of solvent in a 1.7 mL eppendorf tube, and centrifuging to 

pellet the undissolved matrix. The supernatant was used for sample preparation for 

MALDI analysis. Peptide samples (0.5 uL of 1 pmol/uL) were loaded onto a stainless 
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steel target plate and mixed on the target with 0.5 µL of supernatant of saturated matrix 

solution. After the sample spot was air-dried and the mixture of matrix supernatant and 

peptide co-crystallized, the spot was ablated with a 1 kHz smartbeam-II™ laser from the 

plate while the sample was simultaneously desorbed, ionized, and then accelerated into a 

flight tube. The MALDI spectrum was acquired in reflector mode, which was operated at 

around 30,000 resolutions over a mass range from 500 to 5000 Da. 

 
LC/MS Analysis of Peptides 
 

LC-MS/MS analysis was performed using a LTQ-FT hybrid mass spectrometer 

(ThermoElectron Corp) equipped with Ion Trap Fourier Transform Ion-Cyclotron 

Resonance (FT-ICR) technologies.  Primary mass spectra were acquired with the (FT-

ICR) part of the instrument. MS/MS fragmentation spectra (i.e. peptide sequence 

information) were acquired in the Ion Trap part of the instrument.  Peptide molecular 

masses were measured by FT-ICR, yielding primary mass spectra of peptides with mass 

errors typically less than 3 ppm.  Peptide sequencing was performed by collision-induced 

dissociation (CID) in the linear ion trap of this hybrid instrument yielding fragment ions 

with mass errors typically less than 0.3 Da.  Peptide samples were introduced by a 

nanoLC column (2D-Ultra, Eksigent, Inc.) with nano-electrospray ionization spray 

(ThermoElectron Corp).  Typically about 10 to 20 fmoles of peptide samples were 

injected.  NanoLC chromatography was performed using a homemade C18 nanobore 

column (75 um ID x 10 cm; Atlantis C18, 3 µm particle-C18 material from Waters Corp) 

at the University of Utah, Mass Spectrometry and Proteomics -Core Facility.  Peptides 

were eluted during a 78-min linear gradient from 5% acetonitrile (with 0.1% formic acid) 

to 60% acetonitrile (with 0.1% formic acid) with a flow rate of 350 nl /min. 
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Peptide ID and Database Searches 
 

All identified peptides were assigned from protein database searches, using in-

house processing with the MASCOT search engine (in-house licensed, ver. 2.2.1, Matrix 

Science, Inc.) at the University of Utah, Mass Spectrometry and Proteomics Core 

Facility.  Mascot searching was performed from an in-house computer using a search of 

the NCBI protein database.  Peptides mass spectra data were searched with non-enzyme-

specific cut sites and identified based on the “MS/MS” Mascot search option, with the 

following criteria: 

1) Accurate mass measurement of peptide molecular ions by FTMS with search 

window 5 ppm (peptides typically had less than 3 ppm mass error). Molecular ions with 

+1, +2, or +3 charge states determined from a FTMS primary mass spectrum (LTQ-FT 

instrument) were usually considered. 

2) Peptide sequence information from MS/MS; CID fragmentation of the parent ion 

of each peptide was obtained in the linear ion trap region of the LTQ-FT instrument.  

Mass error tolerance of 0.5 Da was allowed for peptide fragment ion masses in the search 

(MS/MS fragment ions typically had errors less than 0.3 Da). 

3) Mass spectra peak lists for the Mascot searches were generated using Sequest in 

QualBrowser software (Excalibur, Thermo Electron Corp.). 

4) Peptide modification was included in the search (e.g. oxidation on methionine). 

5) Searches were typically performed for non-specific peptide cleavages.  Two 

missed cleavages were allowed. 
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6) All identified peptides showed MASCOT scores greater than 20.  Mascot 

threshold cutoffs for acceptable identified peptides had MASCOT scores >20, mass 

errors <3 ppm, and expected values less than 1. 

 
Purification of NC3*00101-BSP and Bovine β2m Inclusion Bodies 
 

The NC3*00101 heavy chain was fused with a sequence that can be biotinylated 

with a biotinylating enzyme (BirA). This sequence tag is therefore known as BirA 

substrate peptide (BSP*41) tag. The NC3*00101-extracellular domains (alpha 1, 2, and 3 

domains) or heavy chain was amplified from genomic DNA and cloned in pTCF33 

vector (a generous gift from the NIH Tetramer Facility, Emory University) which 

expresses the MHC-I heavy chain-BSP (BSP*41) sequence in E. coli. The pTCF33 

contains a hybrid T7-lac promoter that drives expression of MHC-BSP chain. Bovine 

β2m was expressed into pET24a+ vector as per the NIH Tetramer Facility Protocol 

(http://tetramer.yerkes.emory.edu/client/protocols#1). The primers for both the 

NC3*00101-BSP and bovine β2m were designed so that the amplicons contain the Bam 

H1 restriction site. Clones were sequenced and checked for the correct insert size. E. coli 

BL21 cells were inoculated with full size subclones and grown as per the NIH protocol. 

Overinduction of expression was carried out using 1 mM Isopropyl β-D-1-

thiogalactopyranoside (IPTG). Cells were harvested by centrifuging at 4000 RPM for 30 

min. Bacteria were pooled and resuspended in 50 mM Tris-HCL, 25% (W/V) sucrose, 1 

mM EDTA, 0.1% (w/v) NaAzide, and 10 mM freshly added DTT and the suspension was 

stirred in a 100 ml beaker with a stirring bar. To the stirring mixture was added, 1.2 ml 50 

mg/ml lysozyme (final = 1 mg/ml), 300 µl 1.0 M MgCl2 (final=5mM), 1.0 ml of 2 mg/ml 

Dnase I in 50% glycerol containing 75 mM NaCl, 600 ul Triton-X 100 (final= 1%), and 
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600 µl 1M DTT (final=10 mM). The suspension was stirred for 30 min at room 

temperature and then sonicated for 1.5 min at 0.5 sec alternations at power 4 using 

sonicator. The suspension was centrifuged in multiple 50 ml centrifuge tubes (Corning) 

in a Beckman centrifuge at 10000 RPM for 10 min at 4°C. After decanting the 

supernatant, 1-2 ml of wash buffer, pH 8.0 (50 mM Tris-HCl, 0.5% Triton-X100, 100 

mM NaCl, 1 mM EDTA, 0.1% Na-azide, 1 mM DTT added fresh) was added to the 

pellet. The pellet was resuspended, and centrifuged again. After two washes with wash 

buffer with Tween-20, cells were washed with wash buffer without Tween-20 and 

centrifuged. The final white pellet was solubilized in 10 ml urea solution, pH 6.0 (25 mM 

MES (pH 6.0), 8 M urea, 10 mM EDTA, and 0.1mM DTT added fresh). The protein 

concentration was measured at A280 measurement on a Nano drop Spetcrophotometer. 

Urea solubilized bodies were frozen at a concentration of 2 mg/ml concentration. 

 
Refolding of Cattle NC3*00101-BSP and β2m Chains and Biotinylation 
 

Refolding was carried out in 500 ml of folding buffer (400 mM L-arginine, 100 

mM Tris, 2 mM EDTA, pH 8.3) chilled at 10°C. To 500 ml refolding buffer, were added 

0.76825 g reduced glutathione, 0.15315 g oxidized glutathione, and 0.5 ml 200 mM 

PMSF. Synthetically ordered peptides (15 mg) were dissolved in 500 µl DMSO and 

added to the stirring reaction. Urea solubilized inclusion bodies (500 nmol NC3*00101-

BSP and 1000 nmol bovine β2m) were diluted in injection buffer (3 mM Guanidine HCl, 

10 mM Sodium Acetate, 10 mM EDTA; pH 4.2) were loaded into two separate 3 cc 

syringes using 20 gauge needles and injected forcefully into the stirring reaction on a stir 

plate. The reaction was incubated at 4°C with stirring overnight. Next morning, 500 nmol 

of NC3*00101-BSP chain was injected into the reaction followed by 500 nmoles 
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NC3*00101-BSP in the evening. Folding reaction was incubated for 2 more days at 4°C. 

After 3 days of incubation, reaction was concentrated using 5 kD cut off filters 

(Millipore) to 7.5 ml and buffe-exchanged with 10.5 ml biotinylation buffer (100 mM 

Tris, 200 mM NaCl, 5 mM MgCl2, pH to 7.5) using PD-10 Sephadex G-25M columns.  

To 10.5 ml reaction, were added 500 µl ATP (100mM stock), 40 µl Biotin (100mM 

stock), 10 µl Leupeptin (1000x stock), 10 µl Pepstatin (100x stock), 20 µl PMSF (0.1M 

stock), and 20 µl BirA enzyme (Avidity) (stock at ~ 1 mg/ml) and the reaction was 

biotinylated by incubating overnight at RT. 

 
Purification of Biotinylated MHC-Peptide Monomers on the Mono Q Column 
 

Biotinylation reaction was buffer-exchanged with 20 mM Tris, pH 8.0 using 

Amicon Ultra-15 centrifuge filtering device 10 kD MWCO (Millipore). Final 

concentrated sample was dissolved in 500 µl Tris buffer. The concentrated sample was 

transferred to an eppendorf tube and centrifuged at 15300 RPM for 15 min at 4°C to 

remove any precipitate. The concentrated sample (500 µl) was immediately processed for 

Mono Q 5/5 purification column (GE Healthcare) using Buffer A (20 mM Tris, pH 8.0) 

and buffer B (20 mM Tris, pH 8.0 and 500 mM NaCl). Briefly, 2 ml loop was washed 

two times with 2 ml of 20 mM Tris (pH 8.0). FPLC computer program was opened and 

set to run the Mono Q column. The parameters were enetered manually and the program 

was run for 2 hours until the MHC peaks showed up. The fractions were collected in 4 ml 

polypropylene tubes. The specific fractions were pooled and concentrated using 10 KD 

MWCO Amicon filters. The sample was concentrated <1 ml and the final sample was 

diluted with ~1 ml PBS. The sample was transferred to an eppendorf tube and stored on 

ice or 4°C. Protein concentration was measured using A 280 absorbance on a Nano drop 
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spectrophotometer and the monomer samples were diluted with PBS to achieve the 

concentration of 2 mg/ml. 

 
Western Blotting Analysis of Biotinylated Refolded MHC-Peptide-β2m Complex 
 

To 3 µl of diluted monomer samples from the previous step, was added 12 µl of 

PBS (Final concentration 0.4 mg/ml). Five microliters of this monomer sample was 

added with 5 µl of 0.8-1 mg/ml streptavidin or water and incubated for 1 hour at room 

temperature (RT). Samples were run on NuPAGE 4-12 % Bis-Tris gel and Coomassie 

stained to identify the biotinylated heavy chains to shift when treated with Streptavidin 

(Biotinylation Shift Assay). For Western blotting, the incubated samples were run on the 

gel and transferred to polyvinylidine diflouride (PVDF) membrane. The membrane was 

incubated with anti-mouse β2m polyclonal (Novus Biologicals) or W6/32 (VMRD Inc.) 

antibodies for an hour at RT. Anti-mouse AP-conjugated antibody was used as secondary 

antibody. Both denaturing and native conditions were used to test the antibodies to detect 

refolded protein complexes. 

 
Peptide Binding Assay  
 

In a 24-well plate, 0.5 x 106 cells (transfected or untransfected) were added. 

Untransfected K562 cells were used a negative control in each experiment. All cells were 

treated with or without peptides and incubated at 37°C for 16 hours. Cells treated with 

DMSO (carrier) were used as reference sample for analysis. Cells were analyzed for 

NC3*00101 expression using anti-MHC class I antibody, W6/32. Peptides tested were 

YPAIPVLQI, EVTNQLVVL, LVDGVKRIL, SSKIVGDLA, and GSILSGTAIA. Results 

were analyzed by creating overlays of flow cytometry data using FlowJo software. 
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Statistical Analysis 
 

Peptide binding assays were performed and mean fluorescence values were 

recorded for cell samples. DMSO-treated cells were taken as control and peptides as 

mentioned above were used as unknown treatment groups. Different days were used as 

covariables. A mixed procedure using statistical analysis software (SAS) was used to 

identify significant effects of peptide-treatments on NC3*00101 expression. The least 

square means and differences between the means were determined for different treatment 

groups to identify the differences of significance between each peptide. P-value of 0.5 

was used to identify the values of significance.  

 
Results 
 
Flow Cytometry 

K562 cells transfected with NC3*00101 transgene showed 22.4% expression 

compared to untransfected cells. We were able to sort highly expressing cells using 

W6/32 staining. Three sorts were performed which resulted in enrichment of highly 

expressing cells with an expression level of 90.3% (Figure 5-1).  

 
MALDI and LC-MS/MS Analyses 
 

The mass spectrum of reference peptide YPAIPVLQI yielded a specific m/z peak, 

which corresponded to a 1013.61 dalton molecular weight (expected MW 1013.65). We 

had few m/z peaks of interest in the NC3*00101-peptide sample which led us to proceed 

to subsequent LC-MS/MS analysis on NC3*00101 samples (Figure 5-2). 
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Fig 5-1: Sorting of K562-NC3*00101 transfectants was performed using anti-

MHC-I monoclonal antibody W6/32 

 

LC-MS/MS Analysis of NC3*00101 Extracted Peptides 

 Three different analyses were performed using web sequence logo and manual 

comparisons. Peptide sequences were sorted into 8, 9, and 10-amino acid sequences, 

which were unique to NC3*00101-transfected cells and different from peptides extracted 

from untransfected K562 cells. As MHC-I specific peptides are nonamers, we focused on 

9-mer peptides. Sequence logos were created and compared with other MHC class I 

specific peptide residues. Four candidate peptides were selected which had non-polar 

amino acids at -COOH terminals as reported [31]. Both from sequence logos 

(http://weblogo.berkeley.edu/logo.cgi website, Figure 5-3) and manual sorting methods, 

candidate peptide motifs of NC3*00101 protein were chosen and ordered from  
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Fig 5-2: MALDI spectra of synthetic (YPAIPVLQI) and acid-eluted peptides from 

untransfected-K562 cells and transfected NC3*00101-K562 cells 
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Fig 5-3: Logos created with 9-amino acid long peptides identified with the LC-MS/MS 

on citrate-acid-eluted peptides 

 

GenScript. These were EVTNQLVVL, LVDGVKRIL, SSKIVGDLA, and 

GSILSGTAIA. 

 
Refolding of Heavy and Light Chains and Western Blotting 
 

NC3*00101-BSP and bovine β2m were successfully expressed in bacteria as 

identified in a Coomassie stained gel (Figure 5-5). Cattle β2m was detected by Western 

blotting with anti-mouse β2m polyclonal antibody (Figure 5-4). We were not able to 

detect the NC3*00101 heavy chains with the W6/32 antibody in Western blots as W6/32 



only recognized N*01701 and NC1*00501 heavy chains 

heavy chains (Figure 5-4)

refolded biotinylated MHC

streptavidin and run on the gel followed by Coomassie staining. We noticed the 

streptavidin band in a biotinylation shift assay 

chains (~45 kD) in streptavidin negative lanes as highlighted with the oval region 

Figure 5-5. As the W6/32 antibody did not react

(NC3*00101-HC) on Western blot

to identify NC3*00101-streptavidin complexes. Native conditions did not produce 

positive results. Therefore,

 

 

 

Fig 5-4: Western blotting showing that W6/32 recognizes N*01701 and NC1*00501 

proteins in whole cell lysates. Anti

bodies. 

N*01701 and NC1*00501 heavy chains and not other cattle class I 

). W6/32 and anti-mouse β2m antibodies did not react with 

biotinylated MHC-peptide complexes. Refolded complexes were treated with 

streptavidin and run on the gel followed by Coomassie staining. We noticed the 

iotinylation shift assay but we did not see the expected heavy 

streptavidin negative lanes as highlighted with the oval region 

W6/32 antibody did not react with NC3*00101 heavy chain 

estern blots, it was not a surprise to see that this antibody 

streptavidin complexes. Native conditions did not produce 

results. Therefore, we proceeded to test our peptides in peptide binding assays. 

    

4: Western blotting showing that W6/32 recognizes N*01701 and NC1*00501 

proteins in whole cell lysates. Anti-mouse β2m antibody identifies cattle 
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not other cattle class I 

antibodies did not react with 

were treated with 

streptavidin and run on the gel followed by Coomassie staining. We noticed the 

but we did not see the expected heavy 

streptavidin negative lanes as highlighted with the oval region of 

with NC3*00101 heavy chain 

this antibody failed 

streptavidin complexes. Native conditions did not produce 

proceeded to test our peptides in peptide binding assays.  

 

4: Western blotting showing that W6/32 recognizes N*01701 and NC1*00501 

cattle β2m inclusion 
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Fig 5-5: Biotinylation shift assay. SDS-PAGE stained with Coomassie stain to test the 

refolded MHC-peptide-β2m complexes. As shown NC3*00101 heavy and β2m light 

chains were expressed and purified as inclusion bodies.  

 

Peptide Binding Assay 

In peptide binding assays, treatment of cells with DMSO produced an increase in 

the expression of MHC-I protein. As seen in overlays the expression of NC3*00101 was 

increased by all of our peptides tested (Figure 5-6). However, the increases in the shift 

varied from batch to batch. An overall comparative analysis of mean fluorescence values, 

we found that the peptide EVTNQLVVL increased the NC3*00101 expression compared 
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with other peptides and DMSO treatments. Other peptides, LVDGVKRIL, 

SSKIVGDLA, and GSILSGTAIA were not consistently effective in increasing the shift 

as EVTNQLVVL. However, we also noticed increase in expression with YPAIPVLQI 

treatment, which may be because this peptide fits in the peptide-binding groove stably 

because of its specificity with MHC-I proteins. 

Using Proc mixed program of SAS we identified that the peptide EVTNQLVVL 

had the highest least square mean among all. We identified that the EVTNQLVVL 

peptide was significantly different from control DMSO. Other three NC3*00101-cell-

eluted peptides were significantly lower than both DMSO and EVTNQLVVL. Therefore, 

we conclude that EVTNQLVVL is a potential peptide for NC3*00101 protein (see Table 

5-1). 

 
Discussion 
 

Identification of NC3*00101-specific peptide motifs is the first endeavor to 

elucidate the amino acid residues binding to NC3*00101 binding groove. It is critically 

important to understand peptide binding characteristics of cattle NC3*00101 protein to 

gain more knowledge about mechanisms of interactions of NC3*00101 protein with other 

leukocytes and the receptors expressed by leukocytes.  Here we present a peptide motif 

that increased the expression of NC3*00101 proteins on transfected K562 cells and was 

significantly different from other peptides tested. After initial failures of 

immunoprecipitation method using W6/32 antibody, we switched to citrate shock method 

to elute NC3*00101-peptides from its transfected cells.  

We tested four candidate peptides which were eluted from NC3*00101-

expressing K562 cells after citrate-acid treatment. Based on results of refolding and 



Fig 5-6: Peptide binding assay performed on NC3*00101

YPAIPVLQI; P2: EVTNQLVVL; P3: LVDGVKRIL; P4: SSKIVGDLA; P5: 

GSILSGTAIA). X axis: L

with (red line) and without (

checked for the MHC-I (NC3*00101) 

 

 

6: Peptide binding assay performed on NC3*00101-transfectants with peptides (P1: 

YPAIPVLQI; P2: EVTNQLVVL; P3: LVDGVKRIL; P4: SSKIVGDLA; P5: 

: Log fluorescence and Y axis: Cell count. Cells were incubated 

) and without (black filled histogram) peptides for 15-16 hour at 37

I (NC3*00101) expression using W6/32 antibody. 
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transfectants with peptides (P1: 

YPAIPVLQI; P2: EVTNQLVVL; P3: LVDGVKRIL; P4: SSKIVGDLA; P5: 

ell count. Cells were incubated 

16 hour at 37°C and 
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Table 5-1: The Mixed Procedure (SAS) output showing the least square means and 

contrast values for different treatments in peptide binding assay
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biotinylation shift assays, we were not able to detect refolded NC3*00101-peptide-β2m 

complexes. We do not have a functional antibody, which recognizes monomeric, dimeric, 

trimeric and tetrameric complexes of NC3*00101-peptide- β2m.  Natural ligands binding 

to HLA-E are different than experimentally-derived amino acid residues [27]. It is 

possible that NC3*00101-specific ligands may bind with endogenous peptides with 

varying degree of similarity with residues identified in the present study. Nevertheless, 

treatment of cells with peptides in peptide binding assay shows that the peptide 

EVTNQLVVL increases the NC3*00101 expression more consistently.  

It was not experimentally feasible to screen an entire peptide library based on the 

LC-MS/MS results. Therefore, it may further need to screen larger number of peptide 

library to confirm positions of anchor and auxiliary residues of NC3*00101-specific 

peptides. However, unavailability of antibody to immunoprecipitate native NC3*00101 

protein may present a caveat. Reports on HLA-G and other non-classical class I peptides 

[6] suggest presence of non-polar or neutral amino acid at the carboxyl terminals. Non-

polar amino acids are Alanine (A), Isoleucine (I), Leucine (L), Phenylalanine (F), Valine 

(V), Proline (P), and Glycine (G). By comparing with peptide motifs of human MHC-Ib 

proteins, HLA-E and HLA-G, we know that experimentally derived amino acid residues 

may not always be the binding motifs of MHC-I proteins.  Therefore, we are confident 

that NC3*00101-specific peptide motif has a valine as anchor residues at position 2, a 

Val/Iso/leu at position 8, and Iso/Leu at position 9 as anchor residues (Table 5-2).  

In order to further confirm that P2 (EVTNQLVVL) is NC3*00101-specific ligand, we 

identified and statistically tested effects of treatment of each peptide on the NC3*00101 

expression with statistical analysis software (SAS) mixed Procedure (Proc Mixed). 
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Table 5-2: NC3*00101 Peptide Binding Motifs and a comparison with HLA-G and HLA-

E peptide motifs 
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The SAS output revealed that the treatment effect was significant between different 

treatments (Table 5-1). Using contrast method, we identified that treatment effect was 

divided into two groups, one group containing P1 and P2 which has higher mean 

fluorescence and the other group containing P3, P4, and P5 which have lower 

fluorescence as compared to DMSO. The mixed procedure contrast output values reveal 

that P1 (YPAIPVLQI) and P2 (EVTNQLVVL) as well as P3 (LVDGVKRIL), P4 

(SSKIVGDLA), and P5 (GSILSGTAIA) are not significantly different than the control 

(DMSO). However, it is clear that P1 and P2 are significantly different than P3, P4, and 

P5. Differences of least square means in the table are in accordance with our hypothesis 

that P2 is significantly higher than DMSO with an adjusted P value of 0.0231 (<P=0.05) 

whereas P1 is not (P=0.9146). P3, P4, and P5, on the other hand, are significantly lower 

than DMSO. This suggests that P2 is the most likely candidate peptide motif of 

NC3*00101 protein.  

In the pursuit of an antibody to detect folded MHC-peptide-β2m complexes, we 

tested W6/32 and anti-mouse β2m antibodies. Monoclonal antibody W6/32 recognizes 

heavy and light chain conformational epitope under non-reducing conditions. Other 

reports have been published showing that W6/32 detects certain allelic forms of rabbit, 

rat, mouse, and guinea pig class I heavy chains only when they are complexed with 

human or cattle β2m and not with autologous β2m [16, 17, 19, 20, 26]. Therefore, it is 

possible that cattle class I heavy chains which are not detected with W6/32 may require 

an association with β2m from other species for their detection with W6/32. We also 

identified that W6/32 only recognized N*01701 and NC1*00501 free heavy chains under 

partially denaturing conditions which suggests that all cattle class I proteins do not  have 
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identical association of heavy and light chains which can produce variations in the 

formation of class I alpha chain loops and normal peptide binding characteristics. 

 
References 
 
1. Bainbridge DRJ, Ellis SA, Sargent IL. The short forms of HLA-G are unlikely to play 

a role in pregnancy because they are not expressed at the cell surface. J Reprod Immunol 

2000; 47:1-16. 

2. Bainbridge DRJ, Ellis SA, Le Bouteiller P, Sargent I. HLA-G remains a mystery. 

Trends Immunol 2001; 22:548-552. 

3. Braud V, Jones EY, McMichael A. The human major histocompatibility complex class 

Ib molecule HLA-E binds signal sequence-derived peptides with primary anchor residues 

at positions 2 and 9. Eur J Immunol 1997; 27:1164-1169.  

4. Braud VM, Allan D. S. O’Callaghan CA, Soderstrom K, D’Andrea A, Ogg GS, 

Lazetic S, Young NT, Bell JI, Phillips JH, Lanier LL, McMichael AJ. HLA-E binds to 

natural killer cell receptors CD94/NKG2A, B and C. Nature 1998; 391:795-799.  

5. Davies CJ, Eldridge JA, Fisher PJ, Schlafer DH. Evidence for expression of both 

classical and non-classical major histocompatibility complex class I genes in bovine 

trophoblast cells. Am J Reprod Immunol 2006; 55:188-200. 

6. Diehl M, Münz C, Keilholz W, Stevanović S, Holmes N, Loke YW, Rammensee HG. 

Nonclassical HLA-G molecules are classical peptide presenters. Current Biol 1996; Mar 

1; 6(3):305-314. 

7. Falk K, Rötzschke O, Deres K, Metzger J, Jung G, Rammensee HG. Identification of 

naturally processed viral nonapeptides allows their quantification in infected cells and 



124 
 

suggests an allele-specific T cell epitope forecast. J Exp Med 1991; Aug 1; 174(2):425-

434. 

8. Falk K, Rötzschke O, Stevanović S, Jung G, Rammensee HG. Allele-specific motifs 

revealed by sequencing of self-peptides eluted from MHC molecules. Nature 1991; May 

23; 351(6324):290-296.  

9. Fournel S, Aguerre-Girr M, Huc X, Lenfant F, Alam A, Toubert A, Bensussan A, Le 

Bouteiller P. Cutting edge: soluble HLA-G1 triggers CD95/CD95 ligand-mediated 

apoptosis in activated CD8+ cells by interacting with CD8. J Immunol 2000; 164:6100-

6104. 

10. Goodridge JP, Burian A, Lee N, Geraghty DE. HLA-F complex without peptide 

binds to MHC class I protein in the open conformer form. J Immunol 2010; Jun 1; 

184(11):6199-6208. 

11. Hammond JA, Marsh SG, Robinson J, Davies CJ, Stear MJ, Ellis SA. Cattle MHC 

nomenclature: is it possible to assign sequences to discrete class I genes? 

Immunogenetics 2012; 64(6):475-480. 

12. Hegde NR, Ellis SA, Gaddum RM, Tregaskes CA, Sarath G, Srikumaran S. Peptide 

motif of the cattle MHC class I antigen BoLA-A11. Immunogenetics 1995; 42(4):302-

303. 

13. Hunt JS. Stranger in a strange land. Immunological Reviews 2006; 213:36-47. 

14. Hunt JS, Petroff MG, McIntire RH, Ober C. HLAG and immune tolerance in 

pregnancy. FASEB J 2005; 19:681-693. 

15. Ishitani A, Sageshima N, Lee N, Dorofeeva N, Hatake K, Marquardt H, Geraghty 

DE. Protein expression and peptide binding suggest unique and interacting functional 



125 
 

roles for HLA-E, F, and G in maternal placental immune recognition. J Immunol 2003; 

171:1376-1384. 

16. Ivanyi D, van de Meugheuvel W. A monomorphic HLAspecific monoclonal 

antibody, W6/32, reacts with the H-2Db molecule of normal mouse lymphocytes. 

Immunogenetics 1984; 20:699–703 

17. Jefferies WA, MacPherson GG. Expression of the W6/32 HLA epitope by cells of rat, 

mouse, human and other species: critical dependence on the interaction of specific MHC 

heavy chains with human or bovine β2-microglobulin. Eur J Immunol 1987; 17:1257–63 

18. Joyce S, Tabaczewski P, Angeletti RH, Nathenson SG, Stroynowski I. A 

nonpolymorphic major histocompatibility complex class Ib molecule binds a large array 

of diverse self-peptides. J Exp Med 1994; Feb 1; 179(2):579-588. 

19. Kahn-Perles B, Boyer C, Arnold B, Sanderson AR, Ferrier P, Lemonnier FA. 

Acquisition of HLA class I W6/32 defined antigenic determinant by heavy chains from 

different species following association with bovine β2-microglobulin J Immunol 1987; 

138:2190–2196 

20. Kievits F, Ivanyi P. Monomorphic anti-HLA monoclonal antibody (W6/32) 

recognizes polymorphic H-2 heavy chain determinants exposed by association with 

bovine or human but not murine β2-microglobulin. Hum Immunol 1987; 20:115–126 

21. Lee N, Llano M, Carretero M, Ishitani A, Navarro F, Lopez-Botet M, Geraghty DE. 

HLA-E is a major ligand for the natural killer inhibitory receptor CD94/NKG2A. Proc 

Natl Acad Sci USA 1998; 95:5199-5204. 



126 
 

22. Lee N, Goodlett DR, Ishitani A, Marquardt H, Geraghty DE. HLA-E surface 

expression depends on binding of TAP-dependent peptides derived from certain HLA 

class I signal sequences. J Immunol 1998; May 15; 160(10):4951-4960. 

23. Lee N, Malacko AR, Ishitani A, Chen MC, Bajorath J, Marquardt H, Geraghty DE. 

The membrane-bound and soluble forms of HLA-G bind identical sets of endogenous 

peptides but differ with respect to TAP association. Immunity 1995; Nov; 3(5):591-600. 

24. LeMaoult J, Krawice-Radanne I, Dausset J, Carosella ED. HLA-G1-expressing 

antigen-presenting cells induce mmunosuppressive CD4+ T cells. Proc Natl Acad Sci 

USA 2004; 101(18):7064-7069. 

25. Lindaman A, Dowden A, Zavazava N. Soluble HLA-G molecules induce apoptosis in 

natural killer cells. Am J Reprod Immunol 2006; 56:68-76. 

26. Maziarz RT, Fraser J, Strominger JL, Burakoff SJ. The human HLA-specific 

monoclonal antibody W6/32 recognizes a discontinuous epitope within the α2 domain of 

murine H-2Db. Immunogenetics 1986; 24:206–208 

27. Miller JD, Weber DA, Ibegbu C, Pohl J, Altman JD, Jensen PE. Analysis of HLA-E 

peptide-binding specificity and contact residues in bound peptide required for recognition 

by CD94/NKG2. J Immunol 2003 Aug 1;171(3):1369-1375. 

28. Naji A, Le Rond S, Durrbach A, Krawice-Radanne I, Creput C, Daouya M, 

Caumartin J, LeMaoult J, Carosella ED, Rouas-Freiss N. CD3+CD4low and 

CD3+CD8low are induced by HLA-G: novel human peripheral blood suppressor T-cell 

subsets involved in transplant acceptance. Blood 2007; 110(12):3936-3948. 



127 
 

29. Park GM, Lee S, Park B, Kim E, Shin J, Cho K, Ahn K. Soluble HLA-G generated 

by proteolytic shedding inhibits NK-mediated cell lysis. Biochem Biophys Res Commun 

2004; 313:606-611. 

30. Poehlmann TG, Schaumann A, Busch S, Fitzgerald JS, Aguerre-Girr M, Le 

Bouteiller P, Schleussner E, Markert UR. Inhibition of term decidual NK cell cytotoxicity 

by soluble HLAG1. Am J Reprod Immunol 2006; 56(5-6):275-285. 

31. Rammensee HG, Falk K, Rötzschke O. Peptides naturally presented by MHC class I 

molecules. Annu Rev Immunol 1993; 11:213-44. 

32. Rötzschke O, Falk K, Wallny HJ, Faath S, Rammensee HG. Characterization of 

naturally occurring minor histocompatibility peptides including H-4 and H-Y. Science 

1990; Jul 20; 249(4966):283-287. 

33. Rötzschke O, Falk K, Deres K, Schild H, Norda M, Metzger J, Jung G, Rammensee 

HG. Isolation and analysis of naturally processed viral peptides as recognized by 

cytotoxic T cells. Nature 1990; Nov 15; 348(6298):252-254. 

34. Selmani Z, Naji A, Zidi I, Favier B, Gaiffe E, Obert L. Human leukocyte antigen-G5 

secretion by human mesenchymal stem cells is required to suppress T lymphocyte and 

natural killer function and to induce CD4+CD25highFOXP3+ regulatory T cells. Stem 

Cells Jan; 2008; 26(1):212-222. 

35. Shiroishi M, Tsumoto M, Amano K, Shirakihara Y, Colonna M, Braud VM, Allan 

DS, Makadzange A, Rowland-Jones S, Willcox B,  Jones EY, van der Merwe PA, 

Kumagai I, Maenaka I. Human inhibitory receptors Ig-like transcript 2 (ILT2) and ILT4 

compete with CD8 for MHC class I binding and bind preferentially to HLA-G. Proc Natl 

Acad Sci USA 2003; 100:8856-8861. 



128 
 

36. Storkus WJ, Zeh HJ 3rd, Salter RD, Lotze MT. Identification of T-cell epitopes: rapid 

isolation of class I-presented peptides from viable cells by mild acid elution. J 

Immunother Emphasis Tumor Immunol 1993; Aug; 14(2):94-103. 

37. Storkus WJ, Zeh HJ 3rd, Maeurer MJ, Salter RD, Lotze MT. Identification of human 

melanoma peptides recognized by class I restricted tumor infiltrating T lymphocytes. J 

Immunol 1993; Oct 1; 151(7):3719-3727. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



129 
 

CHAPTER 6 

CONCLUSIONS 
 
 

The first objective of this study was to elucidate and identify whether cattle non-

classical major histocompatibility complex class I (MHC-Ib) proteins are expressed as 

cell-surface and/or secreted isoforms. Transfection studies were conducted to express two 

classical MHC-I proteins, N*01701 and N*01802, and five non-classical MHC-I 

proteins, NC1*00401, NC1*00501, NC2*00102, NC3*00101, and NC4*00201, in 

murine P815 and human K562 cells. We identified that both class Ia and three class Ib 

proteins, NC1*00501, NC3*00101, and NC4*00201, are expressed on the cell surface. 

Two additional isoforms, NC1*00401 and NC2*00102, were not detected on the surface 

of these cells. It is possible that NC1*00401 and NC2*00102 are expressed as secreted 

isoforms and play important roles in immunosuppression during pregnancy. 

Nevertheless, all the proteins were detected in crude cell lysates on Western blots. 

Precipitation of proteins from culture supernatants showed that cell-surface MHC-Ia and 

MHC-Ib proteins are shed or released from the surface of these cells into the media. 

One of the cattle class Ib proteins, NC4*00201, was identified on the cell-surface 

of human K562 cell line but not on murine P815 cells, which suggests that this protein 

associates with human beta-2-microglobulin (β2m) and conforms better with human β2m 

than with murine β2m in P815 cells. 

The second objective of the present study was to develop an enzyme-linked 

immunosorbent assay (ELISA) to quantitate secreted and/or soluble cattle class Ib 

proteins from trophoblast cell culture supernatants. We collaborated with the monoclonal 

antibody center at Washington State University, Pullman and produced monoclonal 
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antibodies for NC1*00501 and NC3*00101 glycoproteins. We were able to produce a 

positive and NC3*00101-specific hybridoma cell line secreting monoclonal antibodies to 

NC3*00101 protein as tested with flow cytometry and ELISA. However, the positive 

NC3*00101-specific hybridoma could not be revived. Therefore, further efforts need to 

be planned and conducted in order to produce stable clones of hybridomas.  

To advance our understanding of functional importance of the cattle class Ib 

proteins, we identified the peptide motif of the NC3*00101 protein to generate 

NC3*00101 tetramers. A tetramer is a complex of four identical MHC-peptide- β2m 

complexes linked together with streptavidin and a fluorochrome. Leukocytes are stained 

with tetramers to identify, enumerate, isolate and in situ stain antigen-specific T cells. As 

a prerequisite to constructing NC3*00101-tetramers, we eluted and identified the peptide 

motif of NC3*00101. First, we isolated NC3*00101 protein in its native conformation 

with bound peptide by immunoprecipitation and eluted the peptide with acid treatment. 

However, immunoprecipitation did not work as seen with poor results of liquid 

chromatography mass-spectrometry (LC-MS). Therefore, we switched to citrate shock 

method and treated NC3*00101-transfected K562 cells with low pH-citric acid to elute 

and released peptides from the MHC proteins on the cell-surface.  With the help of LC-

MS, we identified nonamers which were candidate peptides (EVTNQLVVL, 

LVDGVKRIL, SSKIVGDLA, and GSILSGTAIA) for the NC3*00101 protein. These 

peptides were ordered in synthetic forms from GenScript and tested for their specificity 

to refold NC3*00101-heavy chain with a biotin tag and bovine β2m. We tested each of 

the four peptides to refold NC3*00101 heavy and β2m chains. Western blots with W6/32 

and anti-mouse β2m antibodies failed to detect refolded chains. We were not successful 
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in detecting refolded proteins with Western blots. We further tested these peptides by 

peptide binding assays. Transfected NC3*00101 cells were incubated with peptides and 

analyzed to identify their effects on NC3*00101 expression. Due to inconsistent and 

varying results of peptide binding assays, we analyzed the effects with a mixed procedure 

of statistical analysis software (SAS). With the statistical analysis performed on mean 

fluorescence values of transfected cells incubated with or without peptides, we identified 

that EVTNQLVVL induces a significantly different response compared with control cells 

and is a potential peptide motif of NC3*00101 protein. By understanding the peptide 

ligands of non-classical class I NC3*00101 protein, we will be able to generate the 

tetramers for this protein. Tetramers are valuable tools to identify the antigen-specific 

leukocytes that bind to MHC proteins. NC3*00101 tetrameric complexes will be very 

helpful in identifying the antigen-specific NC3*00101-specific leukocytes which will 

further give an insight into different receptors expressed by the leukocytes that bind with 

NC3*00101 and how the NC3*00101-receptor interaction results in immune tolerance 

during pregnancy.   
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